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1. INTRODUCTION

In [1] the following problem was formulated. There is a set of n balls in the m-dimensional
Euclidean space Em. Each ball Bi, 1 � i � n, is determined by setting its center Oi and radius Ri.
The objective is to reveal whether the intersection of n balls is nonempty, and in the case of positive
answer to find a point in this intersection.

An application of this problem in the case m = 2 is considered in [1]. On a plane there are n
transmitting stations of various capacities. A signal from station i located at the point Oi can be
received at a distance not exceeding Ri units. The objective is to determine whether it is possible to
find a place for building a receiving station (taking into account only characteristics of the range of
propagation of signals from transmitting stations) so that this receiving station can receive signals
from all transmitting stations. This technical interpretation can be generalized to the case of
three-dimensional space (m = 3), when the model takes into account the height of transmitting and
receiving stations. Besides, in the three-dimensional case one can give different interpretations of the
problem in the context of the actual application associated with the use of unmanned aerial vehicles
(drones). For example, residents of small villages located in remote mountainous regions can use
drones for delivering medicines, various small goods and postal packages. In village i the launch pad
for the drone is located at the point Oi. Taking into account its technical characteristics, the drone
from village i can travel a distance not exceeding 2Ri units (there and back) without recharging.
It is necessary to determine coordinates of the hovering point of an air vehicle (helicopter, airship)
used as a warehouse of goods, so that this warehouse could be reached for drones from all villages.
A similar model can be used for planning the delivery process of medicines, medical devices, supplies
and so on by drones to several rescue teams in areas of large-scale disasters. In such situations,
constantly changing circumstances may require the multiple solving the problem of determining
coordinates of the hovering point for an air vehicle (a warehouse) so that it could be reached by
drones of all rescue teams.
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In [1], two approaches to the problem under consideration in m-dimensional case are suggested.
The first approach is related to the problem of minimizing a linear function under quadratic con-
straints. The second one is based on the well-known ellipsoid method (see, for example, [3]). Notice
that the problem under consideration can be attributed to a wide class of problems of approxi-
mating a convex set by ellipsoids in the space Em [4]. This class of problems is divided into two
subclasses of internal and external approximation problems. A solution to the considered problem
can be obtained by solving the following internal approximation problem: find an ellipsoid of the
largest volume contained in the intersection of n given ellipsoids, if this intersection is non-empty
(of course, to solve the problem we are interested in, we should consider a special case in which
ellipsoids are replaced by balls). In [4] it was demonstrated that the last problem can be reduced
to a convex program problem. A similar external approximation problem can be formulated as
follows: find an ellipsoid of the smallest volume containing an intersection of given ellipsoids if
this intersection is non-empty. Unlike the internal approximation problem mentioned above, the
external approximation problem is NP-hard [4]. In [5], its special case is considered: find the ball
of the smallest radius containing the intersection of given n balls. In [5] it is shown that if the
intersection of n balls is non-empty and n � m− 1, the problem of finding the ball of the smallest
radius can be solved by minimizing the convex quadratic function.

Notice that all previous approaches to the problems under consideration are polynomial from
the theoretical point of view. However, their implementation in practice may be not effective,
especially for large values of n (see, for example, the comment in [6] concerning the ellipsoid
algorithm). Besides, the implementing may be difficult due to the rather abstract nature of the
used mathematical constructions (for example, see in [4] the reduction of the problem of finding the
largest volume ellipsoid contained in the intersection of given ellipsoids to the convex program). In
this paper we suggest an alternative geometric approach to the problem of finding a point in the
intersection of n balls from the space Em, which uses the well-known apparatus of linear algebra
and analytical geometry. As a result of this alternative approach, we design exact polynomial
algorithms for solving the problem.

The paper is organized as follows. In Section 2 two algorithms for solving the problem in the
case m = 2 are presented. The more specific algorithm BALLS1 can be implemented in O(n2 log n)
operations. Algorithm BALLS2 has the more simple structure, but the higher computational com-
plexity O(n3) operations. In Section 3 we consider the general m-dimensional case for which the
recursive algorithm BALLS3(m,n) is developed. During operating, algorithm BALLS3(m,n)
uses either algorithm BALLS1 or algorithm BALLS2. This fact determines the computa-
tional complexity of algorithm BALLS3(m,n), which is either O(n2m−4(nm2 +m3 + n2 log n))
or O(n2m−4(nm2 +m3 + n3)) operations, respectively. The concluding remarks are presented in
Section 4.

2. ALGORITHMS FOR FINDING A POINT
IN THE INTERSECTION OF CIRCLES

In this section we describe algorithms for finding a point in the intersection of circles on a
plane. However, to construct the first algorithm, we should treat points on a plane as points in
three-dimensional space with zero third coordinate. Thus, we introduce a Cartesian rectangular
coordinate system (O;�i,�j,�k).

Consider n circles on the plane Oxy. Each circle Bi, 1 � i � n, is determined by its center
Oi(xi, yi, 0) and radius ri. The boundary of the circle Bi is the circumference Ci defined by the
equation (x− xi)

2 + (y − yi)
2 = r2i . Let us number the circles Bi, 1 � i � n, in the non-increasing

order of their radii: r1 � r2 � . . . � rn.
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2.1. Pre-Processing

First, we check whether the given circles intersect in pairs. For each pair of circles Bi and Bj ,
1 � i � n− 1, i < j � n, calculate the distance dij between their centers.

If dij > ri + rj, then the circles Bi and Bj do not intersect, so the problem has no solution.

If dij � ri − rj, then the circle Bj is inside the circle Bi. Therefore, we can exclude the circle Bi

from further consideration and solve the problem for n− 1 circles.

If dij = ri + rj , then the circles Bi and Bj have a unique common point M , where their borders

(circumferences) Ci and Cj touch. We find the vector
−−−→
OiOj and normalize it. Let −→eij be a unit

vector with the same direction as the vector
−−−→
OiOj . Lay aside the vector ri

−→eij from the point Oi

and get the point M where the circles Bi and Bj touch. It remains to check whether the found
point M belongs to all other circles. If it belongs, then the point M is the solution to the problem.
Otherwise, the problem has no solution.

2.2. The Main Part of Algorithm BALLS1

In the following consideration, we assume w.l.o.g. that for any pair of circles Bi and Bj ,
1 � i � n− 1, i < j � n, the inequality ri − rj < dij < ri + rj holds. This means that the circum-
ferences Ci and Cj intersect at two points.

Fix some circumference Ci and find its intersection points with the other circumference Cj ,
i �= j. To do this, solve a system of equations:

⎧
⎨
⎩
(x− xi)

2 + (y − yi)
2 = r2i

(x− xj)
2 + (y − yj)

2 = r2j .
(1)

Subtracting the first equation of system (1) from the second one, we get an equation of the
form fx+ gy + h = 0, which determines a line that passes through the intersection points of the
circumferences Ci and Cj. Expressing y from the equation fx+ gy + h = 0 and substituting it into
the first equation of system (1), we get a quadratic equation of the form ax2 + bx+ c = 0, which

has two different real roots x
(1)
ij and x

(2)
ij . From the equation fx+ gy + h = 0 we get the corre-

sponding values y
(1)
ij and y

(2)
ij . Thus, we define the points M

(1)
ij (x

(1)
ij , y

(1)
ij , 0) and M

(2)
ij (x

(2)
ij , y

(2)
ij , 0)

of intersection of the circumferences Ci and Cj . Note that the circles Bi and Bj are guaranteed to

have a common segment [M
(1)
ij ,M

(2)
ij ] (see Fig. 1).

The points M
(1)
ij and M

(2)
ij divide the circumference Ci into two arcs. In the following, only

the arc that is inside the circle Bj will be of interest. Let us agree that the traversing the chosen

Bi

Bj

Mĳ
(2)

Mĳ
(1)

Fig. 1. The intersection of the balls Bi and Bj .
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Fig. 2. The cases of mutual arrangement of three balls.

arc will be counter-clockwise. Thus, one of the points M
(1)
ij , M

(2)
ij will be chosen as the starting

point of the path while the other one will be chosen as the end point. Consider three non-coplanar

vectors
−−−→
OiOj ,

−−−−−−→
M

(1)
ij M

(2)
ij , �k and find their mixed product. If (

−−−→
OiOj ,

−−−−−−→
M

(1)
ij M

(2)
ij , �k) > 0, i.e., the

triple of vectors
−−−→
OiOj ,

−−−−−−→
M

(1)
ij M

(2)
ij , �k is right, then the point M

(1)
ij will be the starting point of the

path (paint it white) and the point M
(2)
ij will be the end point of the path (paint it black). If

(
−−−→
OiOj ,

−−−−−−→
M

(1)
ij M

(2)
ij , �k) < 0, i.e., the triple of vectors

−−−→
OiOj ,

−−−−−−→
M

(1)
ij M

(2)
ij , �k is left, then the point M

(2)
ij

will be the starting point of the path (paint it white) and the point M
(1)
ij will be the end point

of the path (paint it black). The start (white) point and end (black) point of the path along
with agreeing on the counter-clockwise direction completely define the arc of the circumference Ci

located inside the circle Bj . Denote this arc by Lij and call it a proper arc of the circumference Ci

for the circle Bj.

Consider all circles Bj, 1 � j � n, j �= i, and find the set of all proper arcs Lij of the circumfer-
ence Ci. If the intersection Li of all proper arcs is non-empty, i.e., Li =

⋂
1�j�n,j �=iLij �= ∅, then

the arc Li of the circumference Ci will be inside each circle Bj , 1 � j � n, j �= i. In addition, the
chord connecting the ends of the arc Li will be inside the intersection of all circles Bj , 1 � j � n.
Note that the arc Li is a part of the border of the intersection area of all circles. If the intersection
of all proper arcs is empty, i.e., Li =

⋂
1�j�n,j �=iLij = ∅, then either no part of the border of the

intersection area of all circles belongs to the circumference Ci (i.e., the intersection of all circles is
inside the open circle Bi \ Ci), or the intersection of all circles is empty. If the intersection of all
circles is inside the open circle Bi \ Ci, then there is another circle, e.g., the circle Bk, k �= i, such
that part of the border of the intersection area of all circles is an arc Lk of the circumference Ck.
Considering successively all circles Bi, 1 � i � n, we either find such a circle Bk, or conclude that
the intersection of all circles is empty.

Consider all typical cases of mutual arrangement of circles on the example of three circles (see
Fig. 2).

1. The arc L1 of the circumference C1 is the intersection of the proper arcs L12 and L13. Notice
that the arc L1 is a part of the border of the intersection area of the circles B1, B2, and B3.

2. The border of the intersection area of the circles B1, B2, and B3 does not contain any arc of
the circumference C1. The border of the intersection area of all circles consists of arcs L2 and L3

of circumferences C2 and C3.

3. The intersection of the pairwise intersecting circles B1, B2, and B3 is empty.

Consider the issue how effectively define the intersection Li =
⋂

1�j�n,j �=iLij of all proper arcs
of the circumference Ci, 1 � i � n.
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Each proper arc Lij is defined by setting points M
(1)
ij (x

(1)
ij , y

(1)
ij , 0) and M

(2)
ij (x

(2)
ij , y

(2)
ij , 0) of the

intersection of the circumferences Ci and Cj and indicating which of them is the starting point (the

end point, respectively) of the path. To each point M
(l)
ij (x

(l)
ij , y

(l)
ij , 0), 1 � l � 2, we put into accor-

dance an element φ
(l)
ij (x

(l)
ij , y

(l)
ij , α

(l)
ij ). The marker-variable α

(l)
ij indicates the color of the point M

(l)
ij .

If M
(l)
ij is colored black, then we assume α

(l)
ij = 1, otherwise α

(l)
ij = 0. Thus, each proper arc is

defined by two elements φ
(1)
ij and φ

(2)
ij .

Let the set of all elements φ
(l)
ij , 1 � l � 2, 1 � j � n, j �= i be found for the circumference Ci. Di-

vide the set of elements φ
(l)
ij into two subsets. If y

(l)
ij < 0, then assign the element φ

(l)
ij (x

(l)
ij , y

(l)
ij , α

(l)
ij )

to the set N1, otherwise assign φ
(l)
ij to the set N2. Thus, the set N1 (set N2) of elements φ

(l)
ij

determines the set of points M
(l)
ij of the circumference Ci, which can be put in a one-to-one corre-

spondence to their projections on the axis Ox (of course, coinciding points M
(l)
ij are projected into

identical points on the axis Ox).

Order the set N1 (N2) of elements φ
(l)
ij in non-decreasing order (in non-increasing order) of

values x
(l)
ij . Denote the obtained sequences of elements φ

(l)
ij as π1 and π2, respectively. Form a

sequence π = (π1, π2), which is an enumeration of the start and end points of proper arcs Lij in the
process of traversing the circumference Ci in the counter-clockwise direction. Number the elements
of the sequence π, denoting them by ψk(xk, yk, αk), i.e., π = (ψ1, ψ2, . . . , ψ2n−2).

Looking through the sequence π from left to right, find in it subsequences of elements corre-
sponding to coinciding points on the circumference Ci, if such exist. Let π̄ = (ψk, ψk+1, . . . , ψk+t)
be one of such subsequences. All elements ψp(xp, yp, αp) of the subsequence π̄ have the same val-
ues xp and the same values yp, but they may have different values αp. Divide the elements of π̄ into
two subsequences: we assign all elements that have αp = 0 to the subsequence π̄′, the remaining
elements will be assigned to the subsequence π̄′′ (they have αp = 1). If the element ψk−1 that
precedes the subsequence π̄ in the sequence π has αk−1 = 0, then in the sequence π replace the
subsequence π̄ with (π̄′, π̄′′). If αk−1 = 1, then replace in π the subsequence π̄ with the subsequence
(π̄′′, π̄′). We perform similar actions with all subsequences of elements corresponding to coinciding
points of the circumference Ci. Such constructions are performed in order to minimize the number
of switches of the indicator αk in the list of the start and end points of proper arcs Lij when
traversing the circumference Ci.

Renumber the elements of the transformed sequence π according to their location. If the neigh-
boring elements ψk(xk, yk, αk) and ψk+1(xk+1, yk+1, αk+1), 1 � k � 2n− 3, in the sequence π have
αk �= αk+1, then we say that there takes place an indicator switch. Looking through the sequence π,
we calculate the number ρ of indicator switches.

Lemma 1. Let the sequence π of elements ψk(xk, yk, αk), 1 � k � 2n− 2 corresponding to the

start and end points of proper arcs of the circumference Ci be constructed according to the rules

described above. If 1 � ρ � 2, then the intersection Li of all proper arcs of the circumference Ci

is non-empty, i.e., Li =
⋂

1�j�n,j �=iLij �= ∅.

The Appendix provides a constructive proof of Lemma 1, which shows how to find the arc
Li =

⋂
1�j�n,j �=iLij �= ∅. Thus, the problem is solved, because any point on the arc Li (as well as

any point on the chord connecting the ends of Li) belongs to the intersection of all circles.

The following example shows that if ρ � 3, then one cannot make any conclusion about the exis-
tence of the non-empty intersection Li =

⋂
1�j�n,j �=iLij of the proper arcs of the circumference Ci.

Example. We are given a sequence of indicators (0, 1, 0, 1). For this sequence, the number of
the indicator switches is ρ = 3. Two possible situations are shown on Figs. 2b and 2c. For each

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020
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B2 B1

B3
M12

(1)

M13
(1)

M12
(2)

M13
(2)

Fig. 3. The bound of the intersection area contains two arcs of the circumference C1.

of these situations, the intersection of the proper arcs of the circumference C1 is empty. Figure 3
shows the third possible situation, when the intersection of the proper arcs of the circumference C1

consists of two arcs ⌣ M
(1)
12 M

(2)
13 and ⌣ M

(1)
13 M

(2)
12 . Note that the degree measure of at least one

of the arcs L12 and L13 is greater than 180◦.

Lemma 2. The degree measure of the proper arc Lij of the circumference Ci is greater than 180◦

only if its radius ri is less than radius rj of the circumference Cj , j �= i.

Corollary. If radius ri of the circumference Ci is greater than radii of all other circumferences Cj,

j �= i, and ρ � 3, then Li =
⋂

1�j�n,j �=iLij = ∅.

Recall that all circles Bi, 1 � i � n, are numbered in the non-increasing order of their radii:
r1 � r2 � . . . � rn. Consider the circle B1 and determine the number ρ of the indicator switches
for the circumference C1. According to Lemma 1 and Corollary, for the circumference C1 that has
the largest radius, depending on the value of ρ, we can deduce whether the situation L1 �= ∅ takes
place.

Suppose we checked the circumference C1 and came to the conclusion that L1 = ∅. If the
intersection of all circles is a non-empty set, then it is located inside the open circle B1 \ C1.
Temporarily delete the circle B1 and consider the circle B2, i.e., the circle with the next largest
radius. We continue the process until we find a circle Bk such that for the circumference Ck we
have Lk =

⋂
k<j�nLkj �= ∅. Let Mkp and Mkq be the starting and ending points of the arc Lk of

the circumference Ck. By construction, the point Mkp (and also any point of the arc Lk as well as
any point of the chord connecting its ends) belongs to all circles Bk, Bk+1, . . . , Bn. It remains to
check whether the point Mkp (or any of the mentioned points) belongs to the circles B1, . . . , Bk−1.
If this is so, then the checked point is the one being searched for. Otherwise, the problem has no
solution.

Below we give a formal description of the algorithm.

Algorithm 1. BALLS1

Input : Circles B1, . . . , Bn, determined by their centers Oi(xi, yi, 0) and radii ri, i = 1, n.

Output : A common point for all circles B1, . . . , Bn or the answer that the problem has no
solution.

1. Number the circles B1, . . . , Bn such that r1 � r2 � . . . � rn.
2. FOR i = 1 to n DO

3. N1 = ∅, N2 = ∅.
4. FOR j = i+ 1 to n DO

5. For the circumferences Ci and Cj find their intersection points M
(1)
ij (x

(1)
ij , y

(1)
ij , 0)

and M
(2)
ij (x

(2)
ij , y

(2)
ij , 0) by solving the system (1).
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6. IF (
−−−→
OiOj,

−−−−−−→
M

(1)
ij M

(2)
ij , �k) > 0 THEN set α

(l)
ij = 0, α

(2)
ij = 1

(for the arc Lij, point M
(1)
ij is the start point, and M

(2)
ij is the end point)

ELSE set α
(l)
ij = 1, α

(2)
ij = 0 (for the arc Lij, point M

(2)
ij is the start point,

and M
(1)
ij is the end point).

7. FOR l = 1 to 2 DO

8. Create an element φ
(l)
ij (x

(l)
ij , y

(l)
ij , α

(l)
ij ).

9. IF y
(l)
ij < 0 THEN N1 = N1 ∪ {φ

(l)
ij } ELSE N2 = N2 ∪ {φ

(l)
ij }.

END FOR l
END FOR j

10. Order the set N1 of elements φ
(l)
ij (x

(l)
ij , y

(l)
ij , α

(l)
ij ) in non-decreasing order of x

(l)
ij , and order

the set N2 in non-increasing order of x
(l)
ij . Denote the obtained sequences by π1 and π2,

respectively.

11. Create a sequence π = (π1, π2). Find in the sequence π subsequences of elements corre-
sponding to coinciding points and reorder them (see above the description of the reordering
process).

12. Looking through the sequence π from left to right, determine the number ρ of the indicator
switches.

13. IF 1 � ρ � 2 THEN define the arc Li =
⋂

1�j�n,j �=iLij �= ∅ (see the proof of Lemma 1),
set k = i and go to step 15.

END FOR i
14. Go to step 19.
15. Determine the start and end points Mkp and Mkq of the arc Lk of the circumference Ck.
16. FOR i = 1 to k − 1 DO

17. IF Mkp /∈ Bi, THEN go to step 19.
END FOR i

18. Point Mkp is a solution of the problem. Stop.
19. The problem has no solution. Stop.

Ordering the sets N1 and N2 (step 10) is the most time-consuming operation that is included
in the loop on i (steps 2–13). The total computational complexity of the algorithm is O(n2 log n)
operations.

2.3. The Main Part of Algorithm BALLS2

Each circle Bi, 1 � i � n, is a convex set. It is known that the intersection of a finite number
of convex sets is a convex set (see, for example, [6]). The boundary of the intersection area of
n circles consists of arcs of some of the circumferences Ci, 1 � i � n. In fact, the intersection of
circles is a convex combination (see [6]) of the points of its boundary. Among all boundary points,
the junction points of the arcs are of primary interest. Using convex combinations of these points,
one can find the other points of the intersection area, if necessary.

The algorithm looks through all pairs of circumferences Ci and Cj , 1 � i, j � n, i �= j, determines

their intersection points M
(1)
ij and M

(2)
ij , and checks whether at least one of them belongs to all

other circles Bk, 1 � k � n, k �= i, j. In case of positive answer, the found point (e.g., M
(1)
ij ) is the

solution to the problem.

If the intersection of circles is non-empty, then the border of the intersection area contains at
least two arcs (taking into account preprocessing), and thus at least two points of arc junction.

AUTOMATION AND REMOTE CONTROL Vol. 81 No. 5 2020



876 LUSHCHAKOVA

Therefore, after iterating over the intersection points of all pairs of circumferences Ci and Cj , 1 � i,
j � n, i �= j, the algorithm will determine the required point.

A formal description of this algorithm is given below.

Algorithm 2. BALLS2

Input : Circles B1, . . . , Bn, determined by their centers Oi(xi, yi, 0) and radii ri, i = 1, n.

Output : A common point for all circles B1, . . . , Bn or the answer that the problem has no
solution.

1. FOR i = 1 to n− 1 DO

2. FOR j = i+ 1 to n DO

3. For the circumferences Ci and Cj find their intersection points M
(1)
ij and M

(2)
ij .

4. l = 1
5. FOR k = 1 to n, k �= i, k �= j DO

6. IF M
(l)
ij /∈ Bk, THEN go to step 8.

END FOR k

7. Point M
(l)
ij is a solution to the problem. Stop.

8. l = l + 1
9. IF l � 2, THEN go to step 5.

END FOR j
END FOR i

10. The problem has no solution. Stop.

The loop for the variable i contains a nested loop for the variable j, which in turn contains a
loop for the variable k. Therefore, the total computational complexity of the algorithm is O(n3)
operations.

3. FINDING A POINT IN THE INTERSECTION OF BALLS IN THE SPACE Em

Suppose that in m-dimensional affine Euclidean space Em we are given a Cartesian rectangular
coordinate system (O, �e1, . . . , �em), where �e1, . . . , �em is an orthonormal basis. There are n balls.

Each m-dimensional ball Bi, i = 1, n, is determined by its center Oi(x
(i)
1 , . . . , x

(i)
m ) and radius Ri.

The boundary of the ball Bi is m-dimensional sphere Si, defined by the equation (x1 − x
(i)
1 )2+

. . . + (xm − x
(i)
m )2 = R2

i . Pre-processing, i.e., checking whether the given balls intersect in pairs, is
performed in the same way as it was done for the case m = 2 (see Section 2.1). Here we take into

account that in the affine Euclidean space Em, the distance between two points Oi(x
(i)
1 , . . . , x

(i)
m )

and Oj(x
(j)
1 , . . . , x

(j)
m ) is defined by the formula dij =

√
(x

(i)
1 − x

(j)
1 )2 + . . .+ (x

(i)
m − x

(j)
m )2. Further

we shall assume w.l.o.g. that for any pair of balls Bi and Bj such that Ri � Rj , the inequality
Ri −Rj < dij < Ri +Rj holds, where dij is the distance between their centers Oi and Oj . This
means that the m-dimensional spheres Si and Sj intersect along the “circumference” (i.e., along
the (m− 1)-dimensional sphere) Cij.

Fix two spheres Si and Sj with centers Oi(x
(i)
1 , . . . , x

(i)
m ) and Oj(x

(j)
1 , . . . , x

(j)
m ), and consider a

system of equations

⎧
⎪⎨

⎪⎩

(
x1 − x

(i)
1

)2
+ . . .+

(
xm − x

(i)
m

)2
= R2

i
(
x1 − x

(j)
1

)2
+ . . . +

(
xm − x

(j)
m

)2
= R2

j .
(2)

From the geometric point of view, its solution is a (m− 1)-dimensional sphere (a circumference
for m− 1 = 2) Cij , along which the m-dimensional spheres Si and Sj intersect. Subtracting the
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first equation of system (2) from the second one, we get an equation of the form

α1x1 + . . .+ αmxm + β = 0, (3)

which is a hyperplane equation in the affine space Em. The hyperplane (3) cuts off from the balls
Bi and Bj the parts that make up their intersection area while the (m− 1)-dimensional sphere Cij

lies in this hyperplane and is the boundary of the “slices” of the balls Bi and Bj. “Slices” of the
balls Bi and Bj, i.e., (m− 1)-dimensional balls (circles for m− 1 = 2) with the border Cij, are
glued along the hyperplane (3). In the space Em (m− 1)-dimensional ball with the boundary Cij

is an analogue of the chord connecting the intersection points of two circumferences (for the case
m = 2).

Using some orthogonal transformation of the Cartesian coordinate system (some rotation of the
coordinate system around its origin in the case m = 3), Eq. (3) can be reduced to the form xm = x∗,

where x∗ is a constant. Substituting xm = x∗ into the equation (x1−x
(i)
1 )2+ . . .+(xm−x

(i)
m )2 =R2

i

(the first equation of system (2)), we get the canonical equation of the (m− 1)-dimensional
sphere Cij. Below we show how to construct matrix T of such orthogonal transformation (op-
erator).

Looking through the coefficients α1, . . . , αm of Eq. (3), one can find the coefficient αl �= 0. Set
the coordinates xi, i = 1,m, i �= l, of the points P0, P1, . . . , Pm−1 on the hyperplane (3), according
to the following table:

x1 x2 . . . xl . . . xm

P0 0 0 . . . x̃
(0)
l . . . 0

P1 1 0 . . . x̃
(1)
l . . . 0

P2 0 1 . . . x̃
(2)
l . . . 0

. . . . . . . . . . . . . . . . . . . . .

Pm−1 0 0 . . . x̃
(m−1)
l . . . 1

The xl coordinate of each of these points is found from Eq. (3).

The system of vectors �f1 =
−−−→
P0P1, . . . , �fm−1 =

−−−−−→
P0Pm−1 is linearly independent, each of these

vectors being orthogonal to the vector �fm = (α1, . . . , αm). Thus, the system of vectors �f1, . . . , �fm
can serve as a basis in the space Em. Let us orthogonalize the system of vectors �f1, . . . �fm:

�h1 =
�f1

| �f1 |
; �gi = �fi − (�fi,�h1)�h1 − . . .− (�fi,�hi−1)�hi−1,�hi =

�gi
| �gi |

, i = 2, . . . ,m− 1; �hm =
�fm

| �fm |
.

As a result, we have got the orthonormal basis �h1, . . . ,�hm. Make up matrix T of the transition
from the original orthonormal basis �e1, . . . , �em to the basis �h1, . . . ,�hm, writing the coordinates of
vectors �h1, . . . ,�hm in the basis �e1, . . . , �em to the columns of matrix T . Matrix T is also a matrix of
an orthogonal operator that transfers the hyperplane (3) to a hyperplane of the form xm = x∗.

Recalculate the coordinates of centers Ok of the balls Bk, k = 1, n, using the formula

X̃(k) = T−1X(k), (4)

where X(k) = (x
(k)
1 , . . . , x

(k)
m )T is the column vector of coordinates of the point Ok in the ba-

sis �e1, . . . , �em, and X̃(k) = (x̃
(k)
1 , . . . , x̃

(k)
m )T is the column vector of its coordinates in the basis

�h1, . . . ,�hm.
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For the spheres Si and Sj , consider the system of Eqs. (2) with the new coordinates of their
centers Oi and Oj. Subtracting the first equation of system (2) from the second one, we get the
equation xm = x∗.

Further, for each sphere Sk, k = 1, n, k �= j, we consider its equation

(
x1 − x̃

(k)
1

)2
+ . . . +

(
xm − x̃(k)m

)2
= R2

k (5)

and substitute xm = x∗ in it. If R2
k − (x∗ − x̃

(k)
m )2 � 0, we assume

r2k = R2
k −

(
x∗ − x̃(k)m

)2
. (6)

This means that the m-dimensional sphere Sk intersects with the plane xm = x∗. The result of this
intersection is a (m− 1)-dimensional sphere (a circumference for m− 1 = 2), given by the equation

(
x1 − x̃

(k)
1

)2
+ . . .+

(
xm−1 − x̃

(k)
m−1

)2
= r2k. (7)

If all spheres Sk (and therefore, all balls Bk), k = 1, n, k �= j, intersect with the hyperplane
xm = x∗, then at this stage the problem is reduced to finding a point in the intersection of n− 1
balls in the space Em−1. If such a pointM0(x̃

0
1, . . . , x̃

0
m−1, x

∗) is found, it remains only to recalculate
its coordinates according to the formula

X0 = TX̃0, (8)

where X̃0 = (x̃01, . . . , x̃
0
m−1, x

∗)T are coordinates of the point M0 in the basis �h1, . . . ,�hm, and
X0 = (x01, . . . , x

0
m)T are its coordinates in the original basis �e1, . . . , �em. Formula (8) specifies the

inverse coordinate transformation with respect to the transformation defined by formula (4).

If n− 1 balls from the space Em−1 defined by the hyperplane xm = x∗ do not intersect, then
we proceed with the next stage of the algorithm, i.e., we consider the next fixed pair of spheres Si

and Sj . We also proceed with the next stage of the algorithm when not all spheres Sk, k = 1, n,

k �= j, intersect with the hyperplane xm = x∗, i.e., if for some sphere Sk we have R
2
k−(x∗−x̃

(k)
m )2 < 0.

In general, if the intersection of balls is non-empty, then the border of the intersection area
consists of parts of some bounding spheres (taking into account the preprocessing, there are at
least two such spheres). Parts of spheres limited the area of intersection of balls are jointed by
hyperplanes passing through the area of intersection. Enumerating all such hyperplanes (i.e., all
pairs of m-dimensional spheres Si and Sj, 1 � i, j � n, i �= j), we find the hyperplane containing
the desired point.

Below we give a brief formal description of the key stages of the recursive algorithm
BALLS3(m,n), which solves the problem in the space Em, where m � 3.

Algorithm 3. BALLS3(m,n)

Input : m-dimensional balls B
(m)
1 , . . . ,B

(m)
n given by their centers O

(m)
i (x

(i)
1 , . . . , x

(i)
m ) and

radii R
(m)
i , i = 1, n.

Output : A common point for all balls B
(m)
1 , . . . ,B

(m)
n or the answer that the problem has no

solution.

1. Perform preprocessing.
2. FOR i = 1 to n− 1 DO

3. j = 2.
4. FOR j � n DO
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5. From system (2), define the hyperplane α1x1 + . . . + αmxm + β = 0,

containing the intersection of the spheres S
(m)
i and S

(m)
j .

6. Construct matrix T of an orthogonal transformation that transfers
the hyperplane α1x1 + . . .+ αmxm + β = 0 to the hyperplane xm = x∗.

7. Find matrix T−1 of the inverse orthogonal transformation.

8. Orthogonal transformation: for all balls B
(m)
k , k = 1, n, k �= i,

recalculate the coordinates of their centers O
(m)
k using the formula (4).

9. From system (2) of equations of spheres with new coordinates of their centers

define a plane xm = x∗ containing the intersection of the spheres S
(m)
i and S

(m)
j .

10. FOR k = 1 to n, k �= j DO

11. IF the hyperplane xm = x∗ does not intersect the sphere S
(m)
k

THEN go to step 14

ELSE for (m− 1)-dimensional ball B
(m−1)
k determine its radius R

(m−1)
k = rk

by formula (6) and the center O
(m−1)
k (discarding the last coordinate

of the point O
(m)
k ).

END FOR k
12. IF m > 3 THEN for the set of balls B

(m−1)
k , 1 � k � n, k �= j,

execute BALLS3(m− 1, n − 1)

ELSE execute BALLS1 or BALLS2 for this set of balls.
13. IF there is found the point M0(x̃

0
1, . . . , x̃

0
m−1, x

∗) in the intersection of

(m− 1)-dimensional balls B
(m−1)
k , 1 � k � n, k �= j

THEN inverse orthogonal transformation: recalculate the coordinates of the point M0

using formula (8) and stop.

14. Set j = j + 1 and go to step 4.
END FOR j

END FOR i
15. The problem has no solution. Stop.

Estimate the computational complexity of algorithm BALLS3(m,n). In the space Em, the
distance dij between two points Oi and Oj can be calculated in O(m) operations. Therefore,
preprocessing (step 1) requiresO(n2m) operations. Steps 5 and 9 are performed inO(m) operations.

The construction of a system of vectors �f1, . . . , �fm can be performed in O(m2) operations (see
table), and the orthogonalizing of the vector system can be performed in O(m3) operations (taking
into account that the scalar product of two vectors is calculated in O(m) operations). Hence,
matrix T , whose columns are the coordinates of the orthonormal system of vectors �h1, . . . �hm,
can be constructed in O(m3) operations (step 6). The inverse matrix T−1 can be constructed in
O(m2) operations (step 7) using the following known method based on the Gauss method. The
extended matrix [T |Im], where Im is identity matrix of the order m, is subjected to elementary
transformations over the rows that bring this matrix to the form [Im|C]. The result is matrix
T−1 = C.

Calculation of coordinates of a point in the new basis by formula (4) can be performed in O(m2)
operations. Therefore, step 8 is performed in O(nm2) operations. The cycle for k (steps 10, 11)
is performed in O(n) operations. Recalculation of coordinates of the point M0 by formula (8)
(step 13) is performed in O(m2) operations.

Taking into account two main cycles for i (steps 2–14) and for j (steps 4–14), the total computa-
tional complexity T (m,n) of algorithm BALLS3(m,n) can be expressed by the following recurrent
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equation:

T (m,n) = O
(
n3m2 + n2m3

)
+ n2T (m− 1, n − 1), m � 3, (9)

where T (2, n) = O(n2 log n) if algorithm BALLS1 is used, and T (2, n) = O(n3) if algorithm
BALLS2 is used. The solution T (m,n) of the recurrent Eq. (9) for m � 3 does not exceed
O(n2m−4(nm2 +m3 + T (2, n))). Therefore, in the space Em, the original problem can be solved
in O(n2m−4(nm2 +m3 + n2 log n)) or in O(n2m−4(nm2 +m3 + n3)) operations. In particular, for
three-dimensional space, the complexity of the algorithm will be O(n4 log n) or O(n5) operations.

4. CONCLUSION

In this paper we suggest the exact polynomial algorithms for finding a point in the intersection
of n balls in m-dimensional Euclidean space. In the cases m = 2 and m = 3 that are valuable
from the practical point of view, the presented algorithms can be used for developing software
for various dynamic systems including a variety of drones. For example, for a given drone swarm
configuration, it is required to determine the location of the control drone or determine whether the
desired change of the configuration is possible without losing control of all drones by the control
drone. The other practical interpretations were discussed in Section 1.

It should be mentioned that it is possible to perform a slight modification of the presented
algorithms to find not a unique point belonging to the intersection of balls, but several such points
(if this intersection is non-empty and does not consist of a unique point). This means that it is also
possible to determine a linear combination of these points that belongs entirely to the intersection
area. Note that such linear combination of corner points of the boundary of the intersection area
does not coincide with the set of points of the ball of the largest volume contained in the intersection
of balls, which should be found in the internal approximation problem [4]. Therefore, the approach
proposed in this paper is an alternative one not only as the method. It also gets the different set
of solutions providing additional opportunities for decision-making.

APPENDIX

Proof of Lemma 1. 1. Let ρ = 1, i.e., the sequence π has a single indicator switch. Note that in
this case, the indicator was switched on the element with the number n− 1, i.e., αn−1 �= αn. Two
possible situations can occur.

(a) αn−1 = 0, αn = 1. In this case, the sequence π can be split into two subsequences: π =
(π(1), π(2)), where π(1) = (ψ1, ψ2, . . . , ψn−1), π

(2) = (ψn, ψn+1, . . . , ψ2n−2). All elements of the sub-
sequence π(1) have a zero indicator, i.e., they correspond to the white points on the circumference Ci

(the starting points of the proper arcs). All elements of the subsequence π(2) have an indicator 1,
i.e., they correspond to the black points on the circumference Ci (the end points of the proper arcs).
Any proper arc Lij of the circumference Ci starts at the white point and ends at the black point,
provided that the movement along the arc goes in the counter-clockwise direction. The sequence π
corresponds to the enumeration of points on the circumference Ci in the counter-clockwise direc-
tion. Therefore, the traversing any arc Lij from the start to the end point corresponds to a certain
subsequence (ψp, ψp+1 . . . , ψn−1, ψn, ψn+1, . . . , ψq) of the sequence π, where (ψp, ψp+1, . . . , ψn−1) is
a sequence of elements with indicator 0, and (ψn, ψn+1, . . . , ψq) is a sequence of elements with
indicator 1. Note that whatever the numbers p and q, 1 � p � n− 1, n � q � 2n− 2, any such
subsequence must include the elements ψn−1 and ψn. Therefore, the arc Li connecting the points
of the circumference Ci determined by the elements ψn−1 (start point) and ψn (end point) will be
contained in any proper arc Lij, i.e., Li =

⋂
1�j�n,j �=iLij �= ∅.
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Fig. 4.

(b) αn−1 = 1, αn = 0. In this case, all elements of the subsequence π(1) have indicator 1, and
all elements of the subsequence π(2) have indicator 0. The movement along the circumference Ci in
the counter-clockwise direction can be done in the order π∗ = (π(2), π(1)) = (ψn, ψn+1, . . . , ψ2n−2,
ψ1, ψ2, . . . , ψn−1). Then the movement along any proper arc Lij from the start to the
end point corresponds to a certain subsequence (ψp, ψp+1. . . , ψ2n−2, ψ1, ψ2, . . . , ψq) of the se-
quence π∗, where (ψp, ψp+1, . . . , ψ2n−2) is the subsequence of elements with indicator 0, and
(ψ1, ψ2, . . . , ψq) is the subsequence of elements with indicator 1. Whatever the numbers p and q,
n � p � 2n− 2, 1 � q � n− 1, the elements ψ2n−2 and ψ1 must be included in any such subse-
quence (ψp, ψp+1, . . . , ψ2n−2, ψ1, ψ2, . . . , ψq). Therefore, the arc Li connecting the points of the
circumference Ci corresponding to the elements ψ2n−2 and ψ1 will be contained in any proper arc,
i.e., Li =

⋂
1�j�n,j �=iLij �= ∅.

2. Let ρ = 2, i.e., the indicator switches twice: once from 0 to 1, and once from 1 to 0, and the
order of these switches can be arbitrary. Therefore, there are two possible situations.

(a) Let the first indicator switch occur from 0 to 1 on the element with the number k, i.e., αk = 0,
αk+1 = 1. In this case, the sequence π can be divided into three subsequences: π = (π(1), π(2), π(3)),
where π(1) = (ψ1, ψ2, . . . , ψk), π(2) = (ψk+1, ψk+2, . . . , ψk+n−1), π(3) = (ψk+n, ψk+n+1, . . . , ψ2n−2),
1 � k � n− 2. All elements of the subsequences π(1) and π(3) have indicator 0, and all ele-
ments of the subsequence π(2) have indicator 1. The movement along the circumference Ci in
the counter-clockwise direction can be done in the order π̂ = (π(3), π(1), π(2)). Then the move-
ment along any proper arc Lij from the start to the end points corresponds to some subse-
quence (ψp, . . . , ψk, ψk+1, . . . , ψq), where (ψp, , . . . , ψk) is a subsequence of elements with indicator 0,
and (ψk+1, . . . , ψq) is a subsequence of elements with indicator 1, k + n � p � 2n− 2, 1 � p � k,
k + 1 � q � k + n− 1, 1 � k � n− 2. The elements ψk and ψk+1 must be included into any such
subsequence (ψp, . . . , ψk, ψk+1, . . . , ψq). Therefore, the arc Li connecting the points corresponding
to the elements ψk and ψk+1 will be contained in any proper arc, i.e., Li =

⋂
1�j�n,j �=iLij �= ∅.

(b) Let the first indicator switch occur from 1 to 0 on the element with the number k, i.e.,
αk = 1, αk+1 = 0. As in the case 2.a, the sequence π can be split into the same three subsequences
π = (π(1), π(2), π(3)). However, in this case, all elements of the subsequences π(1) and π(3) have
indicator 1, while all elements of the subsequence π(2) have indicator 0. The movement along the
circumference Ci in the counter-clockwise direction can be done in the order π̃ = (π(2), π(3), π(1)).
The movement along any proper arc Lij from the start to the end points corresponds to a cer-
tain subsequence (ψp, . . . , ψk+n−1, ψk+n, . . . , ψq), where (ψp, , . . . , ψk+n−1) is the subsequence of
elements with indicator 0, and (ψk+n, . . . , ψq) is the subsequence of elements with indicator 1,
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k + 1 � p � k + n− 1, k + n � q � 2n − 2, 1 � q � k, 1 � k � 2n− 2. The elements ψk+n−1 and
ψk+n must be included into any such subsequence (ψp, . . . , ψk+n−1, ψk+n, . . . , ψq). Therefore, the
arc Li connecting the points corresponding to the elements ψk+n−1 and ψk+n will be contained in
any proper arc, i.e., Li =

⋂
1�j�n,j �=iLij �= ∅.

Lemma 1 is proved.

Proof of Lemma 2. Let the degree measure of the proper arc Lij be 2α > 180◦. To be definite,

we consider the point M
(1)
ij as the beginning of the arc Lij, and the point M

(2)
ij as its end. The

degree measure of the proper arc Lij is equal to the sum of two identical obtuse angles M
(1)
ij OiOj

and M
(2)
ij OiOj (see Fig. 4). Let d be the distance between centers Oi and Oj of the circum-

ferences Ci and Cj. Then from the triangle M
(1)
ij OiOj according to the law of cosines we have

r2j = r2i + d2 − 2rid cosα. Since α is an obtuse angle, we have cosα < 0, hence rj > ri, which was
required to be proved.
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