УДК 621.396.677.51

МОДЕЛЬ РАДИОЛИНИИ «ПЕРЕДАТЧИК – ПРИЕМНЫЙ КАНАЛ МНОГОКАНАЛЬНОГО ПЕЛЕНГАТОРА С КОЛЬЦЕВОЙ АНТЕННОЙ РЕШЕТКОЙ» ДИАПАЗОНА ОВЧ

КРЕЙДИК Е. Л.

ООАО «АГАТ-СИСТЕМ» (г. Минск, Республика Беларусь)

E-mail: kreidik@rambler.ru

Аннотация. В работе предложена модель радиолинии «передатчик – приемный канал многоканального пеленгатора с кольцевой антенной решеткой» диапазона ОВЧ. По данной модели произведен расчет отношения мощности сигнала (передатчика) к мощности шума (для краткости, отношения сигнал/шум) в приемном канале указанного пеленгатора в зависимости от соответствующих параметров радиолинии.

Abstract. The model of the radio line "transmitter – receiving channel of a multi-channel direction finder with a ring antenna array" in the VHF range is proposed. This model is used to calculate the ratio of the signal power (transmitter) to the noise power (for short, the signal-to-noise ratio) in the receiving channel of the specified direction finder, depending on the corresponding parameters of the radio line.

Введение

В современных средствах радиоразведки (PP), в том числе в составе станции ответных помех, широкое применение находят M-элементные кольцевые антенные решетки [1, 2]. Для инженерной практики на стадии проектирования аппаратуры PP, прежде всего, представляет интерес получение оценки отношения сигнал/шум ρ_i на выходе приемного канала радиопеленгатора. Далее приняты следующие допущения:

- наземный передатчик функционирует в диапазоне OBЧ [1, 3, 4];

- в состав аппаратуры РР СОП входит М -элементная кольцевая антенная решетка;

- полоса пропускания канала измерения в аппаратуре PP согласована с полосой пропускания частотного канала СРС *В*.

Указанный передатчик, приемный канал многоканального радиопеленгатора и соответствующие антенны (в том числе кольцевая антенная решетка), электрические цепи и среда распространения составляют радиолинию «передатчик – приемный канал многоканального пеленгатора с кольцевой антенной решеткой» диапазона ОВЧ.

Существует ряд различных моделей для прогнозирования потерь при распространении радиоволн на частотах выше 30 МГц в зависимости от соответствующих параметров и характеристик конкретной местности [5, 6]. В настоящее время одной из известных является модель Эгли (Egli) [7]. Указанную модель можно использовать для прогнозирования дальности действия наземных СРС [8] и средств РР [3, 9]. Модель Эгли используется в полосе частот 30–1000 МГц для прогнозирования потерь при распространении радиоволн на трассах длиной 1–50 км [3] над земной неровной поверхностью с незначительными колебаниями высот в пределах 15 м [10]. Далее прогнозирование основных потерь передачи в радиолинии l_b выполнено по модели Эгли. Для этого использовано соотношение, предложенное в [11]:

$$P_{r,(50)} = \begin{cases} P_{l}G_{l}G_{r}\left(\frac{h_{l}(9,15h_{r})^{1/2}}{R^{2}}\right)^{2}\left(\frac{40}{f_{(MHz)}}\right)^{2}, & 9 > h_{r} > 2; \\ P_{l}G_{l}G_{r}\left(\frac{h_{l}h_{r}}{R^{2}}\right)^{2}\left(\frac{40}{f_{(MHz)}}\right)^{2}, & h_{r} \ge 9, \end{cases}$$
(1)

где $P_{r,(50)}$ – мощность радиочастотного сигнала, отдаваемая приемной антенной в нагрузку (далее в (2) – мощность радиочастотного сигнала на входе приемного тракта), Вт; P_t – мощность радиочастотного

Республиканская научно-практическая конференция, 28-29 октября 2020 г., Минск, Республика Беларусь

сигнала, подводимого к передающей антенне (далее в (2) – мощность радиочастотного сигнала на выходе передатчика), Вт; G_t , G_r – коэффициенты усиления соответственно передающей и приемной антенн; h_t , h_r – высоты электрических центров соответственно передающей и приемной антенн над земной поверхностью, м; R – расстояние между передатчиком и приемником, м; $f_{(MHz)}$ – несущая частота, МГц. Среднее квадратическое отклонение $P_{r,(50)}$ [12]: $\sigma=5\log f_{(MHz)} - 2$ дБ.

Например, если выполняется условие $h_r > 9$, соотношение (1) может быть преобразовано к виду, удобному для дальнейшего использования [13] (для наглядности виды потерь обозначены одиночными фигурными скобками):

$$\frac{P_{t}}{P_{r,(50)}} = l_{tf} l_{tc} l_{tc} \frac{1}{D_{t} D_{r}} \left(\frac{R^{2} f}{h_{t} h_{r} f_{Egli}} \right)^{2}, \qquad (2)$$

где l_{if} , l_{rf} – потери в фидерах соответственно передающей и приемной антенн; l_{ic} , l_{rc} – потери в цепях соответственно передающей и приемной антенн; D_t , D_r – коэффициенты направленного действия соответственно передающей и приемной антенн (для рассматриваемых направлений распространения и поляризации); f – несущая частота, Γ ц; $f_{Egli} = 4 \cdot 10^7$ – эмпирический коэффициент, Γ ц; l_i – общие потери (в радиолинии); l_s – потери в системе; l – потери передачи (в радиолинии); l_b – основные потери передачи (в радиолинии).

Величины l_{tc} , l_{rc} определяются по соотношению [14]: $l_c = 1/\eta = 1 + r_c/r_a$, где η – коэффициент полезного действия антенны; r_c – сопротивление потерь, Ом; r_a – сопротивление излучения антенны, Ом.

С учетом [13], [14] и [15], на рис. 1. приведена блок-схема модели радиолинии «передатчик – приемный канал многоканального пеленгатора с кольцевой антенной решеткой».

В состав приемного канала многоканального пеленгатора с кольцевой антенной решеткой входят: антенный элемент (АЭ) M-элементной кольцевой антенной решетки; фидер, связанный с потерями l_{rf1} ; радиоприемный тракт. В состав указанного радиоприемного тракта входят: малошумящий усилитель (МШУ); фидер снижения, связанный с потерями l_{rf2} ; радиоприемное устройство (РПУ). Выход РПУ подключен к соответствующему входу M-канального измерителя пеленга.

Рис. 1. Блок-схема модели радиолинии «передатчик – приемный канал многоканального пеленгатора с кольцевой антенной решеткой»

Секция 1 «Радиотехника, радиотехнические измерения, техника СВЧ»

Республиканская научно-практическая конференция, 28-29 октября 2020 г., Минск, Республика Беларусь

Далее принято, что мощность перехваченного сигнала передатчика на входе радиоприемного тракта по (2) равна $P_{r,(50)}$. Единственной правильной контрольной точкой для оценки общего рабочего шума приемного канала пеленгатора является клемма эквивалентного свободного от потерь АЭ (клеммы этого АЭ без потерь не существуют физически) [16]. Указанный шум выражен через коэффициент шума приемного канала пеленгатора f_{sys} относительно уровня теплового шума [16]. Далее введено обозначение мощности перехваченного сигнала активного передатчика в контрольной точке $P'_{r,(50)}$: $P'_{r,(50)} = P_{r,(50)} l_{r} l_{r}$. Отсюда по (2) получено:

$$P_{r,(50)}' = \frac{P_t D_t D_r}{l_{tf} l_{tc}} \left(\frac{h_t h_r f_{Egli}}{R^2 f} \right)^2.$$
(3)

С учетом [14] введено обозначение эквивалентной мощности шума N_{sys} в контрольной точке, как усредненной по времени мощности, внесенной всеми источниками шума (внутренними и внешними) и подводимой свободным от потерь АЭ к нагрузке, если соответствующие импеданс АЭ и импеданс нагрузки являются комплексно-сопряженными величинами:

$$N_{sys} = kT_0 f_{sys} B,$$

где $k = 1,38 \cdot 10^{-23}$ – постоянная Больцмана, Дж/К; $T_0 = 290$ – принятая эталонная температура, К. Далее определена величина f_{sys} по соотношению [14]: $f_{sys} = \left[P'_{r,(50)} / (k T_0 B) \right] / [s_0 / n_0]$, где s_0 – мощность сигнала на выходе РПУ; n_0 – мощность шума на выходе РПУ. Последнее соотношение сводится после подстановки в него ρ_i к виду:

$$f_{sys} = \frac{P'_{r,(50)}}{k T_0 B \rho_i} \,. \tag{4}$$

После подстановки (3) в (4) и выполнения преобразования получено:

$$\rho_i = \frac{P_t D_t D_r}{k T_0 f_{sys} B l_{tf} l_{tc}} \left(\frac{h_t h_r f_{Egli}}{R^2 f}\right)^2 \tag{5}$$

или $\rho_i = \frac{P'_{r,(50)}}{N_{sys}}$. Далее принято, что реальная температура АЭ T_c и реальная температура фидера T_t равны T_0 , $T_c = T_t = T_0$ [16]: $f_{sys} = f_a - 1 + f_c f_t f_r$, где f_a – коэффициент внешнего шума; f_c – коэффициент шума, связанный с потерями в цепи АЭ l_{rc} , $f_c = l_{rc}$; f_t – коэффициент шума фидера, связанный с потерями l_{rf1} , $f_t = l_{rf1}$; f_r – коэффициент шума радиоприемного тракта.

Коэффициент шума фидера снижения f_{r2} обратно пропорционален коэффициенту передачи по мощности g_{r2} [4]: $f_{r2} = l_{f2} = 1/g_{r2}$. С учетом [15], $f_r = f_{r1} + \frac{f_{r2} - 1}{g_{r1}} + \frac{f_{r3} - 1}{g_{r1}g_{r2}} = f_{r1} - \frac{1}{g_{r1}} + \frac{f_{r3}}{g_{r1}g_{r2}}$, где $f_{r1} -$ коэффициент шума МШУ; g_{r1} – коэффициент усиления МШУ; f_{r3} – коэффициент шума РПУ.

Величина $f_a = 10^{F_a/10}$, где F_a – коэффициент внешнего шума, дБ. С учетом [16] и [17], после подстановки в последнее соотношение величины $F_{am} + 3,4$ получено (применительно к полуволновому диполю в свободном пространстве): $f_a = 10^{(F_{am}+3,4)/10}$, где F_{am} – медианное значение мощности промышленного шума для короткой вертикальной заземленной несимметричной антенны без потерь. Величина F_{am} определяется по соотношению [16]: $F_{am} = x - y \log f_{(MHz)}$, где x и y – коэффициенты, принимающие значения в соответствии с категорией окружающей среды. Отсюда для дальнейшего компьютерного моделирования внешних шумов эфира получено: $f_a = 10^{(x-y\log f_{(MHz)}+3,4)/10}$.

Республиканская научно-практическая конференция, 28-29 октября 2020 г., Минск, Республика Беларусь

Компьютерное моделирование

В [18] отмечено, что чувствительность пеленгатора определяется свойствами пеленгаторной антенной системы, внешними шумами, шумовыми характеристиками приемно-усилительных трактов пеленгатора и используемым алгоритмом пеленгования. В нижней части диапазона ОВЧ размер АЭ оказывает значительное влияние на чувствительность радиопеленгатора [19]. В антенной системе с двойной поляризацией DF-A0085 [20] (Alaris Antennas, ЮАР) общая длина АЭ типа симметричный вибратор, предназначенного для функционирования в полосе 20–300 МГц, приближенно равна 1,3 м. Зависимость коэффициента усиления (КУ) АЭ с вертикальной поляризацией $G_{r,m}$ от f, полученная на основе диаграммы [20], приведена в табл. 1.

№	<i>f</i> ,	$G_{r,m}$,
	ΜГц	дБи
1	30	-26,0
2	45	-16,8
3	50	-14,5
4	60	-10,0
5	75	-5,0
6	90	-2,0
7	100	-1,0
8	150	-0,3
9	200	-0,3
10	250	0
11	300	1

Таблица. 1. КУ АЭ с вертикальной поляризацией

Из представленных данных следует, что $G_{r,m}$ значительно снижается с уменьшением f. С учетом методики [17]: $l_{rc} = 1,64 \cdot 10^{-(G_{r,m}/10)}$.

По (5) проведено компьютерное моделирование в нижней части диапазона ОВЧ [3, 4]: $f = 30; 45; 60; 75; 90 \text{ МГц}; G_{r,m} = G_{r,m}(f); P_t = 5 \text{ BT}; D_t = 1,5; D_r = 1,64; B = 25 \text{ кГц}; l_{tf} = 1; l_{tc} = 1,25;$ $l_{rf1} = 1; h_t = 1,5; 2,5 \text{ м}; h_r = 10 \text{ м}; f_{r1} = 5 (7 \text{ дБ}); g_{r1} = 20 (13 \text{ дБ}); g_{r2} = 0,5 (-3 \text{ дБ}); f_{r3} = 14,1 (11,5 \text{ дБ});$ x = 67,2; y = 27,7 (значения x, y приняты для категории окружающей среды «сельская местность» [16]).

Получена зависимость $\rho_i(R)$ при различных значениях h_i (рис. 2, 3).

Рис. 2. Зависимость $\rho_i(R, f)$, $h_i = 1,5$ м

Рис. 3. Зависимость $\rho_i(R, f), h_i = 2,5 \text{ м}$

Секция 1 «Радиотехника, радиотехнические измерения, техника СВЧ»

Республиканская научно-практическая конференция, 28-29 октября 2020 г., Минск, Республика Беларусь

Из диаграмм (рис. 2., 3.) следует:

- увеличение *R* и уменьшение h_i приводят к уменьшению ρ_i ;

– увеличение *f* в полосе 30–90 МГц приводит к увеличению ρ_i вследствие соответствующего увеличения $G_{r,m} = G_{r,m}(f)$ от –26 до –2 дБи (табл.) и соответствующего уменьшения $F_{am} = F_{am}(f)$ [16].

Заключение

В данной работе предложена модель радиолинии «передатчик – приемный канал многоканального пеленгатора с кольцевой антенной решеткой» диапазона ОВЧ (рис. 1), которая позволяет упростить получение оценки отношения сигнал/шум ρ_i (5) на выходе приемного канала указанного пеленгатора. Особенностью предложенной модели является использование практически полученных значений КУ АЭ с вертикальной поляризацией $G_{r,m}$ (табл.): $G_{r,m} = G_{r,m}(f)$ [20].

Список использованных источников

1. Martino A. Introduction to Modern EW Systems. 2nd ed. Norwood, MA : Artech House, 2018. 463 p.

2. Ашихмин А. В., Козьмин В. А., Рембовский А. М., Сергиенко А. Р. Технические характеристики и особенности построения автоматических радиопеленгаторов семейства «Артикул» // Спецтехника и связь. 2008. № 2. С. 26–35.

3. Poisel R. A. Modern Communications Jamming: Principles and Techniques. 2nd ed. Norwood, MA: Artech House, 2011. 870 p.

 Poisel R. A. Electronic Warfare Receivers and Receiving Systems. Norwood, MA: Artech House, 2014. 807 p.
Delisle G. Y., Lefevre J., Lecours M., Chouinard J. Propagation Loss Prediction: A Comparative Study with Application to the Mobile Radio Channel // IEEE Transactions on Vehicular Technology. 1985. Vol. 34, No. 2. Pp. 86–96.

6. Prajesh P., Singh R. K. A Survey on Various Propagation Model for Wireless Communication // 5th IEEE International Conference on Advanced Computing & Communication Technologies Conference (ICACCT 2011). APIIT SD India, Panipat. India, Delphi: Research India Publications, 2011. Pp. 61–64.

7. Egli J. J. Radio propagation above 40 MC over irregular terrain // Proceedings of the IRE. 1957. Vol. 45, No. 10. Pp. 1383–1391.

8. Suojanen M. Military Communications in the Future Battlefield. Norwood, MA: Artech House, 2018. 224 p.

9. Hooper J. D. Communications electronic countermeasures: an overview. Report No. 1074. Ottawa: Defence research establishment, 1990. 109 p.

10. Frater M. R., Ryan M. J. Communications and Information Systems. Canberra: Argos Press, 2002. 333 p.

11. Schmid H. F. Prediction Model for Multipath Propagation of Pulse Signals at VHF and UHF over Irregular Terrain // IEEE Transactions on Antennas and Propagation. Vol. 18, No. 2. Pp. 253–258.

12. Longley A. G. Location Variability of Transmission Loss Land Mobile and Broadcast Systems. Report no. OT 76-87. Boulder, Colorado: Institute for Telecommunication Sciences, 1976. 22 p.

13. Рекомендация МСЭ-R Р.341-7: Концепция потерь передачи для радиолиний / Сектор радиосвязи МСЭ. Женева, 2020. 9 с.

14. Weiner M. M. Monopole Antennas. New York: Marcel Dekker, Inc., 2003. 721 p.

15. Рембовский А. М., Ашихмин А. В., Козьмин В. А. Радиомониторинг: задачи, методы, средства / Под ред. А. М. Рембовского. 3-е изд., перераб. и доп. М.: Горячая линия – Телеком, 2012. 640 с.

16. Рекомендация МСЭ-R Р.372-14: Радиошум / Сектор радиосвязи МСЭ. Женева, 2020. 79 с.

17. Skeie B., Solberg B. External man-made radio noise measurements. Norwegian Defence Research Establishment (FFI). FFI-RAPPORT 16/00869. Kjeller: FFI, 2016. 118 p.

18. Артемов М. Л., Виноградов А. Д., Дмитриев И. С., Ильин М. Ю., Подшивалова Г. В. Предельная пеленгационная чувствительность пеленгационной антенной системы // Антенны. 2010. № 12. С. 13–19.

19. Справочник. Контроль за использованием спектра / Сектор радиосвязи МСЭ / Женева, 2011. 746 с.

20. Dual-polarised direction finding antenna array DF-A0085 20 – 3600 MHz [Электронный ресурс]. URL: http://www.alarisantennas.com/wp-content/uploads/2017/07/DF-A0085-Version-1.8.pdf (дата обращения: 12.05.2020).