Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

УДК 004.852

Соболь Андрей Владимирович

Использование метода обучения с подкреплением для реализации искусственного интеллекта

АВТОРЕФЕРАТ

на соискание академической степени магистра технических наук

по специальности 1-40 80 05 – Математическое и программное обеспечение вычислительных машин, комплексов и компьютерных сетей

Научный руководитель Волорова Наталья Алексеевна канд. техн. наук, доцент

ВВЕДЕНИЕ

В последнее десятилетие наблюдается возросший интерес к нейронным сетям, которые успешно применяются в самых различных областях: медицина, физика, химия, системы безопасности, игровая индустрия.

Нейронные сети вошли в практику везде, где требуется решать прогнозирования, классификации управления. Такие ИЛИ направления использования во многом обусловлены несколькими причинами: богатыми возможностями и простота в использовании. Нейронные сети – исключительно мощный метод моделирования, позволяющий воспроизводить чрезвычайно сложные зависимости. В частности, нейронные сети являются нелинейными по своей природе. На протяжении длительного времени линейное программирование было основным методом моделирования в большинстве областей, потому что для него хорошо разработаны процедуры оптимизации. Следовательно, нейронные сети могут решать некоторые типы задач, с которыми сложности линейного возникают при применении методов программирования.

Нейронные сети учатся на примерах. Пользователь нейронной сети подбирает представительные данные, а затем запускает алгоритм обучения, который автоматически воспринимает структуру данных. При этом от пользователя, требуется набор эвристических знаний о том, как следует отбирать и подготавливать данные для обучения, подбирать архитектуру сети и правильно интерпретировать результаты.

Метод обучения с подкреплением — это самостоятельное и уже вполне сформировавшееся направление кибернетических исследований. Обучение с подкреплением используется в различных областях науки: нейронных сетях, психологии, искусственном интеллекте, управлении,

исследовании операций и т. д. Главное достоинство этого метода — его сравнительная простота, но не реализация: наблюдаются действия обучаемого объекта и в зависимости от результата поощряют, либо наказывают данный объект, не объясняя обучаемому объекту, как именно нужно действовать.

Исследование процесса создания искусственного интеллекта является важной частью развития компьютерных игр и позволяет создавать интересные проекты, которые будут давать исключительный игровой опыт. Хотя обучение с подкреплением и являются бурно применение к развивающимся направлением, его разработке компьютерных игр требует комплексных исследований применимости. Не существует однозначного подхода к использованию обучения с подкреплением для создания искусственного интеллекта. В частности, абстракции предметной вопрос уровня области. важен формализация поведения искусственного интеллекта представляет собой сложную задачу, от которой зависит поведение конечной системы.

ОБЩАЯ ХАРАКТЕРИСТИКА

Целью данной работы является исследование возможностей использования нейронных сетей и метода обучения с подкреплением для реализации и обучения искусственного интеллекта в различных играх, выделение преимущественных стратегий для игр с двумя игроками и сбор статистики об эффективности выбранных методов на примере прототипа игры.

В результате должны быть описаны эффективные стратегии и гиперпараметры для достижения наилучшего результата в обучении с подкреплением для игр с двумя игроками.

Для достижения данной цели сформировался ряд задач, которые необходимо выполнить:

- проанализировать предметную область: нейронные сети и их применение в обучении с подкреплением;
- изучить модель задачи обучения с подкреплением;
- выделить фундаментальные методы решения задачи обучения с подкреплением, проанализировать их возможности и оценить недостатки;
- рассмотреть новые направления в решении поставленной задачи,
 провести анализ и дать собственные рекомендации на основании комбинации математически преимущественных стратегий;
- разработать и реализовать прототип для проверки предложенных алгоритмов, а также для возможности сбора разносторонней статистики с дальнейшим ее анализом.

СОДЕРЖАНИЕ

Диссертация выполнена на 68 страницах (без приложения). Пояснительная записка включает: 6 глав, 16 рисунков, 28 библиографических источников.

Графическая часть наглядно представляет выполненную работы и полученные результаты. Весь порядок изложения в магистерской диссертации подчинен руководящей идее. Каждая из глав имеет определенное целевое назначение и является базой для последующей. Дробление материала диссертации на главы, разделы, подразделы, а также их последовательность отражаются этапы выполнения работы по теме диссертации.

Во введении освящаются степени разработанности темы и оценка современного состояния решаемой задачи, основание и исходные данные для разработки темы. Дается обоснование актуальности темы магистерской диссертации, изложение целевой установки, определяются задачи работы.

В первой главе произведён обзор предметной области задачи, решаемой в рамках магистерской диссертации, рассмотрены вопросы о сущности нейронных сетей и принципе их работ, изложены основные принципы метода обучения с подкреплением.

Во второй главе дается аналитический обзор предметной области. Дается обзор постановки задачи обучения с подкреплением, описываются основные понятия предметной области в рамках поставленной задачи. Проводится анализ собранной информации.

В третьей главе происходит описание фундаментальных методов, дается характеристика основных подходов к решению поставленных задач и обосновывается либо опровергается целесообразность их использования.

В четвертой главе изложены рекомендации по сочетанию и улучшению существующих методов и стратегий для достижения наилучшего результата в решении задачи обучения с подкреплением.

В пятой главе описана математическая модель реализованного прототипа, изложены примененные стратегии в обучении нейронных сетей для комплексной оценки эффективности различных методов обучения.

В шестой главе изложены результаты выполненных в работе теоретических и экспериментальных исследований, собрана статистика на основе реализованного прототипа.

В заключении подводится итог проведенной работы, приводятся возможные пути ее практического использования.

ЗАКЛЮЧЕНИЕ

В данной магистерской диссертации была рассмотрена задача обучения искусственного интеллекта игры методами машинного обучения.

В ходе выполнения работы были изучены следующие темы:

- типы нейронных систем;
- многослойные перцептроны;
- применение нейронных систем в машинном обучении;
- методы обучения искусственного интеллекта;
- метод обучения с подкреплением.


Метод обучения с подкреплением был выбран предметом исследования магистерской диссертации, как один из методов, возможности применения которого не ограничены строгими рамками и не описаны полно. Алгоритм метода обучения с подкреплением позволяет подавать информацию для обучения без детализации среды, что является несомненным его преимуществом.

В результате выполнения работы была проанализирована задача обучения с подкреплением, рассмотрены исторические способы решения задачи, обозначены основные преимущества, области применения и методы реализации (как фундаментальные, так и прогрессивные). На основании изученных данных было создано программное средство — реализована игра «Реверси» с обученным по методу обучения с подкреплением компьютерным игроком. Также в ходе оптимизации базовых алгоритмов была рассмотрена и улучшена математическая модель задачи разрабатываемой игры.

На основании тестирования обученного компьютерного игрока можно утверждать, что алгоритм проводит 90% партий с выигрышем у случайного соперника. Реализованная игра является завершенным

продуктом, но не исключается возможность дальнейшего исследования темы и улучшения алгоритма.

В процессе технико-экономического обоснования проекта были получены результаты, свидетельствующие о том, что данный проект является экономически целесообразным.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ

- 1-А. Соболь, А.В. Методы улучшения алгоритма Q-обучения / А.Ю. Волчек, А.В. Соболь, научный руководитель Н.А. Волорова // Доклады БГУИР. Компьютерные системы и сети: материалы 54-й научной конференции аспирантов, магистрантов и студентов, 2018 г. с. 153–154.
- 2-А. Соболь, А.В. Преимущества решения задачи обучения с подкреплением методами Монте-Карло / А.В. Соболь, научный руководитель Н.А. Волорова // Научное сообщество студентов XXI столетия. Технические науки: сборник статей по материалам LXXXIII студенческой международной научно-практической конференции № 11(82), Россия, г. Новосибирск, ноябрь 2019 г.— с. 56—60.
- 3-А. Соболь, А.В. Решение задачи обучения с подкреплением методом обучения на основе временных различий / А.В. Соболь, научный руководитель Н.А. Волорова // Технические науки: проблемы и решения. Сборник статей по материалам XXIX международной научно-практической конференции № 11(27), Россия, г. Москва, Изд. «Интернаука», 2019 г.— с. 122-127.