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Abstract. Two-dimensional iterated codes have large minimum Hamming distance and their 

complexity might be compared with Turbo codes. Familiar algorithms for iterating codes have low 

decoding capabilities and very high complexities. In order to ensure the applicability of iterated 

codes, in this paper, we propose a method for correcting and erasing errors of iterated codes for a 

two-dimensional (2D) interference channel with Hamming code which provides good performance 

and acceptable complexity. 
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Introduction 

Hamming code or Hamming Distance Code is the best error correcting code we use in most of 

the communication network and digital systems. In Error control coding, parity check bits are calculated 

based on the input data. The input data and parity check bits are transmitted across a noisy channel. In 

the receiver, an ECC decoder is used to detect or correct the errors induced during the transmission. The 

number of parity bits depends upon the number of information bits. The hamming code uses the relation 

between redundancy bits and the data bits and this code can be applied to any number of data bits. A 

powerful ECC usually requires more redundant bits and more complex encoding and decoding processes, 

which increases the codec overhead [1]. 

At present, the most successful coding schemes are turbo codes and low-density parity-check 

codes, since their excellent capability, closely to the Shannon limit. Under some specific requirement 

(typically, code-rates near to the unity and low error rates required), iterated codes may turn into 

competitive. In addition, they are naturally advisable for high-speed parallel decoder implementation. 

Extended Hamming codes are representative constituents of iterated formulas since they are 

uncomplicated and can be iteratively decoded by fast suboptimal algorithms [2, 3]. More formidable 

constituent codes cause more powerful schemes but request more complex decoding algorithms, usually 

avoiding high data-rate performances. 

The simplest two-dimensional iterated codes are single parity check (SPC) product codes, 

guaranteed to correct only one error by inverting the intersection bit in the erroneous row and column 

[1]. Multidimensional SPC iterated codes can be constructed to improve the error correction capability, 

but a more complex decoding process is required  

In [8] proposed a method correct and erase errors by using the error pattern which is based on the 

process of calculating the pattern of the t t  (the error mode can be represented as a t by t matrix which 

can correct only t errors) type library and applying the identification parameters to recognise the errors. 

The method of correcting and erasing errors which are proposed in [8] cannot completely include all 

error patterns that can find through permutations of rows. Based on this defect, we propose an improved 

scheme. 

Linear binary product codes are only considered In the thesis. However, the analytical results and 

the methods are also easily applied to other non-linear codes. 

The rest of the paper is organized as follows. In Section 2, a brief introduction of the iterated 

codes will be presented. And in section 3, an improved algorithm which used to ameliorate pattern 
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library for correcting and erasing errors that exist through permutations of rows has proposed. The 

conclusion will be given in Section 4. 

Syndrome (table-lookup) decoding 

The use of syndrome for error detection and correction is discussed in [6–8], the standard array 

and its application to the decoding of linear block codes are presented. 

Premeditate a ( , )n k  linear code with generator matrix G and parity-check matrix H. Let 

0 1 1( , ,..., )nv v v v   be a codeword that transmitted over a noise channel. Let 0 1 1( , ,..., )nr r r r   be the 

received vector at the output of the channel. Because of the channel noise, the received words r may be 

different from v. The vector sum 0 1 1( , ,..., )ne r v e e e     is an n tuple, where 1ie   is called the 

error pattern. When r is received, the decoder computes the following ( )n k  tuple 

0 1 1( , ,..., ).T

n kS r H S S S    
 

Which is called the syndrome of r. Then, 0S   indicates that r is a codeword, and 0S   means 

that produced errors. Therefore, we can employ the value of S to determine whether an error has arisen. 

Every ( , )n k  linear block code is capable of detecting 2 2n k  pattern errors, however, it is capable of 

correcting only 2n k
 error patterns. For large n, 2n k

 is a small fraction of 2 2 .n k  Therefore, the 

probability of a decoding error is much higher than the eventuality of an undetected error. 

A linear block code with mind  can assure to detect any errors less than or equal to min 1.d  The 

theorem confirms the fact that a ( , )n k  linear code with minimum distance mind  is capable of correcting 

all the error patterns of min( 1)/ 2d   or fewer errors, but it’s not capable of correcting all the error 

patterns of weight 1.t   A standard array has an important property that can be used to simpify the 

decoding process. There is a one-to-one correspondence between a correctable error patternand a 

syndrmes. Using this one-to-one correspondence relationship,we can form a decoding table,which is 

much simpler to use than a standard array. This table is either stored or wired in the receiver. The 

decoding of a received vector consists of three steps: 

1. Compute the syndrome S. 

2. Locate the coset leader le  whose syndrome is equal to ,Tr H  Then le  is assumed to the eroor 

pattern caused by the channel. 

3. Decode the received vector r into the codeword 
* .lv r e   

In theory, table-lookup decoding can be applied to any ( , )n k  linear code. It results in minimum 

decoding delay and minimum error possibility, however for large information redundancy, the 

implementation of this decoding scheme is not very reality, and either a major storage or a complicated 

logic circuitry is needed. Product (iterated) codes has the capability of constructing long, powerful 

quotes from short component codes. Therefore, our analysis is focused on the two-dimensional iterated 

codes.  

Introduction to iterated code 

Iterated codes (or product codes) are serially concatenated codes which were presented by Elias 

in 1954 [2]. The construction method of iterated codes allows us to construct long, powerful codes from 

short assembly codes. The concept of iterated codes is simple enough and comparatively efficient for 

constructing extremely long block codes by using at least two short block codes [3]. 

For a linear block code, the minimum distance is equal to the minimum codeword weight, which 

is defined as the number of nonzero symbols in a codeword. The minimum Hamming distance is also 

used to evaluate the error detection capability of a linear block code. The simplest two-dimensional 

product codes are single-parity check (SPC) product codes [1]. SPC product codes only guarantee 

correction of one error. The product codes, whose component codes are Hamming or extended Hamming 

product codes, are known as Hamming product codes. 
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The random-error-detecting and random-error-correcting capabilities of code are determined by 

its minimum distance. Hamming codes have a minimum distance of 3 and therefore are capable of 

correcting any single error over the span of the code block length. The weight enumerator of Hamming 

codes is known. Hamming codes are perfect codes and can be decoded easily using a table-lookup 

scheme. Good codes with a minimum distance of 4 for single-error correction and double-error detection 

can be acquired by properly shortening the Hamming codes. Hamming codes and their shortened 

editions have been proverbially used for error control in digital communication and data storage systems 

in these years owing to their high rates and decoding briefness. 

Presume that two component codes 1 1 1 1C ( , , )n k d  and 2 2 2 2C ( , , )n k d  are used, where 1,n  1k  

and 1d  are codeword width, input data width, and minimum Hamming distance for the code 1C , 

respectively 2 ,n  2k  and 2d  are codeword width, input data width, and minimum Hamming distance for 

the code 2C ,  separately. Here we use the simple Hamming codes construct the iterated codes, let 

(1100,0100,1011,1001)v   be a codeword, simultaneously 1C (7,4,3)  and 2C (7,4,3)  are used. 

Encoding process of iterated (product) codes shows as Fig. 1. 

 

Fig. 1. Iterated codes encoding process  

Fig. 1 shows the creation process of two-dimensional iterated codes, the iterated code 

1 2 1 2 1 2(( 49), ( 16), ( 9))IC n n k k d d       is constructed from 1C  and 2C  as follows: 

The product code C is obtained from the codes 1C  and 2C  in the following manner: 

1. Place 1 2k k  information bits in an array 2 4k   rows and 1 4k   columns.  

2. Coding the 2 4k   rows using the code 1C . Note that the result will be an array of 2 4k   rows 

and 1 7n   columns. 

3. Coding the 1 7n   columns using the code 2C (7,4,3).  

Iterated (product) codes have a larger Hamming distance compared to that of the component 

codes. If the component codes 1C  and 2C  have minimum Hamming distance 1d  and 2d  respectively, 

then the minimum Hamming distance of the iterated code C I  is the product 1 2 ,d d  which greatly 

increases the error correction capability. Iterated codes can be constructed by a serial concatenation of 

simple component codes and a row-column block inter-leaver, in which the input sequence is written 

into the matrix row-wise and read out column-wise. Iterated codes can efficiently correct both random 

and burst errors. For example, if the received product codeword has errors located in a number of rows 

not exceeding 2( 1)/2d   and no errors in other rows, all the errors can be corrected during column 

decoding.  
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Algorithm decoding the product codes 

Since in 1954, Elias introduced the product code, numerous decoding algorithms for decoding 

product codes were presented. The most obvious method of decoding is the one suggested by Elias 

himself in his original work [2]. In Elias’s algorithm, the rows in the received message are decoded 

using a decoder for the code 1C  that decodes up to 1min( )/ 2 .d  The columns of the resultant matrix are 

then decoded using a decoder for the code 2C  that decodes up to 1min( )/ 2 .d  It can easily be shown 

that such a decoder can correct only up 1 2( )/ 4d d  [5]. In [8] proposed a new method erase the errors 

based on the two-step decoding with an error pattern library. Unfortunately, this two-step decoding 

method fails to correct certain error patterns. Besides, the method of correcting and erasing errors which 

are proposed cannot completely include all error patterns thast can find through permutations of rows, 

simultaneously, the algorithm didn't concrete presented how can we erase the error bytes, the 

disadvantage of the algorithm [6–8] showed in Fig. 2. Based on this defect, analysis of the structure of 

the error pattern [3], we proposed a more reasonable error correction algorithm. A three-stage pipelined 

Hamming product code decoding method is proposed, compared to the two-step row-column decoding 

method, the three-stage pipelined decoding method uses a row status vector and a column status vector 

to record the conducts of the row and column decoders. Instead of passing only the coded data between 

row and column decoder, these row and column status vectors are passed between stages to help make 

decoding decisions. 
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Fig. 2. All of the reduced combination error patterns for 3t   [3] 

If we apply Hamming code 1C
 
that distance is 1 3d   and Hamming code 2C ,  2 3d   decoding 

the information that the error’s patterns maintained the form as Fig. 2 or their transformer of the row 

and the column. Obviously, the property of the code itself can correct all of these pattern errors. 

To illustrate the error correction process more evidently, Hamming codes are used as row and 

column component codes. An example of row and column status vectors after the first and second 

decoding stages shows as Fig. 3. 
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Fig. 3. An example of row and column status vectors after the first and second decoding stages 

The simplified row and column status vector implementation can be described as follows.  

The i-th position in the row status vector is set to «1» when there are detectable errors (regardless 

of whether the errors can be corrected or not). Then those locations where have only one error 

(determined by the value of the syndrome) are marked as _1R ,i  otherwise mark the row as R i  

However, if the value of the syndrome is 0, those positions are set as «0». 
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For the column status vectors, if in the j-th column the value of the syndrome is not equal 0, the 

j-th position in column status vector to be set to «1» when an error is detectable but not correctable, and 

also mark the location of the column as _1Ci  when an error is correctable (means that only occurs one 

error), otherwise mark as C i  Fig. 4 shows an example of the row and column status vectors after the 

first and second stage decoding process.  
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Fig. 4. Example of row and column status vectors after the first and second decoding stages 

From the (a) and (b) of Fig. 4 we can perceive that the errors occurred in the same row ( 1R , 5R ) 

and column ( 1C , 3C ), yet the first graphic shows that there are two errors located in the row of 1R  and 

only one error located in the row of 5R , and the second graphic just the opposite, so when we erase the 

first errors of the graphic (a) we can apply three steps correct the errors, firstly, if the errors in a row are 

correctable, the error bit indicated by the syndrome is flipped. The row status vector is set to «0» if the 

syndrome is zero and «1» if the syndrome is non-zero. In this example we can correct the error which 

located in the row of 5R  and then correct the column of 1C  and 3C , however, for the graphic (b), at 

first we need to correct the R1and then correct the 1C  and 3C . Therefore we can know that the error 

pattern of (a) and (b) are different, the process of erasing is also different. The example is perfect because 

the Hamming code min 3d   can correct 1 error and detect 2 errors.  

And then we will describe the decoding process of the three-level pipeline Hamming product code. 

After initializing all state vectors to zero, the steps are as listed below. 

The proposed iterative decoding method of two-dimensional Hamming products codes 

Input: r v e   

Output: v  

Initialization: , 0sta star c   

While 0S   program do. 

Step 1. Row decoding of the received encoding matrix. If the error in the row is correctable, the 

error bit indicated by the syndrome will be reversed. If the syndrome is non-zero, the row state 

vector is set to «1».  

Step 2. Update the column decoding of the matrix. The error correction process is similar to step 

1, starting from step 1, use the column error vector and row state vector to calculate the column 

state vector. 

Step 3. After the change from step 2, the matrix is decoded. The syndrome in each row has to 

be recalculated. If any remaining errors in each row can be corrected, use row syndrome to 

correct. If errors in each row are still detected but cannot be corrected, use the column status 

vector in step 2 to indicate which columns need to be corrected. 

End while 

Return v  
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Based on the theory of syndrome decoding and the capability of minimum Hamming distance 

which can correct min( 1)/2d   quantity errors and our proposed method which mark the state of error 

the row and column, obviously our method can correct permanent errors that are distributed in different 

rows. 

From the analysis above we can derive that the method of three-step decoding can correct all of 

the random and burst errors that the combinations of error pattern less than 4, and also can correct some 

of the random and burst errors patterns which equal 5.  

In the experiment, we apply our method to correct the error pattern library which proposed in [3], 

as a result, we can 100 % correct the random and bursts errors t less than 3, and for 4t   (the quantity 

of error pattern equal 16) we can correct and erase 93,75 % error patterns, and for 5t   ( the sum of 

error pattern equal 34) we can correct and erase 91,17 % error patterns, but for 6t   (the sum of error 

pattern equal 90) we can only correct and erase 74,44 % error patterns, therefore for the error pattern 

which 4t   we need to use the minimum distance of Hamming code which min 3.d   

From the process of decoding, we know that not only the encoded data is passed between the row 

and column decoders, but also the row and column state vectors are passed between stages to help make 

decoding decisions. We have proposed the method by dividing the encoded information into two 

transmissions, the reliability of the proposed method depends on both the error detection capability in 

the first transmission and error correction capability for the iterative decoding method. In the first 

transmission, the error patterns with single errors in different rows are corrected and the error patterns 

with two errors in a row are detected. The iterative decoding algorithm can correct up to six-bit errors, 

furthermore, our method can correct random errors that are distributed in different rows. 

Conclusion 

In this paper, we analyze methods for decoding the random errors on the basis of product coding, 

compared with two-step row-column decoding and this method solves the problem of rectangle four 

error patterns by recording the conduct of the row and column decoders using row and column status 

vectors. The iterative decoding algorithm can correct up to six-bit errors once the row and column parity 

check bits are received. Also, our method can correct permanent errors that are distributed in different 

rows. 
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