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Abstract—A wideband worst case model to account for the 

diffraction of a plane electromagnetic (EM) wave by a system 

hull made of a conductive material is developed. The model can 

be used for estimating the amplitudes of electric and magnetic 

fields in places of antenna mounting on the hull of an airborne 

vehicle (aircraft, helicopter, etc.). The model is based on 

consideration of the fields radiated by electric dipole in a low-

frequency range and on the Fresnel approach to analysis of the 

diffraction in resonance- and high-frequency ranges. The use 

of analytical methods provides the high computational 

efficiency of the model. The developed model is validated by 

comparison of calculation results obtained by the model with 

results of numerical simulation performed in framework of 

FDTD and MOM (the ratio of the wavelength to the obstacle 

dimension is varied from 100 to 0.5). 

Keywords—electromagnetic compatibility, electromagnetic 

fields, wave diffraction, Fresnel zones 

I. INTRODUCTION 

For analysis of EME impact on airborne antennas and on 
apertures in the hull of an airborne vehicle, it is necessary to 
account for the diffraction of a plane electromagnetic wave 
by the hull. The field-to-antenna coupling model intended for 
express analysis and diagnostics of EMC at the level of 
complex systems [2]–[5] must satisfy the following 
requirements: physical adequacy in a wide range of values of 
parameters, worst case behavior, stability of calculation 
results against errors in initial data, and high computational 
efficiency. 

Electromagnetic (EM) field diffraction models based on 
the analytical approach proposed in [1] and developed within 
the framework of IEMCAP program [2], [3], which are 
traditionally used for express analysis of EMC, provide 
sufficient accuracy only if the hull of the system under 
consideration can be represented as a set of simple 
geometrical shapes (cylinder, cone, plain tetragons, etc.). A 
generalization of the analytical approach for taking into 
account the diffraction by a conductive hull of arbitrary 
shape, based on Uniform Theory of Diffraction (UTD) [6], is 
valid in a wide frequency range for antenna-to-antenna 
coupling but is not applicable for analysis of the plane-wave 
diffraction. Numerical methods of computational 

electromagnetics (such as FEM, FDTD, MOM, GO, UTD, 
PO [7]–[10], as well as hybrid methods [12], [13]) used for 
solving the diffraction problem in framework of EMC 
analysis do not satisfy the requirements given above: high-
frequency solutions do not have worst case behavior due to 
resonances, the analysis of a large set of frequencies and 
directions of EM wave incidence results in unacceptable 
computational burden. 

The objective of this work is to develop a 
computationally efficient worst case model of diffraction of a 
plane electromagnetic wave with linear polarization by a 
conductive hull of arbitrary shape. 

II. PHYSICAL MODEL FOR ANALYSIS OF ELECTROMAGNETIC 

WAVE DIFFRACTION BY CONDUCTIVE OBSTACLE 

Let us consider the linearly polarized electromagnetic 
plane wave of frequency f irradiating an obstacle made of the 
conductive material. The task is an estimation of electric and 
magnetic fields amplitudes in an observation point situated 
near to the obstacle surface (up to distances, which have the 
same order as the obstacle surface). The following 
simplifications and approximations are introduced for the 
model development: 

1) The environment is vacuum (relative permittivity and 
relative permeability are equal to 1, wave impedance 
Z0 = 120π Ohm, speed of light c = 3·10

8 
m/s).  

2) The resistance of obstacle surface is zero. 

3) Fraunhofer diffraction is not considered because the 
distances from the observation point to obstacle surface are 
comparable with the dimensions of obstacle and wavelength. 

4) It is supposed that there are not through holes in 
obstacle. In the case of its presence, the consideration of 
diffraction by apertures is carried out additionally [14]. The 
obtained result for apertures (diffraction field strengths) is 
added by absolute value to the fields that result as diffraction 
by hull. This approach corresponds to the worst case 
behavior of the developed model.  

Let us define a Local Coordinate System (LCS) with the 
origin in the observation point (see Fig. 1). The axis Oy is 
chosen in opposite direction to the Pointing vector of the 



incident wave; axis Oz is chosen along the direction of 
incident wave polarization; axis Ox is directed perpendicular 
to Oz and Oy (right-hand system is considered).  

 
Fig. 1.   Physical model of plane-wave diffraction by the surface of 
arbitrary shape, and LCS definition for the model development 

 

 
Fig. 2.   Transformation of an obstacle geometry in case when the obstacle 
points have y coordinates of both signs in LCS 

 

 
Fig. 3.   Discretization of SZ in low-frequency range. The set of stripes is 
considered as dipoles 

 

Coordinates of all points of the obstacle geometry are 
defined in LCS. The following cases are considered. 

1) If coordinates ym > 0 (m is a number of point) for all 
points of the obstacle geometry, then the obstacle is placed 
behind the observation point and conditions of Line of Side 
(LOS) are satisfied. 

2) If coordinates ym < 0 for all points of the obstacle 
geometry, then the obstacle is placed in front of the 
observation point (LOS conditions are critical for this case).  

3) If coordinates of obstacle’s points ym have positive as 
well as negative values and LOS conditions are not satisfied, 
then all of points with coordinates ym ≤ Δy (where Δy is a 
small distance, see Fig. 2) are removed from consideration 
for analysis based on the Fresnel approach. This procedure 
provides the increasing of the calculated values of diffraction 
fields in observation point that corresponds to the worst case 
behavior of model.  

The incident plane electromagnetic wave induced a 
distribution of electric charges and currents on the 
conductive surface of the obstacle. For the obstacles of 
arbitrary shapes, these distributions cannot be represented in 
analytical form, so, the diffraction fields cannot be obtained 
without the numerical integration.  

In order to develop the computationally efficient semi-
analytical model of diffraction, the discretization of 
geometry is realized not for obstacle, but for the shadow 
zone in projection on the corresponding plane xOz (the 
notation Shadow Zone (SZ) is introduced for this projection). 
Requirements to discretization are as follows: the dimensions 
of elementary parts after discretization must be as large as 
possible but must provide the sufficient accuracy in the 
representation of the SZ shape, and the distribution of 
electrical charges and currents at each elementary part can be 
defined in analytical form.  

Low-frequency, resonance, and high-frequency ranges 
are introduced for the model development. Definition of the 
ranges corresponds to the physical processes, which 
determines the diffraction fields in the vicinity of an 
obstacle. In the low-frequency range, when the obstacle 
closes the small part of the first Fresnel zone for the 
observation point, the fields radiated by the electrical charges 
and currents induced by the incident wave make the main 
contribution to the distribution of diffraction field. For the 
high-frequency range, the distribution of diffraction fields is 
determined by the coherent secondary sources that belong to 
open area of the wave front in accordance with Huygens-
Fresnel principle. Both effects make the contributions of the 
same order to formation of diffraction fields in resonance 
frequency range. 

III. MODEL FOR CALCULATION OF DIFFRACTION FIELD 

AMPLITUDES IN LOW-FREQUENCY RANGE 

For the development of the model in low-frequency 
range, the SZ is divided to stripes of width a, which are 
parallel to the direction of the incident plane wave 
polarization. The SZ shape determines the value of parameter 
a, and the less parameter value the more accurate result of 
calculation will be obtained. The stripes are considered as a 
set of dipoles polarized by the incident wave along Oz axis, 
see Fig. 3. The following formula determines the resonance 
frequency of the dipole with the geometrical length Lg: 

 )2/( gc Lcf   () 

The low-frequency range is introduced in dependence on 
the length of each dipole and its upper boundary corresponds 
to 0.1fc. 

The coordinates xi of the central lines of strips parallel to 
Oz axis [xi – 0.5a, xi + 0.5a) are introduced. The strip number 
is i, i = 1…N, N = (xmax – xmin) / a, xmax, xmin are maximum 
and minimum coordinates of SZ in direction of Ox axis. The 



geometrical lengths of dipoles corresponding to the strips are 
Lig = zi max – zi min, where zi max, zi min are maximum and 
minimum coordinates of i-th central line. Coordinate yi of 
dipole center is chosen based on worst case requirements: 
yi = min(yz max, yz min), where yz max is coordinate of the 
obstacle point, which corresponds to the point (xi, zi max) on 
SZ and yz min to the point (xi, zi min). Finally, coordinates  

of i-th dipole center are: (xc i, yc i, zc i), yc i = min(yz min, yz max)i, 
zc i = 0.5·( zi min + zi max). 

The simplified quasi-static distribution of inducted 
electric charge on dipole is defined by the assumption that 
the electric charges of all others dipoles do not influence to 
the distribution of charge on dipole under consideration. So, 
the parameters of incident wave determine the distribution of 
electric charge only. Point charges of opposite signs are 
induced on the ends of dipoles with coordinates zi max and 
zi min. The values of the charges are determined from the 
condition that the total electric field strength (the vector sum 
of the E-field of incident wave E0 and field generated by the 
charges on the dipole ends) in the center of the dipole is zero. 

  .2sin5.0
2

00 tfLEq ii    () 

Quantity Li in formula (2) is the dipole length, which in 
the framework of developed model depends on frequency of 
incident wave. Suppose that the dipole length is equal to the 
geometrical length of dipole Li g when it is less than the half 
of wavelength of incident wave. In this case, the free charges 
in a conductive strip have time for redistribution along entire 
length in a time equal to half of the oscillation period. With 
the increasing of the frequency, the charges do not have time 
for redistribution along the entire length, but they are 
redistributed at the distance, which is equal to half of the 
wavelength. For accounting this effect, formula for the 
dipole length takes the form  
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Projections on LCS axis of quasi-static field generated by 
i-th dipole are as follows: 
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iiii yxx  are coordinates of center of i-th 

dipole in spherical coordinates with the origin in the 
observation point (spherical LCS), Ii is current of i-th dipole. 

Physically, the electric charge is not concentrated in the 
points on the dipole ends. For accounting this fact, and to 

define the correct transition from the low-frequency range to 
the resonance range, the factor PL i is introduced 

 ),1.0/( ciiL fffP   () 

where fic = c / (2 Li g) is the critical frequency of i-th dipole 
and the correction factor Fs i and physical half-length of 
dipole Lp i for the quasi-static solution (4) can be written in 
the form as it was established empirically 
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This factor decreases the quasi-static solution at large 
distances from the obstacle for the frequencies that are near 
to the upper boundary of low-frequency range. 

For analysis the electric and magnetic components of 
dipole radiation, let us consider the electric current inducted 
in dipole by E-field vector of incident wave of frequency f. 
The current is defined by the time derivative from the 
electric charge (2) and the current and electric moment for 
dipole of number i are as follows 
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In accordance with equation (3), for wavelengths, which 
are more than geometrical length of dipole, dipole moment 
increases proportional to the frequency, and when the 
frequency is more than critical frequency, it decreases as a 
square of frequency. Factor (2 + PL i) is introduced to take 
into account the increasing of directivity of dipole when the 
frequency tends to the critical frequency. 

In framework of developed model, for calculation the 
radiation fields of dipole, the following modified formulas of 
the short dipole are used in spherical LCS: 
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where the correction factor Fd i eliminates the contribution of 
solution (8) near the center of dipole, which has not a 
physical interpretation. 

Projections of dipole fields (8) to axis x ,y, z of LCS are  
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The sum by index i of pseudo-static and dipole radiation 
fields in projections to axis of LCS is performed taking into 
account the phases and directions defined by formulas (4) 
and (8). The summarized dipole field is averaged by the 
number of dipoles N. 
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It is established empirically, that for resonance frequency 
range, which is determined for each dipole in the frequency 
range from 0.1fi c to 4fi c, the following correction based on 
the dipole model is useful. The integer number 
Vi = ceil(f / fic) is introduced, where operation ceil returns 
value 1 for all arguments, which are less or equal to 1, value 
2 for arguments which are more than 1 and less or equal to 2, 
etc. For Vi = 2, the field of two dipoles with the centers in the 
points (xi, yc i, zc i ± 0.25Lg i) are considered by use formulas 
(4), (8) – (10). For Vi = 3, the centers of three dipoles have 
coordinates (xi, yc i, zc i) and (xi, yc i, zc i ± (1 / 3)Lg i), and for 
Vi = 4, the centers of the dipoles are (xi, yc i, zc i ± (1 / 8)Lg i) 
and (xi, yc i, zc i ± (3 / 8)Lg i). The currents in neighboring 
dipoles are opposite. For frequencies between fic and 2fic, (2fic 
and 3fic, etc.), the values of projections of field strength is 
obtained by the use of connection function, which takes the 
form: 

   ),())1(()(1)()( fFfkEfFkfEfE trctrc   

where E(kfc) are defined for the set of frequencies k = 1…4 
by formulas (4) and (8); Ftr(f) is the weighting function: 
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IV. MODEL FOR CALCULATION OF DIFFRACTION FIELDS BY 

USING OF FRESNEL APPROACH 

The approach for development of the model in resonance 
and high-frequency ranges is based on the consideration of 
Fresnel zones. In the plane of SZ (xOz), the polar LCS is 
defined as follows: the angle φ is counted from Ox axis and 
the distance l is measured from the observation point O to the 
projection of the point belonging to obstacle onto xOz plane. 

The discretization of SZ is performed as follows. The 
initial angle φ0 and interval of angles Δφ = 2π / M are chosen. 
Half-planes passing through the Oy axis at angles φ0 and 

φ0 + m·Δφ, m = 1…M are built. The intersection points of the 
planes with the boundary of SZ (contour) have coordinates in 

LCS: )/( mmm xzarctg , 22
mmm zxl  . 

Each sector between planes of numbers m and m + 1 
obtained by the procedure described above is considered as 
the sector of Fresnel zone. The total diffraction field EFD is 
calculated as the sum by index m of contributions 
corresponding to each sector.  

 
Fig. 4.   Discretization of SZ to sectors 

If one of the plane defining the sector has not intersection 
points with SZ contour, then the sector is an opened sector 
and its contribution to the total diffraction field is equal to 
Em = E0 / M. 

When both of the planes bounding the sector have 
intersection points with the SZ contour, the following 
procedures are performed.  

1) On each half-plane, choose intersection points, which 
are nearest to the observation point at distances lm and lm + 1 
respectively. Define a center mass of triangle, which is built 
on three points: observation point, and the nearest points of 
intersections of half-planes and contour.  

2) If the center mass of the triangle belongs to SZ, then 
the height of an equivalent obstacle corresponding to m-th 
sector is hm1 = min(lm, lm + 1). The distance from observation 
point to the equivalent obstacle is ym1 = min(ym, ym+1), see 
Fig. 4. 

3) Define the critical frequency of the sector fmc and 
correction factor QF m by formulas 

 )./(),2/( cmmFmcm fffQhcf   () 

The correction factor QF m defines the contribution of the 
sector to the field strength calculated based on Fresnel 
approach. The inequalities hm1 >> λ, ym1 >> λ determine the 
restriction on the Fresnel principle using. If the inequality is 
not satisfied (that is true for frequencies less than fmc), then 
the sector m is considered as opened sector and the 
contribution tends to the value Em = E0 / M. 

4) Calculate the number of Fresnel zones, which 
corresponds to the equivalent obstacle of the height hm 
placed on the distance ym from the observation point by 
formula (14).  

   .1/1/2
2









 mmmm yhyn   



5) The contribution of the sector is calculated by formula 

 METE FmQ
mm /0 .  

where Tm is the factor, which takes into account the 
dependence of contribution of secondary coherent sources, 
which are not closed by obstacle, on the distance 

22
mmm yhd   from observation point to Fresnel zone, and 

angle between normal to Fresnel zone and direction to 
observation point. This factor is calculated by the formula  
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6) If the center mass of triangle considered in item 1) 
does not belong to SZ, then there must be at least two points 
of intersection between bounding half-planes and contour. 
Denote coordinates of these points as y2m, y2m+1 and distances 
from LCS center to them as l2m and l2m+1. The following 
contribution corresponds to the sector in this case: 
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where Rm corresponds to the contribution of Fresnel zones, 
which are opened in limits of the area of the nearest triangle, 
Sm corresponds to the Fresnel zones, which are opened in the 
area of the sector placed out of the distance 
hm2 = min(l2m, l2m+1), (contribution Q2Fm is defined by (13) by 
substitution hm2 in it). Calculation of Sm is performed by  
(14)-(16) for ym2 = min(y2 m, y2 m+1). If there are more than 
2 opened areas within the sector, the corresponding 
summands are added in sum (17). 

Procedures described in items 1)-4) are repeated for all of 
SZ sectors and the sum by sectors from 1 to M defines the 

contribution of Fresnel diffraction: , mF EE  

 mF HH . 

Note, that for high frequencies, analytical expression 
obtained by integration of equation presented in [15] 

    221 ),/)exp(( mmmmmmFA hyrryjkrjME

  

provides the more accurate value of field magnitude than the 
method proposed above, and the maximum value from EF 
and EFA will be used for the worst case model.  

V. COMBINED SOLUTION AND WORST CASE MODEL OF 

PLANE-WAVE DIFRACTION BY CONDUCTIVE OBSTACLE  

A combined wideband solution is constructed as a sum of 
projections of E-field and H-field strengths obtained for all 
of frequency ranges. Note that in accordance with the 
problem statement, the incident wave is polarized along Oz 
axis of LCS (H-field is directed along Ox axis). So, the 
diffraction fields in the shaded zone are calculated as 
follows: 
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where the low-frequency solution based on the dipole 
approximation is obtained by the use of formula (10). 

Let us discuss the physical meaning of the obtained 
combined solution. In the low-frequency range, the dipole 
solution defines the distribution of resulting field because 
only a little part of the first Fresnel zone is closed for the 
observation point. In this case, EF = E0. With the increasing 
of the frequency, the contribution of the dipole solution 
decreases due to the decrease. At the same time, the 
contribution of the Fresnel approach increases. As a result, in 
the resonance- and high-frequency ranges, maximums and 
minimums of the field distribution arise in the framework of 
the combined wideband solution (19).  

To develop a worst case model of spatial field 
distribution based on solution (19) it is necessary to define its 
worst case envelope, which is defined in framework of the 
following algorithm. 

1) For the fixed frequency, calculate the field strength 
magnitude in the points situated on the plane, which is 
perpendicular to Oy axis and has coordinate yj. The set of 
planes with distances Δy between them is considered.  

2) Define the minimum value of field magnitude at the 
ends of interval of coordinates (xi, xi + Δx) (yj, zk are fixed) 
and variation of the field magnitude due to the variation of 
coordinates in the plane:  
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3) Obtain the coordinates xi of points, where the variation 
ΔED i x changes the sign from positive to negative. These 
points are the points of local maximums. 

4) For intervals of the monotonous changing of field, add 
the value ΔED i x to the minimum value ED i x in the 
corresponding point that belongs to considered interval.  

5) Connect the points obtained in items 3) and 4) on the 
graph of dependence of field magnitude on x coordinate. 
This new graph consisting of segments connects the points of 
graph of solution (19) is the worst case model of spatial field 
distribution in the plane yj for the line zk. 

6) Repeat steps described in items 2) – 5) for all lines zk 
in the plane yj. 

7) Fix the coordinate xi and perform steps 2) – 5) for the 
case of variation of zk. 

8) Perform item 6) for all lines xi in the plane yj.  

9) Consolidation of results, obtained in items 5) and 7) is 
the worst case model of field distribution in the plane yj.  

10) Perform items 2) – 7) for all of planes yj to obtain the 
worst case model of field distribution in the region under 
consideration. 



To develop a worst case model of the amplitude-
frequency characteristic (AFC) of a field in the fixed spatial 
point, the field magnitude is calculated by formula (19) for 
the set of frequencies. After that the procedure of worst case 
envelope definition (see items 2) – 5) of previous algorithm) 
is applied on the frequency grid.  

 

VI. VALIDATION OF DEVELOPED MODEL  

The validation is performed by comparison of the results 
obtained in framework of the developed model based on 
combined solution (19) with results of numerical simulation 
using MOM and FDTD methods. The following example is 
considered. A parallelepiped with dimensions 3×4×7 m is 
irradiated by a plane wave with amplitude 1 V/m (as shown 
in Fig. 1), and the field distribution along a straight line 
located behind the parallelepiped is computed (Fig. 5).  

 

a) 

b) 

Fig. 5.   Dependence of the electric field intensity on coordinate z of 
observation point: a) f = 1 MHz; b) f = 100 MHz. Note: coordinates (x, y, z) 
of the parallelepiped center are (-13.6 m, 0 m, 8.5 m), and the coordinates 
of the observation point are (-11.8 m, -7.2 m, z).  

 

The duration Δt of field intensity calculation by the 
developed technique is less than 300 ms for each observation 
point; it does not depend on both the frequency and the 
distance from the parallelepiped to an observation point. The 

durations of the calculations performed by MOM and FDTD 
methods increase with increasing of the frequency, e.g., at 
the frequency of 100 MHz they are as follows: ΔtMOM = 5 s 
for each observation point and ΔtFDTD = 95 s for all points. 

VII. CONCLUSION 

The developed model makes it possible to perform a fast 
estimation of the amplitude of diffraction field near the 
system hull made of conductive materials in a wide range of 
frequencies. The results of this estimation can be used for 
analysis of the impact of a complex EME (including a 
wideband EM pulse disturbance) on the system through the 
on-board antennas and through the apertures in the hull. 

The hints for future developments of the model are as 
follows: to consider the diffraction fields in the Fraunhofer 
zone, to analyze the reflected fields in LOS zone, and to 
account for the antenna pattern when calculating the impact 
of diffraction fields on antennas. 

REFERENCES 

[1] Siegel M.D. “Aircraft antenna-coupled interference analysis”, Proc. 
Nat. Aerospace Electron. Conf., Dayton,Ohio, 1969. pp. 535-540. 

[2] Bogdanor J.L., Pearlman R.A., Siegel M.D. Intrasystem 
Electromagnetic Compatibility Analysis Program: Volume I – User’s 
Manual Engineering Section, Mc.Donnel Douglas Aircraft Corp., 
F30602-72-C-0277, Rome Air Development Center, Griffiss AFB 
NY, Dec. 1974. 

[3] Baldwin T.E., Robinson R.C., Duff W.C., Schumann H.K., 
Foster J.J., Bartley M.K. Intrasystem analysis program (IAP) model 
improvement: Final Technical Report, Atlantic Research Corp., 
F30602-79-C-0169, Rome Air Development Center, Griffiss AFB 
NY, February, 1982. 

[4] V. Mordachev et al., “EMC diagnostics of complex radio systems by 
the use of analytical and numerical worst-case models for spurious 
influences between antennas,” 2016 International Symposium on 
Electromagnetic Compatibility – EMC EUROPE, Wroclaw, 2016, 
pp. 608–613. 

[5] EMC-Analyzer. Mathematical models and algorithms of 
electromagnetic compatibility analysis and prediction software 
complex. Minsk, 2020. 

[6] Tsyanenka D.A., Sinkevich E.V., Matsveyeu A.A. “Computationally-
Effective Worst-Case Model of Coupling between On-Board 
Antennas That Takes into Account Diffraction by Conducting Hull,” 
2016 International Symposium on Electromagnetic Compatibility – 
EMC EUROPE, Wroclaw, 2016, pp. 602-607 

[7] Christopoulos Cr. “Modeling and simulation for EMC, Part 1,” IEEE 
Electromagnetic Compability Magazine, Vol. 4, 2015, p. 47-55. 

[8] Saez de Abana F., Gutierrez O., Perez J., Catedra M.F.. “Computer 
tool for the analysis of antennas on board complex bodies modelled 
by flat or/and curve facets,” Antennas and Propagation Society 
International Symposium, IEEE, 1998, Vol. 2, p. 1082-1084. 

[9] Booton R. Computational methods for electromagnetics and 
microwaves, John Willey & Sons, New York, 1992. 

[10] Pathak P.H. High-frequency techniques for antenna analysis/ Proc. of 
the IEEE, 80, January, 1992, p. 44-65. 

[11] C. Fang, Q. Zhang, Q. Huang and Y. XuanYuan, "The predicted 
technique of EMI for ship radars based on the GTD revision," 2011 
China-Japan Joint Microwave Conference, Hangzhou, 2011, pp. 1-3. 

[12] Davidson S.A., Thiele G.A. “A hybrid method of moments – GTD 
technique for computing electromagnetic coupling between two 
monopole antennas on a large cylindrical surface,” IEEE Transactions 
of electromagnetic compability, Vol. EMC-26, No 2, 1984, p. 90-97. 

[13] Srikanth S., Pathak P.H., Chuang G.W. “Hybrid UTD-MM analysis 
of the scattering by perfecly conducting semicircular cylinder,” IEEE 
Transactions on Ant. and Propagation, Vol. 34, 1986, p. 1250-1257.  

[14] Tsionenko D., et al. “Computationally-Effective Ultra-Wideband 
Worst-Case Model of Electromagnetic Wave Diffraction by Aperture 
in Conducting Screen” 2014 Int. Symp. on EMC -- EMC Europe 
2014”, Gothenburg, Sweden, 2014, pp.1287-1292. 



[15] Ustinov A. V. “The fast way for calculation of first class rayleigh- sommerfeld integral” Computer optics, Vol. 33, No. 4, pp. 412-419 

 


