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Abstract

Amyotrophic lateral sclerosis (ALS) is incurable neurological disorder with rapidly
progressive course. Common early symptoms of ALS are difficulty in swallowing
and speech. However, early acoustic manifestation of speech and voice symp-
toms is very variable, that making their detection very challenging, both by
human specialists and automatic systems. This study presents an approach to
voice assessment for automatic system that separates healthy people from pa-
tients with ALS. In particular, this work focus on analysing of sustain phonation
of vowels /a/ and /i/ to perform automatic classification of ALS patients. A
wide range of acoustic features such as MFCC, formants, jitter, shimmer, vi-
brato, PPE, GNE, HNR, etc. were analysed. We also proposed a new set of
acoustic features for characterizing harmonic structure of the vowels. Calcula-
tion of these features is based on pitch synchronized voice analysis. A linear
discriminant analysis (LDA) was used to classify the phonation produced by
patients with ALS and those by healthy individuals. Several algorithms of fea-
ture selection were tested to find optimal feature subset for LDA model. The
study’s experiments show that the most successful LDA model based on 32 fea-
tures picked out by LASSO feature selection algorithm attains 99.7% accuracy
with 99.3% sensitivity and 99.9% specificity. Among the classifiers with a small
number of features, we can highlight LDA model with 5 features, which has
89.0% accuracy (87.5% sensitivity and 90.4% specificity).

Keywords: Voice pathology detection, amyotrophic lateral sclerosis, ALS,
Acoustic analysis, voice quality

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in-
volving the upper and lower motor neurons. There are two main forms of ALS
which differ by onset: spinal form (first symptoms manifest in the arms and
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legs) and bulbar form (voice and/or swallowing difficulties are often the first
symptoms). Progressive bulbar motor impairment due to ALS leads to dete-
rioration in speech and swallowing function [1]. The abnormalities in speech
production, phonation and articulation due to neurological disorders is referred
to as dysarthria. Dysarthria develops in more than 80% of affected by ALS indi-
viduals at some point during the disease’s course [2]. Currently the diagnosis of
ALS is based on clinical observations of upper and lower motor neuron damage
in the absence of other causes. Due to the lack of clinical diagnostic markers of
ALS, the pathway to correct diagnosis in average takes 12 months [3].

During the last years objective evaluation of voice and speech has gained
popularity as a means of detecting early signs of neurological diseases [4, 5, 6].
It can be explained by the fact that speech is accomplished through complex
articulatory movements, requires precise coordination and timing and therefore
is very sensitive to violations in the peripheral or central nervous system [7, 8].
Recent studies suggested that acoustic voice and speech analysis might provide
useful biomarkers for diagnosis and remote monitoring of ALS patients [9, 10].
The advantage of using voice/speech signals is the capability of using smart-
phone or tablet for recording patients at home conditions without the logistical
difficulty in a clinical environment [4, 11].

The main goal of this work is automatic detection of ALS patients with or
without bulbar disorders (i.e. classification of healthy controls vs. patients with
ALS) based on sustained vowel phonation (SVP) test. Our long-term aim is to
build automated system for classification of neuromotor degenerative disorders
based on analysis of SVP test. Therefore, we consider the problem of binary
classification of the voice recording to be belonging to ALS patient or healthy
person as a first step toward this aim. We chose sustained vowel phonation test
among different diagnostic speech tasks due to its simplicity and wide spreading
in medical practice. Besides all, recent research shows [12] that using SVP test
it is possible to detect persons with Parkinson’s disease. This give us hope that
this test can be effective for ALS detection.

Sustained phonation is a common speech task used to evaluate the health of
the phonatory speech subsystem [5]. By using SVP test the following charac-
teristics of voice can be assessed: pitch, loudness, resonance, stain, breathiness,
hoarseness, roughness, tremor, etc [4, 8, 13]. However, it can be argued that
some of the vocal abnormalities in continuous speech might not be captured
by use of sustained vowels, but the analysis of continuous speech is much more
complex due to articulatory and other linguistic confounds [13]. One more argu-
ment is that the use of sustained vowels is commonplace in clinical practice [14].
Besides all this, early study [15] had been reported that abnormal acoustic pa-
rameters of the voice were demonstrated in ALS subjects with perceptually
normal vocal quality on sustained phonation. Also in [16] it was reported that
glottic narrowing due to vocal cord dysfunction (that can be assessed using SVP
test) is one of ALS symptoms.

SVP test is widely used for detecting and diagnosing of different neurological
diseases such as Parkinson’s, Alzheimer, Dystonia and others [4, 5]. For exam-
ple, it has been shown in [12] that classifier based on the features extracted form
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SVP test allows one to discriminate Parkinson’s disease subjects from healthy
controls (HC) with almost 99% overall classification accuracy. However, there
are few studies dedicated to the detection of the ALS based on SVP test. In [8]
SVP was used along with the other speech tests for dysarthria classification.
Sustained phonation also was used for assessing laryngeal subsystem within a
comprehensive speech assessment battery in [17]. But in the majority of prior
works running speech test that consist in reading of specially-designed passage
was used for ALS detection [9, 11, 18, 19]. In [10] rapid repetition of syllable
(pa/ta/ka), which is often referred to as diadochokinetic task (DDK) was used
for automatic ALS detection. Some studies use kinematic sensors to model ar-
ticulation for ALS detection [20], however this approach is invasive in nature
and less attractive compared to non-invasive speech test.

The purpose of this work is to investigate the possibility of designing a
classifier for detection of patients with ALS based on the sustained phonation
test. Traditionally, vowel /a/ is used in SVP test, however, in our study along
with /a/ we have used vowel /i/. This decision is based on preliminary results
of works [21, 22, 23], that provide evidence that information contained in these
vowels might allow to obtain classifier with high performance. This work is based
on the analysis of the sustained phonation of vowels /a/ and /i/, in contrast to
other studies that extract vowels from running speech tests (see e.g. [22, 23]).

The remainder of the paper is organized as follows; Section 2 provides in-
formation about methods of acoustic analysis used for feature extraction. The
voice data used in this study along with various methods of feature selection,
classification and validation are presented in section 3. In section 4 we present
the results of our findings and discuss the interpretation of them. Section 5
provides conclusion on the work.

2. Acoustic analysis

Bulbar system that is affected by ALS is considered as a part of the larger
speech production network and comprises of four distinct subsystems [1]: respi-
ratory, phonatory, articulatory, and resonatory. In this short review of acoustic
features, we indicate which subsystem is described by each feature.

2.1. Perturbation measurements

2.1.1. Jitter

Jitter (i.e. frequency/period perturbation) is the measure of variability of
fundamental period from one cycle to the next. As far as jitter estimates short-
term variations it can not be accounted to voluntary changes in F0. Therefore
jitter is intended to provide an index of the stability of the phonatory subsys-
tem. High level of jitter results from diminished neuromotor and aerodynamic
control [14]. The jitter has been used as an indicator of the voice quality that
characterizes the severity of dysphonia [24]. In this study we have used following
popular jitter measures [25]:
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1) local jitter (Jloc) that is defined as average difference between consecutive
periods, divided by the average period:

Jloc =

1
N−1

N−1∑
i=1

|T0(i)− T0(i+ 1)|

1
N

N∑
i=1

T0(i)

× 100, (1)

where T0(i) is the duration of i-th fundamental period in seconds, N is the
number of extracted periods;

2) period perturbation quotient (Jppq) to quantify the variability of pitch
period evaluated in L consecutive cycles:

JppqL =

1

N − L+ 1

N−L−1
2∑

i=1+ L−1
2

∣∣∣T0(i)− 1

L

i+ L−1
2∑

k=i−L−1
2

T0(k)
∣∣∣

1

N

N∑
i=1

T0(i)

× 100. (2)

In this work, we used the parameter L equal to 3, 5 and 55.

2.1.2. Shimmer

Shimmer is an amplitude perturbation measure that characterize the ex-
tent of variation of expiratory flow during the phonation. This feature can be
considered as characteristic of the respiratory subsystem. Basic shimmer mea-
sure (Sloc) is defined as average absolute difference between the amplitude of
consecutive periods, divided by the average amplitude:

Sloc =

1
N−1

N−1∑
i=1

|A(i)−A(i+ 1)|

1
N

N∑
i=1

A(i)

× 100, (3)

where A(i) is the amplitude of the i-th pitch period.
Sloc fall under influence of long-term changes in vocal intensity [14]. To

eliminate the effects of amplitude “drift” and get a truer index of underlying
shimmer it has been suggested to measure amplitude perturbation quotient
(APQ) [25]. APQ quantify whether the amplitude of pitch period duration is
smooth over L consecutive cycles:

SapqL =

1
N−L+1

N−L−1
2∑

i=1+ L−1
2

∣∣∣A(i)− 1
L

i+ L−1
2∑

k=i−L−1
2

A(k)
∣∣∣

1
N

∑N
i=1A(i)

× 100, (4)

Typically the parameter L takes value 3, 5, 11 or 55 [5, 6, 26]. We used all of
those options in our study.
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2.1.3. Directional perturbation factor

Directional perturbation factor (DFP) is a measure of perturbation that
ignores the magnitude of period perturbation: it depends on the number of
times that frequency changes shift direction [14]. The DFP calculation consists
of two steps. At the first step the difference between adjacent fundamental
periods is calculated:

∆T0(i) = T0(i)− T0(i− 1). (5)

At the second step the number of sign changes in sequence of ∆T0(i) is calcu-
lated:

N∆± =
1

2

N∑
i=2

|sign(∆T0(i))− sign(∆T0(i− 1))|.

Finally, DFP parameter is obtained as follows:

DFP =
N∆±

N
× 100, (6)

where N is the total number of fundamental periods.

2.2. Noise measurements

The existence of noise energy, broadly understood as that outside of har-
monic components during sustained phonation, is the result of incomplete clo-
sure of the vocal folds during the phonation, indicative of an interruption of
the morphology of the larynx [26]. We used two different noise measurements:
harmonic-to-noise ratio (HNR) [27] and glottal-to noise excitation ratio (GNE).

2.2.1. HNR

The HNR measures the ratio between periodic (or harmonic) component and
non periodic (or noise) component of the voice signal. Sonorant and harmonic
voices are characterized by high HNR values. A low HNR denotes that voice
comprise increased amount of noise. For calculation of HNR we used mathe-
matical background presented in [27]. At the beginning, for a voice signal a
normalized autocorrelation function ACV (τ) is calculated. Then, the first local
maximum outside 0 (with corresponded lag τmax) is searched. The normalized
autocorrelation ACV (τmax) represents the relative power of the periodic com-
ponent of the signal (while full power ACV (0) = 1). Finally, HNR is calculated
as

HNR = 10 log10

ACV (τmax)

1−ACV (τmax)
. (7)

2.2.2. GNE

GNE measures the amount of excitation in voice due to the vibration of the
vocal folds relative to the excitation noise due to the turbulence in the vocal
tract [28]. The GNE is often associated with the breathiness [8, 29] and therefore
can be considered as characteristics of phonatory subsystem.
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Calculation of the GNE is based on the correlation between Hilbert envelopes
of three different frequency channels [30]. Since full band signal simultaneously
excited by a single glottis closure the envelopes in all channels have the same
shape. This leads to high correlation between envelopes. However, in case of
turbulent signals a narrowband noise is excited in each frequency channel. These
narrow band noise signals are uncorrelated. Thus, interband correlation can be
used to measure the amount of turbulence in a signal.

Calculation of the GNE factor is consist in the following steps:

1. Down sampling the signal to 8 kHz.

2. Divide signal into 30 ms overlapping frames with 10 ms hop size. For each
frame execute steps 3–7.

3. Inverse filtering of the signal by calculating the linear prediction error
signal, using a predictor of 10-th order estimated by the autocorrelation
method [31] with Hamming window.

4. Calculating the Hilbert envelopes of three different frequency bands with
1000 Hz bandwidth and central frequencies at 500, 1500 and 2500 Hz.

5. Calculating the cross correlation function between every pair of envelopes
for which the difference of their center frequency is equal or greater than
half the bandwidth.

6. Pick the maximum of each correlation function.

7. The GNE for the current frame is equal to the maximum of the maximums
obtained in step 6.

8. Compute the mean value of GNE and its standard deviation.

2.3. Spectral parameters

2.3.1. MFCC

Mel-Frequency Cepstral Coefficients (MFCCs) is the most widely used fea-
ture in speech-related applications such as speaker identification and recogni-
tion. Moreover, recent studies have shown promising results on the identifica-
tion of voice pathology with MFCCs [4, 10, 12, 32]. MFCCs can detect subtle
changes in the motion of the articulators (tongue, lips), which are known to be
affected in many neurological diseases [12]. They have been used for detecting of
hypernasality due to the velopharyngeal insufficiency in [33]. In [28] the usage
of MFCCs is argued by its ability of modelling changes in the speech spectrum,
especially around the first two formants (F1 and F2), where most of the en-
ergy of the signal is concentrated. The work [32] showed that MFCCs have an
inherent ability to model an irregular movement of the vocal folds, or a lack
of closure due to a change in the properties of the tissue covering vocal folds.
Therefore MFCCs can be considered as parameters describing both resonatory
and articulatory subsystems.

MFCC parameters [32, 31] are obtained by applying discrete cosine trans-
form over the logarithm of the energy calculated in several mel-frequency bands:

MFCC(m) =

M∑
k=1

lnS(k) cos
[
m(k − 0.5)

π

M

]
. (8)
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where M is the number of uniform frequency bands in the mel scale, m =
1, 2, . . . , L, and L is the order of the MFCC coefficients. The energy of frequency
bands are calculated using N -point magnitude spectrum X(j) of the frame of
the voice signal:

S(k) =

N∑
j=1

Wk(j)X(j), k = 1, 2, . . . ,M, (9)

where Wk(j) is the triangular weighting function [31] associated with k-th band.
In our study we used L = 12 MFCC parameters that computed within

windows of 25-ms length and 10-ms time shift. Magnitude spectrum X(j)
is calculated in the range [0; 4000] Hz and averaged within M = 20 uniform
mel-frequency bands (see (9)). The first (∆) derivatives of MFCC have also
been calculated since they provide information about the dynamics of the time-
variation in MFCC parameters. A priori, these features can be considered as
significant because the disorder lowers stability of the voice signal [32]; therefore
lager time-variations of the parameters may be expected in ALS voice relative
to normal voice.

Because the MFCCs are a timeseries, we averaged the MFCCs across the
time domain to consolidate them to a single set of coefficients. Finally 12
MFCCs and 12 ∆MFCCs are evaluated for each voice recording.

2.3.2. Formants

Changes of formant frequencies during the vowel phonation due to dysarthria
have been reported in many studies [21, 34, 35, 36, 37]. The most frequently
reported abnormalities of vowel production include: centralization of formant
frequencies [38], reduction of the vowels space area [36], and abnormal formant
frequencies for high vowels and front vowels [22, 34]. In [37] it was shown that in
patients with ALS measurement of the F2 slope (or F2 transition) is correlated
with overall speech intelligibility score. Also features derived from statistics
of the first (F1) and second (F2) formant frequencies (and their trajectories)
have shown good performance for predicting speaking rate decline in ALS [39].
Though SVP test cannot reflect the dynamics of formant frequency trajectories,
we still can use the values of formant frequencies as source of information.
In [23, 40] it was shown that the value of F2 for vowel /i/ appears to be a
good feature for discriminating between patients with ALS and healthy control
group. In this study we use second formant of vowel /i/ (F2i) and Euclidean
distance (convergence) between the vowels /i/ and /a/:

F2conv =
∣∣F2i − F2a

∣∣. (10)

Study [21] have shown that convergence of the F2 of vowels /i/ and /a/ is much
stronger in speakers with dysarthria due to ALS, than in healthy speakers. Both
features (F2i and F2conv) are prove to be a highly informative for ALS detection
using running speech test [23].
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2.3.3. Distance between the spectral envelopes of the vowels

In [22] it was suggested to use distance between the spectral envelopes of the
vowels /a/ and /i/ to quantify the amount of articulatory undershoot. The joint
analysis of envelopes of vowels /a/ and /i/ of persons with ALS have revealed
an increased similarity between the shapes of these envelopes. The similarity
between the envelopes is assessed using l1-norm distance metric

d1(Ei, Ea) =
1

P

P∑
k=1

|Ei(k)− Ea(k)|, (11)

where Ei(k) is envelope of the vowel /i/, Ea(k) is envelope of the vowel /a/, P is
the number of points in frequency domain. The spectral envelopes of the vowels
were estimated using all-pole modelling [31]. An example of vowel envelopes
from healthy individual are shown in figure 1,a. A typical example of envelopes
with a high degree of similarity is given in figure 1,b.

(a) (b)

Figure 1: Envelopes of vowels /a/ and /i/: (a) healthy speaker; (b) ALS patient

2.4. F0 contour based parameters

2.4.1. Phonatory frequency range

Phonatory frequency range (PFR) is defined as semitone difference between
lowest (F0low) and highest (F0high) fundamental frequencies [26]:

PFR = 12
log10

(
F0high/F0low

)
log10 2

. (12)

This parameter measures the degree of variability in fundamental frequency
contour and characterizes the functioning of the phonatory subsystem.

2.4.2. Pitch period entropy

Pitch period entropy (PPE) is a highly informative feature proposed in [41]
to assess the degree of loss of control over the stationary voice pitch during
sustain phonatition (due to Parkinson’s disease). We have used this measure in
our study since the ALS also affects the ability to control the stability of voice
pitch.
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The calculation of PPE is based on the following observations: 1) the healthy
voice has natural pitch variation characterized by smooth vibrato or microtremor [14,
41]; and 2) speakers with naturaly high-pitch voices have much lager vibrato and
microtremor than speakers with low-pitch voices. PPE measurement takes into
account both these factors. The natural smooth variations is removed prior to
measuring the extent of such variations (first factor) and pitch transformation
to perceptually-relevant, logarithmic semitone scale is applied (second factor).
The algorithm of PPE calculation used in this study is given below.

1. Estimation of F0(m) contour with 5 ms time step using IRAPT algo-
rithm [42];

2. Transformation of F0(m) contour to semitone scale:

p(m) = 12
log10

(
F0(m)/flow

)
log10 2

, (13)

where flow is lower octave band limit, calculated considering that mean
value of pitch correspond to center of this octave:

flow = mean(F0)/
√

2.

3. Applying whitening filter to p(m) signal to remove healthy, smooth vari-
ation:

r(m) =

M∑
i=0

aip(m− i), a0 = 1, (14)

where ai is linear prediction coefficients (LPC) estimated using covariance
method [31], M is the predictor order. We used M = 2;

4. Calculation of discrete probability distribution of occurrence of relative
semitone variations P (r) by computing normalized histogram in N = 31
equal-sized bins ri (i = 1, 2, . . . , N) in the range form −1.5 to 1.5;

5. Calculation the entropy distribution P (r) obtained on previous step:

PPE = −
N∑
i=1

P (ri) log2 P (ri), (15)

The larger the measure of entropy, the more the observed variations exceed the
natural level of variation of the fundamental frequency in a healthy voice. The
fig. 2 give an example that illustrates the process of calculation of PPE measure.

Figure 2 shows that semitone pitch sequence p(t) of healthy voice is quite
stable and has signs of small regular vibrato. After eliminating this healthy
vibrato with whitening filter, the distribution of residuals r(t) shows strong peak
at zero. This leads to small value of entropy. On the contrary, for ALS voice
the semitone pitch sequence has significant irregular variation, the distribution
of residuals is spread over a wider range as a result the larger value of entropy
is obtained.
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Figure 2: Details of PPE calculation, left column: healthy subject, right column: ALS patient.
Rows from the top: extracted F0, pitch p(t) in semitone scale, residual signal r(t) after spectral
whitening filter, probability densities P (r) of residual pitch period r

2.4.3. Tremor (vibrato) analysis

Vocal tremor is involuntary quasi-sinusoidal modulation in energy and F0
contour appeared during sustained phonation [43]. In our study we consider only
the modulation in F0 contour. Some authors distinguish wow (oscillation of 1-2
Hz), tremor (oscillation of 2-10 Hz) and flutter (oscillation of 10-20 Hz) [34].
An example of vowel phonation for a patient with a rapid tremor (or flutter) is
given in figure 3,b (the voice is taken from the database used in experiments).

An essential distortion can be seen when compared spectrogram of a ALS
patient (figure 3,b) with spectrogram of a normal subject (figure 3,a). In par-
ticular, in figure 3 narrowband spectrograms are shown (long 84 ms analysis
window have been used for their calculation). Thus it can be seen substantial
changes in harmonics behaviour. Normal voice shows stable harmonics with
low variation, while harmonics of pathological voice exhibiting high frequency
quasi-sinusoidal modulations.

In [43] in order to characterize the tremor the average spectra of F0 contour
is analysed in frequency band from 3 to 25 Hz. However, as reported in [44] the
most essential frequency peaks of person with ALS lies within the range 6 to 12
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(a) (b)

Figure 3: Time-frequency representation of vowel phonation /a/: (a) speaker from HC group
(men, 60 years old); (b) ALS patient (men, 67 years old, subject code in voice base 039)

Hz. It seems that sum of the amplitudes of spectral components in frequency
band [6, 12] Hz could be a good feature for detection of ALS voices. However,
normal voices also have inherent modulations (some times called vibrato) in
range 5 to 8 Hz [45]. Thus vibrato frequency bands of healthy and ALS voices
are overlapped. So, for obtaining a new feature, that characterizes the extent of
pathological modulations in F0 contour we decide to analyse the amplitudes of
spectral components in range from 9 to 14 Hz. The obtained feature is referred
to as pathological vibrato index (PVI) and presented in [46]. The algorithm for
PVI calculation is given below

1. Estimation of F0(m) contour with 5 ms time step using IRAPT algo-
rithm [42];

2. Normalization of F0 contour:

F0′(m) =
F0(m)

mean(F0)
; (16)

3. Bandpass filtering of F0′(m) using 3-th order Butterworth IIR with pass
band [9, 14] Hz;

4. Amplitude spectrum AF0(f) estimation using Welch’s method with win-
dows of 1 sec length and 95% overlap;
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5. Calculation of pathological vibrato index:

PVI =
∑

f∈[9, 14] Hz

AF0(f). (17)

Figure 4 shows the steps of the PVI calculation for a typical normal and
pathological case. It can be seen that frequency components of amplitude spec-
trum AF0(f) in the range from 9 to 14 Hz are significantly higher for the ALS
voice than for a healthy voice.

Figure 4: Left column: normal case, right column: pathological case. Rows from the top:
Extracted F0, normalized F0 contour, IIR filtered F0 contour, amplitude spectrum AF0(f),
amplitudes used for PVI calculation are indicated by red x-marks

2.4.4. Analysis of the harmonic structure of the vowels

Harmonic structure of sustained vowel has been recognized as a important
and informative feature for voice pathology identification [8, 47]. Incomplete
glottal closure during phonation, which allows the air to escape, is one of the
factors that makes voice more breathy. In particular, for vowel /a/ this produce
a disturbance of harmonic structure: amplitude of first harmonic (H1) becomes
higher than the second (H2) [47].
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One of the important aspect of voice quality is stability of harmonics struc-
ture during the phonation process. Evaluation of harmonics structure can be
considered as feature for description the excitation source (a driving force for
voice production). The difficulty in estimation of harmonic parameters is that
they depend on the fundamental frequency F0. In this study we have used
voice analysis based on fixed number of fundamental periods (alternatively it
can be considered as pitch synchronized voiced analysis). We focused on ex-
tracting mean and standard deviation (SD) of the first eight harmonics of the
vowels. Given a voice signal s(n) the analysis process can be summarized in the
following steps.

1. Split s(n) into fundamental periods using waveform matching method with
phase constrain [46].

2. Divide s(n) into Nf overlapping frames that containing Nc fundamental
periods with one period overlap. For each frame s(i)(n), i = 1, . . . Nf
execute steps 3–5.

3. Interpolate s(i)(n) into I ×Nc equidistant time points: s(i)(n)→ ŝ(i)(m).
4. Apply Hamming window h(m) to interpolated frame and compute discrete

Fourier Transform (DFT): Ŝ(i)(k) = DFT[ŝ(i)(m)h(m)].
5. Extract harmonic amplitudes:

hp(i) =
∣∣Ŝ(i)(p× I)

∣∣ p = 1, 2 . . . 8.

6. Scale the harmonic amplitudes as

H̃p(i) = 20 log10

(
hp(i)

max
p∈[1, 8], i∈[1, Nf ]

{
hp(i)

}).
7. Compute mean and SD for scaled harmonic amplitudes

Hpµ = E{H̃p}, Hpσ =

√
E{
(
H̃p −Hpµ

)2}
8. Compute additional feature – inverse of the sum of absolute value of Hpµ

and Hpσ:

RelHp =
1

|Hpµ|+ Hpσ
. (18)

The intuition behind the feature (18) is that strong and stable harmonic
should have low scaled amplitude |Hpµ| and low deviation Hpσ and therefore
high value of RelHp.

In this study the following parameters of the procedure were used: Nc = 8
and I = 512.

3. Experiments

3.1. Database
Voice database3 used in this study was collected in Republican Research and

Clinical Center of Neurology and Neurosurgery (Minsk, Belarus). It consists of

3The database available online at https://github.com/Mak-Sim/Minsk2020_ALS_database
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128 sustained vowel phonations (64 of vowel /a/ and 64 of vowel /i/) from 64
speakers, 31 of which were diagnosed with ALS. Each speaker was asked to
produce sustained phonation of vowels /a/ and /i/ at a comfortable pitch and
loudness as constant and long as possible. It can be seen that voice database
is almost balanced and contains 48% of pathological voices and 52% of healthy
voices.

The age of the 17 male patients ranges from 40 to 69 (mean 61.1 ± 7.7)
and the age of the 14 female patients ranges from 39 to 70 (mean 57.3 ± 7.8).
For the case of healthy controls (HC), the age of the 13 men ranges from 34
to 80 (mean 50.2 ± 13.8) and the age of the 20 females ranges from 37 to
68 (mean 56.1 ± 9.7). The samples were recorded at 44.1 kHz using different
smartphones with a regular headsets and stored as 16 bit uncompressed PCM
files. Average duration of the records in the HC group was 3.7 ± 1.5 s, and
in ALS group 4.1 ± 2.0 s. The detailed information about ALS patients is
presented in table 1. All the patients were judged by the neurologist (the second
author) to have presence of bulbar motor changes in speech (last column of the
table 1).

3.2. Aggregation of feature set and its statistical survey

For each vowel used in SVP test 64 features are extracted (see figure 5).
These features include the following groups (the number of parameters in each
group is indicated in parentheses): jitter (4), shimmer (5), DPF(1), HNR (1),
GNE (mean and SD), PFR(1), PPE(1), PVI (1), Hpµ (8), Hpσ (8), RelHp
(8), MFCC (12), ∆ MFCC (12). We also used three additional parameters

Figure 5: Features extracted from SVP test of one vowel

d1(Ea, Ei), F2conv and F2i (extra feature for vowel /i/). Thus the total number
of features used in this study was 131 (64 for vowel /a/, 64+1 for /i/ and 2 joint
parameters). In most cases we have used lower subscript to indicate the vowel
for which feature was calculated. For example, H2σi is SD of 2nd harmonic of
vowel /i/ phonation.

In order to get initial understanding of the statistical properties of the fea-
tures, we computed the Pearson correlation coefficient r(x,y), where the vector
x contains the values of a single feature for all phonations, and y is the associate
labels (“0” for healthy subject, “1” – for ALS patient).

14



Table 1: ALS participants clinical records

Subject
code

Sex Age
Time from
ALS onset
(months)

Bulbar/ spinal
onset

Presence of the
bulbar signs

008 M 67 28 bulbar yes
020 F 57 35 spinal no
021 F 55 15 spinal yes
022 F 70 11 bulbar yes
024 M 66 16 spinal no
025 M 51 7 spinal no
027 M 57 18 bulbar yes
028 M 58 5 spinal yes
031 M 67 6 spinal yes
032 M 61 19 spinal yes
039 M 67 12 bulbar yes
042 M 67 22 spinal yes
046 F 50 12 spinal yes
048 F 63 22 bulbar yes
052 F 62 36 spinal no
055 M 61 11 spinal yes
058 M 58 9 bulbar yes
062 M 57 23 bulbar yes
064 M 57 58 spinal yes
068 M 40 11 bulbar yes
072 F 64 10 spinal yes
076 M 68 12 bulbar yes
078 F 64 12 bulbar yes
080 F 63 20 bulbar yes
084 F 55 33 bulbar yes
092 F 39 57 spinal no
094 F 55 14 spinal no
096 F 52 14 spinal yes
098 M 68 37 spinal yes
100 M 68 16 bulbar yes
102 F 53 25 spinal no

3.3. Feature selection

It is known that reducing the number of features often improves the model’s
predictive power. Also the reduced feature subset give better insight into the
problem via analysis of the most predictive features [48].

In this study we used four efficient feature selection (FS) approaches: 1)
maximization of quality of variation (QoV) [49], 2) Relief [50] 3) least absolute
shrinkage and selection operator (LASSO) [51], 4) RelieFF [52]. Maximization
of QoV is a noise-resistant method for feature selection based on order statistics.
The basic notion of this method is class impurity – characteristic that is calcu-
lated for each feature based on its order statistics. The quality of variation of a
feature is inverse of the average impurity of all the classes along the feature. This
method allows one to rank all features according to the QoV criterion. It has
been show that QoV method performs well when the available training data is
small or not much bigger compared to the dimensionality of feature vector [49].
LASSO is a linear regression based technique that minimizes the residual sum
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of squares subject to the absolute value of the coefficient being less than a con-
stant. This leads to some coefficients that are shrunk to zero, which in essence
means that feature associated with those coefficients are eliminated. In order to
rank the features using LASSO we repeat its computation with different values
of regularization parameter λ in order to track the order in which features are
eliminated. The first eliminated feature is considered as least informative while
the last as the most relevant. The key idea of Relief is to estimate features ac-
cording to how well their values distinguish among the instances that are near to
each other. Original Relief algorithm estimates relevance of feature for a given
instance by analysis closest neighbors: one from the same class (nearest hit) and
one from the opposite class (nearest miss). Advanced version RelieFF extends
this idea to k nearest neighbors. Overall, all four feature selection algorithms
have shown promising results in machine learning application.

3.4. Classification

For a binary classification between normal and pathological classes, linear
discriminant analysis (LDA) with Fisher criterion was used [53]. The basic idea
of LDA consists in searching for such a direction w in the feature space, that
the projection of all training vectors onto it minimizes the within-class variation
and maximizes the between-class variation:

w = arg max
w

wSBw
T

wSWwT
, (19)

where SB – between class scatter matrix and SW – within class scatter matrix.
In turn these matrices are calculated as follows

SB = (µ1 − µ2)(µ1 − µ2)T , (20)

SW =

2∑
j=1

∑
x

(x− µj)(x− µj)T , (21)

where x – feature vectors from training set, µ1 – mean value of feature vector
for healthy people and µ2 – mean value of feature vector for people with ALS.
The solution of (19) can be found via the generalized eigenvalue problem

SBw = λmSWw, (22)

where the eigenvector associated with maximum eigenvalue λm gives the pro-
jection basis. Classification function of LDA is formulated as follows

f(x) = sign
(〈
w,x

〉
+ b
)
, (23)

where b is a bias. In the experiments, the value of b was chosen in a such
way that the number of correctly detected positive and negative instance in the
training set was equal. More detailed description of LDA can be found in [53].
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3.5. Classifier Validation

The goal of validation is to estimate of the generalization performance of
the classification based on the selected set of features, when presented new
(previously unseen) data. Most studies use cross-validation to achieve this
goal [12, 28, 47].

In this work we used k-fold stratified cross validation (CV) method [54],
with k equal to 8. According to this method at the beginning of the CV pro-
cess dataset randomly permuted and then splits into eight equal subsets (folds)
(s1–s8), the folds are stratified so that they contain approximately the same
proportions of labels as original dataset. At first iteration classifier is trained
using subsets s1–s7, while testing is conducted using s8 subset. Then training
is repeated using s2–s8 subsets, and classifier tested using s1 subset, and so on.
After 8 iteration whole dataset is labelled using eight classifiers. This process
was repeated a total of 40 times. The classification performance is evaluated in
terms of the mean and standard deviation of the accuracy on the test set across
all folds.

Accuracy, sensitivity, and specificity were used in this study to measure
the classification performance. Accuracy is the overall probability of correctly
classified instance over the total number of instances. Sensitivity is the proba-
bility of correctly classified ALS patients given all ALS samples and specificity
is probability of classified HC given all HC samples. Accuracy, sensitivity, and
specificity are calculated as follows:

Acc =
TP + TN

TP + FP + FN + TN

Sens =
TP

TP + FN

Spec =
TN

TN + FP

where TP , TN , FP , FN – the number of true positive, true negative, false
positive and false negative results of classification, respectively. In this case,
positive means a prediction that the voice sample is produced by a speaker with
ALS.

4. Results

4.1. Preliminary statistical survey

Table 2 presents the several features most strongly associated with the labels
in dataset, sorted by the absolute value of the correlation coefficient [53]. We
used label “0” for healthy controls and “1” for people with ALS. Thus, positive
correlation coefficient suggest that the feature takes, in general, larger value for
ALS voices. All of the listed features exhibit statistically significant correlation
(p < 0.05).

According to the table 2 the most relevant features are d1 and MFCCi(2).
The distance between spectral envelopes of the vowels /a/ and /i/ (d1) has
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Table 2: Statistical analysis of the acoustic features

Feature
Correlation
coefficient

Difference
between groups

d1 −0.456 p < 0.0002
MFCCi(2) −0.446 p < 0.0003
PVIa 0.422 p < 0.0006
PPEa 0.418 p < 0.0006
F2conv −0.390 p < 0.002
RelH7a −0.381 p < 0.002
MFCCi(6) 0.371 p < 0.003

J
(a)
ppq55 0.361 p < 0.004

PVIi 0.351 p < 0.005
RelH1i −0.347 p < 0.005
PFRa 0.346 p < 0.006
H8µa −0.335 p < 0.007
GNEµa −0.324 p < 0.01
∆MFCCi(6) 0.321 p < 0.01

S
(i)
apq11 0.311 p < 0.02
F2i −0.302 p < 0.02
RelH1a −0.285 p < 0.03
GNEσi 0.282 p < 0.03
H4σa 0.282 p < 0.03
MFCCi(8) 0.273 p < 0.03
MFCCa(11) 0.250 p < 0.05

the strongest correlation with the labels in the dataset. The negative sign of
its correlation coefficient means that the smaller distance d1, the more likely
that voice belongs to the category of ALS patients. MFCCi(2) has almost the
same strong correlation as spectral distance d1. It is well known that, low-
order MFCC describes the spectral envelope of the sound, therefore it can be
concluded that patients with ALS usually have significant changes in spectral
envelope of the vowel /i/.

Parameters PVIa and PPEa (third and fourth rows in the table 2) also have
high correlation with the labels in the dataset. This fact indicates that, as a
result of neuromotor disorders in patients with ALS, oscillations uncharacteristic
for healthy people appear in the F0 contour, which lead to increasing of PVIa
and PPEa. It is interesting that along with PVIa parameter PVIi (ninth row)
is also presented in table 2 and has high correlation coefficient, while PPEi does
not show a statistically significant correlation (p > 0.14). This may indicate
that PVI less depends on type of analyzing vowel than PPE and better reflects
changes associated with a decrease in the control over fundamental frequency
in patients with ALS.

Five features (RelH7a, RelH1i, H8µa , RelH1a and H4σa), among twenty-one
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of those listed in Table 2, relate to parameters that describe harmonic structure
of the vowel. This suggests that these parameters could be useful for accurate
voice classification.

We also estimated distribution of several features listed in table 2 using
Gaussian kernel density method to characterize their statistical properties. Fig-
ure 6,a shows the distribution of distance between spectral envelopes of the
vowels /a/ and /i/ (first row in table 2). As expected, on average this feature
has lower value for ALS patients than for healthy subjects.

(a) (b)

Figure 6: Box plot and probability densities of (a) d1(Ea, Ei); (b)MFCCi(2)

The distribution of 2nd MFCC of vowel /i/ that has a strong correlation with
labels in the dataset is given in figure 6,b. As stated above the differences in
MFCCi(2) indicate changes in the spectral envelope of the vowel /i/ in patients
with ALS. Among the others, this can be seen from the changes of the second
formant frequency of the vowel /i/. From table 2 we see that a lower value of
F2i is typical for patients with ALS. This observation is consistent with previous
findings in this area [21, 40]. Let us consider scatter plot of the pairs of F2i
and MFCCi(2) for healthy and pathological voices (see figure 7). It can be seen
that for healthy voices F2i and MFCCi(2) are weakly correlated (i.e. they not
set out along slanting line). In contrast, for the voices of patients with ALS, it
can be seen that F2i and MFCCi(2) are strongly correlated (points are grouped
along slanting line). Thus high relevance of the MFCCi(2) is likely caused by
the fact that it reflects the changes in second formant of vowel /i/ in patients
with ALS.

Figure 8,a-b illustrate distributions of PPEa and PVIa features. Both of
them characterize the excess of variability in a pitch contour and have high
correlation coefficients (3-rd and 4-th rows of table 2). Comparing boxplots of
the PPEa and PVIa parameters, we can see that the first quartile of PPEa for
pathological voices is located at the level of the median of the PPEa for healthy
voices. In turn, the first quartile of PVIa for pathological voices exceeds the
third quartile of PVIa for healthy voices. This indicates that PVIa has stronger
discriminatory power than PPEa.

Examples of features that characterized harmonic structure of voice are given
in figure 8,c-d. Both features are strongly associated with the labels in the
dataset. As expected, distributions figure 8,c indicate that RelH1i has tending
to have higher value for healthy voices. Figure 8,d shows that 8-th harmonic of
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(a) (b)

Figure 7: Scatter plots of pairs of F2i and MFCCi(2) showing low correlation for healthy
voices (a) and high correlation for ALS voices (b)

vowel /a/ has lower mean value in ALS group.
Figure 8,e-f illustrates the distributions of the MFCC and delta MFCC that

have high correlation with labels in the dataset (rows 7 and 14 in table 2).
Boxplot in figure 8,f shows that ∆MFCCi(6) have almost symmetrical distribu-
tion with median greater than zero for ALS voices, while for healthy voices this
parameter have asymmetrical distribution with near zero median.

The presented findings give tentative confidence that we can expect good
results for the classification problem of this study.

4.2. Classification results and discussion

In our experiments we computed the accuracy (see section 3.5) of LDA
classifier using different number of features selected by the four FS algorithms
described in section 3.3. Figure 9 shows the obtained results.

The analysis of figure 9 shows that performance of all FS algorithm is quite
similar while the number of features N is less than 6. However, for N > 6
LASSO demonstrates significantly better performance in comparison with other
approaches. Possible explanation of this fact is that mathematical principles of
LASSO regression are in accordance with the discriminant function (23) of the
LDA classifier.

The optimal size of the feature vector is equal to 43 and it was achieved
using the LASSO approach. The accuracy obtained in this case is 97%. This
result considerably outperforms the others. For example, the best accuracy of
LDA classifier with QoV FS algorithm is 79% and was achieved using 4 features.
The best results obtained with RelieFF and Relief algorithms are even smaller
– 76% and 72%, accordingly.

It is always desirable to have a classifier with a low number of features, there-
fore we applied backward-step selection procedure [48] to reduce the number of
features picked out by FS algorithms. The backward-step selection starts with
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Box plot and probability densities of : (a) PPEa; (b) PVIa; (c) RelH1i; (d) H8µa ;
(e) MFCCi(6); (f) ∆MFCCi(6)

LDA model that used best feature subset found by FS algorithm, and sequen-
tially deletes the feature that has low (or negative) impact on the fit. The result
of the described feature selection process is summarized in table 3.

Result shown in table 3 demonstrate that the best accuracy for LDA classifier
is obtained using feature selected by the LASSO algorithm. Also it can be noted
that backward-stepwise selection (BSS) is effective in reducing the number of
features and increasing the accuracy of classifier. The most noticeable result,
in this regard, is increasing the accuracy of LDA model with feature subset
selected using RelieFF algorithm by 7 %, while reducing the number of features
by 9. Nevertheless, feature subsets found by QoV, Relief and RelieFF algorithms
with application of BSS procedure give the resulting accuracy considerably lower
compared to feature subset selected using LASSO algorithms.

Table 4 lists final subsets of features selected using FS algorithms (with
application of BSS). The obtained accuracy, sensitivity and specificity for each
cases are also given in table 4.
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Figure 9: Classification accuracy with confidence interval (one standard deviation around the
quoted mean accuracy). The results obtained using different feature selection algorithm. For
RelieFF algorithm adjustable parameter k = 11 was used.

The analysis of tables 2 and 4 leads to the logical question: why statisti-
cally significant feature d1 was not selected by LASSO FS algorithm? Detailed
analysis have revealed that d1 and MFCCi(2) have strong correlation (r = 0.54
with p < 1.0 · 10−5), thus, MFCCs already contain information possessed in d1

feature. Another question: why such significant features like F2conv and F2i
were not selected by neither algorithm? First of all these features are highly
correlated (r = 0.85 with p < 10−18), thus the location of F2i is more relevant
rather than its proximity to F2a. Furthermore, F2i is strongly correlated with
MFCCi(2) and MFCCi(6) (r = 0.48 and r = −0.44, accordingly), therefore the
information about F2i can be passed to classifier with any of these parameters.
LASSO and QoV algorithms have selected MFCCi(4) that contained informa-
tion about F2i location, while RelieFF algorithm selected MFCCi(6) for this
purpose. A visual example of interplay between F2i and MFCCi(6) is given in
figure 10.

Figure 10: Interplay between features F2i and MFCCi(6)

Figure 10 shows the estimation of spectral envelopes computed during MFCC
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Table 3: Classifiers accuracy obtained using different feature selection (FS) algorithms. The
resulting number of features is given in parentheses.

FS algorithm Accuracy with
initial subset

Accuracy after
backward-

stepwise selection

QoV
79.5± 3.5%

(4)
79.5± 3.5%

(4)

Relief
72.5± 3.4%

(16)
80.3± 2.3%

(5)

LASSO
97.0±2.4%

(43)
99.7±0.6%

(32)

RelieFF
75.9± 4.2%

(20)
82.9± 2.8%

(11)

calculation and partial reconstruction of envelopes using DC component and
6-th MFCC coefficient. It can be seen that the voice of ALS patient is charac-
terized by reduced frequency of second formant. As a result, projection onto 6th
basis function of discrete cosine transform which is used in MFCC calculation
is changing sign (if we compare HC and ALS voices).

The result of our study confirm the findings of [12], where MFCC are also
found to be highly informative features for Parkinson’s disease detection. How-
ever unlike [12] we give interpretation that MFCC reflect changes in second
formant of vowel /i/ for ALS patients. Also it should be noted that proposed
features extracted using harmonic analysis of the vowels are essential for ob-
taining good classifier. For example, among the 32 features selected by LASSO,
ten describe the harmonic structure. Among the rest features: 9 MFCCs de-
scribe the envelopes of vowels (6 for /a/ and 3 for /i/), 7 delta MFCCs reflect
variability of vowels envelopes, the GNE parameters gives information about
noise content of the voice and PVI describes the changes in vibrato. Another
interesting observation is that in subset of features selected by LASSO 19 are
related to vowel /a/ and 13 to vowel /i/. It means that information contained in
phonation /a/ is relevant and necessary for gaining high classification accuracy.
It is interesting that traditional measures such as jitter, shimmer and HNR are
out of table 4. This suggests that PVI, MFCC and harmonic structure param-
eters have greater predictive power for distinguishing between HC and patients
with ALS.

Surely, that main goal of classification is most accurate detection of the ALS
patients voices. In this regard, LDA model with 32 features and 99% accu-
racy is a significant result. However, there is reason to believe that this feature
set is quite specific for our voice database. More relevant information about
parameters that are most important for ALS detection can be derived by an-
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Table 4: Selected feature subsets and classification accuracy

FS
algorithm

Features Accuracy results (%)

QoV
(N = 4)

PVIa, PFRa, d1, MFCCi(2)
Acc = 79.5± 3.5
Sens = 75.3± 3.4
Spec = 83.5± 5.9

Relief
(N = 5)

PVIi, d1, MFCCi(4), MFCCi(9),
∆MFCCa(3)

Acc = 80.3± 2.3
Sens = 68.1± 3.4
Spec = 91.7± 2.3

LASSO
(N = 32)

PVIi, H2µa , H4µa , H3σa , RelH1a, RelH3a,
RelH4a, RelH6a, RelH8a, RelH1i,
RelH3i, MFCCa(1), MFCCa(4),
MFCCa(7), MFCCa(10), MFCCa(11),
MFCCa(12), ∆MFCCa(5), ∆MFCCa(9),
∆MFCCa(11), MFCCi(2), MFCCi(4),
MFCCi(8), MFCCi(9), ∆MFCCi(1),
∆MFCCi(9), ∆MFCCi(10),
∆MFCCi(12) GNEσa , GNEµi , GNEσi ,
DPFa

Acc = 99.7± 0.6
Sens = 99.3± 1.4
Spec = 99.9± 0.5

RelieFF
(N = 11)

PVIi, H3σa , H4σa , H1σi , RelH1i, RelH3a,
MFCCa(11), MFCCi(6) ∆MFCCa(1),
∆MFCCa(3), GNEσa ,

Acc = 82.9± 2.8
Sens = 78.0± 4.4
Spec = 87.6± 2.6

Low order model

10 best
LASSO
features
+BSS
(N = 5)

PVIi, MFCCi(2), MFCCi(9), MFCCa(8),
MFCCa(10),

Acc = 89.0± 2.5
Sens = 87.5± 2.9
Spec = 90.4± 3.3

alyzing high-performance LDA models with small number of features. Table 4
shows that LDA models obtained using the QoV and RelieFF feature selection
algorithms have a small number of features, however they have quite low perfor-
mance. To find a model with higher performance we took LDA classifier with 10
best feature picked out using LASSO algorithm, which has accuracy 87.6±2.6%
(Sens = 90.5±4.1%, Spec = 84.8±3.0%) and applied back-step selection proce-
dure. As a result LDA model with five features (MFCCi(2), MFCCi(9), PVIi,
MFCCa(8), MFCCa(10)) was obtained, which has accuracy 89.0% (see last row
of table 4). Thus, it can be concluded that the most important information
for detecting the ALS patients’ voices is contained in the spectral envelopes
of sounds /a/ and /i/ (MFCC parameters), as well as in the vibrato changes
(PVI).
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Table 5: Comparison with other studies

Norel [9] Spangler [10] An [11] Present

Feature

Extracted
with

Open-SMILE
toolkit

Fractal jitter,
MFCC,

RPDE +
articulatory

data

filterbank
energies + its

deltas

MFCC,
Harmonic

parameters,
PVI

Total number
of features

for male 1
for female 15 17 120 32

Classifier linear SVM

Extreme
Gradient
Boosting

CNN LDA

Verification
Leave-five-
subject-out

CV

Leave-one-
subject-out

CV

Leave-one-
subject-pair-

out CV
8-fold CV

Database

133 speakers
(67 ALS,
66 HC),
running
speech

83 speakers
(49 ALS,
34 HC),

DDK test

26 speakers
(13 ALS,
13 HC),
running
speech

64 speakers
(31 ALS,
33 HC),

SVP test

Reported per-
formance

for male
Acc=79%
Sens=76%
Spec=70%
for female
Acc=83%
Sens=78%
Spec=88%

Acc=90.2%
Sens=94.2%
Spec=85.1%

Acc=76.2%
Sens=71.5%
Spec=80.9%

Acc=99.7%
Sens=99.3%
Spec=99.9%

Table 5 presents comparison of the present work with recent similar studies.
The purpose of those works was to discriminate between healthy people and
ALS patients. The main differences between these studies concern speech tasks,
classification approaches, features and verification methods. The most closest
result was obtained in [10]. However, in [10] along with voice recording articu-
latory data was used. In table 5 two different performance results are given for
study [9] because it uses sex-specific features for classifiers to take into account
differences in the vocal tracts of males and females. Study [11] presents results
of two type: sample-level and person level classification. The second type is
obtained based on sample voting. In table 5 we compare only sample-level clas-
sifiers. However, even person-level classifier based on 5 samples [11] has accuracy
90.8%, sensitivity 85.6% and specificity 94.9%. Therefore the obtained result
with near 99% of accuracy, sensitivity and specificity based on LDA classifier
can be considered as an essential improvement over the previous results.
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4.3. Additional experiment: early ALS detection

The following additional experiment has been performed in order to deter-
mine validity of LDA models with features extracted from SVP test for early
ALS detection problem. From ALS patients were chosen 12 that having been
diagnosed less than one year before recordings (see table 1). So, the reduced
dataset included 45 speakers (33 HC + 12 ALS).

Using the reduced dataset, we performed feature selection procedures and
optimization of feature set as described above. However, in contrast to exper-
iments presented in previous sections, we used leave-one-subject-out (LOSO)
cross-validation procedure to evaluate the performance of classifiers. [48, 53]. In
fact, the LOSO method is a k-fold CV procedure, with k equal to the size of
the dataset. We used LOSO in order to bring closer the size of the samples on
which the classifiers are trained in sections 4.2 and 4.3. In section 4.2, where
the 8-fold CV was used, the LDA classifier model was trained on 54 samples, in
this section, using the LOSO CV method, the classifier is trained on 44 samples.

Table 6: Early ALS detection: selected feature subsets and classification accuracy

FS
algorithm

Features Accuracy results (%)

QoV + BSS
(N = 5)

H3σa , H5µi , H6µi , RelH6i, MFCCi(6)
Acc = 84.4± 5.4
Sens = 75.0± 6.5
Spec = 87.9± 4.9

RelieFF
(N = 5)

MFCCa(8), MFCCa(11), MFCCi(2),
MFCCi(6), PFRa

Acc = 93.3± 3.7
Sens = 83.3± 5.6
Spec = 97.0± 2.6

LASSO
(N = 12)

d1, PFRa, H7σi , RelH6a, MFCCa(6),
MFCCa(8), MFCCi(2), MFCCi(3),
MFCCi(6), MFCCi(9), ∆MFCCi(6),
∆MFCCi(12),

Acc = 95.6± 3.1
Sens = 91.7± 4.1
Spec = 97.0± 2.6

LDA model with 5 features and above 80% accuracy has been obtained
using QoV feature selection algorithm with BSS procedure (see table 6). Best
LDA model obtained using Relief algorithm with BSS procedure has 39 features
and 100% accuracy. The same accuracy is achieved by the LDA model using
28 features selected by LASSO algorithm. However, these feature sets (unless
they legitimacy) are too specifically fit to our database. We believe that more
relevant conclusions can be derived by analyzing models with feature sets of
limited size. For example, LDA model trained on the first 5 features selected
by RelieFF algorithm has 93,3% accuracy (see table 6). Furthermore, among
the LDA models with a small number of features we can highlight one that
has 95,6% accuracy and trained on the first 12 features selected by the LASSO
algorithm.
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Analyzing the features contained in the table 6, we can draw the following
conclusions. In all feature sets MFCCi(6) is present, its relevance is discussed in
previous sections (for example, see figure 10). Four out of five features selected
by RelieFF algorithm are also included in feature set picked out by LASSO al-
gorithm. This indicates their high significance for early ALS detection. Feature
set obtained using the RelieFF algorithm shows that valuable information for
early ALS detection is contained in spectral envelopes of the vowels /a/ and /i/
(this information is concentrated in parameters MFCCa(8), MFCCa(11) and
MFCCi(2), MFCCi(6)). Parameter PFRa, which indicates the degree of funda-
mental frequency variation, is also important for early ALS detection. It should
be noted that neither of the feature sets contains parameters PVI and PPE, the
significance of which was revealed in the previous experiment. This means that
changes in the vibrato are not related to the early diagnosis of the ALS, but
rather characteristic of later stages of the disease.

5. Conclusion

In this study we investigate the possibility of designing linear classifier for dis-
criminate ALS patients from healthy controls using acoustical sustained vowels
/a/ and /i/ phonation tests. A large set of features was analysed. LDA clas-
sifier with 99.7% accuracy (99.3% sensitivity, 99.9% specificity) was obtained
based on 32 features determined by LASSO feature selection algorithm. We
also obtained the LDA model with only 5 features that has 89.0% accuracy
(87.5% sensitivity, 90.4% specificity). We found that the most important in-
formation for detecting the ALS patients’ voices is contained in the spectral
envelopes of sounds /a/ and /i/ (MFCC parameters), as well as in the vibrato
changes (PVI). Like in [10] traditional jitter measures were found not to have a
high importance. We also carried out experiment to determine validity of LDA
models with features extracted from SVP test for early ALS detection problem.
Our results show that it is possible to obtain LDA model with 93.3% accuracy
(83.3% sensitivity, 97.0% specificity) based on only 5 features determined by
RelieFF algorithm. We can also draw the conclusion that valuable information
for early ALS detection is contained in spectral envelopes of the vowels /a/ and
/i/ (MFCC parameters). We also found that the selected feature sets did not
contain the PVI and PPE parameters. This means that changes in the vibrato
are not related to the early diagnosis of the ALS, but rather characteristic of
the later stages of the disease. It should be noted that the data for this study
was collected using smartphone with regular headset. Therefore we can assert
that proposed approach is tolerant to non-professional recording condition.
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