
73

О б р а з е ц ц и т и р о в а н и я:
Бубнов ЯВ, Иванов НН. Скрытая марковская модель для
определения вредоносных узлов компьютерной сети. Жур-
нал Белорусского государственного университета. Мате-
матика. Информатика. 2020;3:73–79 (на англ.).
https://doi.org/10.33581/2520-6508-2020-3-73-79

F o r c i t a t i o n:
Bubnov YV, Ivanov NN. Hidden Markov model for malicious
hosts detection in a computer network. Journal of the Belaru-
sian State University. Mathematics and Informatics. 2020;3:
73–79.
https://doi.org/10.33581/2520-6508-2020-3-73-79

А в т о р ы:
Яков Васильевич Бубнов – аспирант кафедры электронных
вычислительных машин факультета компьютерных систем
и сетей.
Николай Николаевич Иванов – кандидат физико-матема-
тических наук; доцент кафедры электронных вычислитель-
ных машин факультета компьютерных систем и сетей.

A u t h o r s:
Yakov V. Bubnov, postgraduate student at the department of
electronic computing machines, faculty of computer systems
and networks.
girokompass@gmail.com
Nick N. Ivanov, PhD (physics and mathematics); associate pro-
fessor at the department of electronic computing machines, fa
culty of computer systems and networks.
ivanovnn@gmail.com

Бубнов Я. В., Иванов Н. Н. Скрытая марковская модель
для определения вредоносных узлов компьютерной сети	
73

Bubnov Y. V., Ivanov N. N. Hidden Markov model for mali-
cious hosts detection in a computer network	 79

УДК 004.492.3

СКРЫТАЯ МАРКОВСКАЯ МОДЕЛЬ ДЛЯ ОПРЕДЕЛЕНИЯ
ВРЕДОНОСНЫХ УЗЛОВ КОМПЬЮТЕРНОЙ СЕТИ

Я. В. БУБНОВ1), Н. Н. ИВАНОВ1)

1)Белорусский государственный университет информатики и радиоэлектроники,
ул. Петруся Бровки, 6, 220013, г. Минск, Беларусь

Рассматривается проблема определения вредоносных узлов в компьютерной сети. Активность узлов сети
фиксируется с помощью зашумленного детектора с привязкой ко времени. В работе предлагается метод иден-
тификации подобных узлов путем классификации временных рядов активности узлов сети. Метод основан на
построении скрытой марковской модели для анализируемого временного ряда и последующем поиске наиболее
вероятного конечного состояния модели. Эффективность подхода базируется на предположении, что целевые
кибератаки локализованы во времени, а значит, активность вредоносных узлов сети отличается от безопасных.

Ключевые слова: скрытая марковская модель; компьютерная сеть; целевая кибератака; классификация вре-
менных рядов.

74

Журнал Белорусского государственного университета. Математика. Информатика. 2020;3:73–79
Journal of the Belarusian State University. Mathematics and Informatics. 2020;3:73–79

HIDDEN MARKOV MODEL FOR MALICIOUS HOSTS
DETECTION IN A COMPUTER NETWORK

Y. V. BUBNOV a, N. N. IVANOV a

aBelarusian State University of Informatics and Radioelectronics,
6 Pietrusia Broŭki Street, Minsk 220013, Belarus

Corresponding author: Y. V. Bubnov (girokompass@gmail.com)

The problem of malicious host detection in a computer network is reviewed. Activity of computer network hosts
is tracking by a noisy detector. The paper suggests method for detection malicious hosts using activity timeseries
classification. The approach is based on hidden Markov chain model that analyses timeseries and consecutive search of the
most probable final state of the model. Efficiency of the approach is based on assumption that advanced persisted threats
are localised in time, therefore malicious hosts in a computer network can be detected by virtue of activity comparison
with reliable safe hosts.

Keywords: hidden Markov model; computer network; advanced persisted threat; timeseries classification.

Introduction
Malicious activity detection methods in corporate computer networks still remain an important problem in

computer science. To enforce the network security special instrument are embedded in operating systems and
ingenuity software are elaborated. Such applications intend to prevent cyberattacks against the local networks
and personal computers, theft of data, undesired spam-advertised products, dangerous drive-by hidden objects
infected a visitor’s machine with malware. As a result, the growing interest is observed in developing systems
to protect the end user from the potential attack.

Except of the information theft, infected hosts are exploit for distributed denial of service attacks through a botnet.
In such scheme DNS (domain name system) tunneling is commonly used to control the attack through central
server. Hosts usually access the central server through hardcoded IP address or domain name. Therefore,
networks protected with domain blocklists can easily prevent communication with remote adversary.

At this moment the most advanced method of botnet control is decentralised interconnection between
infected nodes. In this scheme, infected host acts as client and takes role of a central server. Considering that
decentralised approach does not exploit a single central server battling with these botnets becomes decently
complex problem. There are two most common approaches in the organisation of decentralised botnets exist:
(i) fast-flux networks and (ii) domain name generation algorithms.

The fast-flux approach assumes a peer-to-peer communication between the infected nodes of a botnet,
where an access to the central server is performed through domain name resolution into multiple IP addresses.
That means, multiple nodes in fast-flux networks act as proxies to the original central server. In this scheme
even after blocking of the infected hosts, botnet still operates as list of IP addresses constantly rotated.

The domain name generations algorithms target corporate policies where malicious domains are blocklisted.
In this scenario, malicious hosts exploit a generator of pseudo-random numbers to guess the current domain
name of the central server. The frequent rotation of domain names makes blocklist protection powerless against
this approach, since the amount of possible domain name combinations virtually infinite.

Mentioned prerequisites lead to the conclusion that exploit prevention of the corporate network nodes for
distributed denial of service attacks require blocking of the infected nodes instead of requesting domain names.

Industry-standard method for dealing with this problem is detector analysing packets passing through the
network. Such detector may collect system data from the packets [1] or reads system attributes from the nodes [2].
In monitoring system such as Prometheus, Zabbix, Nagios [3], these findings are stored as time series.

Activity of such systems needs tentative tuning of parameters ranges, that provide successful performance
of hard and soft components. An operator may use manual adjustment of the system.

Generally, feasible intervals are set by experiment [4], above all in some systems procedures are prescribed
and might be automated. The extreme option against harmful node is cutting out network fragment. The only
problem is to find point of time for connection breakage due to time and data loss.

That is, common challenge in information security is to determine the point of time when the manual
intervention in network activity is necessary.

This basic approach can separate malicious and infected hosts from the safe nodes. Malware is a standout
most thoughtful intimidations for the Internet.

75

Краткие сообщения
Short Communications

Hidden Markov model for malicious hosts detection
Let the detector estimates probabilities referring transmitted network packet as a malicious one. It is a binary

classifier. As a result of a detecting action a probability is assigned to each packet Pt , where t is a point of time.
The observable events are a flow of packets Pt , the probability of the packet to be malicious is estimated by the
detector as yt ∈[]0 1, . Markov chain is defined as the event sequence depicted in fig. 1, each observed event
may be at one of the two possible states that correspond to two classes yi ∈{ }0 1, .

It is assumed the i state probability is normally distributed, therefore emission probability of the state can
be calculated with the standard formula

E y x
x y

i i
i i() = -

-

















1

2

2

σ π σexp ,

where standard deviation is chosen as σ = 2.0 and function is parametrised with a class probability xi. In other
words, the most reliably hidden state is observed in situation when standard deviation of the detector output
signal lays inside the boundaries of the standard model.

In most cases observed events form ordinary flow of homogeneous events and mathematically are authentic
to Poisson stream. Based on this assumption the transition probability from state i to state  j might comply with
density of exponential distribution:

T y x y x
t t

y yi i j j
i j

i j

, exp
exp

,() =
-

- ⊕()












1

2 1

where y yi j⊕ represents the Zhegalkin polynomial, which sets higher probabilities when Markov chain transi-
tions to the states with the same class, whereas class changing is penalised by a factor value e.

For any given ordered time t ∈ T interval with N elements the solution of the problem is on the base of
reliable events forming the most probable path from initial state t0 to one of the final state tN. All intermediate
states have to belong to interval T.

Viterbi algorithm can be applied for the most probable way on Markov chain construction (see fig. 1).
The algorithm is specified by the following recurrent formulas:

V E y xn1 1 1, ,= ()

V E y x T y x y x Vt n i

N
t t i i n n t i, ,max , .= () ⋅ () ⋅()- 1

Final hidden state is produced by the final solution:

x VN
i

N
t iN

= ()argmax .,

Initial problem statement is not getting hidden states of the Markov chain. The challenge is in associating
the event series to one of the classes. Direct solving of a classification problem through estimation of obser
ving event sequence in the restored chain produces the result that ignores time locality. In fact, recent events
produce more significant effect in comparison with events from the past.

At last, two virtual finite states of Markov chain are defined, they denote that both states are equiprobable.
These states are intended for time series classification. Figure 2 represents updated Markov chain (compare
with fig. 1).

Fig. 1. Markov chain fragment with 3 observed events

76

Журнал Белорусского государственного университета. Математика. Информатика. 2020;3:73–79
Journal of the Belarusian State University. Mathematics and Informatics. 2020;3:73–79

Viterbi algorithm estimates two final states probabilities:
P N y Vt NN

; ,,
 =() =0

0

P N y Vt NN
; .,
 =() =1

1

Then the result specifying the time series class is calculated by the formula

	 Y P N y P N y= =() =() argmax ; , ; . 0 1 	 (1)

That is, more probable final state defines the chain class.

Dijkstra path probability calculation algorithm
Formula (1) produces the solution of the time series classification problem. Mathematically it is the path in

a directed acyclic graph or the most probable path on Markov chain.
Direct solution assumes enumeration of full set of all possible paths from an initial Markov chain’s state S

to all final states and estimation of the final state probability for each path. It is time consuming approach since
due to binary branching at each current chain node an algorithm complexity is exponential, it is exactly equal
to power of 2:

P N y O N
; .() = ()2

Even with progress in processor industry such algorithms are useless. Nevertheless, the optimal path in
a given acyclic graph may be found by modified Dijkstra algorithm [5] that has polynomial time complexity.

Modified Dijkstra algorithm applied to Markov chain is described in following paragraphs. Let an orien
ted graph G V E,() presents a Markov chain model. Possible states and edges specify next node transitions.
The directed graph under consideration has single initial node and two terminal nodes, that indicate final states
with the probabilities pointing to a decision of time series classification. An edge weight here means transition
probability T v v

1 2() from an edge v1 to edge v2. The weight of initial node of Markov chain path is set to 1
2
,

an internal node v2 weight is defined as sum of products of entering node v1 weight E v1() multiplied by transi-
tional edge weight T v v

1 2() (see PathProb (*) algorithm). The following algorithm specifies weight procedure
that calculates final nodes probabilities.

PathProb G v vs e, ,()
1) J ← → (){ }v P vs e s

2) Q ← { }vs
3) foreach v in G vs\
4) 	 do J v[] = 0
5) do while Q ≠ ∅
6) 	 u Pop q← ()
7) 	 foreach v in G u[]
8) 	 p u T u v E u← [] ⋅ () ⋅ ()J
9) 	 J Jv p v[] = []()Max ,

10) 	 if v ∉ Q
11) 	 do Q Q← ()Push

12) return J ve[]

Fig. 2. Extended Markov chain with two extra equiprobable states

77

Краткие сообщения
Short Communications

Description of the main algorithm. The operator 1) initialises a hash table J that stores the graph nodes
with corresponding probabilities. Line 2) initialises a nodes queue Q of the nodes to be tested, it is an ordinary
FIFO line. Operators 5) – 11) set weights to the graph nodes and edges. At each iteration current node is under
examination and the following operation proceeds from the current node along the edge with more probable
transition. As the result algorithm yields the most probable terminal node.

Actually, because of only forward transitions along nodes of acyclic directed graph the algorithm has poly-
nomial time complexity on nodes number:

P N y O N O N; .() = () = ()2

Greedy path probability calculation algorithm
Dijkstra algorithm allows to reach polynomial time complexity of path probability calculation, while the

usage of a hash table results in the need to keep all nodes in memory till the final operator. This needs polynomial
amount of memory, or O N().

Considering that state transitions are possible only between two neighbour states, the original graph G V E,()
can be represented as the following matrix:

A =
′() ′() … ′()
′′() ′′

t y x t y x t y x
t y x t y x

n n n1 1 1 2 2 2

1 1 1 2 2 2

, , , , , ,

, , , ,(() … ′′()








t y xn n n, ,
,

where the number of columns is equal to the amount of DNS tunneling detector observations, and each ele-
ment is a tuple of three elements: ti – observation timestamp, yi – observation probability, and ′ ′′∈{ }x xi i, ,0 1 is
a probable class of an event.

Matrix construction assumes union of observation timestamps T altogether with observation probability X:

W = { }
∈

t yi i
i N

, .


Having a weight matrix W, matrix A is calculated using a cartesian product of the possible classes set:

A WT T x x= × ′ ′′{ }, .

The greedy version of the path probability calculation algorithm is shown below. The algorithm is called
greedy as the decision of the next node in a path is taken considering only two current nodes.

MaxProb A, ,s i()
1) p T Ei j i1 1 1 1 1= ⋅ () ⋅ ()-J A A A, , ,

2) p T Ei j i2 2 1 2 2= ⋅ () ⋅ ()-J A A A, , ,

3) if p1 ≥ p2

4) 	 do return p i1 1, ,A()
5) return p i2 2, ,A()
GreedyPathProb A, ,s e()
1) J ← ()E s
2) N ← A1

3) for i = 2 to N
4) 	 p s MaxProb s i, , ,() ← ()A
5) 	 J ← J ⋅ p
6) return J ⋅ () ⋅ ()T s e E e
Greedy algorithm is divided into two functions: MaxProb and GreedyPathProb. The first function calcu-

lates the probability of the transition from the current state s to one of the states from column Ai. Function
returns a tuple of the next state and its probability. The operator 1) in GreedyPathProb function calculates
emission probability of the start state. Operators 3) – 5) perform calculation of the cumulative state probability
of transition from the start to final state. The operator 4) updates the state s on each iteration based on the joint
probability. Finally, operator 6) returns a joint probability of the path s → e.

78

Журнал Белорусского государственного университета. Математика. Информатика. 2020;3:73–79
Journal of the Belarusian State University. Mathematics and Informatics. 2020;3:73–79

This described algorithm allows to reduce space complexity of the path probability calculation algorithm
from polynomial to constant:

P N y O; .() = ()1

Timeseries classification results
The algorithm was tested by a problem of detecting DNS tunnel in a computing network. Numerous ma-

licious applications exploit such approach, e. g. programs that steal credit card data from payment termi-
nals [6; 7].

Initial information is a sequence of observed events Y ordered by discrete time T. The events occur as a re-
sult of DNS tunnels registration with binary classifier. Tunnel detector fixes client inquires to domain server.
A set of these events are interpreted as Markov chain, the final events are classified and nodes suspected as
malicious ones are found out. The principal problem is in detecting infected nodes.

The validation methodology uses a set of safe requests, consisting of the most popular Internet web-sites,
and a set of unsafe requests created by the popular tunneling programs, like iodine, tuns, DNScapy, etc. These
two sets are constructed based on etalon dataset for DNS tunneling binary classification [8].

Having these two sets, they are organised in series, where each of the series includes a certain percent of
unsafe requests. Additionally, it is assumed that attacks are localised in time, therefore unsafe requests are
always represented in a sequence. Figure 3 depicts a set of such timeseries, where 20 % of samples relate to
unsafe DNS requests. Each request from the timeseries is passed through the detector, described in [9], which
calculates the probability of the request being unsafe.

For each of these ensembles precision and recall are calculated in order to evaluate the proposed algorithm
for timeseries classification. Table represents results of classification, where column «ratio» highlights the
percentage of unsafe DNS requests in each of the timeseries.

Results of classification estimation

Ratio Unsafe count Predicted count Precision Recall

0.00 0 0.000 1.000 1.000
0.01 1 0.950 0.860 0.890
0.10 10 9.989 0.987 0.985
0.30 30 30.000 0.995 0.994
0.50 50 50.000 0.994 0.994
0.70 70 69.903 0.999 0.997
0.90 90 90.091 0.999 1.000

Fig. 3. Ensemble of timeseries used in algorithm evaluation

79

Краткие сообщения
Short Communications

The results show high quality of the proposed classifier, which proves the original hypothesis that a se-
quence of DNS requests represent a Poisson point process, therefore the classification problem can be modeled
as hidden Markov model.

Conclusion
The article presents hidden Markov chain as an algorithm for timeseries classification. The algorithm does

not need extra infrastructure to store data for computer network analysis, existing system such as widespread
Prometheus system may be applied. Besides, algorithm has linear computational complexity and constant space
complexity.

References
1. Qi C, Chen X, Xu C, Shi J, Liu P. A bigram based real time DNS tunnel detection approach. Procedia Computer Science. 2013;

17:852–860. DOI: 10.1016/j.procs.2013.05.109.
2. Souri A, Hosseini R. A state-of-the-art survey of malware detection approaches using data mining techniques. Human-Centric

Computing and Information Sciences. 2018;8(1):2–22. DOI: 10.1186/s13673-018-0125-x.
3. Skvortsov P, Hoppe D, Tenschert A, Geinger M. Monitoring in the clouds: comparison of ECO2Clouds and EXCESS monitoring

approaches. arXiv:1601.07355 [Preprint]. 2016 [cited 2020 June 2]. Available from: https://arxiv.org/abs/1601.07355.
4. Rong K, Bailis P. ASAP: prioritizing attention via time series smoothing. Proceedings of the Very Large Data Bases Endowment.

2017;10(11):1358–1369. DOI: 10.14778/3137628.3137645.
5. Knuth DE. A generalization of Dijkstra’s algorithm. Information Processing Letters. 1977;6(1):1–5. DOI: 10.1016/0020-0190

(77)90002-3.
6. Deitrich CJ, Rossow C, Freiling FC, Bos H, van Steen M, Pohlmann N. On botnets that use DNS for command and control.

In: 7 th European Conference on Computer Network Defense; 2011 September 6–7; Gotheburg, Sweden. Piscataway: IEEE; 2011.
p. 9–16. DOI: 10.1109/EC2ND.2011.16.

7. Tatang D, Quinket F, Dolecki N, Holz T. A study of newly observed hostnames and DNS tunneling in the wild. arXiv:1902.08454
[Preprint]. 2019 [cited 2020 June 2]. Available from: https://arxiv.org/abs/1902.08454.

8. Bubnov Y. DNS tunneling queries for binary classification. Mendeley Data [Internet]. 2019 [cited 2020 August 17]. Available
from: https://data.mendeley.com/datasets/mzn9hvdcxg/1. DOI: 10.17632/mzn9hvdcxg.1.

9. Bubnov Y. DNS tunneling detection using feedforward neural network. European Journal of Engineering Research and Science.
2018;3(11):16–19. DOI: 10.24018/ejers.2018.3.11.963.

Received by editorial board 29.06.2020.

