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Abstract: Bi nanocrystalline films were formed from perchlorate electrolyte (PE) on Cu substrate via
electrochemical deposition with different duration and current densities. The microstructural,
morphological properties, and elemental composition were studied using scanning electron
microscopy (SEM), atomic force microscopy (AFM), and energy-dispersive X-ray microanalysis
(EDX). The optimal range of current densities for Bi electrodeposition in PE using polarization
measurements was demonstrated. For the first time, it was shown and explained why, with a
deposition duration of 1 s, co-deposition of Pb and Bi occurs. The correlation between synthesis
conditions and chemical composition and microstructure for Bi films was discussed. The analysis of
the microstructure evolution revealed the changing mechanism of the films’ growth from pillar-like
(for Pb-rich phase) to layered granular form (for Bi) with deposition duration rising. This abnormal
behavior is explained by the appearance of a strong Bi growth texture and coalescence effects.
The investigations of porosity showed that Bi films have a closely-packed microstructure. The main
stages and the growth mechanism of Bi films in the galvanostatic regime in PE with a deposition
duration of 1–30 s are proposed.

Keywords: bismuth; lead; films; electrochemical deposition; co-deposition; growth mechanism;
morphology; perchlorate electrolyte
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1. Introduction

Bismuth and its alloys are interesting materials generally used in various applications.
This chemical element has highly unusual physical properties including thermoelectrical, electronic,
and magnetic ones [1–4]. It is a semimetal with a high anisotropic Fermi surface, and low and
very large carrier densities and mobilities, respectively [5]. For example, nanostructured thin
Bi films revealed exotic magneto-electronic properties which make them appealing materials for
spintronic applications [6–8], displayed large positive magnetoresistance [9], and Bi-modified electrodes
due to their catalytic properties and mechanical stability were used for electrochemical sensors
instead of poisonous mercury electrodes [10–14]. From the point of view of condensed matter
research and other significant applications, especially in the films form, have been applied to test
several quantum confinement phenomena [5,15–17]. Bi-based sensitive radiation detectors, such as
microcalorimeters demonstrate good X-ray absorption because of Bi’s large atomic number and
very low heat capacity [5,18–21]. Uses of Bi-based composites and coatings offer a very applicable
alternative to the lead protection against proton radiation due to much more environmentally
friendly Bi [22,23]. Bi2O3-glasses showed high gamma radiation effectiveness [24], and textiles with
filled Bi2O3 particles are applied in the manufacture of overalls for medical personnel working on
gamma-ray systems [25]. Multilayer structures with alternating layers light (Ba, Sb)/heavy (Bi, W)
elements on the polymer substrate provide the protection equivalent to the lead materials, but with
25% lower mass-dimensional parameters [26]. Bi and Bi/Bi2O3 surfaces with dendritic microstructure
demonstrated superhydrophobic properties [27,28].

Electrochemical deposition is one of the most promising methods for the thin and thick films
synthesis. It provides advantages such as low manufacturing costs, low synthesis temperatures,
a high rate growth, and a high level of pure and homogeneous films. Besides, electrodeposition
enables the films’ stoichiometry, thickness, and microstructure, which can be controlled by deposition
conditions variation. It is possible to obtain films with different properties and functions by changing
the parameters, such as current density, electrolyte composition, and substrate type. A large number of
materials can be obtained in this way [29–31]. It has been shown that Bi can be produced in different
configurations such as dense or particulated films [22,32] and sparse particles (hexagons, dendrites,
rods, wires, etc.) [14,27,33]. Bi nanowires, imbedded in Al2O3 matrix, showed their potential use
for enhancing thermoelectric performance [34–40]. Many authors have focused on the Bi deposition
onto noble metals (evaporated Au and polycrystalline Cu) and non-metallic substrates, such as
semiconductors [41,42] and glassy carbon [43]. However, the number of authors who produce bismuth
films onto metallic substrates is very limited [23,44,45]. Many previous studies have been dedicated to
Bi films electrodeposition from lactate, tartrate, silicate, nitrate, citric, hydrochloric, stearic, sulfate,
and pyrophosphate electrolytes [13,27,32,41,46–50]. However, the literature on the perchlorate
electrolytes study is not comprehensive enough [51,52]. This electrolyte has several advantages:
Homogeneous and dense coatings obtaining, high deposition rates, and it also approximates 100%
current efficiency. Thick coating obtaining is one of the main tasks in the radiation protective shields
manufacturing, so the use of the electrolyte, which allows achieving high electrodeposition rates,
is very relevant [22,23]. To maximize the protective efficiency against various ionizing radiations is
essential for semiconductor shielding applications as well as to get a deeper understanding of the Bi
growth controllability [53,54]. Moreover, the investigation on the initial stage of Bi electrodeposition in
perchlorate electrolyte, including the nucleation processes and its growth mechanism, is extremely
insufficient. Consequently, an intensive understanding of nucleus formation and growth during Bi
electrodeposition is critical for good quality Bi films obtaining.

In this paper, we reported the electrodeposition of Bi onto Cu substrate from perchlorate electrolyte
in the galvanostatic regime, and its nucleation and growth mechanism were investigated. These studies
contribute to a more detailed understanding of the fine-grained and dense films obtaining process as a
promising material for many practical applications.
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2. Materials and Methods

Experimental samples were thin Bi films electrodeposited onto Cu substrate (thickness 70 µm).
The copper substrates were treated in a Viennese lime mixture, consisting of CaO and MgO (1v:1v).
Then, the degreased surface of the copper substrates was polished in the ammonium persulfate solution
(120 g·L−1 (NH4)2S2O8 + 20 g·L−1 H2SO4) within 30 s at room temperature for the removal of an oxide
film from the copper surface. After treatment of the Cu substrates, the surface roughness was 9.6 nm.
Bi electrochemical deposition was carried out from the perchlorate electrolyte (PE) in the galvanostatic
regime under the following conditions and solution compositions: Bi2O3—40 g·L−1, concentrated
65% HClO4—400 mL·L−1, distilled H2O—up to 1 L, temperature—20–25 ◦C, and current density—
10–20 mA/cm2. All chemicals used were commercial reagents with analytical purity. Bismuth rods
with 8 mm diameter, containing 97.5% Bi and up to 2.5% PbO2, were used as anodes. The ratio of the
bismuth anodes’ area to the cathodes’ area was in the range from 0.3 to 0.5. This ratio is necessary to
ensure the mode of electropolishing of anodes, which leads to their more uniform dissolution. The Bi
electrodeposition was performed using a power source B5-78/6 coupled with a control device (to control
the deposition duration). The duration of electrodeposition was varied from 1 to 30 s. All experiments
were carried out without mixing due to the short deposition duration. The deposition process in PE
was investigated via voltammetric technique using the Autolab PGSTAT302N potentiostat/galvanostat.
The measurements were carried out in a three-electrode cell with an Ag/AgCl reference electrode.

Bi films surface morphology study was realized with the scanning electron microscope (SEM) JEOL
JSM-7500F at an accelerating voltage of 5 kV and with the atomic force microscope (AFM) NT-206 in a
contact scanning mode. The AFM measurements were carried out for at list five points on the surface
area of each sample. A standard V-shaped silicon probe with a 3 N·m−1 stiffness coefficient and a 5 nm
tip curvature radius were used. The porosity was evaluated using custom software, which processed
the SEM images and then allowed to obtain contrast images of porosity. The calculation of the porosity
value was determined using the following formula:

P =
SP

Sg
·100% (1)

where Sp—pores projection area and Sg—grains projection area.
Gwyddion software package was used to analyze the grain size, and then statistic grain analysis

was performed. The standard method was applied which is described in detail in [55]. The thickness
of the deposited films was determined by the stepwise abrasion using a diamond probe with the
nanoindenter Hysitron TI 750 Ubi [56].

The chemical composition of the samples was evaluated by energy-dispersive X-ray microanalysis
(EDX) using a Bruker XFlash MIN SVE microanalyzer (Bruker Nano GmbH, Berlin, Germany),
working in conjunction with a Hitachi TM3030 SEM (Hitachi Group, Tokyo, Japan). The accelerating
voltage during EDX experiments was 9–14 keV.

3. Results and Discussion

3.1. Polarization Measurements

Polarization measurements were carried out in a PE, without mixing, to determine the working
(optimal) range of current densities and to identify the optimal modes for the deposition of Bi films
(Figure 1). Bismuth electrodeposition begins at potentials slightly more positive than 0 V relative to
the Ag/AgCl reference electrode, namely, at a potential of 32 mV, which is close to the equilibrium
potential of the Bi electrode in this solution.
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Figure 1. The polarization curve of the Bi electrodeposition from perchlorate electrolyte (PE) without mixing.

Three main regions can be observed on the polarization curve that describes the electrochemical
and diffusion kinetics of the electrodeposition process (Figure 1). Initially, at small deviations of
the potential from zero, the deposition of Bi proceeds in the kinetic regime (region I of Figure 1).
In this case, as the cathodic polarization increases, the reaction rate rises, and the diffusion begins to
slow it down without supplying a sufficient number of ions to the electrode surface per unit time.
A region of mixed kinetic-diffusion processes arises (region II in Figure 1). This inhibition is more and
more affected as the cathodic polarization increases and, therefore, the rate of the electrode reaction
is increasingly limited by the diffusion. This can be observed in the potential range from −205 to
−525 mV (diffusion plateau—region III). Then, the conditions of the limiting current come when the
diffusion rate reaches the highest possible value.

Therefore, the curve is parallel to the abscissa axis, which indicates the impossibility of changing
the reaction rate by increasing the polarization. At potential values above −525 mV, the cathode current
again begins to increase sharply, which is associated with the deposition of a dark powdery precipitate
on the cathode surface. The presence of this region is associated with the onset of H+ evolution on the
cathode surface, and the evolution becomes more intense as the potential increases.

In this regard, to study the influence of synthesis conditions (deposition modes), namely,
current density (Dc) and deposition duration (t) on the morphology and microstructure of Bi films, we
selected a range of Dc from 10 to 20 mA/cm2 without mixing, which is in the range of optimal current
densities (marked with hatching lines in Figure 1).

As a result, three series of samples were obtained with different synthesis conditions. Table 1
includes data on the main samples described in the article. However, for the statistical evaluation of the
influence of synthesis conditions on the Bi electrodeposition, a larger number of samples were prepared.
The description of the main experimental samples and their characteristics is presented in Table 1.

3.2. Chemical Composition Study

The EDX analysis of the experimental samples showed that the electrodeposited films of all series
contain such components as Bi, Pb, Cu, O, and C. The oxygen and carbon content in the samples
is at the background level. The presence of the copper phase is explained by the usage of Cu for
the deposition of Bi and the duration in the range from units to tens of seconds, which contributes
to the formation of a very thin film on the substrate surface. Moreover, an interesting behavior of
the two main phases of Pb and Bi in the films was noted. The presence of these phases depends on
both the deposition duration and the value of current density. For a more detailed study of such an
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anomaly, the relative percentage concentration (C) of the two main phases (we called them “Pb-rich”
and “Bi-rich”) was calculated for each series of samples. The calculations did not take into account the
content of other chemical elements (O, C, Cu). The calculations were performed using the equation:

C =
CBi (CPb)

CBi + CPb
·100% (2)

where CBi—Bi content in the sample, atom. % and CPb—Pb content in the sample, atom. %.
The study of the chemical composition (Figure 2) showed that for all ranges of current densities,

there are three regions: Region I—Pb-rich phase with Pb concentration up to 84.5% (samples 1_10,
1_15, and 1_20); region II—Bi-rich phase with small amount of Pb (up to 1.9%)—samples 2.10, 2,15,
and 2_20; and region III—pure Bi phase (other samples of Table 1). In the early stages an abnormal
co-deposition of Pb and Bi occurred due to Pb being thermodynamically less metal and deposits
preferentially than Bi. Unfortunately, the observation of such Pb and Bi co-deposition has never been
mentioned in the scientific literature (the data is absent). Firstly, the researchers were probably not
studying the electrochemical deposition of Bi from PE and the nucleation processes in the initial stages.
Secondly, the researchers were supposedly using pure Bi anodes for electrodeposition. However,
in our case, the presence of the Pb impurity in the films is due to its existence in the original Bi rods,
which were used as anodes. In electrochemistry, such anodes are commonly used to deposit Bi films,
since Bi is often produced by processing polymetallic lead concentrates, where the presence of a small
amount of Pb impurities in Bi (up to 3%) is acceptable [57].

An increase in the Dc to 20 mA/cm2 (samples 1_10–1_20) decreases the ratio of the Pb-rich phase
from Pb84.5:Bi15.5 to Pb82.9:Bi17.1 (Figure 2 region I for A–C). It is noted that region II shifts to the
deposition duration decreasing side, which indicates the presence of a mixed Pb:Bi phase (Bi-rich),
observed from 3–10 s (for a Dc = 10 mA/cm2) to 3–5 s (for a Dc = 20 mA/cm2). Obviously, with a double
increase in the Dc, the duration required for the formation of the Bi-rich phase also decreases by half
(from 10 to 5 s). After that the content of Bi in the films reaches 99.1% (Figure 2A, region II). Finally, the
formation of a continuous Bi film (the concentration of Bi is 100%) without the presence of Pb with
an increase in Dc up to 20 mA/cm2 occurs with a deposition duration of more than 5 s (samples 3_20
and 4_20), in contrast to the Dc = 10 mA/cm2, where the region III is observed after 10 s of deposition
(Figure 2A,C).

Table 1. The description of synthesis conditions and parameters of the main experimental samples.

Series Sample
No.

Current Density
(Dc), mA/cm2

Deposition
Duration (t), s

Deposition
Rate (v), ~nm/s

Thickness
(h), nm

Composition of
Pb:Bi
(C), %

Porosity
(p), %

Average
Grain

Size, nm

1

1_10

10

1 15 15 84.5:15.5 12.5 192
2_10 5 50 252 0.9:99.1 11.5 196
3_10 15 105 1575 0:100 8.4 222
4_10 30 165 4950 0:100 2.9 241

2

1_15

15

1 28 28 83.3:16.7 10.6 197
2_15 5 66 329 1.4:98.6 6.7 199
3_15 15 164 2465 0:100 5.0 272
4_15 30 274 8223 0:100 1.8 316

3

1_20

20

1 30 30 82.9:17.1 8.4 201
2_20 5 99 445 1.2:98.8 4.8 207
3_20 15 247 3704 0:100 3.0 335
4_20 30 329 9879 0:100 0.9 386
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The authors of the article want to note that with deposition duration of 1 s for all series of
experimental samples due to the small electrodeposited film thickness the using of EDX method can
introduce errors. This may affect the quantitative analysis of the ratio of components in the film.
Therefore, the best way to further study the quantitative ratio of elements in the electrodeposited films
is to use a more accurate X-ray photoelectron spectroscopy (XPS) technique. Interpretation of the
obtained results showed that it is necessary to pay attention to the development of further research
to study the influence of the electrodeposition synthesis conditions on the quantitative ratio of the
components in the thin films and studying the crystal structure, which will be represented in our
future works.

3.3. Deposition Rate Determination

The film thickness was estimated, and the deposition rate was calculated using the data obtained
from the nanoindentation method [58]. Figure 3 presents the effect of the current density on the
deposition rate at various durations.
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For all the studied samples, an increase in the deposition rate and thickness (Table 1) with the
duration rising was observed. Moreover, the behavior of the deposition rate growth was sublinear.
This tendency also was observed during electrodeposition of NiFe thin films [56]. It was noted
that for current densities of 15 and 20 mA/cm2 with the duration of 1 s (samples 1_15 and 1_20),
the deposition rate remains practically unchanged (28 and 30 nm/s), in contrast to 10 mA/cm2, where the
rate was lower by half (15 nm/s). However, this trend changes after 1 s deposition for all ranges of
current densities, which were characterized by an increase in the rate and persist up to 30 s (Figure 3).
An interesting behavior of the deposition rate was observed at 60 s, where the deposition rate for Dc of
15 and 20 mA/cm2 again differs slightly (439 and 451 nm/s). This was probably due to the fact that
the Dc = 20 mA/cm2 region approaches the boundary with the limiting current region (the diffusion
plateau at the polarization curve in Figure 1), when an increase in potential does not lead to a reaction
rate rise by increasing the polarization. In this case, the inhibition of the Bi film growth occurs due to
the restriction by the diffusion processes.

Thus, by varying not only the current density, but also the deposition duration (pulse deposition
can be used in the future), films with a given morphology can be obtained.
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3.4. Surface Morphology Investigation

The surface morphology of electrodeposited films has been studied by the SEM technique (Figure 4).
It was shown that the morphology of Bi films depends on the synthesis conditions (current density,
deposition duration) and on the film thickness [21]. This dependence was also found in Bi films with a
thickness of 200 nm or more, obtained in tartaric acid electrolyte [9]. However, the morphology of
such Bi films was different, from granular to needle-like. It can be seen from Figure 4 that with an
increase in current density to 20 mA/cm2 and deposition duration up to 30 s, the grains morphology
changes, and their average size rises (Table 1). The first stage (region I of Figure 2), which is the
Pb-rich phase (samples 1_10–1_20), is characterized by a pillar-like form (Figure 4A–C). Here, the grain
form represents an ellipsoid, in which the major axis is located in the parallel plane to the substrate
(average grain size is ~200 nm), and the minor axis (thickness = height = 15 nm—for the 1_10 sample,
for example) in the perpendicular plane to the substrate. This form depends on the synthesis conditions
and the growth mechanism, as was shown in our previous study of the growth mechanisms of NiFe
films [59,60]. Depending on the electrodeposition synthesis conditions, grains of an elliptical shape can
form with the major axis both parallel and perpendicular to the substrate (these two cases have been
studied previously in [59,60]). Then, a change in the morphology of the grains to a granular form was
observed (Figure 4D–F). Finally, after 15 s of deposition, a layered granular morphology of Bi grains
was observed, which was characteristic of rhombohedral Bi [52].
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The layering of granular Bi grains occurs due to the growth texture (preferential orientation of the
grains). Moreover, the layering increases with the deposition duration rising for all ranges of current
densities. In order to show such a tendency toward an increase in the layering of Bi grains with the
deposition duration rising, we prepared some additional samples (they are not included in Table 1
describing the main samples).

Figure 5 shows the results of the Bi samples obtained with the deposition duration of 60–300 s.
Besides, not only layering occurs in Bi granular grains, but also, with an increase in the deposition
duration up to 300 s, the morphology of the grains, more and more, resembled the faces of the
rhombohedron (Figure 5G–I). This behavior of the Bi thin films morphology was noticed for the first
time. Only the presence of a layered microstructure was noted in the thick electrodeposited Bi obtained
from PE with organic additives presence and without additives with a film thickness of 600 µm [52].
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180 s (D–F), and 300 s (G–I).

The existence of such a texture is due to the presence of a direction of faster grain growth. The rate
of their growth during electrodeposition is mainly determined by the current density, which in turn
characterizes the amount of metal released per unit time on a unit surface of the cathode. At higher
current densities, the deposition rate is greater, and conditions are created for the growth of faces with
lower surface energy. An increase in current density usually leads to a rise in the rate of discharge of
metal ions at the cathode without a corresponding increase in the rate of their delivery to the cathode
region. As a result, the cathode region is depleted by cations, and such conditions contribute to the
growth of films in the direction perpendicular to the cathode surface. Thus, as the current density
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increases, the crystallite orientation changes towards decreasing the texture axis indices, which was
shown in our previous work [52]. Such microstructural behavior was observed in electrodeposited
Ni-Co films, where the presence of texture axes was noticed depending on the pH value of the
electrolyte [61] and in work [62] during the electrodeposition of Sn with a layered microstructure with
the introduction of various organic additives.

Another explanation for the occurrence of texturing may be the presence of an accommodative
enlargement of grains (subgrains) of the main texture component. The enlargement occurs due to their
coalescence. Further, due to the coalescence of the neighboring Bi grains of the main and other texture
components and with the disappearance of the boundaries separating them, the electrodeposited film
is formed. This mechanism may explain the formation of the texture of a coarse-grained film, in which
large grains consist of subgrain blocks. Therefore, in our case, we observe a layered textured structure
with the deposition duration of more than 30 s.

The formation of granular films during the electrodeposition in electrolytes, containing bismuth
nitrate pentahydrate and nitric acid as the main components, has also been observed in work [5].
However, the grain morphology is somewhat different for our case. Here, the grains are more densely
packed than in work [5], where the Bi films have high porosity and roughness. The results of the study
of the dependence of the Bi films porosity on the deposition duration (1–30 s) for the main studied
samples are presented in Figure 6.
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current density. The inserts show the porosity contrast images for series 3 samples (Dc = 10 mA/cm2).

The investigation of porosity contrast images obtained from SEM data showed that Bi films have
a closely-packed microstructure. The porosity decreases with the increase of deposition duration for
all samples. The average porosity for the Pb-rich films obtained via electrodeposition with a duration
of 1 s is 10.6% (samples 1_10–1_20). However, with the deposition duration increasing, the porosity
decreases, and the average value becomes 1.9% (samples 4_10–4_20). The reason for the decrease in
porosity level with an increase in both the deposition duration and the current density value is the
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result of grain growth and filling of voids, as well as an increase in packing density. This tendency is
clearly visible in Figure 6 inserts, which present the porosity contrast images. Such a closely-packed Bi
microstructure contributes to the creation of materials that can be widely used in the fields where a
high level of density (low porosity) is important [18,20,21,23].

3.5. Average Grain Size Analysis

The processing of AFM images using the Gwyddion program contributes to obtaining data on the
statistical distribution of the films grain sizes dependent on the synthesis conditions [63]. The results
of the statistical grain sizes distribution study on the deposition duration at a current density of
10–20 mA/cm2 are shown in Figure 7.
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Figure 7. The dependence of the grain size of electrodeposited films on the duration (A—1 s, B—5 s,
C—15 s, D—30 s) in a PE at current densities of 10–20 mA/cm2. The insert shows AFM images of the Bi
films surface obtained at a current density of 10 mA/cm2 (scan field size is 5 µm by 5 µm).

It can be seen from the obtained data that an increase in the deposition duration from 1 to 30 s
leads to grain sizes rising. This behavior is also significantly affected by the value of current density
(this is also confirmed by SEM data). For a more visual presentation of the research results we plotted
the dependence of the calculated average grain size on the deposition duration (Figure 8).

It was noted that with the deposition duration up to 5 s, a slow increase in the average grain
size occurs (does not exceed 1.3 times in comparison with the deposition duration of 1 s). In addition,
after 5 s this increase noticeably rises up to 30 s deposition for all series of samples. Further,
an increase in current density to 20 mA/cm2 leads to a more abrupt rise in comparison with
10 mA/cm2, where the growth of the Bi average size is smoother. It was shown that an increase in the
deposition duration up to 30 s with current densities 10–20 mA/cm2, it is possible to obtain Bi films with
grain sizes 1.3–1.9 times larger than during deposition with the duration of 1 s (Table 1). The obtained
results demonstrate that in the investigated current density range and deposition duration of 1–30 s,
Pb:Bi and Bi films with nanosized average grain size (192–386 nm) and thickness from 15 nm to 10 µm
can be obtained. In another work [20], for example, 6 µm-thick Bi films electrodeposited from nitrate
electrolyte have 10 µm grains size. When citric acid and various organic additives are added to the
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nitrate electrolyte, it leads to the formation of dendritic, pyramidal, and branch-like grains in Bi films
with grain sizes from 27 to 49 nm [32]. A significant change in grain size downward is associated with
a strong adsorption effect of additives on the deposits.
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3.6. Growth Mechanism Explanation

Summing up the results of the research, we can conclude that in the early stages of Bi
electrodeposition (at short electrodeposition duration) from PE, deposition is carried out in two
main stages (Figure 9).
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At the moment of switching on the electrochemical cell (turning on the current source), a sharp
in-rush current occurs in the system, which exists until it stabilizes at a given value. During the
electrodeposition in the galvanostatic regime, a change in potential occurs in order to adjust it to a
given current value. It is known that the formation and growth of a metal film on the cathode surface
is a potential-dependent process [64]. During this time (1st stage in Figure 9A), which, apparently,
is of the order of 1 s (samples 1_10–1_20), the co-deposition of Pb and Bi occurs (formation of the
Pb-rich phase). However, this process is also associated with a relatively slow growth of Bi grains,
which is confirmed by the EDX results (Figure 2). Under the electrochemical dissolution of Bi anodes,
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consisting of a PbO2 including alloy, the lead (IV) oxide dissolves in the perchloric acid and further
dissociates into the solution by the following reaction:

Pb(ClO4)4 → Pb4+ + 4ClO−4 (3)

Then, the dissociated Pb4+ ions are reduced at the cathode:

Pb4+ + 4e− → Pb0 (4)

The standard electrochemical potential of Pb4+
→ Pb0 reduction is about 0.77 V. Therefore, at the

first moment of time, Pb is mainly reduced at the cathode, since its potential is more positive relative to
the Bi potential. In PE, the standard Bi electrode potential is 0.32 V. The process of bismuth reduction
at the cathode comes from bismuth perchlorate:

Bi(ClO4)3 → Bi3+ + ClO−4 (5)

The second stage of Bi electrodeposition is associated with a current stabilization when the
current has reached its predetermined value (2nd stage in Figure 9B). In this case, the predominant
growth of Bi grains occurs. According to the EDX data (Figure 2), three main regions of film growth
during electrodeposition can be seen. However, in the description of the mechanism of film growth,
we combined regions II and III (Figure 2A–C), since both are associated with Bi growth. In region
II (Figure 2A–C), the presence of a Bi-rich phase with a low Pb content (up to 1.9%) was observed.
The duration of this region is decreased with current density increasing. This process is associated
with the Bi grains growth on the surface of Pb grains, which occurs faster with current density rising
(Figure 9B). The surface morphology, in this case, begins to resemble Bi grains more and more and,
with an increase in the deposition duration, only Bi grows (samples 3_10–3_20 and 4_10–4_20). This is
evidenced by the fact that at a current density of 20 mA/cm2 (sample 2_20), region II ends at 5 s
(Figure 2C). Over time, the deposition rate of Bi increases, and we do not detect Pb in the films.

4. Conclusions

The nanocrystalline Bi films have been electrochemically deposited onto the Cu substrate,
using a galvanostatic regime with various duration (1–30 s) and current density of 10–20 mA/cm2.
We examined the morphology, microstructure, and chemical composition features at the initial stages
of the growth process of the films formed in perchlorate electrolyte. The EDX analysis showed that in
the short duration (1 s) of electrodeposition the Pb-rich phase in Bi films arises. The mechanism of
co-deposition of Pb and Bi in films is explained. It has been demonstrated that it is possible to deposit
Pb films using Bi rods with a PbO2 impurity on the Cu substrate under synthesis conditions control.
We investigated the impact of deposition duration, current density, and thickness on the deposition rate,
average grain size, and morphology of Bi films. While the current density determined the deposition
rate as expected, it had an influence on films thickness and grain size. Current density-dependent
film thickness was the primary determinant of the grain size, showing an approximately sublinear
relationship. The morphology of films also depends on such key parameters as duration and current
density. Due to an increase in current density, up to 20 mA/cm2 and deposition duration up to 30 s,
the grains morphology changes and their average size rises. It has been shown that in the first stage
of deposition the Pb-rich phase is characterized by a pillar-like form that changes to granular and
layered granular form due to the processes of Bi grains growth and their coalescence. The investigation
of porosity contrast images obtained from the SEM data showed that Bi films have a closely-packed
microstructure. The porosity decreases with increasing the deposition duration for all samples.
A new approach of Bi electrodeposition using perchlorate electrolyte is proposed for the formation of
high-quality, dense nanocrystalline films with controlled morphology. It will allow the formation of



Nanomaterials 2020, 10, 1245 14 of 17

promising Bi films for use in many practical applications, especially in areas where high-density value
is important, for example, in radiation materials science and nuclear technology.
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