2010

Доклады БГУИР

№6 (52)

УДК 681.3

ПРЕОБРАЗОВАТЕЛЬ ИК-ИЗЛУЧЕНИЙ НА ОСНОВЕ ГЕТЕРОПЕРЕХОДНЫХ ФУНКЦИОНАЛЬНЫХ ЭЛЕМЕНТОВ

В.А. СЫЧИК, В.С. ШУМИЛО

Белорусский национальный технический университет пр. Независимости, 65, Минск, 220010, Беларусь

Поступила в редакцию 7 июня 2010

Предложена новая конструкция преобразователя ИК-излучений на основе гетеропереходных функциональных элементов. Приведены механизм работы преобразователя и его электрофизические свойства. Даны рекомендации по использованию преобразователя ИК-излучений в устройствах бесконтактного контроля тепловых полей.

Ключевые слова: преобразователь, *p-n*-переход, электрические свойства, зонная диаграмма.

Введение

Для разработки высокочувствительных безынерционных преобразователей тепловых полей используемых в системах неразрушающего контроля дефектов в холодильных аппаратах, возникла необходимость создания специальных фоточувствительных элементовфотоэлектрических преобразователей излучений (ФЭП). Из рассмотренных в электронных устройствах различных типов ФЭП наиболее высокими электрофизическими свойствами обладают преобразователи с *p*-*n*-гетеропереходом и варизонным базовым слоем [1].

Структура и электрофизические свойства преобразователя

Для использования в структуре преобразователей оптической информации разработан специальный первичный преобразователь ИК-излучений на основе гетеропереходных функциональных элементов с варизонной *i*-областью [2].

Типовая структура разработанного ФЭП изображена на рис. 1а, а раскрывающая механизм его работы зонная диаграмма — на рис. 1, б. ФЭП состоит из *p*-*n*-перехода на основе широкозонного полупроводника, включающего широкозонную обедненную *n*-область перехода и обедненную *p*-область перехода, которая контактирует с варизонным и сильнолегированным p^+ -слоем из широкозонного полупроводника. *n*-Область преобразователя содержит широкозонную обедненную *n*-область перехода, варизонный *n*₁-слой, узкозонную *n*-*n*⁺-область, состоящую из *n*₂-слоя и сильнолегированного n^+_2 -слоя. Нижний сплошной омический контакт ФЭП сформирован на n^+_2 -слое, а верхний решетчатый омический контакт, в проемах решетки которого размещен просветляющий слой, расположен на сильнолегированном *p*⁺-слое.

Для обоснования выбора материала компонентов, структуры и нахождения размеров областей синтезируемого ФЭП с заданным уровнем основных параметров (токовая, вольтовая фоточувствительность, обнаружительная способность) рассмотрим основные зависимости, описывающие эти параметры и физические процессы в структуре преобразователя. Поскольку интегральная токовая чувствительность, с учетом $J_{\phi} >> J_{\tau}$, равна:

Рис. 1. Структура преобразователя оптических излучений на основе двойной гетероструктуры (*a*) и его зонная диаграмма (б): 1 — решетчатый омический контакт; 2 — просветляющий слой; $3 - p^+$ -слой широкозонного полупроводника с варизонной областью; 4, 5 - p-*n*-переход; 6 — варизонный *n*-слой; 7, 8 — узкозонный *n*-слой и его n^+ -сильнолегированная область; 9 — нижний сплошной омический контакт

$$S_i = \Delta J / \Delta J \upsilon \approx J - J_T / J_\upsilon \approx J_\phi$$

а интегральная вольтовая чувствительность

$$S_u = \Delta U / \Delta J \upsilon \approx U - U_T / J_\upsilon \approx U_\phi / J_\upsilon$$
,
где $U_\phi = \left(\frac{kT}{e}\right) \ln \left[J_\phi / J_s + 1\right]; J_\phi, U_\phi$ — фототок и напряжение; J_τ, U_τ — темновой ток и

напряжение преобразователя, J_v — интенсивность светового потока,

$$J_{\phi} = J_{s}^{n} + J_{pR}^{n} + J_{\beta}^{p} + J_{DR}^{p}.$$
(1)

то необходимым условием синтеза высококачественного ФЭП является достижение предельно возможной величины фототока. Выражение для полной плотности фототока *n-p*-гетеродиодного фотопреобразователя имеет следующий вид [1]:

Здесь

$$J_{s}^{n} \approx e \left[\frac{J_{\upsilon} \alpha_{1}^{2} L_{n}^{2}}{\alpha_{1}^{2} L_{n}^{2} - 1} \left(\frac{D_{n} + S / \alpha_{1}}{D_{n} + SL_{n}} \exp(-d_{1} / L_{n}) - \exp(-\alpha_{1} d_{1}) \right) \right]$$
(2)

— плотность фототока, собираемого из необедненного *p*-слоя благодаря диффузии;

$$J_{DR}^{n} = eJ \operatorname{vexp}(-\alpha_{1}d_{1}) - \exp(-\alpha_{1}d_{0}))$$
(3)

— плотность фототока, генерируемого в обедненном *p*-слое; α_1 — коэффициент поглощения в *p*-слое ФЭП; D_n , L_n — коэффициент диффузии и диффузионная длина фотогенерируемых электронов; d_1 — толщина необедненного *p*-слоя; d_0 — толщина *p*-слоя ФЭП; Jv_1 — интенсивность светового потока с длиной волны $\lambda_1 \ge hC/E_{g_1}$; E_{g_1} — ширина запрещенной зоны *p*-области;

$$J_{\beta}^{\rho} = e \left[\frac{\alpha_2 J \upsilon_2 \exp(\chi_2 d_2)}{\alpha_2 - 1/L_{\rho}} - \frac{2\alpha_2 J \upsilon_2 \exp(\chi_2 d_2) \left[\exp\left(-\frac{d_3}{L_{\rho}}\right) - \exp(-\alpha_2 d_3) \right]}{L_{\rho} (\chi_2^2 - 1/L_{\rho}) \left[\exp(d_3 / L_{\rho}) - \exp(-d_3 / L_{\rho}) \right]} \right]$$
(4)

— плотность фототока за счет поглощения и диффузии в свободном *n*-слое базы; $J_{DR}^{p} = eJ\upsilon[1 - \exp(-\alpha_{2}d_{2})]$ — плотность фототока за счет поглощения в обедненном n-слое базы; Jv_{2} — интенсивность светового потока с длиной волны $\lambda_{2} \ge hC/Eg_{2} < \lambda_{1}$.

В (3) и (4) E_{g2} — ширина запрещенной зоны базового *n*-слоя; d_2 — толщина необедненного слоя базы; α_2 , d_3 — коэффициент и толщина базового слоя ФЭП; L_p — диффузионная длина фотогенерируемых дырок.

Анализ выражений (1)–(3) показывает, что для достижения поставленной цели необходимо выбирать материалы компонентов ФЭП с максимально возможными значениями D, L, оптимизировать толщины областей геретоструктуры, а также расширить диапазон энергий активных фотонов падающего оптического излучения ΔE_{λ} . Последняя задача разрешена путем создания в обедненной области варизонного слоя n_{1var} .

Созданный ФЭП является преобразователем с *p-n*-переходом на основе арсенида галлия, *n*-область ФЭП представляет слой n^+ из InAs толщиной 2,8 мкм, легированный Те с концентрацией $N_D \approx 3 \cdot 10^{19}$ см⁻³; n_2 -слой выполнен также из InAs с концентраций примеси Те $N_D \approx 2 \cdot 10^{16}$ см⁻³ толщиной 0,3 мкм; варизонный слой n_{1var} выполнен из соединения Ga_xIn_{1-x}As, легирован Те с концентрацией $N_D \approx 10^{16}$ см⁻³ и толщиной 0,5...0,6 мкм. Ширина его запрещенной зоны изменяется от 1,43 эВ до 0,36 эВ. *p-n*-переход из GaAs включает п-область, легированную Те с концентрацией $N_D \approx 10^{17}$ см⁻³, и легированную Сd *p*-область с концентрацией $N_A \approx 10^{17}$ см⁻³. Суммарная толщина *p-n*-перехода 0,65 мкм, что составляет 0,9 W_0 . *p*-Область ФЭП содержит варизонный слой P_{var} , выполненный на основе соединения Ga_xAl_{1-x}As, причем параметр X изменяется от 0 до 0,3, а ширина запрещенной зоны изменяется от 1,43 эВ до 2,15 эВ. Варизонный *p*-слой легирован Сd с концентрацией $N_A \approx 10^{16}$ см⁻³, обладает толщиной 0,6 мкм; p^+ -сильнолегированный слой выполнен из арсенида алюминия, легированного Cd с концентрацие $N_A \approx 5 \cdot 10^{19}$ см⁻³, его толщина 2,3 мкм, а верхний омический контакт 1,5 мкм сформирован структурой Cd–A1–Ni.

Занимаемая верхним контактом площадь на p^+ -слое составляет 12%, рабочая площадь p^+ -слоя S=0,3·0,3 см.

При воздействии квантов света, либо фотонов от других источников излучений на рабочую поверхность ФЭП со стороны решетчатого контакта, как следует из зонной диаграммы рис. 1,*б*, фотоны с энергиями $E_i=hv < E_{g3} [p^+]$, где $E_{g3} [p^+]$ — ширина запрещенной зоны p^+ -слоя, проходят просветляющий слой, p-широкозонный сильнолегированный слой, и достигают P_{var} слой и *p*-*n*-переход. Фотоны с $hv=E_{g3}\geq E_i\geq E_{g1}$ поглощаются в *p*-варизонном слое и в *p*-*n*-обедненных областях перехода, а фотоны с $hv=E_{g1}\geq E_i\geq E_{g2}$ поглощаются в слое n_{1var} и в n_2 -слое узкозонного полупроводника, создавая в поглощающих фотоны областях ФЭП избыточную концентрацию электронов и дырок в соответствии с зависимостями $\Delta n=\beta\alpha J_v \tau_n$; $\Delta p=\beta\alpha J_v \tau_p$, причем результирующий активно поглощаемый фотонный поток

$$J_{\nu} = \int_{\nu_{\min}}^{\nu_{\max}} J(\nu) d\nu,$$

здесь β , α — квантовый выход носителей заряда и коэффициент поглощения света; τ_n , τ_p — время жизни фотовозбуждаемых носителей, Eg₂<Eg₃; ν_{min} =Eg₂/h; ν_{max} =Eg₃/h; h — постоянная Планка.

При заданной плотности фотонов J_{υ} фототок J_{ϕ} =е ($\Delta n\mu_n + \Delta p\mu_p$).

В легированных примесями слоях p_{1var} , n_{1var} , n_2 созданы примесные уровни ΔE_D , ΔE_A глубиной 0,12 эВ и 0,08 эВ, которые возбуждаются фотонами дальней инфракрасной области.

Поскольку структурой ФЭП активно поглощается широкий спектр фотонов с энергиями от E_{g3} , E_{g1} до E_{g2} , ΔE_D , то результирующий ток ФЭП, а следовательно S_i и S_u , будут значительно выше, чем у известных аналогов. Для сформированного ФЭП указанных размеров экспериментально получены основные характеристики: вольтовая $J_a=f(U_a)/J_0=$ const, спектральная $J_a=f/(\lambda)/\Phi$, $U_a=$ const и энергетическая $J_a=f(\Phi)/U_a=$ const.

Рис. 2. Характеристики ФЭП: *а* — ВАХ; *б* — спектральная; *в* — энергетическая характеристика

Семейство ВАХ, как следует из графика рис. 2,*a*, аналогично выходной характеристике триодной структуры, однако управляющим сигналом ФЭП в режиме фотопреобразователя является J_v . В режиме фотогенератора выходное напряжение при холостом ходе превышает 1 В, представленная на рис. 1.26 спектральная характеристика показывает, что созданный ФЭП обладает высокой токовой чувствительностью в широком спектральном диапазоне от 0,4 до 12 мкм. Энергетическая характеристика ФЭП (рис. 2,*e*) обладает достаточно высокой линейностью в широком интервале интенсивности оптических излучений, что отражает возможность использования ФЭП в структуре оптрона как преобразователя оптического сигнала в электрический. Сформированный на основе гетеродиодной многослойной структуры типовой образец ФЭП обладает следующими электрофизическими параметрами: токовая чувствительность $S_l \approx 1,5...5,0$ А/Вт; диапазон спектральной чувствительности $\Delta\lambda=0,5...13$ мкм; порог чувствительности $\Phi_n=5\cdot10^{-8}$ лм $\Gamma q^{-1/2}$; темновое сопротивление $R_r \approx 5\cdot10^6-10^7$ Ом; постоянная времени $\tau=10^{-5}$ с; рабочее напряжение $U_a=5...20$ В.

Разработанный преобразователь ИК–излучений по сравнению с аналогами имеет более высокие S_I , $\Delta\lambda$, защищен патентом [3] и используется как важнейший функциональный узел в устройстве контроля тепловых излучений.

Заключение

Разработанный на основе гетеродиодной многослойной структуры преобразователь ИК–излучений обладает высокими электрофизическими свойствами, в частности токовая чувствительность $S_I \approx 1,5...5,0$ А/Вт, диапазон спектральной чувствительности $\Delta\lambda=0,5...13$ мкм, темновое сопротивление $R_{\tau}\approx 5\cdot 10^6-10^7$ Ом. Преобразователь ИК–излучений используется как важнейший функциональный узел в устройствах контроля тепловых излучений.

IR-RADIATIONS CONVERTER ON BASIS OF HETEROJUNCTIONAL FUNCTIONAL ELEMENTS

V.A. SYCHIK, V.S. SHUMILO

Abstract

There has been proposed a new construction of semiconductor IR-radiation converter, realized on basis of heterojunctional functional elements. Guidelines on the use of IR-radiation converter in non contact control of thermal field devices have been given.

Литература

 Гурта Ф., Микула Д. // Каучук и резина, 2005. № 4. С. 29–33.
 Васильев В.В., Овсюк В.Н., Шашкин В.В. Инфракрасные фотоприемные модули на варизонных слоях КРТ и на структурах с квантовыми ямами GaAs / AlGaAs/ Оптический журнал. 2005, 72. № 6. С. 63–69.
 Патент RU 2080690, МКИ⁶, Н01 L 31/048. Фотовольтаический преобразователь/ Сычик В.А.