ПРОФИЛЬ ПОПЕРЕЧНОЙ СКОРОСТИ В СТЕРЖНЕВОМ ТЕЧЕНИИ

Каянович С.С. Минск, Беларусь

Рассматриваются движения вязкой несжимаемой жидкости в «плоской» трубе (течения между параллельными твёрдыми стенками) при различных числах Рейнольдса Re .

Назовём условие $\operatorname{Re} < \operatorname{Re}'_{\kappa p}$ условием 1, а условие $\operatorname{Re}'_{\kappa p} < \operatorname{Re} < \operatorname{Re}_{\kappa p}$ — условием 2 (см. [1]). В [1] установлено существование стержневого течения, которое имеет место при выполнении условия 2 и которое не описывается формулой

$$v_1 = -\frac{h^2}{2\mu} \cdot \frac{dp}{dx_1} \left(1 - \frac{x_2^2}{h^2} \right) . \tag{1}$$

В (1) давление p зависит только от значения x_1 , $\frac{dp}{dx_1} = const$, μ — коэффициент вязкости, v_1, v_2, v_3 — компоненты вектора скорости, $v_1 \neq 0$, а v_2 и v_3 тождественно равны нулю, 2h — расстояние между твёрдыми стенками «плоской» трубы, расположенными в плоскостях $x_2 = \pm h$ [1,2].

Для решения вопроса о существовании стержневого течения оказалось достаточно «интегрального подхода». В работе [1] рассматривалась диссипация энергии $E'_{\kappa un}$, выражаемая интегральным равенством (см. (4) в работе [1]), в котором интегрирование выполнялось по всему объёму жидкости. Из [1] следует, что вязкие силы, существующие в стержневом течении и взятые во всём объёме жидкости, т.е. в «интегральном смысле» («интегральный подход»), меньше, чем они были бы, будь течение при числе Re, удовлетворяющем условию 2, течением (1). В вопросе о профиле поперечной скорости в стержневом течении потребуется более тонкий дифференцированный подход.

Итак, течение при условии 2 не является течением (1). К формуле же (1) приводит предположение, что компоненты v_2 и v_3 тождественно равны нулю. Так как v_3 не может быть отличной от нуля (см. [1]), приходим к выводу: предположение о том, что поперечная компонента скорости (далее компонента скорости называется скоростью) v_2 тождественно равна нулю, подтверждается экспериментом для течений, происходящих при выполнении условия 1, и противоречит ему в случае условия 2 (считаем, что движение жидкости описывается системой уравнений Навье – Стокса) . Следовательно, переход числа Re (при его возрастании) через значение $Re'_{\kappa p}$ приводит к появлению ненулевой поперечной

скорости v_2 и, значит, к появлению ненулевой частной производной $\frac{\partial v_2}{\partial x_2}$, поскольку

$$\left.v_{2}\right|_{x_{2}=\pm h}=0$$
 . Но тогда, в силу уравнения неразрывности $\left.\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}=0\right.$, и $\left.\frac{\partial v_{1}}{\partial x_{1}}\neq0\right.$

Граничные условия $v_2\big|_{x_2=\pm h}=0$ выражают собой тот факт, что жидкость не может проникнуть за твердую поверхность. Отметим, что в случае движения идеальной жидкости граничные условия к соответствующим уравнениям (уравнения Эйлера) требуют обращения в нуль на твёрдых стенках трубы только скорости v_2 . В случае же движения вязкой жидкости эти условия, уже к уравнениям Навье — Стокса, требуют равенства нулю, как скорости v_2 , так и скорости v_1 . Это дополнительное требование связано с тем (см. [3]), что между поверхностью твердого тела и всякой вязкой жидкостью всегда существуют силы молекулярного сцепления (свойство вязкости), приводящие к тому, что прилегающий к

твёрдой стенке слой жидкости полностью задерживается, как бы прилипая к ней (условие прилипания). Отметим также, что решениями уравнений Эйлера нельзя удовлетворить лишнему (по сравнению со случаем идеальной жидкости) граничному условию обращения в нуль скорости v_1 . Математически это связано с более низким (первым) порядком этих уравнений по координатным производным, чем порядок (второй) уравнений Навье – Стокса.

В силу вышесказанного, слои жидкости, соседние со слоем, прилегающим к твёрдой стенке, также задерживаются (не полностью), благодаря вязкости (внутреннему трению). Это приводит к торможению указанных слоёв (уменьшению скорости v_1 в направлении x_1 вблизи твёрдой стенки). Отсюда следует, что (в стержневом течении) вблизи твёрдых стенок частная производная $\frac{\partial v_1}{\partial x_1} < 0$ (выше отмечалось, что она не равна нулю). Но тогда, в силу

того же уравнения неразрывности $\frac{\partial v_1}{\partial x_1} + \frac{\partial v_2}{\partial x_2} = 0$, получаем (вблизи твёрдых стенок) $\frac{\partial v_2}{\partial x_2} > 0$.

Поскольку координатная ось Ox_2 (точка O — начало системы координат) направлена от стенки $x_2=-h$ (левая стенка) к стенке $x_2=h$ (правая стенка) и, очевидно, $v_2\big|_{x_2=0}=0$, то при $-h < x_2 < 0$ скорость $v_2 > 0$, а при $0 < x_2 < h$ v_2 меньше нуля. Отсюда следует профиль поперечной скорости v_2 , который представляет собой график некоторой непрерывной функции $f(x_2)$ (функции одной переменной x_2 при фиксированных значениях переменных $x_1=c_1, x_3=c_3$, где $0 < c_1 < L$, $-0.5 < c_3 < 0.5$) (см. [1]). Значения функции $f(x_2)$ при изменении x_2 от значения -h до значения h: сначала возрастают от нуля ((f(-h)=0) до некоторого максимального значения $f_{\max}=f(-b)>0$ (на этом участке $\frac{\partial v_2}{\partial x_2} > 0$), затем убывают от f_{\max} до $f_{\min}=f(b) < 0$, проходя при этом через значение нуль (на этом участке $\frac{\partial v_2}{\partial x_2} < 0$), затем снова возрастают от f_{\min} до нуля (f(h)=0) ($\frac{\partial v_2}{\partial x_2} > 0$). Точки $x_2=\pm b$ — точки экстремума функции $f(x_2)$.

Для уточнения профиля скорости v_2 и выяснения его зависимости от числа Re определим, по возможности более точно, нахождение точек $x_2 = \pm b$ в интервале (-h,h) при различных Re . Обратимся к (1) (оно верно при условии 1). Сначала заметим, что число Re , в случае течения (1), определяется равенством (см. равенство (2) в [1])

$$Re = -\frac{2\rho h^3}{3\mu^2} \cdot \frac{dp}{dx}.$$
 (2)

Теперь, для того чтобы установить общий вид вязкого тензора напряжений σ'_{ik} , воспользуемся соображениями, описанными в [3]. Не повторяя их и считая жидкость несжимаемой (в этом случае тензор принимает простой вид), сразу запишем тензор σ'_{ik} в несжимаемой жидкости (см. [3]):

$$\sigma_{ik}' = \mu \left(\frac{\partial v_i}{\partial x_k} + \frac{\partial v_k}{\partial x_i} \right) \tag{3}$$

Если происходит течение (1), то в (3) присутствует только скорость v_1 (остальные равны нулю). Эта скорость зависит лишь от координаты x_2 . Поэтому, из всех производных формулы (3) ненулевой будет только $\frac{\partial v_1}{\partial x_2}$, которая перестаёт быть частной производной и

далее обозначается $\frac{dv_1}{dx_2}$. Итак, вязкое напряжение (сила вязкости, действующая на единицу

площади), которое обозначим τ , в случае течения (1), будет иметь вид (см. также [4]) $\tau = \mu \frac{dv_1}{dx_2}$. С учётом (1) получаем равенства $\frac{dv_1}{dx_2} = \frac{1}{\mu} \cdot \frac{dp}{dx_1} x_2$, $\tau = \tau(x_2) = \frac{dp}{dx_1} x_2$ $\left(\frac{dp}{dx_1} = const\right)$.

Поскольку координата x_2 меняет знак ($-h < x_2 < h$), а нас будет интересовать абсолютная величина вязкого напряжения, то ниже будем ссылаться на равенство

$$\left|\tau(x_2)\right| = \left|\frac{dp}{dx_1}x_2\right|. \tag{4}$$

В дальнейших рассуждениях считаем, что $\rho=\rho_0$, $\mu=\mu_0$, $h=h_0$ есть фиксированные значения параметров течения и, значит, (см. (2)) величина Re может увеличиваться только при возрастании $\left|\frac{dp}{dx_1}\right|$. Пусть Re* (Re* > Re'_{\kappa p}, Re* ≈ Re'_{\kappa p}) есть значение Re, которое чуть больше Re'_{\kappa p} и при котором течение уже является стержневым. Замечаем, что при условии Re < Re'_{\kappa p} имеем $v_2=0$. С увеличением Re (в пределах Re < Re'_{\kappa p}) модуль $|\tau(x_2)|$ растёт (при всех $x_2:-h< x_2 < h$, кроме $x_2=0$), причём $|\tau|$ принимает свои наибольшие значения вблизи твёрдых стенок (см. (2) и (4)). При Re = Re* v_2 не равна нулю. Значит, с одной стороны, $|\tau|$, увеличившись, достиг значений $|\tau(x_2)|^*$, достаточных для существования $v_2 \neq 0$ и $\frac{\partial v_2}{\partial x_2} \neq 0$. С другой стороны, вязкое напряжение, существующее в стержневом течении в «интегральном смысле», меньше, чем оно было бы, будь течение при числе Re = Re* течением (1). Из двух последних, казалось бы противоречивых, предложений вытекает, что $|\tau(x_2)|^*$ имеет значения, достаточные по величине для существования стержневого течения лишь в достаточно малой части (точнее, в двух частях) всего объёма жидкости, в которых $\frac{\partial v_2}{\partial x_2} > 0$ ($-h < x_2 < -b$ и $b < x_2 < h$). В остальной же, большей части всего объёма (где $\frac{\partial v_2}{\partial x_2} < 0$), величина $|\tau(x_2)|^*$ мала и вязкое напряжение в ней не может

всего объёма (где $\frac{\partial v_2}{\partial x_2} < 0$), величина $|\tau(x_2)|^*$ мала и вязкое напряжение в ней не может подавлять достаточно сильные возмущения (эту часть назовём стержнем течения).

Эксперименты показывают, что при очень тщательном устранении возмущений у входа в трубу и достаточно гладких её стенках течение в ней не переходит в турбулентный режим вплоть до $\mathrm{Re}\approx 10^5~[1,2]$. В этих экспериментах причинами возмущений течения являются шероховатость стенок трубы и неровности её края на входе (т.е. обе имеют место при $x_2=\pm h$). Для перехода же течения в турбулентный режим достаточны тем более слабые возмущения, чем больше $\mathrm{Re}~[1,3]$. Из проведённых выше рассмотрений и фактов этого абзаца легко заключить, что с увеличением $\mathrm{Re}~$ (при выполнении условия 2) стержень течения будет расширяться. Это значит, что точка $x_2=-b$ будет сдвигаться к левой стенке, а точка $x_2=b-\kappa$ правой. Как раз это и подтверждают экспериментальные данные.

Список литературы:

- 1. Каянович С.С. *О существовании стержневого течения* //"WayScience". Modern Movement of Science: abstracts of the 12th International Scientific and Practical Internet Conference, April 1-2, 2021. Dnipro, Ukraine, 2021. Part 2, P. 28 31.
 - 2. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987.
 - 3. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1988.
- 4. Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика, часть 2. М.: Гос. изд. физ.-мат. лит. , 1963.