УДК 004.032.26+004.421.5

ИСПОЛЬЗОВАНИЕ СИММЕТРИЧНОЙ НЕЙРОННОЙ СЕТИ ДЛЯ ГЕНЕРАЦИИ ПСЕВДОСЛУЧАЙНЫХ ЧИСЛОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

Рафеев П. Ю., студент гр.951008, Болтак С. В., ассистент

Белорусский государственный университет информатики и радиоэлектроники г. Минск, Республика Беларусь

Болтак С.В. – ассистент

Аннотация. В работе исследуется возможность создания генератора псевдослучайных числовых последовательностей (ПЧП) для потоковых криптосистем на базе симметричной нейронной сети. Описываются необходимые параметры нейронной сети, производится сравнение с другими генераторами ПЧП и делаются выводы о преимуществах и недостатках такого генератора.

Ключевые слова. Симметричная нейронная сеть, потоковое шифрование, потоковая криптосистема, генератор ключа, псевдослучайная числовая последовательность.

В современной криптографии большой популярностью пользуются т. н. «потоковые криптосистемы». Основная их идея заключается в шифровании исходного текста M с помощью побитовой операции XOR с криптографическим ключом K, длина которого равняется длине текста. Однако, поскольку обмен ключами большого размера зачастую невозможен, на практике для формирования ключевого потока используют генераторы псевдослучайной последовательности (LFSR, A5, MUGI, RC4 и др.) [1, с. 96—114]. Каждый из них обладает своими достоинствами и недостатками, что обуславливает их применимость лишь в ограниченных рамках. Так, генераторы LFSR и A5 легко реализуются аппаратно и не требуют больших затрат памяти, но из-за побитовой линейной генерации работают медленнее, обладают меньшим периодом и более предсказуемы, чем RC4 (работающий на основе подстановочной таблицы S) или MUGI (реализующий смешанную схему). Проблемой же использования подстановочной таблицы S является необходимость её предварительного заполнения и постоянного хранения в памяти, что значительно усложняет аппаратную реализацию.

Для решения описанных проблем различных генераторов в данной работе предлагается использование симметричной нейронной сети. Симметричность необходима для возможности подачи значений выходных нейронов на вход при дальнейшей генерации псевдослучайной числовой последовательности, а также распараллеливания вычислений. За один цикл работы нейросеть генерирует k чисел размерностью n бит (где k — количество входных/выходных нейронов). Чем больше n и k, тем больше длина генерируемой за один цикл последовательности и максимальный её период. Однако также бо́льшими станут время вычисления цикла и обучения нейросети. При использовании же нейросети без предварительного обучения (со случайными весами нейронных связей) период последовательности может оказаться меньше максимального (равного 2^{n^*k}).

В созданной для данной работы нейронной сети n=32 (значения типа int) и k=4, что достаточно для генерации надёжного ключа размером до 2^{85} ТБ. Взлом же такого генератора, даже при известных 2^*n^*k бит ключа, остаётся вычислительно трудной задачей. Количество промежуточных слоёв = 1 для снижения времени вычисления цикла. В качестве функции активации нейронов используется выгнутая тождественная функция [2, с.136], представленная формулой (1):

$$f(x) = \left(\frac{\sqrt{x^2 + 1} - 1}{2} + x\right) \bmod 2^n, \tag{1}$$

где $x = \sum_{i=1}^k v_i \cdot f_i$ — сумма произведений выходных значений нейронов предыдущего слоя и весов их связей с активируемым нейроном (входное значение активируемого нейрона).

Такая функция активации обеспечивает нелинейность генерируемой выходной последовательности (поскольку сама функция не линейна), равномерное распределение значений в максимально широком диапазоне (благодаря своей непрерывности и положительной производной на всей области определения), более высокую скорость обучения нейросети (по причине монотонности производной, гарантирующей выпуклость поверхности ошибок), а также возможность аппаратной реализации нейронов (из-за существования радиоэлементов с такой же ВАХ).

Для обучения нейронной сети использовался генетический алгоритм, функцией приспособленности в котором выступал максимальный период выходной последовательности, генерируемой сетью с выбранными весами нейронных связей. Иные алгоритмы обучения, такие как градиентный спуск или обратное распространение ошибки в данной задаче плохо применимы, поскольку каждое вычисление функции ошибки требует выполнять генерацию выходной

последовательности до достижения повторения.

В данном алгоритме весовые коэффициенты всех нейросетей первого поколения выбирались случайно, а в последующих поколениях вычислялись на основании двух нейросетей с наибольшими периодами в предыдущем поколении по формуле (2):

$$v_{i+1} = (v_{max})_i + \left(\left(v_{pred} \right)_i - (v_{max})_i \right) \cdot rand, \tag{2}$$

где v — вес связи, индексы i, i+1 — номера поколений, индексы max и pred означают нейросети с максимальным и предмаксимальным периодами соответственно, a rand — случайное значение в диапазоне от 0 до 1.

Кроме того, в одну нейросеть следующего поколения значения весов связей переносились из нейросети с максимальным периодом без изменений во избежание возможного регресса при обучении.

В каждом поколении параллельно вычислялся период повторения для 50 нейросетей (число выбрано оптимальным для компьютера автора). Условием окончания обучения являлось равенство периодов всех нейросетей в поколении, поскольку при его достижении фомула (2) даёт $v_{i+1} = v_i$. В данной работе до достижения условия окончания обучения прошло 38 поколений, информация о которых представлена в таблице 1.

Таблица 1 — Время достижения и наибольшие периоды каждого поколения нейросетей.

Поколение	Время (мин)	Период (10 ²¹ бит)			
нейросетей		максимальный	предмаксимальный		
1	9,914547619	1,205762172	0,998113197		
2	15,46908333	25,94993964	1,205762172		
3	23,89047619	25,94993964	8,210723091		
4	33,44666667	25,94993964	5,737463848		
5	42,6445	27,46440986	25,94993964		
6	57,57604762	31,54231382	27,46440986		
7	68,56566667	31,54231382	29,86093363		
8	74,47855952	60,5082547	31,54231382		
9	82,36241667	60,5082547	25,94993964		
10	87,02105952	60,5082547	37,99330663		
11	91,50052381	77,42654066	60,5082547		
12	96,57725	77,42654066	63,35434483		
13	99,86219048	77,42654066	41,0412532		
14	103,4457619	77,42654066	44,2690102		
15	106,7307024	77,42654066	38,99020063		
16	110,2545476	77,42654066	37,99330663		
17	113,8978452	77,42654066	53,80979485		
18	117,2425119	77,42654066	74,11562262		
19	120,2885476	82,60307038	77,42654066		
20	123,3943095	82,60307038	79,12418529		
21	126,4403452	82,60307038	79,12418529		
22	129,486381	86,19288672	82,60307038		
23	144,0595714	88,03234242	86,19288672		
24	154,6908333	88,03234242	72,49944514		
25	159,7078333	88,03234242	79,12418529		
26	163,4705833	88,03234242	84,3824096		
27	167,7111429	101,7402099	88,03234242		
28	171,4141667	101,7402099	93,72495476		
29	174,6991071	101,7402099	91,79675321		
30	177,7451429	101,7402099	99,68928814		
31	181,1495357	112,4672973	101,7402099		
32	184,2552976	112,4672973	108,0801462		
33	187,7791429	126,4394341	112,4672973		
34	191,601619	126,4394341	124,0244369		
35	196,7977976	133,8928274	126,4394341		
36	208,6235833	141,6709874	133,8928274		
37	222,300881	141,6709874	141,6709874		
38	237,9491429	141,6709874	141,6709874		

По данным таблицы 1 построены графики зависимости максимального и предмаксимального периодов в каждом поколении от времени достижения поколения (кривые обучения), изображённые на рисунке 1:

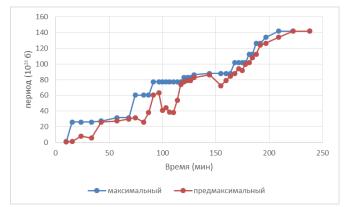


Рисунок 1 – Графики зависимости двух лучших периодов в поколении от времени обучения по данным таблицы 1

Из кривых обучения видно, что копирование весовых коэффициентов лучшей нейронной сети предыдущего поколения в одну из нейронных сетей следующего поколения действительно необходимо и позволяет избежать регресса при обучении, вызванного негладкостью поверхности ошибок (которая отражается на графике зависимости предмаксимального периода от времени как ряд локальных минимумов). Также графики и таблица показывают преимущество обученной нейросети над необученной в максимальном периоде выходной последовательности (120-кратное преимущество), в большинстве ситуаций оправдывающее необходимость тратить несколько часов на предварительное обучение.

Весовые коэффициенты, полученные после 38-ми поколений генетического алгоритма и используемые в нейросети, представлены в таблице 2.

Таблица 2 — Используемые в нейронной сети весовые коэффициенты

тавлица 2 попользусные в пеироппои всти всевые кооффициенты.									
Внутренний слой				Выходной слой					
Nº _{BX.} /Nº _{Bых.}	1	2	3	4	Nº _{BX.} /Nº _{Bых.}	1	2	3	4
1	478.9	9823.1	10056.4	3609.4	1	7896.5	7583.4	3794.1	749.4
2	2274.0	5824.8	6673.5	10598.3	2	3713.6	5732.4	5374.5	3563.0
3	358.1	4962.3	5829.1	10037.1	3	4782.9	3210.6	6473.7	9683.6
4	4891.4	708.3	5032.5	9028.5	4	146.0	8334.1	7824.7	208.7

После завершения создания и обучения нейросети необходимо было проверить, является ли распределение цифр в генерируемой выходной последовательности равномерным, для чего была сгенерирована выходная последовательность из 48 миллионов цифр, подсчитано количество цифр каждого вида в ней и вычислены их относительные частоты появлений. Результаты представлены в таблице 3.

Таблица 3 — Количества и относительные частоты цифр в выходной последовательности.

rational and resident and an articles and resident and an articles and are articles are articles and are articles and are articles and are articles are articles and are articles and are articles and are articles are articles and are articles are articles are articles and are articles are articles are articles are articles and are articles are articl						
Цифра	0	1	2	3	4	-
Кол-во	4 799 825	4 800 594	4 800 338	4 799 796	4 801 443	-
Частота, %	10,000	10,001	10,001	10,000	10,003	-
Цифра	5	6	7	8	9	В сумме
Кол-во	4 799 882	4 798 103	4 797 842	4 799 595	4 802 582	48 000 000
Частота, %	10,000	9,996	9,996	9,999	10,005	100,000

Для оценки близости распределения к равномерному был вычислен критерий согласия Пирсона [3, с. 138—140] по формуле (3):

$$\chi^2 = \sum \frac{(n_i - n_i')^2}{n_i'},$$
 (3)

где n_i и n_i — экспериментальные и теоретические частоты соответственно. Полученное значение критерия $\chi^2 = 7,69*10^{-8}$ при числе степеней свободы k = S - 2 = 8 (где S количество видов цифр) означает, что вероятность не равномерного распределения цифр порядка 10^{-30} %, и свидетельствует о равномерном распределении цифр в генерируемой ПЧП — необходимом для большинства псевдослучайных генераторов качестве.

Далее было проведено сравнение нейросети по скорости генерации псевдослучайной числовой последовательности с генераторами LFSR и RC4. Результаты приведены в таблице 4 (последняя строка таблицы представляет собой сравнение теоретических сложностей).

Таблица 4 — Сравнение времени (в секундах) генерации ПЧП различными генераторами.

Длина,МБ/Генератор	Нейросеть	LFSR	RC4
8	0,79	5,29	0,76
16	1,38	10,41	1,40
32	2,48	20,71	2,47
64	4,74	42,45	4,48
128	8,66	76,39	8,35
192	13,13	116,09	12,45
256	17,21	153,4	16,51
N	O(2*k*N/n)	O(2*N)	O(7*N/n)

По данным таблицы 4 для большей наглядности сравнения построены графики зависимости времени генерации от длины ПЧП, изображённые на рисунке 2:

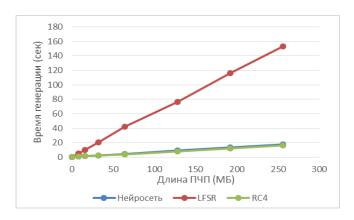


Рисунок 2 – Графики зависимости времени генерации от длины ПЧП по данным таблицы 2

Как видно из результатов сравнения, нейросеть смогла достичь такой же скорости, как и генератор RC4, при этом требуя гораздо меньших затрат памяти (2*k против 256), обладая большой гибкостью (за счёт возможности переобучить её, не меняя исходный код) и возможностью аппаратной реализации на базе современных нейронных процессоров с использованием радиодеталей, ВАХ которых аппроксимируется функцией активации [4]. Основным её недостатком можно считать необходимость длительного предварительного обучения, что, однако, можно решить путём переноса весовых коэффициентов уже обученной нейросети в новую. Таким образом, применение симметричных нейронных сетей может послужить универсальным решением для генерации ПЧП, обеспечивая быстрое, ресурсоёмкое и криптографически стойкое потоковое шифрование.

Список использованных источников:

- 1. Ярмолик, В. Н. Элементы теории информации: Конспект лекций по одноименной дисциплине для студентов направления специальности "Программное обеспечение информационных технологий" дневной и заочной формы обучения / В. Н. Ярмолик Минск : БГУИР, 2015. 141с.
- 2. Чару Аггарвал. Нейронные сети и глубокое обучение. Учебный курс. Пер. с анг. А. Г. Гузикевич / Чару Аггарвал. М.: Вильямс, 2020. 752 с.
- 3. Аксенчик, А. В. Теория вероятностей и математическая статистика : учебно метод. пособие / А. В. Аксенчик. Минск : БГУИР, 2011. 184 с.
- 4. Гриняев С. / Нейронные процессоры Intel [Электронный ресурс] // Компьютерра. 2001. № 38. Режим доступа: https://old.computerra.ru/198014/— Дата доступа: 03.04.2021.

UDC 004.032.26+004.421.5

SYMMETRIC NEURAL NETWORK AS PSEUDORANDOM NUMERICAL SEQUENCES GENERATOR

Rafeyev P. Y, Boltak S. V.

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus

Boltak S. V. – assistant

Annotation. This article researches the possibility of creating a pseudorandom number sequence generator (PNSG) for stream cryptosystems based on a symmetric neural network. The necessary parameters of the neural network are described, compared with other PNSG generators, and the conclusions about the advantages and disadvantages of such a generator are made.

Keywords. Symmetric neural network, stream encryption, stream cryptosystem, key generator, pseudorandom numeric sequence.