КОНТРОЛЬ ЭФФЕКТИВНОСТИ КОДИРОВАНИЯ ИНТЕГРАЛЬНЫХ СХЕМ

Л.А. Золоторевич, В.А. Ильинков

В последние годы для защиты проектов интегральных схем применяются методы и средства аппаратного кодирования комбинационных блоков интегральных схем (ИС) [1]. Для совершенствования подобной защиты проектов необходимы средства контроля эффективности применяемых методов кодирования. Предлагается метод взлома кода при наличии информации о структуре закодированного объекта и возможности доступа к физической модели. Задача решается на основе описания закодированной структуры в виде КНФ функции разрешения, решения задачи выполнимости (SAT) и физического моделирования объекта.

Исходными данными для декодирования структуры цифрового устройства является структурная реализация закодированной схемы, которая может быть получена методом обратного проектирования (проектирования по прототипу), а также активированный физический образец интегральной схемы, в защищенную от несанкционированного доступа память которой заказчик загрузил правильное значение ключа. Этот образец может использоваться в виде модели черного ящика Y = eval(X). Основная идея SAT — атаки взлома ключа состоит в том, чтобы определить правильный ключ, не прибегая к исследованиям на большом интервале входновыходных переменных. Два ключа \vec{K}_1 и \vec{K}_2 являются эквивалентными ($\vec{K}_1 = \vec{K}_2$), тогда и только тогда, когда для входного значения \vec{X}_i закодированная схема выдает одинаковое выходное значение \vec{Y}_i для ключей \vec{K}_1 и \vec{K}_2 . Для определения правильного ключа итеративно исключаются ключи из класса эквивалентности, которые выдают неправильные значения выходов, в крайней мере для одного входного шаблона. Класс эквивалентных ключей определяется на некотором входно-выходном векторе

решением выполнимости функции $Cir_b(\vec{X}_j,\vec{K},\vec{Y}_j)$ полным методом. Входной вектор \vec{X}^d называется различающим, если реакция схемы при использовании ключа \vec{K}_1 равна \vec{Y}_1^d и отличается от реакции \vec{Y}_2^d при использовании ключа \vec{K}_2 . При наличии различающего набора можно проверить реакцию активированной схемы для входа \vec{X}^d и использовать ее, чтобы исключить ключ \vec{K}_1 или \vec{K}_2 как не входящий в класс эквивалентности правильных ключей.

Литература

1. Золоторевич Л.А. Аппаратная защита цифровых устройств // Вестник Томского государственного университета. Управление, вычислительная техника, информатика. 2020. № 50. С. 69–78. DOI: 10.17223/19988605/50/9.