
The technology for the development of viable
intelligent services

Valeria Gribova, Philip Moskalenko,
Vadim Timchenko, Elena Shalfeyeva

Lab. of Intelligent Systems named after A.S. Kleshchev
Institute of Automation and Control Processes FEB RAS

Vladivostok, Russian Federation
gribova@iacp.dvo.ru, philipmm@iacp.dvo.ru,

vadim@iacp.dvo.ru, shalf@iacp.dvo.ru

Abstract—The paper presents a technology for the development
of intelligent multi-agent services. This technology is put to
reduce the labor-intensiveness of intelligent cloud application
development and maintenance. The key aspect of the technology
is an independent development of knowledge bases, a user
interface and a problem solver as an assembly of agents, and
their integration into an intelligent service. The principal specific
of the technology are: two-level ontological approach to the
formation of knowledge and data bases with a clear separation
between the ontology and knowledge base (database) formed
on its basis; the ontology-based specification of not only the
domain terminology and structure, but also of the rules for
knowledge and data formation, control of their integrity and
completeness; division of all software components into declarative
and procedural parts; unified semantic representation of all
declarative components (ontologies, knowledge and data bases,
declarative parts of software components), etc. The proposed
approaches are supported by the IACPaaS cloud platform where
expert-oriented formation of each service component with an
appropriate tool is provided.

Keywords—intelligent system, multi-agent system, intelligent
software development technology, hierarchical semantic network,
cloud platform, cloud service

I. INTRODUCTION

Development and maintenance of an intelligent system (IS)
with knowledge are hard and labor-intensive processes. This
is primarily due to the fact that a knowledge base (KB) is
a part of such a system’s architecture which brings in some
specificies. That’s why special tools are used. The typical
representatives are: Level5 Object, G2, Clips, Loops, VITAL,
KEATS, OSTIS, AT-technology, RT Works, COMDALE/C,
COGSYS, ILOG Rules, Protégé and others [1], [2], [3], [4],
[5]. The considerable differences between them are determined
by the formalisms used to represent knowledge, methods and
tools for their acquisition, forming and debugging, the used
inference mechanisms, and also technologies for IS with a KB
(hereinafter KBS – knowledge based system) development and
maintenance.

However, the problem of creating tools for development and
maintenance of KBS is far from being solved. Scientific pub-
lications mention the following main problems that need to be

This work was partially supported by the Russian Foundation for Basic
Research (RFBR) (grant numbers 19-07-00244, 20-07-00670)

dealt with. First of all, there is still an open issue of including
domain experts in the process of developing and maintaining
knowledge bases, ensuring their real impact on the quality of
computer systems being developed. Experience in developing
complex computer systems shows that the intermediation of
programmers between designed computer systems and experts
significantly distorts the contribution of the latter ones. When
developing a new generation of tools, it is not programmers
who should dominate, but experts who are able to accurately
represent their knowledge [6], [7]. The developed models and
methods of knowledge acquisition solve the problem of their
initial formation, however, as noted in [8], it is the maintenance
phase that is the most complex and significant. The KB is
a component of KBS that changes much more often than
other components, so expert-oriented knowledge creation and
maintenance tools providing is an important and relevant task.
KB maintenance implies its refinement or improvement, which
at the same time does not break the performance of the IS
(i.e., a change in the knowledge base should not lead to the
need of changing the solver and its user interface). Among
the problems of existing tools for creating KBS, the following
is also worth mentioning: the use of various approaches
and mechanisms for creating knowledge bases, solvers and
interfaces, complex linking of these components, or vice versa,
the lack of a clear separation between KBS components, which
makes it difficult to reuse solutions when creating other KBS.
Our long-term experience in creating practically useful KBS
for solving problems in various domains has shown an urgent
need to construct problem-oriented shells with accompanying
instrumental support.

The key requirement for any complex software system,
including KBS, is its viability, which is implemented in
software engineering through architectural solutions (sepa-
ration into loosely coupled components with logically clear
functions), declarative representation of software components
of a system, automation of code fragments generation, reuse of
components, separation of competencies between developers
of different types. One of the well-known solutions for imple-
menting the requirement to involve domain experts in the KBS
development process is the ontology-based (metainformation-
based) KB formation, using a semantic knowledge repre-

25

sentation model (the knowledge base is separated from the
ontology) [9].

In software engineering, an agent-based approach is ac-
tively used to create viable software systems [10], which in
comparison with object-oriented programming has potentially
greater flexibility, gives the possibility of agent reuse, and
simplifies parallelization (which is important for IS as many
tasks have great computational complexity [11]). However, the
issue of creating a comprehensive technology that supports
the development of all KBS components with ontological
knowledge bases remains open.

To address these challenges in the development and main-
tenance of viable KBS we have proposed a concept of the
development toolkit [12], which supports the following tech-
nological principles:
• knowledge base, problem solver and user interface (UI)

are developed separately;
• a single language is used to describe the ontology of

knowledge (metainformation for the knowledge base) and
models of all declarative components (their metainforma-
tion);

• a unified declarative semantic (conceptual) representa-
tion of all information (ontologies, knowledge bases,
databases) resources and software components of KBS
is used – a labeled rooted hierarchical binary digraph
with possible loops and cycles (thus universality of their
software processing and user editing can be achieved);

• formation and maintenance of knowledge bases is car-
ried out by domain experts and is based on knowledge
ontologies;

• UI of the knowledge base editor is generated for experts
on the basis of ontology (metainformation);

• method of problem solving is divided into subproblems,
each one is solved by a correspondent software agent,
either a reflective or a reactive one [13] – a component
of a problem solver;

• software agents are provided with an API for access to
information resources;

• KBS is available as a cloud service.
This paper describes the technology for the development of

a KBS as a cloud multi-agent service, using such toolkit.

II. INTELLIGENT SERVICE DEVELOPMENT TECHNOLOGY

Technological foundations supported by the proposed toolkit
concept are consistent with the general trend when KBS
development is based on the use of methods and tools for on-
tological modeling of design and specification processes of de-
veloped systems, i.e. ontological engineering tools (Ontology-
Based (-Driven) Software Engineering [14]); reusability of
ready-to-use solutions (components); involving stakeholders in
the development process through knowledge portals.

Methods of formalizing knowledge based on the domain
ontology and ontologies of known intelligent problems allow
us to create structured and at the same time understandable
to domain experts knowledge, as well as systematization of
terms.

Further, knowledge, formalized on the basis of an ontology,
are either integrated with ready-to-use problem-oriented soft-
ware solvers, or require the creation of new software compo-
nents. Thereby the proposed technology for the development
of intelligent services consists of the following processes: as-
sembly of an intelligent service from components and possibly
development of those components (Fig. 1). Components are
represented by rectangles, and activities – by rounded rectan-
gles. The components are information ones (metainformation
and information) and software ones (a problem solver, its
agents, message templates for their interaction, UI). Symbols
on arcs have the following meaning. sel – searching for
and selecting the appropriate component (to which an arc is
pointing). [] – optionality, i.e. the pointed activity is performed
if the required component is absent or if the condition (italic
text on the arc) is true. + (“plus”) – multiplicity, meaning that
the selection or creation (development) of the corresponding
component can be performed more than once.

III. INTELLIGENT SERVICE DEVELOPMENT

An intelligent service consists of a problem solver (which
has been integrated with formal parameters and with a UI)
and actual parameters (input actual parameters – information
resources accessible only for reading and output actual pa-
rameters – information resources accessible for CRUD mod-
ification). Distinction of service components into information
and software ones pursues the following objectives:

Figure 1. Intelligent service development technology.

• independent development by different groups of special-
ists;

• reuse – the same problem solver can be bound with
various information resources and vice-versa.

In both cases the compatibility (between those two types of
components) is provided at the level of formal parameters of
the solver.

A formal parameter of the problem solver is an informa-
tion resource which represents metainformation (ontology), an
actual parameter is one of the information resources which
represent information and which are formed in terms of this
metainformation.

26

The declarative specification of a service is formed in two
stages:

1) creation of a new information resource of “service” type
with setting of its name and Service structure informa-
tion resource (representing a language for declarative
specification of platform services) as metainformation;

2) creation of content of this new information resource
(service assembly) with the use of Editor for digraphs
of information [15], where the process of editing is
controlled by metainformation Service structure and
consists of the following:
• a link to the problem solver (to root vertex of

digraph which represents it) is created,
• for each formal parameter of the solver (in order of

its appearance in the description of solver) a link to
the corresponding actual parameter (to root vertex
of digraph which represents it) is created.

IV. DEVELOPMENT OF KNOWLEDGE BASES AND
DATABASES

A. General description

Network (graph) structures are now widely used as a visual
and universal mean for representing various types of data
and knowledge in different domains. In principle, with the
help of such structures that are best suited for explicitly
representing associations between different concepts, it is
possible to describe any complex situation, fact or problem
domain. At the same time, as noted, for example, in [16]
various kinds of information (data and knowledge), regardless
of the concrete syntax of the language for their representation,
in the abstract syntax, in the general case, can be represented
as (multi-) graphs, possibly typed.

In accordance with a 2-level approach for formation of
information resources [17], [18], two types of them are dis-
tinguished by the abstraction level of represented information.
They are information resources which represent ontology (i.e.
metainformation – abstract level) and information resources
which represent knowledge and data bases (i.e. information –
object level).

B. Object information resources development

Development of an information resource which is pro-
cessed by an intelligent service and represents information
requires another information resource which represents its
metainformation to be present in the storage. Otherwise it
must be developed as described in the next subsection. The
development of an information resource consists of two stages:

1) creation of a new information resource with setting of
its name and metainformation;

2) formation of its content by means of the Editor for
digraphs of information where the process editing is
controlled by set metainformation.

During the work of the Editor for digraphs of information
it forms and maintains a correspondence between the arcs
of digraphs of information and metainformation. Formation

is carried out in “top-down” way: from vertices which are
composite concepts to vertices which are atomic concepts.
This process starts from the root vertex. In this case the user
doesn’t have to sharply envision and keep in mind the whole
structure (connections between vertices) of the formed digraph
as in the case of “bottom-up” way.

The UI of the Editor for digraphs of information is gener-
ated by the metainformation. This implies that as the latter one
describes an ontology for knowledge or data in some domain
so its experts can create and maintain knowledge bases or
databases in terms of their customary systems of concepts
(without mediators, i.e. knowledge engineers).

C. Metainformation resources development

The development of a metainformation resource consists of
two stages:

1) creation of a new information resource with setting of
its name and metainformation (in such case it is an in-
formation resource which contains the description of the
language for metainformation digraph representation);

2) formation of its content in a “top-down” way (starting
from the root vertex of the digraph) with the use of
the Editor for digraphs of metainformation (this step
also makes up the maintenance process which may
automatically modify correspondent object information
in order to keep it in consistency with modified metain-
formation).

A digraph of metainformation describes the abstract syntax
of a structural language in terms of which digraphs of infor-
mation are further formed. The language for metainformation
digraph representation is declarative, simple, and at the same
time powerful enough to describe arbitrary models, which are
adapted to the domain terminology and to the form adopted
by the developers of KBS components as well as tools for
their creation. A detailed description of the language is given
in [19].

Users of the Editor for digraphs of metainformation are
metainformation carriers who are usually knowledge engineers
and systems analysts from various fields of professional ac-
tivities. The editing process model which is set into the basis
of the Editor for digraphs of metainformation has much in
common with the one which is the basis of the Editor for
digraphs of information. The differences are caused only by
formalism of representation of the correspondent digraphs
and by the fact that metainformation digraph can have an
arbitrary form (limitations are set only by expressive means
of the language for metainformation digraph representation),
whereas information digraph has a structure limited by its
metainformation digraph.

V. PROBLEM SOLVER DEVELOPMENT

A problem solver is a component of some intelligent service
which processes information resources and which encapsulates
business logic for problem solving. It is a set of agents, each
of them solves some subproblem(s) and interacts with others
by message exchange. A lifecycle of a message starts from its

27

creation by some agent, followed by it being sent to another
agent which receives and processes it. Then a message ceases
to exist.

The proposed approach for development of agent commu-
nication means is a multilanguage one. Messages must be
represented in some language(s) which syntax and semantics
must be understood by interacting agents. Each language can
have an arbitrary complex syntax structure (represented by
metainformation digraph), and contents of messages (repre-
sented by digraphs of information) are formed in accordance
with it.

There are two agents within the solver (in general case)
which have particular roles:
• root agent – an agent to which an initializing message is

sent by utility agent System agent when a service starts
to run after its launch (meaning that this agent runs first
among all agents of problem solver);

• interface controller agent – an agent whose interaction
with the utility agent View agent (see section VIII)
provides coupling of UI with problem solver (in case
when a service with UI is developed).

The mentioned initializing message is represented in the
communication language which belongs to the class of utility
ones. Another such distinguished languages are used for
interacting with utility agents and for stopping the work of
the problem solver.

During the process of service execution agents which are
parts of the problem solver connect with each other dynam-
ically. In case of a service without UI this interaction starts
from the root agent. In the case of a service with a UI it usually
starts from the interface controller agent – for processing the
events which are generated in the UI (the root agent may do
no work at all in that case).

In order for a problem solver to become usable for various
services at the stage of their assembly the information resource
which represents the declarative specification of this problem
solver must be created. It is formed in two stages:

1) creation of a new information resource of “problem
solver” type with setting of its name and Problem solver
structure information resource as metainformation;

2) formation of content of this new information resource
(problem solver assembly) with the use of Editor for
digraphs of information where the process of editing is
controlled by the set metainformation and consists of
setting of the following:
• information about the purpose of the problem solver,
• a link to its root agent,
• links to formal parameters (in case when services

should process information resources, i.e. must have
actual parameters at runtime),

• a UI which includes a link to interface controller
agent (in case when a service with the UI is be-
ing developed), links to own information resources
(shared among all running instances of the problem
solver).

The described organization of a problem solver (which im-
plies dedication of a special interface controller agent among
others) gives an opportunity to separate development and
maintenance of problem solver business-logic from same work
on UI. This leads to the possibility of involving independent
appropriate specialists to these types of work.

VI. AGENT DEVELOPMENT

An agent is a (possibly reusable) software component
which interacts with other agents with the use of message
reception/sending. It is capable of processing (reading and
modification) information resources. Reusability means that
an agent can become a part of various problem solvers with
no modification. Data processing is organized in form of
productions which are grouped into one or several production
blocks – by the amount of message templates that an agent
can process.

An agent consists of two parts: a declarative one and a
procedural one. Declarative part of an agent consists of two
sections: agent’s documentation (which is presented by a set of
descriptions: for an agent itself and for each of its production
block, written in natural language) and formal specification
for its set of production blocks (which comprise an agent).
The declarative part is used as a basis for the support of
automation of agent’s documented source code development
and maintenance. A digraph 2-level model of information re-
sources representation allows storing of declarative description
and code of an agent (procedural part) in a single information
resource which represents this agent.

Development of an agent consists of the following stages:
1) creation of new information resource of “agent” type

with setting of its name and Agent structure information
resource as metainformation;

2) formation of content of this new information resource
with the use of Editor for digraphs of information (with
extensions) where the process of editing is controlled by
the set metainformation and consists of setting of the
following initial data: agent name, agent class name,
description, local data structure and production blocks
specification (description, templates of incoming mes-
sages and corresponding templates of outgoing mes-
sages)1;

3) acquiring agent source code (by generating its sketch us-
ing its declarative description or using pre-saved source
code) and executable code of used message templates;

4) writing (modifying) the source code of an agent (code
for its production blocks in particular) and forming its
executable code (as a result of compilation of its source
code);

5) uploading source code and executable code into the cor-
respondent information resource (thus extending agent’s
declarative specification);

6) agent testing (optional).

1Different production blocks of the same agent must have different incom-
ing message templates.

28

Acquiring agent source code and executable code of reused
message templates must be done with extended functionality
of the Editor for digraphs of information. For agent source
code it provides downloading of either sketch of source code
which is generated on the basis of new agent declarative
description or downloading of the stored source code of
modified agent.

Writing the source code of an agent must be done using
some modern programming language powerful enough for
solving intelligent problems. A suitable IDE can be used
or such functionality can be implemented within the toolkit
(within some extension of the Editor for digraphs of infor-
mation). The source code of agent’s production block imple-
ments the whole of part of the ontology-based algorithm for
knowledge-based processing using toolkit API methods for:
incoming message data reading, knowledge base traversing,
outgoing message creation. Note that an agent can make an
arbitrary number of messages to be sent to a set of other agents
(including system ones and itself).

After the source code of an agent is ready it is necessary
to form its ready-to-run version (e.g. bytecode) and load
it into the information resource which represents an agent.
In order to achieve this a compilation of the source code
must be committed either locally or online (if the toolkit has
such support). While code uploading and/or compilation it is
checked for correctness and safety.

Agent testing is carried out by a separate tool which per-
forms multiple start and execution of the set of its production
blocks on a provided set of tests (formed as information
resources with metainformation Agent tests structure by use
of the Editor for digraphs of information). Reports are saved
with results of test executions. A single test generally includes
the information resource representing incoming message, a set
of information resources representing expected outgoing mes-
sages, and tuples of information resources which act as input,
output (initial and final states) actual parameters and own ones
(initial and ending states). A test is considered to be passed if
the amount and the contents of the outgoing messages and of
processed information resources are as expected. Formed sets
of tests can be used for regressive testing during the stage of
agent maintenance.

VII. MESSAGE TEMPLATE DEVELOPMENT

A message in multi-agent systems is a mechanism for
coordinated interaction of agents which provides exchange
of information between them and transfer of requests [20].
Agents communicate in different languages whose amount is
extensible (by means of creating new message templates and
adding new production blocks into agents or extending existing
ones) and is limited only by the total amount of message
templates. Specific languages of agent interaction (message
templates) are set at the level of separate production blocks.

As messages are object information resources so languages
for sets of messages are represented by information resources
that are metainformation – Message templates. They not only
contain the structure for a set of messages but may also hold

a set of methods for processing these messages. Thus, like an
agent, a message template consists of two parts – a declarative
one and a procedural one. Its structure is simpler though:
name, class name, description, message structure, source code
and code.

Development of the message template consists generally of
the same stages as of an agent. The differences appear at the
stages of creation (when the Message template structure infor-
mation resource is set as metainformation) and of writing the
source code (due to differences in the structure of declarative
specifications of agents and message templates).

Message template testing can be done only through testing
of an agent (see section VI).

VIII. USER INTERFACE DEVELOPMENT

Development of an interface for an intelligent cloud service
is a development of web-interface (as services are available
online and are accessed via web-browsers). The interface
consists of interface controller agent (development described
in section VI) and a set of web-pages (with one selected as
the starting one). Each web-page has a name and data which
can be of content or design type:
• content – a mixture of text, ui tags and a set of names

of design web-pages (of the same problem solver);
• design – a description of CSS classes (a set of CSS rules).

Such separation allows:
• to apply various CSS to the same contend of the interface

and vice versa – to use the same CSS for interface of
various services, which leads to increase of flexibility and
adaptability of developed interfaces and to simplification
of their maintenance;

• to divide the processes of development and maintenance
(thus, to make them independent) of these parts and to
involve independent appropriate specialists to these types
of work (their only interaction would lie in setting/using
same names for classes in CSS).

The ui tags of a web-page are processed as ui requests (one
request per tag) sent through View agent to agents which act
as interface controllers within solvers at the initial web-page
display. Further interactions of user with web-page elements
produce other ui requests (determined by those elements).
Each ui request is a set of pairs: parameter = value. After
the request is passed to solver agent, the View agent waits for
result and in case it is a fragment of UI – puts it into the
shown web-page content in place of the processed ui tag.

A detailed scheme of interaction of the View agent with
Web-server and interface controller agent (which is a part
of some problem solver) is shown in Fig. 2. A process of
interaction consists of request transferring from browser to
agents and returning of result to browser. A processing of
a request is performed in between. Numeration of arrows in
Fig. 2 sets the order of interaction.

The basis of the UI presentation model is an “MVC”
(Model-View-Controller) conception [21]. Its projection on
this conception on the proposed interface model is as follows.

1. Model. This component includes:

29

• Model of abstract user interface – an information re-
source which represents metainformation and holds a
description of structure for standard interface elements
of WIMP-interfaces and a way of their organization into
a single nested structure.

• Abstract interface generation API – a set of high-level
functions for creation of fragments of abstract interfaces.
Performing calls of these functions (with necessary argu-
ments) significantly increases the level of abstraction at
which the information resource that represents some ab-
stract interface is formed. To form a description for some
fragment of an abstract interface one has to construct a
superposition of function calls of this API.

2. View. This component is presented by the utility agent
View agent, which is a “hybrid” one. It is divided into two
parts so that it can mediate between the two:
• Web-server – it interacts with external part of the View

agent,
• interface controller agents of problem solvers – they

interact with agent part by receiving, processing and
replying to messages created by Request from View agent
utility message template.

The other tasks of the View agent are the following:
• the production of specific interface (HTML-code) on the

basis of the its abstract model (with the use of built-in
mapping rules for all supported interface elements);

• uploading/downloading binary data to/from Web-server.
3. Controller. This component is represented by agents

which play a role of interface controller agent (within problem
solvers). These agents interact with the View agent by message
exchange. Such messages are created by particular message
templates. Agents implement (possibly by interaction with
other agents) logic for processing ui requests of the following
origins: ui tags (from web-pages content data) and ui events
(generated by interface elements in response to user actions).

Figure 2. A scheme of interaction of the View agent with Web-server and
interface controller agent.

A result of processing a ui request is either an information
resource (which represents a description of an abstract inter-
face which is passed to the agent part of the View agent) or
an arbitrary string of characters.

The development of UI consists of the following steps:
1) creation of a set of web-pages within the declarative

specification of the used problem solver – with formation
of content for each page;

2) development of interface controller agent, which must
implement the logic for processing ui requests.

IX. DISCUSSION AND FUTURE WORK

Let’s highlight the main features that distinguish the de-
scribed technology for the development of cloud services and
their components from other available solutions.

The possibility to include domain experts in the process
of developing knowledge bases and databases. The proposed
technology supports a two-level ontological approach to the
formation of information resources. Its feature is a clear sepa-
ration between the ontology and the knowledge base (database)
formed on its basis. The ontology (metainformation) sets not
only the structure and terminology for a knowledge base,
but also the rules for its formation, control of the integrity
and completeness. The ontology is formed by a knowledge
engineer (possibly in cooperation with domain expert) with
the use of the ontology editor. On its basis, a UI is automat-
ically generated that allows domain experts to create (form)
knowledge bases and databases without involving professional
intermediaries. All information resources have a semantic
representation that is understandable to domain experts.

Providing reuse of ontologies and problem solvers.
A clear separation between ontology and knowledge bases
(databases) also provides another significant advantage. When
an ontology is formed – the solver is designed in its terms.
Then using this ontology, an arbitrary number of knowledge
bases can be developed and their binding with the solver
(which is integrated with UI and plays the role of KBS shell)
makes the new KBS. So this moves us from developing of
specific KBSs each time from a scratch to developing of shells
first which can then be used with different knowledge bases
to comprise different KBSs. Thus, the ontology and the solver
are reused for a whole class of problems.

Modification of knowledge bases without changing the
problem solver’s code. This is also provided by the separa-
tion between the knowledge base and its ontology, the lack
of domain knowledge in the solver. The ontological solver
is implemented not as an inference in calculus, but as an
algorithm that traverses the knowledge base in accordance with
its ontology to match statements in the knowledge base with
the input data and, thus, consistently confirming or refuting
elements of knowledge.

Transparency and maintainability of problem solvers.
The development of KBS solvers is based on the processing
of hierarchical graphs of concepts, which makes it possible to
create a set of common APIs (application programming inter-
faces) for working with such graphs. Based on the specifics

30

of the problem, the expected repeatability of their smaller
subproblem, the developer can choose software components
that will provide a more transparent architecture of solvers.
The use of an agent-based approach provides the possibilities
to parallelize the execution of subtasks, which is important for
problems with high solvation speed requirements.

It is important that the model (metainformation) of each
software component is hard-set and allows one to create
them using the common editor or its appropriate specialized
adaptations (Fig. 3). This increases components’ transparency
and maintainability, as it is known from software engineering
[22] that declarative components are easier to maintain than
procedural ones. A unified declarative representation of agents,
as well as message templates made it possible to automate the
creation (process of generation) of code templates for them.

The proposed technology is implemented on the IACPaaS
platform [12] – a cloud computing system for support of
development, control and remote use of multi-agent services.
Thus, it provides not only users with remote access to applied
intelligent systems but also developers with remote access to
appropriate tools for creation of such systems and their compo-
nents which make this process more automatic (Figs. 4, 5, 6).

Figure 3. Usage of the development toolkit for creating information and
software components of intelligent services.

Figure 4. UI fragment of the Service editor.

Currently, the IACPaaS platform has several hundreds of
users who, using the proposed technology, have created ontolo-
gies, knowledge bases, tools and problem solvers for various
domains: a set of tools for developing professional virtual

Figure 5. UI fragment of the Problem solver editor.

Figure 6. UI fragment of the Agent editor.

cloud environments [23], services for interactive verification
of intuitive mathematical proofs, underwater robotics, practical
psychology, agriculture and others. In particular, the formed
portal of medical knowledge includes a wide range of med-
ical ontologies, complex knowledge bases formed on their
basis (for example, the knowledge base for medical diagnosis
of diseases of various nosologies contains more than 130
000 concepts) and problem solvers (computer-based training
simulator using classical research methods in ophthalmology,
diagnosis of diseases [24], differential diagnosis of acute and
chronic diseases: infectious diseases, gastro-intestinal diseases,
hereditary diseases, diseases of the cardiovascular and respi-
ratory systems, etc.), the prescription of personalized medical
and rehabilitation treatment, etc.).

By now, users of the platform have created more than 2
thousands of resources, rough numbers are: almost 1750 infor-
mation resources (ontologies – 650, knowledge and data bases
– 1100) and 500 software components (problem solvers – 180,
agents – 250, message templates – 70). So we can say that
the active use of the platform demonstrates that the technology
proposed by the authors meets modern requirements for the

31

development of viable KBS and fits the needs of users.
However, we continue to work on improving the platform

and technology for KBS development. Our main efforts are
aimed at creating tools for generating adaptive interfaces, tools
for intelligent user support and design automation. Special
attention is paid to the creation of specialized technologies
for developing classes of KBS and increasing the level of
instrumental support for various technologies. Important tasks
are the improvement of tools for safety and security of the
platform, of the common APIs for processing the storage
units and creation of high level abstraction operations for
information resources.

REFERENCES

[1] Gensym G2. The World’s Leading Software Platform for Real-Time
Expert System Application. Available at: http://www.gensym.com/wp-
content/uploads/Gensym-l-G2.pdf (accessed 2021, May).

[2] V. V. Golenkov, N. A. Gulyakina, I. T. Davydenko, D. V. Shunkevich,
Semantic technologies of intelligent systems design and semantic asso-
ciative computers, Doklady BGUIR, 2019, 3, pp. 42–50.

[3] M. A. Musen, The Protégé Project: A Look Back and a Look Forward.
AI Matters, 2015, 4, pp. 4–12.

[4] G. V. Rybina, Intellektual’nye sistemy: ot A do YA. Seriya monografij
v trekh knigah. Kn. 3. Problemno-specializirovannye intellektual’nye
sistemy. Instrumental’nye sredstva postroeniya intellektual’nyh system
(Intelligent systems: A to Z. A series of monographs in three books.
Book 3. Problem-specialized intelligent systems. Tools for building
intelligent systems), M.: Nauchtekhlitizdat, 2015, 180 p. (in Russian).

[5] G. Rodrı́guez, Á. Soria, M. Campo, Artificial intelligence in service-
oriented software design. Engineering Applications of Artificial Intelli-
gence, 2016, 53, pp. 86–104.

[6] I. Gupta, G. Nagpal, Artificial Intelligence and Expert Systems. Mercury
Learning & Information, 2020, 412 p.

[7] G. Tecuci, D. Marcu, M. Boicu, D. Schum, Knowledge Engineering:
building Cognitive Assistants for Evidence-based Reasoning, Cam-
bridge, U.K. Cambridge University Press, 2016.

[8] C. E. Grant, D. Z. Wang, A Challenge for Long-Term Knowledge Base
Maintenance, Journal of Data and Information Quality, 2015, 6(2-3):7.

[9] R. S. Pressman, B. G. Maxim, Software Engineering: Practitioner’s
Approach, New York, 9th ed. McGraw-Hill, 2019, 704 p.

[10] A. Torreño, Ó. Sapena, E. Onaindia, FMAP: A platform for the devel-
opment of distributed multi-agent planning systems. Knowledge-Based
Systems, 2018, 145, pp. 166–168.

[11] M. Gholamian, G. Fatemi, M. Ghazanfari, A Hybrid System for Multiob-
jective Problems – A case study in NP-hard problems, Knowledge-Based
Systems, 2007, 20(4), pp. 426–436.

[12] V. V. Gribova, A. S. Kleschev, Ph. M. Moskalenko, V. A. Timchenko,
L. A. Fedorischev, E. A. Shalfeeva, A cloud computing platform for
lifecycle support of intelligent multi-agent internet-services. In proc. of
International Conference on Power Electronics and Energy Engineering
(PEEE-2015) (19-20 Apr. 2015), Hong Kong, pp. 231–235.

[13] AI portal. Agent classification. Available at:
http://www.aiportal.ru/articles/multiagent-systems/agent-
classification.html (accessed 2021, May).

[14] V. F. Khoroshevsky, Proyektirovaniye sistem programmnogo obe-
specheniya pod upravleniyem ontologiy: modeli, metody, realizatsii
[Ontology Driven Software Engineering: Models, Methods, Implementa-
tions], Ontologiya proyektirovaniya [Ontology of designing], 2019, 9(4),
pp. 429–448. (in Russian).

[15] V. V. Gribova, A. S. Kleshchev, F. M. Moskalenko, V. A. Timchenko,
Implementation of a Model of a Metainformation Controlled Editor of
Information Units with a Complex Structure. Automatic Documentation
and Mathematical Linguistics, 2016, 1, pp. 14–25.

[16] G. Taentzer, K. Ehrig, E. Guerra, J. Lara, L. Lengyel, T. Levendovszky,
U. Prange, D. Varro, S. Varr´o-Gyapay, Model transformation by graph
transformation: A comparative study, in: Proceedings Workshop Model
Transformation in Practice, Montego Bay, Jamaica, 2005, pp. 1-–48.

[17] C. Atkinson, T. Kuhne, Model-driven development: A metamodeling
foundation, IEEE Software, 2003, 5, pp. 36–41.

[18] A. Kleppe, S. Warmer, W. Bast, MDA Explained. The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley Professional, Boston,
2003.

[19] V. V. Gribova, A. S. Kleshchev, F. M. Moskalenko, V. A. Timchenko,
A two-level model of information units with complex structure that
correspond to the questioning metaphor. Automatic Documentation and
Mathematical Linguistics, 2015, 5, pp. 172–181.

[20] V. S. Dyundyukov, V. B. Tarasov, Goal-resource networks and their
application to agents communication and co-ordination in virtual en-
terprises, IFAC Proceedings Volumes, 2013, 46(9), pp. 347–352.

[21] R. Trygve, MVC. Xerox PARC 1978-79. Available at:
https://folk.universitetetioslo.no/trygver/themes/mvc/mvc-index.html
(accessed 2021, May)

[22] I. Sommerville, Software Engineering, 10th edition, Pearson, 2015.
[23] V. V. Gribova, L. A. Fedorischev, Software toolset for development of

cloud virtual environments. Software products and systems, 2015, 2, pp.
60–64.

[24] V. Gribova, Ph. Moskalenko, M. Petryaeva, D. Okun, Cloud environment
for development and use of software systems for clinical medicine and
education. Advances in Intelligent Systems Research, 2019, 166, pp.
225–229.

Технология разработки жизнеспособных
интеллектуальных сервисов
В.В. Грибова, Ф.М. Москаленко,
В.А. Тимченко, Е.А. Шалфеева

Предложена технология разработки интеллектуальных
мультиагентных облачных сервисов. Ее ключевым аспектом
является независимая разработка баз знаний, пользователь-
ского интерфейса и решателя задач в виде ансамбля агентов,
а также их интеграция в интеллектуальный сервис. Техно-
логия реализована на облачной платформе IACPaaS, обес-
печивающей экспертно-ориентированное создание каждого
компонента сервиса с помощью соответствующего инстру-
ментария.

Received 28.05.2021

32

