
Application of an integration platform for
ontological model-based problem solving using
an unified semantic knowledge representation

Valerian Ivashenko
Department of Intellectual Information Technologies

Belarusion State University of Informatics and Radioelectronics
Minsk, Republic of Belarus

ivashenko@bsuir.by

Abstract—This article describes a solution in the form
of an intelligent integration platform based on the model
of an unified semantic knowledge representation for the
development of applied knowledge-driven systems. The
model of an unified semantic knowledge representation
using semantic networks, models and methods of measure
and probability theories, methods of descrete optimization
and applied mathematics, computer simulation and multi-
agent approaches were used. The purpose is to develop com-
puter tools with cognitive architecture relying on elements
of artificial consciousness and being able to communicate
and to be flexible and adaptive in complex educational
applications. Virtual machines, subsystems of integration
platform and tutoring applied multi-agent software sys-
tem were developed and implemented as part of human-
machine interaction system.

Keywords—artificial intelligence systems integration, in-
tegration platform, multi-agent system, knowledge-driven
system, knowledge processing model, unified semantic
knowledge processing model

I. INTRODUCTION

The basis for the success of a learning intellectual
system is integration openness [42], [45]. When it is
possible to integrate not only new knowledge related to
different types but also various mechanisms for solving
problems. Integration is one of the important understand-
ing mechanisms for knowledge systems allowing the
acquisition and improvement of problem-solving skills
which is important for knowledge-driven systems [42],
[45]. This article presents a solution in the form of
an integration platform based on the unified semantic
knowledge representation model. This presentation at-
tempts to answer the following questions.

1 What goals can be achieved using such platforms?
2 What developments are already in this direction?
3 What are the architecture, mechanisms and rules for

using the platform?
4 What are the positive and negative peculiarities of

the platform?
5 What results have been achieved in the process of

its application?

6 What are the perspectives for the development of
the platform?

The general goals planned to be achieved are:
• creation of dynamically updating knowledge-based

system able to accept new knowledge via machine
learning and high-level or natural language commu-
nication;

• creation of scalable knowledge-driven systems
maintaining big knowledge and large scale inte-
grated ontology;

• creation of artificial consciousness systems which
are self-descriptive and introspective;

• creation of multi-agent distributed applied intellec-
tual systems.

II. OVERVIEW OF MODELS AND APPROACHES

The necessity of artificial intelligence integration his-
torically caused by the existence of separate artificial
intelligence solutions for specific problems such as rea-
soning knowledge, speech synthesis and recognition,
computer vision problems. General approaches to the
integration of information systems: integration through
translation with control passing, integration through in-
terpretation or through communication without control
passing. In the case of control passing each process or
agent of system should store own state. Therefore, the
corresponding storage is available for one control flow
and both are shared by all processes or agents on the
system.

From the other side, consciousness as a more advanced
kind of intelligence is determined by social experience of
natural language communication. Thus, by natural way,
such communicative models as actor models [1], [5], [13]
or multi-agent systems are the basis [6], [45] not only
for concurrent computer system but artificial intelligence
systems. Therefore, concurrent models are integration
models. These models are divided into two classes. The
first class is models without shared common memory or
storage. The second class is models with shared common

179



memory or storage. Such models and means as actor
models [5], Communicating Sequential Processes [10],
Calculus of Communicating Systems [12], pi-calculus
[15], Algebra of Communicating Processes [14], Lan-
guage of Temporal Ordering Specifications [16]–[18],
reactive multi-agent systems [13] and so on [19]–[23] can
be referenced with the first class of models. The models
of the first class using message passing communication
provide implementation basis of the collective or swarm
intelligence.

Models of the second class is oriented to maintain
shared storage. Shared storage is seemed to be capable
to maintain large knowledge bases and ontologies to
solve complex problems and to provide sophisticated
processes control. The bright examples of such approach
are blackboard architecture models and blackboard sys-
tems. Blackboard system is shared information resource
with the own communication protocols and
or consistency model. Means oriented to use with black-
board system are: CORBA, MOSID, OpenAir, OAA and
others [32], [34]–[36].

MOSID (Messaging Open Service Interface Definition
(OSID)) is an Open Knowledge Initiative specification
which provides a means of sending, subscribing and
receiving messages. OSIDs are programmatic interfaces
which comprise a Service Oriented Architecture for de-
signing and building reusable and interoperable software
[35].

CORBA is a standard can be used for AI systems
integration [32]. CORBA enables software components
written in multiple computer languages and running on
multiple computers to interoperate. CORBA is developed
by the Object Management Group. Similar standard
developed by Microsoft was DCOM (Dynamic Common
Object Model).

OpenAIR Protocol is a routing and communication
protocol based on a publish-subscribe architecture. It is
mean and environment («AIR») that allows numerous
A.I. researchers to share code more effectively. This is
mean for distributed multi-module systems. OpenAIR
is oriented to be foundation for markup languages and
its semantics of hardware-software interfacing includ-
ing computing vision (as at CVML (Computer Vision
Markup Language)), gesture recognition and generation
and so on. OpenAIR Protocol follows similar principles
and architecture as the CORBA.

OAA (Open Agent Architecture) is a hybrid architec-
ture that relies on a special inter-agent communication
language (ICL) [36]. ICL is a logic based declarative
language adopted to express high-level, complex tasks
being close to natural language expressions.

There are implemented systems which use models of
the second class. Psyclone AIOS is an implementation
of a blackboard system that supports the OpenAIR mes-
sage protocol [34]. It is a software platform, or an AI

operating system (AIOS), developed by Communicative
Machines Laboratories for use in creating large, multi-
modal artificial intelligence systems. Elvin is a content-
based router with a central routing station, similar to the
Psyclone AIOS [33].

Examples of applied integrated systems based on this
approach are such robots and humanoids as MIRAGE,
ASIMO, QRIO, Cog, AIBO and etc.

The important aspect of models is possibility of pro-
cess introspection including methods of process mining
for the purpose of inductive programming using action
languages. Such languages as LTML (Learnable Task
Modeling Language), PDDL (Planning Domain Defini-
tion Language) [7]–[9] and MAPL (Multi-Agent Plan-
ning Language) [6] can be considered as means of plan
specification of artificial intelligence systems including
concurrent and multi-agent systems.

The next approach can be viewed as pragmatic or
problem specific approach. This approach concentrates
on developing cognitive architectures. Examples of cog-
nitive architectures are: 4D-RCS (Real-time control sys-
tem) Reference Model Architecture [29], SOAR (State
Operator And Result) cognitive architecture [30], archi-
tecture of Hierarchical temporal memory [31] and many
others. The models investigated in the range of OSTIS
projects can be also referred to this last approach [41].

Another approaches and models are determined by
history of development of computing systems for arti-
ficial intelligence. These include architectures of LISP-
machines (Connection machines), PROLOG-machines
and machine learning processors and accelerators.

However, these architectures and models have re-
stricted capabilities of knowledge integration via uni-
fied representation including limitations to deal with
NON-factors of knowledge [42], [48], to introspect pro-
cesses using semantic logging and to combine knowledge
declarative semantics with operational semantics of syn-
chronous and asynchronous knowledge processing using
various knowledge representation languages.

III. INTEGRATION PLATFORM DESCRIPTION

Proposed integration platform mainly concentrated on
integration via translation and via communication. While
integration via interpretation limited by languages of
unified semantic knowledge representation model and
languages supported by model used to implement this
platform.

Specification is main part of self-descriptive and in-
trospective systems such as knowledge-driving systems.
There are several models and means to specify and
implement such discrete systems as abstract machines
or information processing models including concurrent
systems. These are transition systems, actor models,
Communicating Sequential Processes, Calculus of Com-
municating Systems, pi-calculus, Algebra of Communi-

180



cating Processes, Language of Temporal Ordering Spec-
ifications, temporal logics and others [1]–[4], [11]–[15],
[17], [18], [28], [42]. Proposed knowledge specification
model [42] is the key mean to specify knowledge repre-
sented with the unified semantic knowledge representa-
tion model [42], [45].

Knowledge processing model [42] describes dynamic
of knowledge accumulation and optimization processes.
To define knowledge processing model seven compo-
nents need to be specified: alphabet, language, syntactic
relations, initial states, interpretations, operations and se-
mantic metric [42]. Every finite structure can be specified
with its formal ontology model. Languages are specified
by formal ontology model relations mapping its texts
into their representations in its other texts and by the
relation between formal ontology models of allowed
and forbidden syntactic structure and formal ontology
models of representations of language texts in its other
texts. Initial states are specified as sublanguages. Infinite
number of initial states can also be specified by the
knowledge specification models relation which specify
(generative) initial states order with a finite number
of primary initial states (information constructions or
language texts). Language syntactic (incidence) relation
is specified as a language via its texts representations.
Language semantics specification consists of denota-
tional semantics and operational semantics specifications
[1]–[4], [13]. Denotational semantics is specified by the
knowledge specification model relation between formal
ontology models of language text fragments and formal
ontology model of finite subsets of its denotations. Such
relation specify whatever mapping which is projection
of interpretation of language text fragments on finite
sets of denotations. Operational semantics is specified
by the knowledge specification model relation between
formal ontology models of reifications of projections
of language text fragments interpretations on finite sets
of denotations in two situations. In case of reflexive
semantics, denotation semantics specification can express
syntactic restrictions for forbidden syntactic structures
in the vicinity of language key elements. The allowed
syntactic structures are all which are described in deno-
tational semantic specifications, any other structures are
forbidden. Thus, we get specifications of language key
elements. Semantic metric can be specified by mapping
language texts to metric space. Simple semantic metric
is specified by mapping language texts to binary logic
scale σ with exclusive disjunction as a metric operation.

σ ∈ {Λ} × {⊥,>}Λ × {{⊥,>}} (1)

ψ
(
σ2 (α) ∨− σ2 (β)

)
(2)

ψ (χ) =
def

{
0 |(¬χ)

1 |χ
(3)

The equivalence can be also considered as a semantic
metric operation due the isomorphism existence between
equivalence and exclusive disjunction.

ψ
(
σ2 (α) ∨− σ2 (β)

)
= 1− ψ (σ2 (α) ∼ σ2 (β)) (4)

More sophisticated metrics may take into account syn-
tactical and spatial-temporal structure of knowledge.

One knowledge processing system integrated by the
another knowledge processing systems if some con-
ditions fulfilled [27], [42], [46], [47]. The necessary
conditions to integrate one knowledge processing system
in the second is the existence of such text inclusion
mapping π and bijection [27] i as

∀ρ∃i (ρ)
(
ρ = i ◦ π ◦ i (ρ) ◦ π−1 ◦ i−1

)
∀ρ∃i (ρ)

(
π−1 ◦ i−1 ◦ ρ ⊆ i (ρ) ◦ π−1 ◦ i−1

)
∀ρ∃i (ρ)

(
i (ρ) = π−1 ◦ i−1 ◦ ρ ◦ i ◦ π

)
∀ρ∃i (ρ) (i ◦ π ◦ i (ρ) ⊆ ρ ◦ i ◦ π)

(5)

where π is a text mapping relation between text frag-
ments and texts of the second knowledge processing
model containing its; i is bijective integration mapping;
ρ is an operation.

These can be shown with the next diagram.

σ
i←→ i (σ)

π−→
←

τ

ρ ↓ i←→ i (ρ) ↓
ω

i←→ i (ω)
π−→
←

γ

(6)

Architecture of implemented system is based on archi-
tecture of control levels for knowledge-driven systems
[42]. These levels are: device control level, data control
level, knowledge control level. The levels of control
are disposed along the implementation hierarchy direc-
tion (vertical). While there are several sub-architectures
which are placed along the communication direction
(horizontal). These sub-architectures relate to abstract
machines or information processing models which cor-
respond to different variants of implementation sub-
platform. There are two virtual machines which imple-
ments core of the proposed integration platform: variety
virtual machine and ontology virtual machine [37], [42],
[45].

If an implementation is considered as a problem do-
main then the objects of the implementation are parts
of the problem domain of this implementation. These
objects, its kinds with the relations between them form a
subject domain of the implementation. Any finite part
of the subject domain of the implementation can be
specified accordingly with the knowledge specification
model. Various models are being specified depending
on which objects are included in a corresponded part.
Kinds of such models are situation structure model,
system structure model, motion model, process model,
device structure model, device process model, instruction

181



set syntax model, instruction set semantic model, typed
data structure representation model, typed data structure
process model, typed knowledge structure syntax model,
typed knowledge structure process model. From the point
of view of architecture of a chosen implementation these
models can be grouped in more complicated models.
A distributed system can be represented with a set of
communicating nodes. Each node can be realized as a
computing machine. A machine realizes two or three
levels of control. Machines encapsulate knowledge, data,
and such devices as processors, memory and controllers.
Each subsystem of a machine is specified with a model.
Models are specifications of subsystems of implementa-
tion. Memory models, operation models, allocator mem-
ory models, synchronization (activation
deactivation) models, access management models, real-
location memory models, number and strings processing
models are more specialized models. Models of machines
can share or include each of them [42], [45].

The platform was implemented with the virtual ma-
chines of two types: ontology virtual machine (knowl-
edge processing machine) and variety virtual machine
(user interface data processing machine) [37], [45]. The
ontology virtual machine shares all three levels of control
while variety virtual machine implements first two of
them.

Subsystems of the ontology virtual machine specified
with memory, allocator, allocation and reallocation, ma-
chine operation instruction subset, synchronization (in-
cluding excitation and inhibition), access management,
strings processing, unified semantic processing, commu-
nication and IO controller models [42], [45].

Subsystems of the variety virtual machine specified
with memory, allocator, allocation and reallocation, ma-
chine operation instruction subset, strings processing,
communication and IO controller models [37], [45].

All knowledge structure models match the unified
semantic representation model [42].

All knowledge programming models (unified semantic
processing) match knowledge processing model based on
the unified semantic representation model. Operations
of ontology virtual machine instructions are based on
string processing model for knowledge-driven systems.
They are operation both with such simple data types
as numbers and also with strings. Strings are used as
multiple nested stacks or meta-stacks for ontology virtual
machine [42], [45].

Programs can be structured using sc -chains or sc -
sequences. The lasts differ from the first by link mem-
bership connectives which not include a membership
of contained element of the next link but include a
membership of the next link to sequence set which
contains all links and the membership of the first link.
The structure of each instruction (command) or operator
shares the METAPHORM [44] principles including the

ordered pairing of input and output parameters and
the encoding of operator types using either associative
positioning (using key elements) or a structural morpho-
logical approach. The operator semantics of basic task
types can be defined with systems of patterns (similar to
semantic query language constructions [43]) for search
and construction operators and sets of deleting elements
for delete operators. Commands can be constructed dur-
ing the processing of SEC (Semantic Execution Code)
texts or their representations by sc -chains [42], [45].

Ontology virtual machines integrates operations with
not only asynchronous but synchronous semantics. Syn-
chronization is implemented by mechanism of inhibi-
tion and excitation phases. Thus, processes of the next
excitation phase can not be started before finalizing
all synchronous processes of previous excitation phase.
Some processes can be triggered and suspended during
inhibition phase. All ready results of each operation can
be represented with an actual membership to a sc-set
of ready results [42]. Thus, all events can be reduced
to membership events. Processes generating these events
are triggered by mechanism of inhibition and excitation
phases.

Synchronous and asynchronous semantic specification
is constructed using phenomenons description ontology
for key elements with operation semantics and their
semantic vicinities.

Knowledge access and control model also can be con-
sidered part of inhibition phase mechanism. Knowledge
access and control model deals with agents, areas, modes
and its types of access.

Multi-agent interaction model includes active structure
reconfigurable (Semantic Code) memory maintaining
synchronization mechanisms and models for semantic
logging and multi-agent plan specifications languages
[42]. The common interaction scheme for active structure
reconfigurable memory is show on the figure below.

Multi-agent interaction is represented by events and
relations between them in forms of phenomena, protocols
and plans [42]. The spatial and temporal relations should
be used to define spatial and temporal constraints for
the plans. Unlike to MAPL constructions [6], these
constrains do not use topology of the line of real numbers
and the corresponding scale but the topology of events
with the corresponding scale of rough sets over the
lattice of their sets. Consistency of a multi-agent plan
is determined by the several requirements. These are:

(N (m) ∩ P (n)) ∪ (P (m) ∩N (n)) = ∅ (7)

where m is a membership event, while n is a non-
membership event between same elements, N and P are
lower and upper bounds membership functions of L-
fuzzy rough sets (sc -set) [42]. In the case of defined
clock measure µ and time duration δ consistency is

182



Figure 1. Scheme of subsystem interaction.

determined by the following requirements:

δ (∅) = 0

δ (S ∩ T ) 6 δ (S)

δ (S) 6 δ (S ∪ T )

δ (S ∪ T ) 6 δ (S) + δ (T )

((S ≺: T ) ∧ (S . /T ))→ (δ (S ∪ T ) = δ (S) + δ (T ))
(8)

where ≺: is temporal precedence relation, ./ is disjoint
relation and S and T are phenomenons.

There are two general class of agents: internal agents
operating only with active structure reconfigurable mem-
ory and external agents communicating via IO controllers
or operating with variety virtual machine. More detailed
specification of variety virtual machine is available at
[37].

The general principles of knowledge processing [42]
for the integration platform are:
• accounting of NON-factor;
• semantic logging;
• knowledge stream processing.

IV. OTHER APPROACHES: COMPETITION AND
COOPERATION

Despite the universality of proposed integration plat-
form and its knowledge representation capabilities, there
are performance limitations as for its implementation as
for a implementation of any other computer architecture,
abstract machine or information processing model [42].
That is why there is a number of systems which can not
be effectively implemented on the current implementa-
tion of the integration platform. These systems can be
implemented separately and be able to concurrent with

the platform in cooperative or competitive mode. The
communication between integration platform and such
external separative system is organized by the program-
ming interfaces provided by the input-output subsystems
(IO controllers) of the integration platform.

V. APPLICATION OF INTEGRATION PLATFORM

Ones of the most common classes of generalized
problems are the searching, the choosing, the verifying,
the constructing, the reconstructing and the destructing,
while the searching, the constructing and the reconstruct-
ing are the most common classes of individual problems
[42]. Problems of all classes can be composed using
problems from the searching, the reconstruction and the
destruction classes. There are agents for problems of
each class [45]. Agents solving any cognition problem,
i.e. search, choice or verification, are cognitive agents.
Call the other agents performative agents. Depending on
correspondence type between agent states and states of
whole knowledge base these agents can solve external
or internal problems. Therefore, there can be external
and internal agents for searching, choosing and verifying.
It is important to admit that an agent who solves the
internal problem of search or another cognition problem
may not be able to solve any cognition problem as
an external problem. In the process of human-machine
interaction tasks of different kinds arise. Consider the
tasks arising in intelligent tutoring systems. Such systems
are able to provide students with educational material in
the reference system mode, from the other side there
is a task to examine student knowledge. In the reference
system mode there are three types of problems: wait user
question (waiting is kind of the searching), retrieve infor-
mation and output the result to the user. These problems
can be solved correspondingly by agents of three types:
external and internal search agents and external perfor-
mative agent. All these agents solve task of navigation
on tutorial materials. During navigation human-computer
dialog contains interfaces with suggestions to user which
can be interpreted as alternative questions. Each user
reaction can be interpreted as answer on such questions.
During a series user reactions on independent suggestions
quantity of received information can be calculated as:⌈(∑q

i=1
log2 (v (i))

)
−
∑q

i=1
log2 (t (i))

⌉
(9)

where t (i) is number of confirmed variants among v (i)
different choice variants on suggestion i. When the
suggestions are causally dependent, received information
volume can be calculated as:⌈

log2

(∑q

i=1

(
v (i)

t (i)
− t (i)

))⌉
(10)

When the suggestions are dependent and alternative,
received information volume can be calculated as:⌈

log2

(∑q

i=1

(
v (i)

v (i)− t (i)
+ t (i)− v (i)

))⌉
(11)

183



Accordingly the unified semantic knowledge represen-
tation model all knowledge at the knowledge control
level are represented as homogeneous semantic networks
[42]. Therefore, tutorial material accessed by intelligent
agents is represented by semantic network too. This
material can contain others types of data such as natural
texts, graphic images, audio files. Thus, used semantic
network can be classified as a hypermedia semantic
network [40].

The other problem solving by intelligent tutoring
system is to examine student knowledge and compute
its measures (scores) [45]. There are also three types
of agents: external search and performative agents and
internal knowledge measurement performative agent. The
measure function can be expressed by following formu-
las:

m

(
max ({0} ∪ {ρ (q) ∗ π (q)− q ∗ σ (q)})

q ∗ (π (q)− σ (q))

)
(12)

where q is number of questions. Each of them has v (i)
risk chances to answer. Also,

π (q) =
∏q

i=1
v (i)

σ (q) =
∑q

j=1

π(q)
v(j)

ρ (q) =
∑q

j=1
r (j)

(13)

κ (q) =
σ (q)

π (q)
, (14)

m (x) = 10 ∗ x. (15)

To reduce the range of computed values π (q) can be
computed as least common multiple.

π (q) =

{
LCM ({v (q)} ∪ {π (q − 1)}) |q > 1

v (1) |q = 1
(16)

If a question i has t (i) right and f (i) wrong alternative
homogeneous answers then

v (i) = t(i)+f(i)
t(i) (17)

If right answer is one of the question answers which
are short strings in alphabet having a symbols with the
length restricted from s to h then

v (i) =
∑h

k=s
ak (18)

If unique right answer has length l(i) while question
answers are medium strings in alphabet having a symbols
with the length restricted from s to h then

v (i) = al(i) ∗ (h− s+ 1) (19)

If unique right answer has length l(i) while question
answers are strings in alphabet having a symbols [39]
with the length restricted from s to h then

v (i) = (2 ∗ a)
l(i)∗

∑h

k=s
2−k = (2 ∗ a)

l(i)∗
(
21−s − 2−h

)
(20)

If two series of questions (with qi and qk questions) have
no dependent questions then joint series has qj questions
which satisfy following expressions

qj = qi + qk

π (qj) = π (qi) ∗ π (qk)

σ (qj) = π (qi) ∗ σ (qk) + π (qk) ∗ σ (qi)

ρj (qj) = ρi (qi) + ρk (qk)

κ (qj) = κ (qi) + κ (qk)

(21)

m−1 (ej) ∗ (1− κ (qj)) ∗ qj 6
m−1 (ei) ∗ (1− κ (qi)) ∗ qi+
m−1 (ek) ∗ (1− κ (qk)) ∗ qk

(22)

(
m−1 (ei) ∗ (1− κ (qi))− κ (qi)

)
∗ qi+(

m−1 (ek) ∗ (1− κ (qk))− κ (qk)
)
∗ qk 6

m−1 (ej ∗ (1− κ (qj)) ∗ qj)
(23)

If two series of questions (qi and qk) have identical
questions then joint series has qj questions which satisfy
following expressions

qj = qi = qk

π (qj) = π (qi) = π (qk)

σ (qj) = σ (qk) = σ (qi)

ρj (qj) = min ({ρi (qi)} ∪ {ρk (qk)})
κ (qj) = κ (qi) = κ (qk)

(24)

Score ej of the joint series is expressed

ej = min ({ei} ∪ {ek}) (25)

If two series of questions (qi and qk) have qc identical
questions then joint series has qj questions which satisfy
following

qc 6 min ({qi} ∪ {qk}) (26)

2 ∗ kc − qc >
max ({2 ∗ qi ∗ κ (qi)− qi} ∪ {2 ∗ qk ∗ κ (qk)− qk})

(27)
kc 6 min ({qi ∗ κ (qi)} ∪ {qk ∗ κ (qk)}) (28)

kic = qi ∗ κ (qi)− kc (29)

kkc = qk ∗ κ (qk)− kc (30)

Score of the joint series is

m

(
max ({0} ∪ {tc − kc − kic − kkc})
qi + qk − qc − kc − kic − kkc

)
(31)

The task of navigation on tutorial materials is a part
of navigation problem on hypermedia semantic networks
[40], [42], [43]. Cooperative agents used solve it relies
on the search query language. Kinds of agents depend
on complexity of queries. The basic navigation interface
operates with elementary queries [43].

184



Figure 2. System UI screenshots.

VI. CONCLUSION

The machines of integration platform were imple-
mented using WebSockets with TCP communication
protocol, browser javascript virtual machines and C\C++
compiler for Windows platform. The application was
executed in mixed global and local area computer net-
work environment. The server running ontology vir-
tual machines has configuration including AMD Ryzen
Threadripper 2950X processor with 8MiB of RAM and
Windows 10 operating system. While configuration of
clients has Windows 10 Intel Core i3 6100\i5 2310\2500

4\8MiB platform with Chrome, Firefox or Microsoft
Edge browsers executing variety virtual machine UI
implementation [38]. The described application was used
during one semester period in purposes of help infor-
mation and students knowledge testing system for two
disciplines.

The future and perspective plans dealing with the inte-
gration platform includes: optimization and development
of implementation of models of integration platform
architecture to increase its performance and security
qualities; implementation of new application of integra-
tion platform.

REFERENCES

[1] William Clinger. Foundations of Actor Semantics. Mathematics
Doctoral Dissertation. MIT, June 1981.

[2] Irene Greif. Semantics of Communicating Parallel Processes.
EECS Doctoral Dissertation. MIT, August 1975.

[3] Gul Agha, Ian Mason, Scott Smith, Carolyn Talcott. A Foundation
for Actor Computation. Journal of Functional Programming,
January 1993.

[4] Carl Hewitt. What is Commitment? Physical, Organizational, and
Social. April 2006.

[5] Carl Hewitt, Peter Bishop, Richard Steiger. A Universal Modular
Actor Formalism for Artificial Intelligence. IJCAI, 1973.

[6] M. Brenner. A Multiagent Planning Language. Proceedings of
the Workshop on PDDL. 13th International Conference on Au-
tomated Planning and Scheduling (ICAPS-200,3), Trento, Italy,
2003.

[7] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock,
Ashwin Ram, Manuela Veloso, Daniel Weld, David Wilkins.
PDDL—The Planning Domain Definition Language. Technical
Report CVC TR98003/DCS TR1165. New Haven, CT, Yale
Center for Computational Vision and Control, 1998.

[8] D. L. Kovacs. A Multi-Agent Extension of PDDL3.1. Proceedings
of the 3rd Workshop on the International Planning Competition
(IPC). 22nd International Conference on Automated Planning and
Scheduling (ICAPS–2012), Atibaia, São Paulo, Brazil, 2012. pp.
19–27.

[9] Manuela Veloso. PDDL by Example. Carnegie Mellon University,
2015.

[10] C.A.R. Hoare. Communicating Sequential Processes. Communi-
cations of the ACM, August 1978.

[11] S.D. Brookes, C.A.R. Hoare and W. Roscoe. A theory of com-
municating sequential processes, JACM, 1984.

[12] Robin Milner, A Calculus of Communicating Systems. Springer
Verlag, 1980.

[13] Gul Agha. Actors: A Model of Concurrent Computation in
Distributed Systems. Doctoral Dissertation. MIT Press, 1986.

[14] J.C.M. Baeten, T. Basten, M.A. Reniers. Algebra of Communi-
cating Processes. Cambridge University Press, 2005.

[15] Robin Milner, Communicating and Mobile Systems: The Pi
Calculus, Cambridge University Press, 1999.

[16] P.H.J. van Eijk et al., The Formal Description Technique LOTOS.
North-Holland, 1989.

[17] ISO/IEC international standard 8807:1989. Information Process-
ing Systems – Open Systems Interconnection – LOTOS: A
Formal Description Technique based on the Temporal Ordering
of Observational Behaviour. Geneva, September 1989.

[18] ISO/IEC international standard 15437:2001. Information technol-
ogy – Enhancements to LOTOS (E -LOTOS). Geneva, September
2001.

[19] L. Cardelli, A.D. Gordon. Mobile Ambients. Proceedings of
the First international Conference on Foundations of Software
Science and Computation Structure (March 28 - April 4, 1998).
M. Nivat, Ed. Lecture Notes in Computer Science, Springer-
Verlag, 1998, vol. 1378, pp. 140–155.

[20] Shahram Rahimi. ACVisualizer: A Visualization Tool for Api-
Calculus. October 2015.

185



[21] Jane Hillston. A Compositional Approach to Performance Mod-
elling. Cambridge University Press, 1996.

[22] Cedric Fournet, Georges Gonthier. The Join Calculus: A Lan-
guage for Distributed Mobile Programming. 2000.

[23] Robin Milner. Communication and Concurrency. USA, Prentice-
Hall, 1989.

[24] Wil van der Aalst. Process Mining: Data Science in Action. 2016.
[25] W. M. P. van der Aalst, A. J. M. M. Weijters, and L. Maruster.

Workflow Mining: Discovering process models from event logs,
IEEE Transactions on Knowledge and Data Engineering, 2004,
vol. 16.

[26] A. K. de Medeiros, W. M. P. van der Aalst, A. J. M. M. Weijters.
Workflow Mining: Current Status and Future Directions. Lecture
Notes in Computer Science, Springer-Verlag, 2003, vol. 2888.

[27] Davide Sangiorgi. Introduction to Bisimulation and Coinduction.
Cambridge University Press, 2011.

[28] Robert M. Keller. Formal Verification of Parallel Programs.
Communications of the ACM, July 1976, vol. 19, no 7, pp. 371—
384.

[29] James S. Albus. 4D/RCS A Reference Model Architecture for
Intelligent Unmanned Ground Vehicles. Proceedings of the SPIE
16th Annual International Symposium on Aerospace/Defense
Sensing, Simulation and Controls, Orlando, FL, 1-5 April 2002.

[30] John E. Laird. The Soar Cognitive Architecture. MIT Press, 2012.
[31] Yuwei Cui, Subutai Ahmad, Jeff Hawkins. "The HTM Spatial

Pooler—A Neocortical Algorithm for Online Sparse Distributed
Coding". Frontiers in Computational Neuroscience, 2017, Vol.
111, no 11.

[32] R. Orfali, D. Harkey. Java i CORBA v prilozheniyakh klient-
server [Client/Server Programming with Java and CORBA]
(Transl: Client/Server Programming with Java and CORBA, New
York, 1998). Moscow, LORI, 2000, 712 p.

[33] B. Segall, D. Arnold, J. Boot, M. Henderson, T. Phelps. Content
Based Routing with Elvin4. Proceedings AUUG2K, Canberra,
Australia, June 2000.

[34] Psyclone – Communicative Machines Available at:
https://cmlabs.com/psyclone (accessed 2021, May 5)

[35] Open Service Interface Definitions Available at: http://osid.org/
(accessed 2021, May 5)

[36] The Open Agent Architecture™. Available at:
http://www.ai.sri.com/∼oaa/oaaslides/ (accessed 2021, May
5)

[37] version / openjsVVM / wiki / Home — Bit-
bucket (Variety Desert project). Available at:
https://bitbucket.org/version/openjsvvm/wiki/Home (accessed
2021, May 5)

[38] Virtual Variety Machine. Available at: http://scnedu.sf.net/
variety/_/index.html?variety=alterface.json&gradient=interscreen
.json (accessed 2021, May 5)

[39] R. Solomonoff. Preliminary Report on a General Theory of
Inductive Inference. Report V-131 (revision of the Feb. 4, 1960
report). Zator Co., Cambridge, Ma, November 1960.

[40] V.V. Golenkov, N.A. Gulyakina. Primenenie tekhnologii
iskusstvennogo intellekta v obuchenii [Application of
artificial intelligence technology in education] IV chteniya,
posvyashchennye 70-letiyu so dnya rozhdeniya professora V.A.
Karpova, 2010, pp. 14–16.

[41] V.V. Golenkov. Otkrytyi proekt, napravlennyi na sozdanie
tekhnologii komponentnogo proektirovaniya intellektual’nykh
sistem [An open project aimed at creating a technology for the
component design of intelligent systems] Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems], 2013, pp. 55—78.

[42] V.P. Ivashenko. Modeli resheniya zadach v intellektual’nykh sis-
temakh. V 2 ch. Ch. 1 : Formal’nye modeli obrabotki informatsii
i parallel’nye modeli resheniya zadach : ucheb.-metod. posobie
[Models for solving problems in intelligent systems. In 2 parts,
Part 1: Formal models of information processing and parallel
models for solving problems: a tutorial] MInsk, BGUIR, 2020,
79 p.

[43] V.P. Ivashenko. Yazyk opisaniya sintaksicheskikh pravil dlya
odnorodnykh semanticheskikh setei [Syntax rules description
language for homogeneous semantic networks]. Distantsionnoe

obuchenie – obrazovatel’naya sreda XXI veka, 2007. pp. 185–
188.

[44] V.P. Ivashenko. Predstavlenie neironnykh setei i sistem produktsii
v odnorodnykh semanticheskikh setyakh [Representation of neu-
ral networks and production systems in homogeneous semantic
networks]. Izvestiya belorusskoi inzhenernoi akademii, 2003, vol.
1 no 1. pp. 184–188.

[45] V.P. Ivashenko. Spravochno-proveryayushchaya sistema na os-
nove unifitsirovannogo semanticheskogo predstavleniya znanii
[Reference and testing system based on the unified semantic rep-
resentation of knowledge] Informatsionnye tekhnologii i sistemy
2020 (ITS 2020) [Information Technologies and Systems 2020
(ITS 2020)], 2020, pp. 80—81.

[46] L.A. Kalinichenko. Metody i sredstva integratsii neodnorodnykh
baz dannykh [Methods and tools for integration of heterogeneous
databases]. Moscow, Nauka, Fizmatlit, 1983, 424 p.

[47] L.A. Kalinichenko, S.A. Stupnikov, V.N. Zakharov, Extending
information integration technologies for problem solving over
heterogeneous information resources, Inform. Primen., vol. 1, no
6, 2012, pp. 70—77.

[48] A.S. Narinyani. NE-faktory: netochnost’ i nedoopredelennost’ –
razlichie i vzaimosvyaz’ [Non-factors: inaccuracy and underde-
termination – difference and interrelation]. Izv RAN (RAS). Ser.
Teoriya i sistemy upravleniya 5 (2000). pp. 44—56.

Применение интеграционной платформы
для решения задач, основанном на

онтологических моделях, использующих
унифицированное семантическое

представление знаний
Ивашенко В.П.

В статье рассматривается решение в виде интеллек-
туальной интеграционной платформы, основанной на
модели унифицированного семантического представ-
ления знаний, для разработки многоагентных систем,
управляемых знаниями. В работе применяются: мо-
дель унифицированного семантического представле-
ния знаний на основе семантических сетей, модели и
методы теории меры и теории вероятностей, методы
дискретной оптимизации и прикладной математики,
компьютерное моделирование и многоагентный под-
ход. Работа направлена на разработку компьютерных
средств с когнитивной архитектурой, использующих
элементы искусственного сознания, способствующие
гибкому взаимодействовию и адаптации этих средств
в сложных образовательных приложениях. Были раз-
работаны и реализованы виртуальные машины, дру-
гие подсистемы интеграционной платформы, а так-
же - справочно-проверяющая прикладная многоагент-
ная система, функционирующие в рамках системы
человеко-машинного взаимодействия.

Received 14.05.2021

186


