
Integrated Medical Information and
Decision-Support System development based

on shared metamodel definition
Aliaksandr Kurachkin
faculty of radiophysics

and computer technologies
Belarusian State University

Minsk, Belarus
alex.v.kurochkin@gmail.com

Vasili Sadau
faculty of radiophysics

and computer technologies
Belarusian State University

Minsk, Belarus
sadov@bsu.by

Aliaksandr Halavatyi
faculty of radiophysics

and computer technologies
Belarusian State University

Minsk, Belarus
alex.halavatyi@gmail.com

Abstract—Developing integrated knowledge-based
decision-support systems with persistent storage for
medical use usually requires creating multiple program
modules with a non-generic implementation that includes
a lot of duplicate and non-generalized components for
describing the dataset the system is designed to operate on.
As a solution, this paper proposes a semantic metamodel
definition for medical information systems based on
extensible entity and attribute descriptor format, along
with an integration framework that enables projecting
external data to common format, simplifies data access
by generating schema definitions and APIs for accessing
persistant storage, and eliminates the need for manual
user interface development by procedurally generating
form-based and list-based views.

Keywords—decision-support systems, medical informa-
tion systems, intelligent diagnosis, expert systems

I. INTRODUCTION

Medical information systems are an integral part of
modern healthcare all around the globe. Generally, any
kind of information system operating on patient or medi-
cal research data can be considered a medical information
system; however, there are several problems specific to
these kinds of systems: patient data handling, predictive
and intelligent diagnosis assistance, and system integra-
tion [1].

Working with patient data generally requires isolated
self-hosted database solutions with strong security mea-
sures to provide confidentiality, since healthcare data
is considered sensitive and private. On the other hand,
data sources themselves are generally numerous, loosely
connected, non-standardized, denormalized and weakly
structured, up to the point where it is possible to have
duplicate or even conflicting information regarding the
same patient.

Predictive and intelligent diagnosis assistance refers to
the problem of using various decision support algorithms
and predictive models. These methods are usually based
either on rules and strict expect knowledge formalization,

or on data analysis and supervised machine learning
algorithms. Either way, both kinds of systems require
a uniform way to access various kinds of data available
regarding a specific type of medical research or specific
pathology to evaluate performance relative to existing
data, and to train the model in case of supervised machine
learning.

Medical information system integration refers to the
problem of adding new types of decision support models
and handling data source changes in a way that is
transparent, while retaining the simplicity of data access
and generating predictions by medical staff using an
integrated user interface. Ideally, adding a new kind of
predictive model should be as simple as implementing
a set of contracts within a predefined framework, in
such a way that simple descriptive representation of the
system is sufficient to automatically connect to existing
data sources, provide necessary data access for predictive
and intelligent diagnosis assistance, and present a user
interface that can be used to both access relevant data
and generate predictions based on it.

This paper proposes an integration framework for
medical information systems based on descriptive se-
mantic metamodel definition, consisting of 4 main parts:
metamodel definition format itself, formal projection def-
inition for adapting existing data sources to metamodel-
compliant format, DDL generator for adapting meta-
model definition to persistent data store and generating
basic data access API, and user interface generation
algorithm that can be used to autogenerate form-based
and list-based views for data access based on metamodel.
The framework itself provides a set of extension points at
various stages: bootstrap stage to hook into initialization
lifecycle events and register metamodel definitions nad
projections, data link stage to modify the process of
accessing a specific persistent storage, interface gener-
ation stage to implement custom user interface logic,

237



and decision-support algorithm initialization stage to
add custom predictive or knowledge-based models and
integrate them with user interface.

II. METAMODEL DEFINITION

Data model usually refers to definitions basic entities
and attributes present in a set of data. For example,
in medical information system, an entity may refer to
general patient data, and consist of attributes such as
name, sex, birthdate, address of residence, etc. In turn, a
metamodel refers to metadata definitions that can be used
to define data models, i.e., data model allows to describe
the dataset with specific entity and attribute definitions,
and metamodel allows to describe data models using
generalized descriptors [2], [3]. Semantic metamodel is
a type of metamodel that is used to describe knowledge
base schemas in terms of semantic concepts and relation-
ships [4].

Proposed metamodel format is based on attribute de-
scriptors that, in turn, are grouped together under an
entity descriptor.

Attribute descriptor contains the following informa-
tion:
• attribute identifier – string-based identifier that must

conform to variable identifier rules (should consist
of alphanumeric characters and underscores, and
should not start with numeric character)

• attribute name – human-friendly string name for this
attribute, suitable for use as user interface field label

• attribute description – optional string value that
contains extended description of a specific attribute,
suitable for use as user interface field hint or de-
scription

• attribute type and attribute metadata – one of the
predefined types for this specific attribute and addi-
tional type information

• visibility flag – a flag indicating whether this par-
ticular attribute is present on form representations
and is able to be edited by user

The following types and metadata points are sup-
ported:
• string – string value, e.g., name, diagnosis, etc.

– single-line or multi-line
– validation regular expression

• number – floating-point or integer numeric value,
e.g., blood glucose level, CT item voxel density,
etc.

– floating point precision
– minimum value
– maximum value

• boolean – a simple true/false value, e.g., presence
or absence of a specific marker

– descriptions for true and false values
– preferred display style – as checkbox or as two

radio buttons

• single-value categorical – a value defined as a
single choice of multiple options, where each option
is represented by string-based value and optional
identifier, e.g., type of stroke, sex, etc.

– options defined as string values or id & value
tuples

– preferred display style – as single-value drop-
down or as radio button set

• multiple values categorical – a value defined as
zero or more choices of multiple options, where
each option is represented by string-based value
and optional identifier, e.g., ASPECTS scale visible
changes, or multiple related markers

– options defined as string values or id & value
tuples

– preferred display style – as multiple-value drop-
down or as checkbox set

• date, time or date with time – a value represented
as a UNIX timestamp

– minimum date
– maximum date
– minimum time
– maximum time

• attachment – an attribute representing a file with
unspecified format

– required extension
– maximum file size

• single reference – an attribute representing reference
to another entity, which is mapped to a multiple
reference from the other entity for one-to-many
relationship

• multiple reference – an attribute representing a
collection of references to another entity, which can
be mapped either to a single reference for many-to-
one relationship, or to multiple references from the
other entity for many-to-many relationship

Attribute metadata definition is extensible, i.e., the
set of properties described above can also include any
non-standard definitions that can be later handled using
various framework extension points. For example, it is
possible to provide additional “type” metadata for string
fields for implementing complex validation scenarios like
e-mail validation, and then add appropriate validation
handler that is able to parse required metadata and
provide necessary enhancements at runtime.

Entity descriptors include:
• entity identifier – string-based identifier that must

conform to variable identifier rules
• entity name – human-friendly string name for this

entity
• entity description – extended description of the

purpose and use cases for specific entity type
• mutability – an integer value indicating preferred

handling for attribute modifications: 0-mutability

238



entities are accessed and modified in-place, while
entities with mutability of n > 0 are modified by
adding an entry to modification log, up to n entries,
and accessed by reading latest version

• visibility flag – a flag indicating whether this partic-
ular entity type is visible as a separate entity on user
interface – this can be useful to hide utility entities
like many-to-many link tables when mapping to
relational databases

• attribute set – a collection of attribute descriptors
for this particular entity

An example of entity definition is as follows:

{
"identifier": "OctScan",
"name": "Optical Coherent Tomography

scan protocol",
"description": "OCT scan protocol,

containing results from parsed
tomography scan report and values
from analyzing regions of image
obtained by OCT scanner.",

"mutability": 0,
"visible": true,
"attributes": [
{

"id": "eye",
"name": "Eye",
"description": "Which eye is

examined during the scan",
"type": "boolean",
"typeMetadata": {
"trueDescription": "OS",
"falseDescription": "OD",
"displayStyle": "radio"

}
},
{

"id": "octTemp",
"name": "Temporal OCT",
"description": "Retinal thickness

in temporal side, as measured
by OCT",

"type": "number",
"typeMetadata": {
"precision": 3
"min": 0

}
},
{

"id": "patient",
"name": "Patient",
"description": "Patient ref",
"type": "ref",
"typeMetadata": {
"referenceType": "Patient"

}
}

]
}

Entity metadata definition is also extensible and can
include any number of additional properties; various
extension points throughout the framework can be used

to access these properties and implement custom logic.
Metamodel is represented as a set of entity descriptors
available in the system.

For the purposes of universal serialization and usage
in JavaScript language, the proposed metadata format
is implemented as YAML or JSON document. Because
of the extensible nature of YAML representation, it is
also possible to define additional attributes that can be
handled in extension points.

Metamodel can be passed to the framework as defini-
tion file in JSON or YAML format, or passed directly to
the framework runtime during the bootstrap stage. Exist-
ing data sources may be adapted to common format by
projecting individual data points to common metamodel
format [5].

III. ADAPTING METAMODEL DEFINITION TO
DATABASE SCHEMA DEFINITION

Metamodel entity and attribute descriptors are de-
signed to serve a storage-agnostic way of defining appli-
cation schema. At the same time, it is possible to create
database-specific adapters that convert metamodel-based
definitions to compatible database schema definitions,
and define an appropriate data access layer abstractions
for specific platform.

Primary usage scenario of proposed metamodel is or-
ganizing access to centralized data storage, as explained
earlier, that uses graph schema as a source. As such, an
adapter for Neo4j graph database is implemented [5].

Since Neo4j database is schema-optional, it is not
necessary to create schemas prior to manipulating actual
data. However, metamodel can be used to translate API
requests to database queries. For example, for OctScan
entity, request for retireval of entity list can be triggered
by API call, and metamodel definition can be used to
translate the request to appropriate Neo4j Cypher query
like this:

MATCH (x:OctScan)
RETURN (x.eye, x.octTemp)

The infromation about appropriate fields is taken di-
rectly from metamodel. Moreover, this approach allows
to enable query support for any field, where own field
constraints are translated to field MATCH clauses, and
reference field constraints are translated to vertex-edge
MATCH clauses. For example, retrieval of OctScan for
specific patient with id 42 can be translated to the
following request:

MATCH (x:OctScan)<--(p:Patient {id: 42})
RETURN (x.eye, x.octTemp)

In order to facilitate access to data storage itself, API
endpoints can be used. Typical CRUD endpoints for data
access can also be generated automatically based on
metamodel definition. Server-side API route registration

239



and handling is implemented using express framework
for Node.JS runtime.

As mentioned earlier, metamodel can be adapted to
other types of persistant storage solutions, including
knowledge bases, using information in metamodel as
metaknowledge.

The contracts of data access layer are abstract and
should be replacable with a suitable driver implemen-
tation. However, since some of the more exotic database
functions cannot (and should not) be abstracted away,
API also provides an extension point for accessing na-
tive underlaying database connection, while expecting
"external" calling code to be transformed to the format
compliant with metamodel definitions.

Besides working as API data access proxy and
database mapping layer, server-side APIs also call any
validation rule that are defined for the attributes in meta-
data. Validation API is also extendable, which means
it’s possible to register custom validators that would
be triggered based on specific information present in
attribute metadata.

IV. USER INTERFACE GENERATION

Metamodel contains sufficient information to automat-
ically generate a suitable form-based user interface for
creating and modifying a single entity, and create paged
list views for working with multiple entities [3].

In order to generate form interface, each attribute of
a specific entity is mapped to a specific form control.
For example, string fields are represented by single-line
or multi-line input fields, depending on field metadata,
while categorical fields are represented using radio but-
tons, checkboxes, etc.

References are represented as a special control type
that can be used to add refernce to existing entity,
create new entity in-place, or remove reference. Multiple
references are represented as inline lists.

List interface uses a simple table representation,
with columns corresponding to individual metamodel at-
tributes. Column order and visibility can also be adjusted.
Columns of most types also usually support custom
sorting.

Generated user interface is automatically connected to
API data access points for data retrieval and modifica-
tions. Using auto-generated interface allows to skip UI
development entirely and integrate generated interface di-
rectly, and is also guaranteed to correspond to metamodel
definition, thus making it much less error-prone. Custom
extension points exist that allow to modify and create
new rules for mapping attributes to specific control types.

Validation rules defined for each attribute can also
be duplicated on client side – this way, validation error
and hint appears as soon as the user finishes editing the
field or attempts to submit the form. It should be noted
that client-side validation does not replace server-side
validation completely, since it would still be possible to

submit incorrect data by directly accessing the API, so
it’s used only to enhance user experience.

V. CONCLUSION

Creating medical information systems and integrating
them into existing infrastructure can be greatly simplified
by using proposed metamodel-first approach. Using a
single metamodel definition across data access APIs, per-
sistent storage schema definitions and user interface gen-
eration can greatly simplify rapid prototyping of various
medical information systems, as well as supplement the
integration of new and existing decision-making models
and knowledge-based solutions. The extensibility of the
framework allows to adapt it to various types of medical
diagnosis, while unified projected data representation
greatly enhances the capabilities for interoperability with
knowledge sources and allows to create training and
validation datasets for various purposes.

REFERENCES

[1] B. S. Abu-Nasser. “Medical Expert System Survey,” International
Journal of Engineering and Information Systems (IJEAIS), vol. 1,
iss. 7, pp. 218–224, 2017

[2] C. Gonzalez-Perez, B. Henderson-Sellers, “Metamodelling for
Software Engineering,” Wiley, 219 p., 2008.

[3] A. Kurochkin. “Integrating medical data management and
decision-making systems with common metamodel,” International
Journal of Open Information Technologies, vol. 8, no. 12, pp. 49–
53, 2020.

[4] T. Tokuda, Y. Kiyoki, H. Jaakkola, N. Yoshida, “24. Information
Modelling and Knowledge Bases XXV (Frontiers in Artificial
Intelligence and Applications)”, IOS Press, 336 p., 2014.

[5] A. Kurachkin, V. Sadau. Agregatsiya i indeksirovanie neskol’kikh
istochnikov dannykh na osnove grafovoi modeli v bazakh dannykh
meditsinskikh ekspertnykh sistem [Aggregation and indexing of
multiple data sources based on a graph model in databases of
medical expert systems]. Informatika [Informatics], 2020. pp. 25-
35

Разработка интегрированных
медицинских информационных систем
поддержки принятия решений на основе

общей метамодели
А. В. Курочкин, В. С. Садов, А. И. Головатый

Разработка интегрированных основанных на знаниях си-
стем поддержки принятия решений с долговременным хра-
нилищем для использования в медицине требует создания
нескольких программных модулей с собственной реализаци-
ей, которая включает множество дублирующихся и необоб-
щенных компонентов для описания тех данных, которыми
оперирует система. В качестве решения этой проблемы в
работе предлагается описательное задание в виде семан-
тической метамодели для медицинских информационных
системах, в основе которого лежит расширяемый формат
дескрипторов сущностей и атрибутов, а также интеграци-
онную среду, которая позволяет приводить внешние данные
к общему формату, упрощает доступ к данным благодаря
генерации описаний схемы и программных интерфейсов для
доступа к долговременному хранилищу, а также устраняет
необходимость в ручной разработке пользовательского ин-
терфейса благодаря процедурной генерации представлений
на основе форм и списков.

Received 31.05.2021

240


