Ontological approach to the building of
semantic models of user interfaces

Sadouski MLE.
Belarusian State University of Informatics and Radioelectronics
Minsk, Belarus
sadovski @bsuir.by

Abstract—The article is dedicated to the description
of the ontological approach to the building of the user
interface based on the OSTIS Technology. The existing
approaches in the field of the building of user interfaces
are considered and an ontological model of support of the
building process is described.

Keywords—OSTIS, user interface, building of the user
interface, ontological approach, semantic model, server-
driven user interface

I. Introduction

In the modern world and the daily life of humans, there
is a growing need for the usage of computer systems. The
effectiveness of their usage depends largely on the user
interface, since it is the user interface as a component of
the system that is a way to interact with the user.

At present, the user interface is the most frequently
changed component of the system and is the part of the
application that requires the maximum number of updates.
Approximately 80% of the costs in the development
of computer systems are accounted for by the design,
testing and development of the user interface. At the
same time, almost all applications change their interface
after the release of the first version and the addition of
new functionality always affects the already developed
component. In addition, most modern systems should
be cross-platform for the convenience of users, which
implies the development of a web version of the interface
as well as mobile and desktop versions [1].

When building the user interface, the following prob-
lems remain relevant:

« the portability of user interfaces from one imple-
mentation platform to another is difficult;

o the lack of general principles for building user
interfaces limits the possibility of reuse of already
developed components and increases the time re-
quired to train the user in new user interfaces, which
also increases the development time and the cost of
designing and supporting user interfaces;

« in most systems, there is no possibility of modifying
the user interface during running;

« in most systems, there is no possibility of flexible
adaptation of the user interface to the needs of a
particular user.

Within the framework of this article, an ontological
approach to the building of semantic models of user
interfaces based on the OSTIS Technology is proposed
to solve the above problems. A technique for developing
a user interface is also proposed. The article elaborates
the ideas proposed in [2] and is aimed at more detailed
consideration of the problem of the automatic building
of the user interface, which is a key one to support
the flexibility and simplicity of improving the designed
interfaces.

The building of the user interface within the framework
of the proposed approach will be carried out on the
basis of its complete semantic model that contains a
precise specification of all the used concepts with the
help of a hierarchical system of formal ontologies, which
will ensure the integration of various aspects of the
user interface within a unified system, the ability of the
system to analyze the actions performed within the user
interface and its flexible configuration in the process of
operation. Thus, the development of the user interface
will be reduced to the building and improvement of its
semantic model.

II. Analysis of existing approaches

Currently, there are several basic approaches to gener-
ating a user interface, that consider its various aspects:

« an approach based on specialized description lan-
guages;

¢ a context-sensitive approach;

« a data-based approach;

« an ontological approach.

The approach based on specialized description lan-
guages assumes the representation of a particular user
interface in a platform-independent form. Examples of
interface description languages are UIML [3], UsiXML
[4], XForms [5] and JavaFX FXML [6]. The key idea of
the represented languages is to build a model of dialogues
and interface forms in a form independent of the used
technology, a description of visual elements as well as
the relations between them and their features for creating
a certain user interface.

The context-sensitive approach integrates the usage of a
structural description of the interface based on description

105

languages with a behavioral specification, that is, the
generation of the interface is based on user actions. As
part of the approach, transitions between different types
of a particular user interface are specified. Examples of
the implementation of this approach are CAP3 [7] and
MARIA [8].

A data-based, or a model-oriented, approach uses a
model of the subject domain as the basis for creating
user interfaces. Implementation includes JANUS [9] and
Mecano [10].

Existing ontological approaches are usually based on
the approaches presented earlier and use ontologies as a
way of representation of information about a particular
user interface. For example, by analogy with the approach
based on specialized description languages, the framework
[11] was proposed, which uses an ontology to describe the
user interface based on concepts stored in the knowledge
base. By analogy with the context-dependent approach,
within the framework of the article [12], the model
of the subject domain together with the user interface
model is used, associated with the ontology of actions.
The ActiveRaUL [13] project combines UIML with a
model-oriented approach. Within the framework of this
project, the ontological model of the subject domain
is correlated with the ontological representation of the
user interface. The approach proposed in [14] combines
application data with the user interface ontology for the
creation of a single description in the knowledge base for
the subsequent automatic generation of various interface
options for questionnaire applications with ready-made
user interaction scenarios. It is also worth noting the
articles [15] and [16], in which a concept is proposed,
that allows combining information that is homogeneous in
content into components of the interface model, liberating
the interface developer from encoding, and forming
information for each component of the interface model
using editors controlled by the corresponding ontology
models.

The principle of generating an interface based on
a declarative description is the basis of a number of
applied projects. For example, the mermaid [17] project
allows automatically generating diagrams based on their
description, and the rjsf [18] project allows generating
forms for user input. In addition, a general approach
to generating and displaying an interface based on its
description from the server side of the application can
also be found in industrial development under the terms
Server-Driven UI or Backend-Driven UI [19].

The disadvantages of existing solutions for generating
the user interface include the following:

o as a rule, the created models are specific to a
particular platform or a certain implementation of
the user interface, which hinders their reuse for other
purposes;

« solutions that offer a platform-independent descrip-

tion allow generating only simple user interfaces that
are limited in functionality (questionnaire applica-
tions, diagrams, etc.).
Among the represented approaches, the ontological one
is the most preferable for the following reasons:

« it allows integrating earlier proposed approaches due
to a single way of representation of knowledge;

« it allows creating the most complete description of
various aspects of the user interface. The composi-
tion of this description will be discussed in more
detail below;

« it simplifies the reuse of the interface by applying
a single representation of the interface model for
different platforms.

However, for existing solutions based on the ontolog-
ical approach, the problem of compatibility of various
ontologies within a unified system remains relevant as
well as the lack of the ability to adapt to user requests and
analyze their actions for independent improvement (as a
basis for such an analysis, the ontology of user actions
Serves).

III. Proposed approach

Based on the conducted analysis, an approach on
the ground of an ontological one is proposed, which
consists in creating a complete semantic model of the
interface, which will eliminate the shortcomings of
existing solutions. The key features of the approach are:

« the fixation of the interface description in the form
of an abstraction, regardless of the platform and
device;

« the presence of a complete semantic model of
the interface, that contains a “lexical” interface
description (a description of the components, from
which the interface is formed), a “syntactic” interface
description (rules for forming a correct and full
interface from its components) but also its semantic
description (knowledge of which entity the displayed
component a sign is). At the same time, the semantic
description also includes the purpose, scope of appli-
cation of the interface components and a description
of the interface user activity;

« the representation of the specification of the inter-
face generation tools and, if necessary, the tools
themselves in a common format with a description
of the interface through some unified knowledge
representation language;

« the reduction of development costs due to the reuse
of interface components;

« the reduction of development costs due to the usage
of a hierarchical structuring of the user interface
model, which allows independent development of
components;

« universality, that is, the possibility of using the
approach to build interfaces of any systems, regard-

106

less of their purpose. The unified principles of the
building of the interface will allow the user to easily
switch from using one system to another, significantly
reducing the cost of training;

« the integration of the semantic interface model with
other models within a unified system. For exam-
ple, integration with the user model (biographical
information, knowledge about the user’s behavior
within the system) will make the interface adaptive.
In this case, an adaptive interface is understood as an
interface that can adapt to a certain user or category
of users (which implies not only a change in the
visual component of the interface but also a change
in its internal functionality).

Thus, based on the above, the following demands can
be made to the technology, on the basis of which this
approach can be implemented:

« the technology should provide an opportunity to
describe various semantic models and their compo-
nents of various types of knowledge in a common
format;

« the technology should allow the simple integration
of various semantic models within a unified system;

« the technology should support a component approach
to creating semantic models.

Among the existing system design technologies, the
OSTIS Technology meets the specified requirements,
among the advantages of which it is also possible to
additionally highlight the presence of a basic set of
ontologies that can serve as the basis for the user interface
model being developed.

Thus, within the framework of this approach, in the
article, an option for implementing a framework for
building user interfaces is proposed, which is based on the
OSTIS Technology, which provides a universal language
for the semantic representation (encoding) of information
in the memory of intelligent computer systems, called
an SC-code. Texts of the SC-code (sc-texts) are unified
semantic networks with a basic set-theoretic interpretation.
The elements of such semantic networks are called sc-
elements (sc-nodes and sc-connectors, which, in turn, can
be sc-arcs or sc-edges, depending on the directivity). The
SC-code alphabet consists of five main elements, on the
basis of which SC-code constructs of any complexity are
built, as well as more particular types of sc-elements (for
example, new concepts) are introduced. The memory that
stores SC-code constructs is called semantic memory or
sc-memory [20].

The architecture of each ostis-system includes a plat-
form for interpreting semantic models of ostis-systems as
well as a semantic model of the ostis-system described
using the SC-code (sc-model of the ostis-system). In turn,
the sc-model of the ostis-system includes the sc-model of
the knowledge base, the sc-model of the problem solver
and the sc-model of the interface. The principles of the

structure and design of knowledge bases and problem
solvers are discussed in more detail in [21] and [23],
respectively. Within this article, the sc-model of the user
interface will be considered, which is included in the
sc-model of the interface. Its principles were described in
the article [2], the development of which is this article.

The SC-code representation languages include:

o SCg-code — one of the possible ways of visual
representation of SC-texts. The basic principle that
underlies the SCg-code is that each sc-element is
assigned a sc.g-element (graphical representation);

¢ SCs-code — a string (linear) version of the SC-
code representation. It is designed to represent sc-
graphs (SC-code texts) in the form of sequences of
characters;

« SCn-code — a string non-linear version of the SC-
code representation. The SCn-code is designed to
represent sc-graphs in the form of sequences of
characters formatted according to given rules, in
which basic hypermedia tools, such as graphic
images as well as tools of navigation between parts
of sc.n-texts, can also be used [2].

Within the framework of this article, fragments of SCg-
and SCn-codes [24] will be used, which are simultane-
ously fragments of the source texts of the knowledge
base, that are understandable to both a human and to a
machine. This allows making the text more structured
and formalized while maintaining its readability.

IV. Problem definition

The user interface within the framework of the pro-
posed approach is a specialized ostis-system focused on
solving interface problems and that includes a knowledge
base and a problem solver of the user interface. The
general architecture of the ostis-system is shown in figure
1.

ostis-system

sc-model of the ostis-system

sc-model of the
problem solver

sc-model of the
knowledge base

T N A AN N

| sc-memory |

<t ir

| platform for interpreting sc-models |

sc-model of the
interface

Figure 1. The architecture of the ostis-system

To solve the problem of building a user interface, the
user interface knowledge base requires the presence of an
sc-model of user interface components, interface actions
as well as the classification of user interfaces in general,

107

as shown in figure 2. When designing the interface, it is
proposed to use a component approach, which assumes
the representation of the entire application interface in
the form of separate specified components that can be
developed and improved independently. It is important
that, as a result of the building, the user interface should
be not only static (visually formed) but also dynamic
(with the ability to perform various actions, including
those initiated by the user).

sc-model
of the user interface

sc-model of the knowledge base

sc-model
sc-model of sc-model sc-model of the pmblem
the classification | of the user | pf interface] solver
of user interface user
interfaces components actions

Figure 2. The structure of the sc-model of the user interface

The basis of the sc-model of the ostis-system knowledge
base is a hierarchical system of subject domains and
their corresponding ontologies. Accordingly, within the
framework of the proposed approach, it is necessary to
develop:

« the Subject domain of user interfaces;

« the Subject domain of user interface components;

« the Subject domain of interface user actions.

The problem solver is a hierarchical system of agents of
knowledge processing in semantic memory (sc-agents),
which interact with each other exclusively by specifying
the actions they perform in the memory. An sc-agent is
a certain subject that can perform actions in sc-memory,
which belong to a certain class of autonomous actions.
An autonomous action is an action that is performed
regardless of whether the specified action is part of the
decomposition of a more common action [22]. To build a
user interface, it is necessary to implement the following
agents:

« the Agent of interpretation of the sc-model of the

user interface knowledge base;

« the Agent of processing of user actions.

V. Sc-model of the knowledge base
A. Subject domain of user interfaces

The subject domain of user interfaces includes the
classification of user interfaces.

user interface

D command-line interface

D graphical user interface
D WIMP-interface

D SILK-interface

= [(Speech — peub, Image — o6pa3, Language —
sa3bIK, Knowledge — 3HaHue)]

D natural-language interface
D speech interface

A user interface is one of the most important compo-
nents of a computer system. It is a set of hardware and
software tools that provide information exchange between
the user and the computer system.

A command-line interface is a user interface, in which
information is exchanged between a computer system and
a user by writing text instructions or commands.

A graphical user interface is a user interface, in which
information is exchanged between a computer system and
a user using the graphical components of a computer
system.

A WIMP-interface is a user interface, in which infor-
mation is exchanged between a computer system and a
user in the form of a dialogue using windows, menus and
other controls.

A SILK-interface is a user interface that is closest to the
natural form of human communication. The computer sys-
tem initiates commands independently, analyzing human
speech and finding key phrases in it. The result of running
commands is converted into a form that is understandable
to a human, for example, into a natural-language form or
an image.

A natural-language interface is a SILK-interface, in
which the exchange of information between a computer
system and a user occurs through a dialogue. The dialogue
is conducted in one of the natural languages.

A speech interface is a SILK-interface, in which
information is exchanged through a dialogue, during
which the computer system and the user communicate
using speech. This type of interface is the closest to
natural communication between humans.

B. Subject domain of user interface components

The subject domain of user interface components
describes the structure and features of the visual represen-
tation of user interface components. The Ui20nt ontology
[26] was taken as the basis of this subject domain.

A user interface component is a sign of a fragment of
the knowledge base, that has a certain form of external
representation on the screen.

user interface component
= decomposition*:
{e atomic user interface component
e non-atomic user interface component

}

An atomic user interface component is a user interface
component that does not contain other user interface
components in its structure.

A non-atomic user interface component is a user
interface component that consists of other user interface
components.

108

Below is the classification of the components:

user interface component
D presentation user interface component
D output
D image-output
D graphical-output
D chart
D map
D progress-bar
video-output
sound-output
text-output
D headline
D paragraph
D message
D decorative user interface component
D separator
D blank-space
D container
menu
menu-bar
tool-bar
status-bar
table-row-container
list-container
table-cell-container
tree-container
labeled-group
tab-pane
spin-pane
tree-node-container
scroll-pane
window
D modal-window
D non-modal-window
D interactive user interface component
D data-input-component
D data-input-component-with-direct-

uuu

VRV VR VAVEVEVAVRVEVREVRVRVRY

feedback
D text-input-component-with-direct-
feedback

D multi-line-text-field
D single-line-text-field

D slider
D drawing-area
D selection-component
D selection-component-multiple-
values
D selection-component-single-
values
D selectable-data-representation
check-box

radio-button
toggle-button
selectable-item

Uuuuu

D data-input-component-without-direct-
feedback
D spin-button
D speech-input
D motion-input
D presentation-manipulation-component
D activating-component
D continuous-manipulation-component
D scrollbar
D resizer
D operation-trigger-component
D command-selection-component
D button
D menu-item
D command-input-component

A presentation user interface component is a compo-
nent of the user interface that does not imply interaction
with the user.

A decorative user interface component is a user
interface component designed to style the interface.

A container is a user interface component, whose task
is to place a set of components included in its structure.

A window is a separate screen panel that contains
various elements of the user interface. Windows can be
placed on top of each other.

A modal-window is a window that blocks the user
experience with the application until the user closes the
window.

A non-modal-window is a window that allows the user
to interact with other windows without having to close
this window.

An interactive user interface component is a user
interface component that is used to interact with the
user.

A data-input-component is a user interface component
designed for input of information.

A presentation-manipulation-component is a user in-
terface component designed to represent information and
interact with the user.

An operation-trigger-component is a user interface
component that requests the user to perform some action.

A non-atomic component is connected to its constituent
components using the decomposition™* relation. Here is
an example of a description of a non-atomic component
of the main window. The appearance of the display of
this component is shown in figure 3.

The formalization of this component in the SCn-
language looks like in the following manner:

MainPage
€ window
= decomposition*:
{® Navigation
€ non-atomic user interface component
= decomposition*:

109

il thit 3 11 g0y
of your trvels

122020 0STIE

Figure 3. An example of the display of a non-atomic component

{e mainMenu

€ menu
= decomposition*:
{e iteml

€ menu-item
e item2
€ menu-item
e switch
€ toggle-button
}

e languageSelect
€ selection-component-single-

values
e googleAuth
€ button

}
e HistoryBlock
€ non-atomic user interface component
o MainBlock
€ non-atomic user interface component
= decomposition*:
{e mainWindow
€ window
e tool-bar
= decomposition™:
{e printButton
€ button
e resizeButton
€ button
e linkButton
€ button
e searchinput

€ single-line-text-field

}

e Footer
€ non-atomic user interface component

The subject domain of user interface components also
contains a description of the properties of the components.

As part of the work on the knowledge base of the
IMS.ostis Metasystem [24], the subject domain of spatial
entities and their forms was created. The IMS.ostis
Metasystem is an intelligent metasystem built according
to the standards of the OSTIS Technology and aimed at
usage by ostis-system engineers — at supporting the design,
implementation and updating (reengineering) of ostis-
systems — and at developers of the OSTIS Technology —
at supporting collective activities for the development of
standards and libraries of the OSTIS Technology. In the
subject domain of spatial entities and their forms, there
are descriptions of such concepts as:

« spatial entity;

o form;
coordinate system;
Cartesian coordinate system;
« two-dimensional Cartesian coordinate system;
point of reference;
« point;
e segment;
« length;
« thickness;
« height;
o width;
« rectangle.

The subject domain of user interface components inter-

110

sects with the subject domain of spatial entities and their
forms and adds a set of concepts to describe the properties
of components, part of which is given below.

Text* is a binary relation that connects a user interface
component to a file that contains the text of the user
interface component.

Color is a parameter of the user interface component
that determines its color.

Text color is a parameter of the user interface compo-
nent that determines the color of its text.

Text size is a parameter of the user interface component
that determines the size of its text.

Text font is a parameter of the user interface component
that determines the font of its text.

The deactivation property is a logical parameter of a
user interface component that can be set to inhibit the
usage of the component until a certain action is performed.

The maximum number of characters is a parameter
of the text-input-component-with-direct-feedback compo-
nent, which sets the maximum number of characters that
can be input by the user.

Thus, within the framework of this subject domain,
both component classes and their instances are described
as well as the properties of components for visualization,
regardless of the platform. At the same time, these
components and properties are easily changeable and
extensible.

C. Subject domain of interface user actions

The Subject domain of interface user actions contains
a specification of user actions, which can be performed
for the components of the user interface. The Ui2Ont
ontology [26] was used as the basis of this subject domain.

An interface user action is a minimally meaningful
fragment of some activity of the user, performed through
the interface.

Next is the classification of interface user actions.

interface user action
D mouse-action
D mouse-scroll
D mouse-scroll-up
D mouse-scroll-down
mouse-hover
mouse-drop
mouse-click
D mouse-double-click
D mouse-single-click
D mouse-gesture
D mouse-unhover
D mouse-drag
D speech-action
D keyboard-action
D press-function-key
D type-text

Uuuuv

D tangible-action
D touch-action
D touch-click
D touch-single-click
D touch-double-click
D touch-gesture
D one-fingure-gesture
D multiple-finger-gesture
D touch-drop
D touch-drag
D pen-base-action
D touch-function-key
D draw
D write-text

A mouse-hover is the interface user action, which
corresponds to the appearance of the mouse cursor within
the user interface component.

A mouse-drop is the interface user action, which
corresponds to dropping some component of the user
interface within another user interface component using
the mouse.

A mouse-gesture is an interface user action, which
corresponds to the performance of a certain gesture
through the movement of the mouse.

A mouse-unhover is an interface user action, which
corresponds to the exit of the mouse cursor outside the
framework of the user interface component.

A mouse-drag is an interface user action, which
corresponds to dragging a user interface component with
the mouse.

A tangible-action is an interface user action performed
using taction.

A touch-action is an interface user action performed
using the sensor.

A touch-gesture is an interface user action, which
corresponds to the performance of a certain gesture with
the movement of fingers on the screen of the sensor.

A one-fingure-gesture is an interface user action, which
corresponds to the performance of a certain gesture by
moving one finger on the screen of the sensor.

A multiple-fingure-gesture is an interface user action,
which corresponds to the performance of a certain gesture
by moving several fingers on the screen of the sensor.

A touch-drop is an interface user action, which cor-
responds to dropping a certain component of the user
interface within another component of the user interface
using a sensor.

A touch-drag is an interface user action, which cor-
responds to dragging a certain component of the user
interface using a sensor.

A pen-base-action is an interface user action performed
using a pen on a graphics tablet.

A touch-function-key is an interface user action, which
corresponds to pressing the function key of the graphic
tablet with a pen.

111

The above user actions are common to all systems. It
should be noted that the interface user action, as a rule,
initiates some internal action of the system.

internal action of the system
D internal action of the ostis-system

In the case of ostis-systems, as part of the work on the
knowledge base of the IMS.ostis Metasystem [24], the
Subject domain and ontology of actions, problems, plans,
protocols and methods implemented by the ostis-system in
its memory as well as internal agents that perform these
actions was allocated. A fragment of this subject domain
is shown below.

internal action of the ostis-system
= [an action in sc-memory]

:= [an action performed in sc-memory]

Each internal action of the ostis-system denotes some
transformation performed by some sc-agent (or a group
of sc-agents) and focused on the transformation of sc-
memory.

action in sc-memory

action in sc-memory initiated by a question
action of editing the ostis-system knowledge base
action of setting the mode of the ostis-system
action of editing a file stored in sc-memory
action of interpreting a program stored in
sc-memory

Uuuuuu

An action in sc-memory initiated by a question is an
action aimed at forming an answer to the raised question.

To define an action that is initiated when interacting
with the user interface, the action initiated by the user
interface* relation is used.

action initiated by the user interface*
€ quasi-binary relation
€ oriented relation
= first domain*:
user interface component \J user interface action
class
= second domain*:
class of internal actions of the system

The first component of the binding of the action
initiated by the user interface* relation is a binding,
the elements of which are an element of the set of user
interface components and an element of the user interface
action class set. The second component is an element of
the class of internal actions of the system set. An example
of using this relation is shown in figure 4.

Thus, within the framework of these subject domains,
interface user actions and internal actions of the system
are described. These actions are basic and can be easily
expanded and refined.

user interface component

'lv action initiated by the user interface™
button_ l'o ‘\<®1 F
e e —

— @
Aaction. update concepts
(]
mouse-single-click +

user interface action class

class of imternal actions of the system

Figure 4. An example of using the action initiated by the user interface*
relation

The integration of the abovementioned ontologies
allows implementing an approach, within the framework
of which:

« all the components of the user interface correspond
to a certain fragment of the knowledge base. It allows
addressing various questions about these components
to the system. As examples of such questions, the
following ones can act: “what class of components
does the specified component belong to?”, “what is
the specified component designed for?”, “what does
the specified component consist of”, etc.;

« the classification of components allows the further
building of the user interface taking into account the
knowledge about them. For example, the presentation
user interface component can be highlighted in one
color and the interactive user interface component —
in another;

e it is possible to accumulate the results of the
interface user activity to further adapt the interface
for them. Changing the interface is reduced to
changing its sc-model, which can be carried out on
the basis of logical rules, which are also described
in the system knowledge base. For example, the
system may contain a logical rule for adding the
most frequently initiated interface user actions to a
separate component;

« it is possible to analyze the efficiency of user actions
for further improvement of the interface (for example,
several interface actions performed by the user in a
row can be replaced by one);

« the user will have the opportunity to receive answers
to questions about the organization of interface
activities. Examples of such questions include: “what
interface actions can be performed for the spec-
ified component?”, “what interface actions were
performed the most often?”, etc.

VI. Sc-model of the problem solver

From the point of view of processing the sc-model of
the user interface knowledge base, the following problems
should be solved:

112

« the interpretation of the sc-model of the user inter-
face knowledge base (building the user interface);
« the processing of user actions.

User interface problem solver
< decomposition of an abstract sc-agent*:
{ e Agent of interpretation of the sc-model of the
user interface knowledge base
e Agent of processing of user actions

}

An Agent of interpretation of the sc-model of the
user interface knowledge base accepts an instance of
the user interface component for displaying as an input
parameter. In this case, the component can be either
atomic or non-atomic (for example, a component of the
main application window). The result of the operation of
the agent is a graphical representation of the indicated
component, taking into account the used implementation
of the platform for interpreting semantic models of ostis-
systems.

The operation algorithm of this agent is as follows:

« the input component type (atomic or non-atomic) is

checked;

« if the component is atomic, then to display its
graphical representation based on the properties
specified for it. If this component is not included
in the decomposition of any other component, to
complete the performance. Otherwise, to determine
the component, the decomposition of which includes
the considered component, apply its properties to
the current atomic component and start processing
the found non-atomic component, going to the first
item;

o if the component is non-atomic, then to check
whether the components, into which it was decom-
posed, were displayed. If yes, then to complete the
performance, otherwise to determine the component
from the decomposition of the non-atomic com-
ponent being processed, which has not yet been
displayed, and start processing the found component
by going to the first item.

An agent of processing of user actions is a non-atomic
agent that includes many agents, each of which processes
user actions of a certain class (for example, an agent of
processing a mouse click action, an agent of processing
a mouse drop action, etc.). The agent reacts to the
appearance of an instance of an interface user action
in the knowledge base of the system, finds an internal
action class associated with it and generates an instance
of this internal action for subsequent processing.

VII. Implementation of the proposed approach

The current implementation of the sc-model interpre-
tation platform is web-oriented [27].

Taking into account the features of the platform and for
the possibility of integrating the proposed approach with

existing solutions in the field of building user interfaces,
it is proposed to implement the agent of interpretation of
the sc-model of the user interface knowledge base as a
non-atomic agent that is decomposed into the agent of
translation of the sc-model of the user interface knowledge
base into a format compatible with existing solutions
and the agent of displaying the specified format in the
graphical representation of the user interface.

It is proposed to use the JSON format as an interme-
diate description format for a number of reasons:

o it is the most popular format for data transmission

and storage in modern systems;

« the compact and simple syntax;

« the simplicity of making changes;

« the simplicity of transmission and processing.

Thus, an additional agent of translation of the descrip-
tion of the user interface component from the sc-model to
the JSON format is introduced. As an input parameter, this
agent accepts an instance of the translation user interface
component in the JSON format. The JSON description
is formed by recursively processing the description of
components from non-atomic to atomic ones.

The Agent of displaying the specified format in the
graphical representation of the user interface is non-
atomic and is decomposed into a set of agents that
perform displaying for various interpretation platforms
(web, mobile, desktop computer platforms, etc.). As input,
this agent accepts a description of the user interface
component in the JSON format. The result of the
operation of the agent is a graphical representation of the
user interface.

For the possibility of changing the sc-model of the user
interface, editing tools such as the SCg-, SCs- and SCn-
editors are implemented within the OSTIS Technology.
So, the framework proposed within the approach includes
three key parts:

o an sc-model of the user interface;

o tools of visualization of the sc-model of the user
interface;

« tools of editing of the sc-model of the user interface.

The general structure of the framework is shown in figure
5.

VIII. Technique of developing user interface components

One of the advantages of the proposed approach is
the accumulation of frequently used components. To do
this, it is supposed to create a library of components
with preset properties, which is included in the subject
domain of user interface components. The components
included in the library are platform-independent (they
can be visualized regardless of the used interpretation
platform).

The process of creating an instance of a user interface
component can be described as follows:

113

ostis—sysiem

=

User Interface Onmlug
/
('--f \,|5L:1|:1‘|l|un > /'l;]mology EGIID
% gents . r//
= s = =
/150N \
\ﬁlﬁcificar_i_ry

/la__ i ,,Lm_\
\\' //’— \\ 4

‘eb frontend | (obile) (ktoy

o S S (. g

Figure 5. The structure of the framework for generating the user
interface

« to check whether the class of the necessary com-
ponent is present in the subject domain of the user
interface components;

« if it is not available, it is necessary to create a class
of the necessary component, specifying the set of
properties for it;

« to check whether there is a description of the instance
of the required component in the component library;

« if it is missing, it is required to supplement the
component library with a description of a new
instance of the component with preset properties;

« if necessary, to create a new instance of the class of
the necessary component, setting it certain properties
and actions based on the ontology of the subject
domain of a particular system;

« to run the agent of visualization of the component
instance for the used interpretation platform.

The described process is shown in figure 6.

Subject ™, .
| Dowain | \ ‘01 .luo\ /
“Ontologi — A
T a

properties,

P “Library

i, ofuser interface)} Platform-
N - 4
‘»._J;xiJEpL_‘-'lil';lg,—/ Independent Laver

concrete
Y

T e display
o e
{ Conerete \'| properties,
\ companent / concrefe

— actious

Vignalization agents

e N Platform-Specific
ion of the \ Layer

'Lw specific [;i.—,n';»rny

Figure 6. The process of creating an instance of a user interface
component

IX. Examples of the framework operation

Next, we will give some examples of the description
of interface components in the knowledge base of the
system in the SCg-language and the result of their
visualization. Figure 7 shows the formalization of the
“button” component, figure 8§ shows the result of its display
in the web interface. In figures 9, 11, the description of
the “text field” and “form” components is presented, in
figures 10, 12 is their display, respectively.

fOi’ICEpI X
— e

e
@—::p) number M 2
1 25

—T
nrel_dp number nrel_pt
~e1—">0,
cunrepl_bul.'on @4—@
Cconcepr_texi_size
ciriceit y concept_color

concept_disabled
nrel_16bit_color

= #EFBHC]

RS
NS
button_1 |—
. O=—0
concept_width | ® concept_height
r‘___@ | nrel_px
nrel_px @
O < @ 50 number
100 number

® — @ IRBI}D[D |
nrel_text
Y
9
concept_font

Figure 7. The formalization of the “button” component

Send

Figure 8. The result of the display of the “button” component in the
interface

X. Conclusion

In this article, an ontological approach to the building
of semantic models of user interfaces based on the OSTIS
Technology is proposed.

The analysis of existing approaches to the building of
user interfaces is carried out, the structure and technique
of building user interface components for the framework
proposed within the approach are presented. Examples of
the ontological description of the interface components

114

lumubﬂ'
o
@ nrel_pt
concepl_x @ - @
concept_y
T L concept_text_size
|
nrei_dp ||
concept_single_line_text_field
@ | g) ® pt_single_line_text_fi
: 0 @ arel_t6bit_color
Y P concepl_celar
O=—
45
6 s
— L. ,
concept_width || textField] @-‘——@
concept_height
mrir#pr_fnn[@
@ ~Q
:! nrel_px @ Y nrel_px
Y i O
Oq_ 30 number
200 e —
nrei_placeholder

| Arin]l MT I

Figure 9. The formalization of the “text field” component

Figure 10. The result of the display of the “text field” component in
the interface

and the results of their visualization using the developed
tools for the automatic building are also presented.

In contrast to the existing approaches, the proposed
approach will allow:

« taking into account the semantics of the user inter-
face components when building it;

« generating questions to the system related to the user
interface;

« taking into account the history of the interface user
activity to improve the quality of their work with
the system;

« rebuilding the user interface by changing its model
during the operation of the system.

At this stage, according to the proposed approach, the
following were implemented:

« a fragment of the subject domain of user interface
components;

« a fragment of the subject domain of interface user
actions;

« an agent of translation of the description of the user
interface component from the sc-model to the JSON
format;

« an agent of displaying the JSON format in a graph-
ical representation of the user interface for a web
platform.

As part of further work, it is planned to expand specified
subject domains and implement visualization agents for
other platforms.

Acknowledgment

The author would like to thank the Department of
Intelligent Information Technologies of the Belarusian
State University of Informatics and Radioelectronics for
the help and valuable comments.

References

[1] Data-driven UI: unlimited power [Electronic resourse]. Access mode:
https://mobius-piter.ru/en/2018/spb/talks/v96lokugwe8cwggio8ois/ Date of
access: 21.05.2021.

Boriskin A. S., Sadouski M. E., Koronchik D. N., Zhukau I. I., Khusainov
A. F. Ontology-Based Design of Intelligent Systems User Interface. Otkry-
tye semanticheskie tekhnologii proektirovaniya intellektual’nykh system
[Open semantic technologies for intelligent systems], Minsk, 2017, pp. 95—
106

Abrams M., Phanouriou C., Batongbacal A. L., Williams S. M., Shuster
J. E. UIML: An appliance-independent XML user interface language. 99
Proceedings of the eighth international conference on World Wide Web,
1999, pp. 1695-1708

Limbourg Q. USIXML: A User Interface Description Language Supporting
Multiple Levels of Independence. Matera, M. and Comai, S. (eds.) ICWE
Workshops, Rinton Press, 2004, pp. 325-338

[5] XForms 1.1 [Electronic resourse]. Access
https://www.w3.org/TR/xforms Date of access: 25.05.2021.
Introduction to FXML [Electronic resourse]. Access
https://openjfx.io/javadoc/12/javafx.fxml/javafx/fxml/doc-
files/introduction_to_fxml.html Date of access: 23.05.2021.

Van den Bergh J., Luyten K., Coninx K. CAP3: Context-Sensitive Abstract
User Interface Specification. Proceedings of the 3rd ACM SIGCHI sympo-
sium on Engineering interactive computing systems — EICS’11, 2011, pp.
31-40

Paterno F., Santoro C., Spano L.D. Maria: A Universal, Declarative,
Multiple Abstraction-Level Language for Service-Oriented Applications in
Ubiquitous Environment. ACM Trans. Comput. Interact. 16, 2009.
Balzert H., Hofmann F., Kruschinski V. The JANUS Application Develop-
ment Environment—Generating More than the User Interface. Computer
Aided Design of User Interfaces, Vol. 96, 1996, pp. 183-206

Puerta A.R., Eriksson H., Gennari J.H., Musen M.A. Beyond data models
for automated user interface generation. In Proceedings British HCI'94,
1994.

Liu B., Chen H., He W. Deriving user interface from ontologies: A model-
based approach. Int. Conf. Tools with Artif. Intell. ICTAI, 2005, pp. 254—
259

Gaulke W., Ziegler J. Using profiled ontologies to leverage model driven
user interface generation. 7th ACM SIGCHI Symp. Eng. Interact. Comput.
Syst. — EICS 15, 2015, pp. 254-259

Sahar A., Armin B., Shepherd H., Lexing L. ActiveRaUL : Automatically
generated Web Interfaces for creating RDF data, 2013.

Michael Hitz, Thomas Kessel Using Application Ontologies for the Au-
tomatic Generation of User Interfaces for Dialog-Based Applications. Re-
search and Practical Issues of Enterprise Information Systems, CONFENIS
2016

Gribova V. V., Cherkezishvili N. N. Avtomatizaciya razrabotki
pol’zovatel’skih interfeysov s dinamicheskimi dannymi [Automating
the development of user interfaces with dynamic data]. Otkrytye
semanticheskie tekhnologii proektirovaniya intellektual’nykh system
[Open semantic technologies for intelligent systems], 2011, pp. 287-292
(in Russian)

Gribova V.V, Tarasov A.V. Generator koda pol’zovatel’skogo interfejsa,
upravlyaemyy ontologiey. Artificial Intelligence, Vol. 4, 2005, pp. 457 —
464 (in Russian)

Mermaid documentation [Electronic resourse]. Access
https://mermaid-js.github.io/mermaid Date of access: 18.04.2021.
React Json Schema Form [Electronic resourse]. Access mode: https:/rjsf-
team.github.io/react-jsonschema-form/ Date of access: 20.04.2021.
Exploring Server-Driven UI [Electronic resourse]. Access mode:
https://betterprogramming.pub/exploring-server-driven-ui-cf67b3da919
Date of access: 22.04.2021.

[2

3

[4

mode:

[6

mode:

[7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17] mode:
[18]

[19]

115

C
text field first name,

concept_mon_madal_window

concapt_single_line_text field

concapt_button(@

rral_toxt

gt -]

O =

farmi

srral_subidividing

[

labui_last_name

¥
o3
\. L9,

rout_fiald

cancept_taxt_ coler

2
concwpt_height roxt_fiald_lust_name

9 -0
|
¥
D

'lmw 16t colo

concept_width &
4 '
8
mrel_pn |
b4 rirel_px
(0] ¥
510 O=-—@
1 34 ramber —
@.—mma..r ¥
@———=0

nuember 34

nrel_toxt,

=T

concapt_width)

b
uumm_z" 0
| plabel_talophone
—
‘el _px i el p
—] 070 @

ki

farmisar

fabeal_first_nama

l

==

Figure 11.

First name

Last name

Telephone

Figure 12. The result of the display of the “form” component in the
interface

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Golenkov V., Guliakina N., Davydenko I., Eremeev A. Methods and tools
for ensuring compatibility of computer systems. Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open semantic tech-
nologies for intelligent systems], 2019, pp. 25-52

Davydenko I. Semantic models, method and tools of knowledge bases
coordinated development based on reusable components. Otkrytye se-
manticheskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems], 2018, pp. 99-118
Shunkevich D. Ontology-based Design of Knowledge Processing Machines.
Otkrytye semanticheskie tekhnologii proektirovaniya intellektual’ nykh sys-
tem [Open semantic technologies for intelligent systems], 2017, pp. 73-94
Shunkevich D. Agent-oriented models, method and tools of compatible
problem solvers development for intelligent systems. Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open semantic
technologies for intelligent systems], 2018, pp. 119-132
IMS.ostis ~ Metasystem [Electronic resourse].
http://ims.ostis.net/ Date of access: 03.06.2021.
Golenkov V. [et al.] Principles of organization and automation of the seman-
tic computer systems development. Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technologies for
intelligent systems], 2019, pp. 53-90

Paulheim H., Probst F. UI20nt — A Formal Ontology on User Interfaces
and Interactions. Semantic Models for Adaptive Interactive Systems, 2013,
pp. 1-24

OSTIS Web Platform [Electronic resourse]. Access mode:
https://github.com/ostis-dev/ostis-web-platform Date of access: 25.04.2021.

Access mode:

Y

[Eree]

The formalization of the “form” component

OHTOJIOTHYECKHI TIOAX0 K MOCTPOEHHUIO
CEeMAaHTHYEeCKHX MojeJiell MoJIb30BaTeJdbCKHX
uHTepdercon
Caposcknii M. E.

B pa60Te MnpeajaraeTcs OHTOJIOTMUECKHI MOAXOI K TIOCTpoOE-

HUIO CEMaHTHYECKHX MOJeJeil MoJb30BaTebCKUX UHTepdeiicoB

Ha

ocHoBe Texunomormm OSTIS.
[IpoBeneH aHanM3 CyIIECTBYOIIMX MOAXOLOB K MOCTPOESHHIO

MOJIb30BaTENbCKAX MHTEp(EHCoB, IPUBEAEHA CTPYKTypa U Tpej-
CTaBJIeHa METOJMKA CO3/1aHHsl KOMIIOHEHTOB T0JIb30BaTEIbCKOTO
uHTepelica I MpeylaraeMoro B paMKax Hoaxona (ppeiMBop-

Ka.

Tak:ke mpeacTaBieHbl MPUMEPl OHTOJIOTMYECKOr0 OMUCAHUS

KOMITOHEHTOB MHTep(deiica U pe3ybTaThl UX BHU3YaIU3alUH C
HOMOIIBI0 Pa3pabOTaHHBIX CPEJCTB aBTOMATHYECKOTO MOCTpOe-
HUSI.

B orimMume oT CyIIecTBYIOIIMX MOIXOAOB IIpe]iaraeMblii

oaxoa IO3BOJIUT:

e YUYMTHIBaTh CEMAHTHKY KOMIIOHEHTOB IOJIb30BATEIbCKOTO
uHTepgelica Npu ero NOCTPOEHUY;

(opmHpoBaTh BOMPOCH K CUCTEME, CBSI3aHHbBIE C IOJIb30-
BaTeJILCKUM HHTepdeiicoM;

YUUTBIBaTh UCTOPHIO MHTEPENHCHOI AEATENTBHOCTH MOMb30-
BaTeJIsl JUIsl TIOBBIIICHNS Ka4ecTBa ero paboThl ¢ CHCTEMOIT;
nepecTpanBaTh MOJIb30BATEILCKUI MHTEp(ENC MyTeM U3-
MEHEHHsI er0 MOJEJHU B Ipolecce padoThl CUCTEMBIL.

Ha ngaHHOM 3Tare coracHo mpeiaraeMoMy IHMOAXOAy ObUTH

peajin30BaHbI:

o (parMeHT NpeAMETHOI 00J1aCTH KOMIIOHEHTOB I10JIb30Ba-
TEJbCKUX UHTEPQENCOoB;

(pparmeHT npeamMetHoi 06acTH UHTEP(PEHCHBIX AeiicTBUI
HIOJIb30BaTeJIs;

areHT TPaHC/IALUN ONMUCAHUs KOMIIOHEHTA IOJIb30BaTelb-
ckoro uHTepdeiica u3z sc-monenu B JSON ¢opmar;
areHT ortoOpaxenuss JSON ¢opmara B rpacduueckoe
NpeJICTaBJIeHNe MOJIb30BaTeNIbCKOro NHTepdeiica s web-
1aT¢OPMBIL.

B pamkax panpHeiimeili paGoThl IUIAHUPYETCsl pacIIMpeHHe

YKa3aHHBbIX MPEAMETHBIX obJiacTeit u peamzanus areHToB BU3Y-

aNM3aly Ui ApYTuX 1miaTgopm.

116

Received 01.06.2021

