
Ontological approach to the development of
hybrid problem solvers for intelligent computer

systems
Daniil Shunkevich

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: shunkevich@bsuir.by

Abstract—The paper considers an ontological approach
to the development of problem solvers for intelligent com-
puter systems based on the OSTIS Technology. The formal
interpretation of such concepts as action, problem, class
of actions, class of problems, method, skill is clarified,
which together made it possible to define on their basis
the concepts of a problem-solving model and a problem
solver. The results obtained will improve efficiency of the
component approach to the development of problem solvers
and automation tools for the development of problem
solvers.

Keywords—OSTIS, problem solver, multiagent system,
problem-solving model, ontological approach

I . I N T R O D U C T I O N

The problem solver (along with the knowledge base)
is a key component of an intelligent system, on which its
ability to solve various problems significantly depends.
The peculiarity of problem solvers of intelligent systems
in comparison with other modern software systems is the
need to solve problems in conditions when the information
required is not explicitly localized in the knowledge base
of the intelligent system and must be found based on any
criteria [1].

If at the dawn of the development of artificial in-
telligence technologies scientists have been trying for
a long time to find some universal mechanism that
would allow solving any problem, at present, for each
specific intelligent system a special problem solver is
being developed, the composition of which is determined
by a set of classes of problems that the appropriate
intelligent system should solve. As a rule, each class
of problems corresponds to some problem-solving model.
Currently, in the field of artificial intelligence a large
number of such models have been developed, some of
which are considered as traditional (for example, classical
algorithms, procedural and object-oriented programs) and
some – as intelligent (neural network models, logical
models, genetic algorithms).

The expansion of the scope of intelligent systems
requires such systems to be able to solve complex

problems, the solution of each of which involves the
joint usage of many different knowledge representation
models and various problem-solving models. In addition,
the solution of complex problems implies the usage
of common informational resources (in the limiting
case – of the entire knowledge base of an intelligent
system) by various components of the solver focused on
solving various subproblems. Since the solver of complex
problems integrates various problem-solving models, we
will call it a hybrid problem solver [1].

Modern approaches to the construction of hybrid
problem solvers, as a rule, involve a combination of
heterogeneous problem-solving models without any single
basis, for example, using specialized software interfaces
between different components of the system, which leads
to considerable overhead costs when developing such
a system and especially when its modifying, including
when adding a new problem-solving model to the system
[1].

An approach to the development of hybrid solvers
that allows them to be modifiable is proposed within the
framework of the OSTIS Technology [2] and is considered
in detail in some papers, in particular, in [1].

Within the framework of this approach, the problem
solver is interpreted as a hierarchical system of agents
(sc-agents) that work on shared semantic memory (sc-
memory) and interact by the specification of the actions
they perform within this memory. It is assumed that each
problem-solving model corresponds to some sc-agent
(most often – a non-atomic one that could be decomposed
into simpler sc-agents). Thus, it becomes possible to
combine different problem-solving models when solving
the same complex problem as well as to add new problem-
solving models to the solver or exclude them without
having to make modifications in its other components.

However, the further development of this approach and,
in particular, its usage when developing various applied
intelligent systems has shown that the capabilities of the
problem solver are also in large part determined by the

63



quality of the knowledge base of the appropriate intelli-
gent system. It may safely be said that the approach to
the development of solvers discussed above is connected
with the description of the operational semantics of the
solver, that is, interpreters of the appropriate problem-
solving models, while it is obvious that for solving
problems it is also necessary to describe the declarative
semantics of the problem-solving model, that is, the texts
of programs itself (not the programs of sc-agents but
higher-level programs interpreted by the corresponding
set of sc-agents), logical statements, certain configurations
of artificial neural networks, etc.

Within the framework of the OSTIS Technology,
powerful tools have been developed that allow describing
any type of knowledge in a unified form, structuring
the knowledge base according to various criteria as well
as verifying its quality and editing the knowledge base
directly in its use [3]. The basis of the knowledge base
created using the OSTIS Technology is a hierarchical
system of subject domains and the corresponding ontolo-
gies. An ontology is interpreted as a specification of the
system of concepts of the corresponding subject domain,
while various types of ontologies are distinguished, each
of which reflects a certain set of the concept features of
the subject domain, for example, terminological ontology,
logical ontology, set-theoretic ontology, etc. Speaking
about ontologies in the context of this paper, we will have
in mind an integrated ontology, which is a combination
of ontologies of all types that correspond to a specific
subject domain.

I I . P R O P O S E D A P P R O A C H

Within the framework of this paper, it is proposed
to take as a basis the approaches to the development
of hybrid problem solvers and hybrid knowledge bases
proposed within the context of the OSTIS Technology, to
formally clarify and coordinate the interpretation of such
concepts as problem, problem-solving model, problem
solver, skill and others within the appropriate set of on-
tologies and on the basis of the results obtained to clarify
the actual model of the hybrid problem solver, which
would allow taking into account the abovementioned
aspects.

The systems developed on the basis of the OSTIS
Technology are called ostis-systems. The OSTIS Tech-
nology is based on a universal method of semantic
representation (encoding) of information in memory of
intelligent computer systems called SC-code. Texts of the
SC-code (sc-texts) are unified semantic networks with a
basic set-theoretic interpretation. The elements of such
semantic networks are called sc-elements (sc-nodes and
sc-connectors, which, in turn, can be sc-arcs or sc-edges,
depending on the directivity). The SC-code Alphabet
consists of five main elements, on the basis of which
SC-code constructs of any complexity are built as well as

more particular types of sc-elements (for example, new
concepts) are introduced. Memory that stores the SC-code
constructs is called semantic memory or sc-memory.

Within the framework of the technology, several univer-
sal variants of visualization of the SC-code constructs are
also proposed, such as SCg-code (graphic version), SCn-
code (non-linear hypertextual version), SCs-code (linear
string version).

As it was mentioned earlier, the basis of the knowledge
base within the framework of the OSTIS Technology is
a hierarchical system of subject domains and ontolo-
gies. From there, to solve the problems set within the
framework of this paper, it is proposed to develop a
complex Subject domain of actions and problems and the
corresponding ontology of problem-solving methods and
models.

Within the framework of this paper, fragments of
structured texts in the SCn-code [4] will often be used,
which are simultaneously fragments of source texts of
the knowledge base, which are understandable both to
a human and to a machine. This allows making the
text more structured and formalized while maintaining
its readability. The symbol ":===" in such texts indicates
alternative (synonymous) names of the described entity,
which reveal in more detail some of its features.

The development of the specified family of sc-models
of subject domains and ontologies will allow:

• explicitly linking the class of problems and the way
(method) of its solution;

• this, in turn, will allow accumulating more com-
plex components of solvers and massively simplify
their integration, since the appropriate component
combined with the group of sc-agents will also
include the necessary fragments of the knowledge
base, which are a priori squared with the specified
group of sc-agents;

• this, in turn, will allow making the automation tools
for the development of solvers more intelligent, in
particular, it will allow automating the process of se-
lecting solver components based on the specification
of classes of problems that the designed intelligent
system should be able to solve;

• in the future, this will allow the intelligent system
to independently access the library of problem
solver components and select components based
on new classes of problems that the system has
encountered, that is, it will allow the intelligent
system to independently learn new skills;

• on the other hand, this approach will allow the intel-
ligent system to independently select a combination
of problem-solving models for solving problems of a
certain class (more exactly, since the solver is based
on a multiagent approach, a group of sc-agents that
interpret different problem-solving models will be
able to determine better, which of the sc-agents and

64



in what order should work when solving a specific
complex problem).

The subject areas and ontologies discribed in this work
were developed on the basis of the theory of subject-
object influences proposed in the work of V. Martynov
and his colleagues [5], [6], [7], [8], [9].

Consider next in more detail fragments of sc-models
of specified subject domains and ontologies.

I I I . C O N C E P T O F A N A C T I O N A N D T H E
C L A S S I F I C AT I O N O F A C T I O N S

Before getting to the problem-solving models and the
problem solver, it is necessary to formally clarify the
concept of a problem and the concept of an action aimed
at solving a particular problem or its subproblems.

Within the framework of the OSTIS Technology, we
will interprete the problem as a formal specification of
some action, so it is reasonable at first to clarify the
concept of an action. Let us consider the specification of
the concept action in the SCn-code.

action
:=== [a purposeful process performed by one or more

subjects (cybernetical systems) with the possible
usage of certain tools]

:=== [a process of influencing some (possibly shared)
entity (the subject of influence) on one or several
entities (objects of influence – source objects
(arguments) or target (created or modified) objects)]

:=== [an actio]
:=== [an act]
:=== [an operation]
:=== [a conscious influence]
:=== [an active influence]
⊂⊂⊂ influence

:=== [a process, in which at least one influencing
entity (the subject of influence ′) and at least
one entity that is being influenced (the object
of influence ′) can be clearly distinguished)]

⊂⊂⊂ process
:=== [a purposeful ("conscious") process performed (man-

aged, implemented) by some subject]
:=== [a process of solving some problem]
:=== [a purposeful process managed by some subject]
⇒⇒⇒ decomposition*:

Decomposition of a class of actions in relation to
memory of a cybernetical system
=== {{{• informational action

⊃⊃⊃ action in sc-memory
• behavioural action
⊃⊃⊃ action in the environment of the

ostis-system
• effector action
⊃⊃⊃ effector action of the ostis-system

• receptor action

⊃⊃⊃ receptor action of the ostis-system}}}
⊃⊃⊃ atomic action

:=== [an action, the performance of which does not
require its decomposition into a set of sub-
actions (particular actions, actions of a lower
level)]

⇒⇒⇒ explanation*:
[An atomic action is performed by a single
individual subject and is either an atomic
action performed in memory of this subject (an
atomic action of its "processor") or an atomic
action of one of its effectors.]

⊃⊃⊃ complex action
⇒⇒⇒ subdividing*:
{{{• an action performed by a cybernetical system

in its own memory
• an action performed by a cybernetical system

in its environment
• an action performed by a cybernetical system

on its physical shell
}}}

The result of performing an informational action is
generically a certain new state of information system
memory (not necessarily of sc-memory) achieved only by
transforming the information stored in system memory,
that is, either by generating new knowledge based on
existing ones or by deleting knowledge that has become
unnecessary for whatever reason. It should be noted that
if the question is about changing the state of sc-memory,
then any transformation of information can be reduced to
some atomic actions of generating, deleting or changing
the incidence of sc-elements relative to each other.

In the case of a behavioral action, the result of its
performance will be a new state of the environment. It is
very important to note that in this case the environment
also means the components of the system that are external
from the point of view of memory, that is, they are
not information structures stored in it. Such components
include, for example, various manipulators and other
means of influencing the system on the external world,
that is, behavioral problems can include changing the state
of a mechanical limb of a robot or directly displaying
some information on the screen for the user experience.

From the point of view of the problem solving formu-
lated in this paper, the informational actions performed in
memory of the ostis-system, that is, actions in sc-memory,
promote outstanding interest. The classification of actions
in sc-memory is presented in the knowledge base of the
IMS. ostis Metasystem that describes the documentation
of the current state of the OSTIS Technology [4].

On the set of actions a number of relations are set, such
as action subject ′ (performer ′), customer*, action object ′,
action context*, sub-action*, sequence of actions*, result*

65



and others [1], [4].

I V. C O N C E P T O F A P R O B L E M A N D T H E
C L A S S I F I C AT I O N O F P R O B L E M S

In turn, a problem will be interpreted as a specification
of some action, within which, depending on the situation,
the context of the action performance, the way of its
performance, the performer, the customer, the planned
result, etc. can be specified in advance using the relations
listed above.

Let us consider the specification of the concept problem
in the SCn-code.

problem
:=== [a description of some desirable state or event either

in the knowledge base or in the environment]
:=== [a problem definition]
:=== [a task for performing some action]
:=== [a problem description]
:=== [a problem situation]
:=== [a specification of some action that has sufficient

completeness to perform this action]

Each problem is a specification of an action that
either has already been performed, or is currently being
performed, or is planned (should) be performed, or can be
performed (but not necessarily). Depending on the specific
class of problems, both the internal state of the intelligent
system itself and the required state of the environment
can be described.

Classification of problems can be carried out on a
didactic basis within each subject domain, for example,
triangle problems, problems on sets of equations, etc.

Each problem can include:
• the fact that an action belongs to some particular

class of actions (for example, action. form a com-
plete semantic neighborhood of the specified entity),
including the state of the action from the point of
view of the life cycle (initiated, performed, etc.);

• a description of the purpose* (result*) of the action,
if it is exactly known;

• specifying the action customer*;
• specifying the action performer* (including a col-

lective one);
• specifying the action argument(-s) ′;
• specifying a tool or mediator of the action;
• a description of the action decomposition*;
• specifying a sequence of actions* within the action

decomposition*, i.e., construction of a procedural
plan for solving the problem. In other words, the con-
struction of a solution plan is a decomposition of the
corresponding action into a system of interconnected
sub-actions;

• specifying the domain of the action;
• specifying the condition for initiating the action;

• the moment of the starting and ending the action,
including the planned and actual ones, the expected
and/or actual duration of the performance.

Some problems can be clarified further by the context
– additional information about the entities considered in
the problem definition, i.e., a description of what is given,
what is known about these entities.

In addition, a problem can include any additional
information about the action, for example:
• a list of resources and means that are supposed to be

used in solving the problem, for example, a list of
available performers, timescales, available funding,
etc.;

• the restriction of the domain, in which the action is
performed, for example, one sc-construct must be
replaced by another according to some rule but only
within some knowledge base section;

• the restriction of knowledge that can be used for
solving a particular problem, for example, it is
necessary to solve an algebra problem using only
those statements that are included in the course
of the school curriculum up to and including the
seventh grade and not using statements studied in
high school;

• etc.
As in the case of actions solved by the system, it is

possible to classify informational problems and behavioral
problems.

On the other hand, from the point of view of the
problem definition, declarative problem definitions and
procedural problem definitions can be distinguished. It
should be noted that these classes of problems are
not opposed to each other and there may be problem
definitions that use both approaches.

problem
⊃⊃⊃ procedural problem definition
⊃⊃⊃ declarative problem definition
⊃⊃⊃ question
⊃⊃⊃ command
⊂⊂⊂ knowledge
⊃⊃⊃ initiated problem

:=== [a problem definition to be performed]
⊃⊃⊃ declarative problem definition
⊃⊃⊃ procedural problem definition
⊃⊃⊃ declarative-procedural problem definition

:=== [a problem, in the definition of which there
are both declarative (target) and procedural
aspects]

⊃⊃⊃ problem solved in memory of a cybernetical system
⊃⊃⊃ problem solved in memory of an individual

cybernetical system
⊃⊃⊃ problem solved in shared memory of a

multiagent system

66



:=== [an informational problem]
:=== [a problem aimed either at generation or search

for information that meets the specified re-
quirements or at some transformation of the
specified information]

⊃⊃⊃ mathematical problem

The problem definition may not contain an indication of
the context (solution domain) of the problem (in this case,
the problem solution domain is either the entire knowledge
base or its compliant part) and may also not contain either
a description of the underlying situation or a description
of the target situation. For example, a description of the
target situation for an explicitly specified contradiction
found in a knowledge base is not required.

Declarative problem definition is a description of the
underlying (initial) situation, which is a condition for
performing the corresponding action, and the target (final)
situation, which is the result of performing this action,
that is, a description of the situation (state) that should
be achieved as a result of performing the planned action.
In other words, such a problem definition includes an
explicit or implicit description of:
• what is given – the source data, conditions for

performing a specified action;
• what is required – the definition of the purpose and

the result of performing the specified action.
In the case of the procedural problem definition, the

characteristic of the action specified by this problem is
explicitly indicated, namely, for example:
• a subject or subjects that perform this action;
• objects, on which the action is performed – argu-

ments of the action;
• tools that are used to perform the action;
• the moment and, possibly, additional conditions for

starting and ending the action;
• a class or classes that each action belongs to

(including sub-actions) are explicitly specified.
At the same time, it is not explicitly specified what

should be the result of performing the corresponding
action.

Let us note that, if necessary, the procedural problem
definition can be reduced to the declarative problem
definition by translating based on some rule, for example,
of the definition of the class of actions through a more
general class.

Particular types of problems are a question and a
command.

question
:=== [a request]
⊂⊂⊂ problem solved in memory of a cybernetical system
:=== [a non-procedural problem definition for searching

(in the current state of the knowledge base) or

for generating knowledge that meets the specified
requirements]

⊃⊃⊃ question – what is it
⊃⊃⊃ question – why
⊃⊃⊃ question – wherefore
⊃⊃⊃ question – how

:=== [a request for a method (way) for solving a
given (specified) type of problems or class of
problems or a plan for solving a particular
specified problem]

:=== [a problem aimed at satisfying the information needs
of a certain subject-customer]

command
:=== [an initiated problem]
:=== [a specification of the initiated action]

It should be noted that along with the given extremely
general classification of problems, which inherently
reflects the classes of problems from the point of view
of their definition, there should be a classification of
problems from the point of view of their semantics, that
is, in terms of the essence of the specified action. This
classification can be based on the classification presented
in [10].

Within the framework of this paper, as already men-
tioned, the problems solved in sc-memory promote
outstanding interest.

V. C O N C E P T S O F A C L A S S O F A C T I O N S A N D A
C L A S S O F P R O B L E M S

From the point of view of the organization of the
problem-solving process, the concepts of an action and a
problem are not more important than the concepts of a
class of actions and a class of problems, since it is for
them that the appropriate performance algorithms and
solution methods are being developed.

Let us define a class of actions as a maximal set of
coincident (similar in a certain way) actions, for which
there is (but is not necessarily currently known) at least
one method (or mean) that provides the performance of
any action from the specified set of actions.

class of actions
⇐⇐⇐ family of subclasses*:

action
:=== [a set of similar actions]
⊃⊃⊃ class of atomic actions
⊃⊃⊃ class of easily performable complex actions

Each distinguished class of actions corresponds to at
least one common method for performing these actions. It
means that the question is about semantic "clustering" of
a set of actions, i.e., about the allocation of classes of ac-
tions on the basis of the semantic similarity (coincidence)
of actions that are part of the selected class of actions.

67



In this case, first of all, the coincidence (similarity) of
underlying situations and target situations of the actions
being considered, i.e., the coincidence of problems solved
as a result of performing the corresponding actions, is
taken into account. Since one and the same problem
can be solved as a result of performing several different
actions that belong to different classes of actions, we
should talk not only about classes of actions (sets of
similar actions) but also about classes of problems (sets
of similar problems) solved by these actions. For example,
the following relations are set on the set of classes of
actions:
• a relation, each bunding of which connects two

different (disjoint) classes of actions that solve one
and the same class of problems;

• a relation, each bunding of which connects two
different classes of actions that solve different classes
of problems, one of which is a superset of the other.

In addition to the class of actions, the concept of a
class of atomic actions is also distinguished, that is, the
set of atomic actions, the indication of belonging to which
is a necessary and sufficient condition for performing this
action. The set of all possible atomic actions performed
by each subject should be divided into classes of atomic
actions.

Belonging of some class of actions to the set of the
classes of atomic actions fixes the fact that, when all the
necessary arguments are specified, belonging of action to
this class is sufficient for some subject to start performing
this action.

At the same time, even if the class of actions belongs to
the set of the class of atomic actions, it is not forbidden
to introduce more particular classes of actions, for which,
for example, one of the arguments is fixed in advance.

If a specified class of atomic actions is more particular
in relation to actions in sc-memory, this indicates that
there is at least one sc-agent in the current version of
the system that is focused on performing actions of this
class.

In addition, it is also reasonable to introduce the
concept of a class of easily performable complex actions,
that is, a set of complex actions, for which at least one
method is known and available, the interpretation of
which allows performing a complete (final, ending with
atomic actions) decomposition into sub-actions of each
complex action from the above set.

Belonging of some class of actions to the set of the
class of easily performable complex actions fixes the fact
that, even when specifying all the necessary arguments
of belonging the action to this class, it is unsufficient
for some subject to start performing this action, and
additional clarifications are required.

In turn, by the class of problems we will mean the
set of problems, for which it is possible to construct a
generalized definition of problems that corresponds to the

whole set of problems. Each generalized definition of the
problems of the corresponding class is in fact nothing
more than a strict logical definition of the specified class
of problems.

class of problems
⇐⇐⇐ family of subsets*:

problem

A specific class of actions can be defined in at least
two ways.

class of actions
⇒⇒⇒ subdividing*:
{{{• class of actions that is precisely defined by

the class of problems being solved
:=== [a class of actions that provide a solution

of the corresponding class of problems
and at the same time use a wide variety
of methods for solving problems of this
class]

• class of actions that is precisely defined by
the used method of solving problems

}}}

Further, let us consider in more detail the formal
interpretation of the concept of a method.

V I . C O N C E P T O F A M E T H O D

By the method we will mean a description of how
any or almost any (with explicit exceptions) action that
belongs to the corresponding class of actions can be
performed.

method
⇐⇐⇐ second domain*:

method*
:=== [a method for solving the corresponding class of

problems that provides a solution of any or most
of the problems of the specified class]

:=== [a program for solving problems of the corresponding
class, which can be both procedural and declarative
(non-procedural) ones]

⊂⊂⊂ knowledge
∈∈∈ type of knowledge
:=== [a way]
:=== [a knowledge of how it is necessary to solve problems

of the corresponding class of problems (a set of
equivalent (similar) problems)]

:=== [a method (way) for solving a certain (corresponding)
class of problems]

:=== [an information (knowledge) sufficient to solve any
problem that belongs to the corresponding class of
problems using the corresponding problem-solving
model]

68



The specification of each class of problems includes
a description of how to "bind" a method to the source
data of a specific problem that is being solved using this
method. The description of such a method of "binding"
includes:
• a set of variables that are included both in the method

and in the generalized definition of problems of
the corresponding class and whose values are the
corresponding elements of the source data of each
specific problem being solved;

• a part of the generalized definition of problems of
the class, to which the method being considered cor-
responds, which are a description of the conditions
of usage of this method.

The very "binding" of the method to a specific problem
being solved using this method is carried out by searching
in the knowledge base for such a fragment that satisfies
the conditions for using the specified method. One of the
results of such a search is to establish a correspondence
between the abovementioned variables of the used method
and the values of these variables within the framework
of a specific problem being solved.

Another option for establishing the correspondence
being considered is an explicit appeal (call) of the corre-
sponding method (program) with the explicit transmission
of the corresponding parameters. But this is not always
possible, because, when performing the process of solving
a specific problem based on the declarative specification
of performing this action, it is not possible to set:
• when it is necessary to initiate the call (use) of the

required method;
• which specific method should be used;
• what parameters that correspond to the specific

initiated problem should be transmitted for "binding"
the used method to this problem.

The process of "binding" the method of solving
problems to a specific problem solved using this method
can also be represented as a process that consists of the
following stages:
• construction of a copy of the used method;
• binding the main (key) variables of the used method

with the main parameters of the specific problem
being solved.

As a result, on the basis of the considered method used
as a sample (template), a specification of the process for
solving a specific problem – a procedural specification
(plan) or a declarative one – is built.

Let us note that methods can be used even when
constructing plans for solving specific problems, in the
case when there is a need for multiple repetition of certain
chains of actions with an a priori unknown number
of such repetitions. It is question about various types
of cycles, which are the simplest type of procedural
methods for solving problems that are repeatedly used
when implementing plans for solving some problems.

It is also obvious that several methods can correspond
to one class of actions.

Thus, we assume that the term “method” is with the
term “program” synonymous in the generalized sense of
this term.

method
:=== [a program]
:=== [a program for performing actions of a certain class]
⊃⊃⊃ procedural program

:=== [a generalized plan]
:=== [a generalized plan for performing a certain

class of actions]
:=== [a generalized plan for solving a certain class

of problems]
:=== [a generalized specification of the decomposi-

tion of any action that belongs to a given class
of actions]

⊂⊂⊂ algorithm

Let us consider in more detail the concept of a pro-
cedural program (procedural method). Each procedural
program is a generalized plan for performing actions
that belong to a certain class, that is, it is a semantic
neighborhood; the key sc-element ′ is a class of actions,
for the elements of which the process of their performance
is additionally detailed.

The input parameters of the procedural program in
the traditional sense correspond to the arguments that
correspond to each action from the class of actions
described by this procedural program. When generating
a specific plan of performing a specific action from this
class based on this program, these arguments take specific
values.

Each procedural program is a system of described
actions with an additional indication for the action:
• or a sequence of actions* (transmission of initiation)

when the condition for performing (initiating) actions
is the performance of one of the specified or all of
the specified actions;

• or an event in the knowledge base or the environment
that is a condition for its initiation;

• or a situation in the knowledge base or the environ-
ment that is a condition for its initiation.

The concept of a method allows determining the
relation problem equivalence* on a set of problems.
Problems are equivalent if and only if they can be solved
by interpreting one and the same method (way) stored in
memory of a cybernetical system.

Some problems can be solved by different methods,
one of which, for example, is a generalization of the other.
Thus, some relations can also be set on a set of methods.

Let us note that the concept of a method allows
localizing the domain of solving problems of the cor-
responding class, that is, limiting the set of knowledge

69



that is sufficient to solve problems of this class in a certain
way. This, in turn, allows increasing the efficiency of the
system as a whole, eliminating the number of unnecessary
actions.

relation defined on a set of methods
333 submethod*

:=== [a subprogram*]
:=== [to be a method that is supposed to be used (ac-

cessed) when implementing a given method*]
⇔⇔⇔ it is important to distinguish*:

particular method*
:=== [to be a method that provides a solution to

a class of problems, which is a subclass
of problems being solved using a given
method*]

In the literature dedicated to the construction of prob-
lem solvers, the concept of a problem-solving strategy
is found. Let us define it as a meta-method for solving
problems that provides either the search for one relevant
known method or the synthesis of a purposeful sequence
of actions using various known methods in the general
case.

problem-solving strategy
⊂⊂⊂ method

It can be said about a universal meta-method (universal
strategy) for solving problems that explains all kinds of
particular strategies.

In particular, we can talk about several global strategies
for solving informational problems in knowledge bases.
Let us assume that a sign of an initiated action with the
definition of the appropriate informational purpose, i.e., a
purpose aimed only at changing the state of the knowledge
base, has appeared in the knowledge base. And the current
state of the knowledge base does not contain a context
(source data) sufficient to achieve the above purpose, i.e.,
such a context, for which there is a method (program)
in the available package (set) of methods (programs),
the usage of which allows achieving the above purpose.
To achieve such a purpose, the context (source data) of
which is insufficient, there are three approaches (three
strategies):
• decomposition (reduction of the initial purpose to

a hierarchical system and/or subpurposes (and/or
subproblems) based on the analysis of the current
state of the knowledge base and the analysis of
what is missing in the knowledge base for using a
particular method).
At the same time, the most attention is paid to
methods that require less effort to create conditions
for using them. Ultimately, we must reach (at the
lowest level of the hierarchy) subpurposes, the

context of which is sufficient for the usage of one
of the available methods (programs) for solving
problems;

• generation of new knowledge in the semantic neigh-
borhood of the definition of the initial purpose using
any available methods in the hope of obtaining such
a state of the knowledge base that will contain the
necessary context (sufficient source data) to achieve
the initial purpose using any available method of
solving problems;

• combination of the first and second approaches.
Similar strategies exist for finding ways to solve problems
being solved in the environment.

V I I . S P E C I F I C AT I O N O F M E T H O D S A N D T H E
C O N C E P T O F A S K I L L

Each specific method is considered by us not only as
an important type of specification of the corresponding
class of problems but also as an object that itself needs
a specification that provides direct usage of this method.
In other words, the method is not only a specification
(the specification of the corresponding class of problems)
but also an object of the specification. The most impor-
tant type of such specification is the indication of the
operational semantics of the method.

operational semantics of the method*
⊂⊂⊂ specification*
:=== [a family of methods that provide interpretation of a

given method*]
:=== [a formal description of the interpreter of a given

method*]
⇒⇒⇒ second domain*:

operational semantics of the method
⊃⊃⊃ complex representation of the operational

semantics of the method
:=== [a representation of the operational seman-

tics of the method brought (detailed) to
the level of all specifications of atomic ac-
tions performed during the interpretation
of the corresponding method]

declarative semantics of the method*
⊂⊂⊂ specification*
:=== [a description of the system of concepts that are used

within the framework of this method*]

The relation declarative semantics of the method*
connects the method and the formal description of the
system of concepts (a fragment of the logical ontology
of the corresponding subject domain) that are used
(mentioned) within this method. This is necessary for
ensuring that one and the same concept is interpreted
unambiguously within the framework of the method
and the rest of the knowledge base, which is especially

70



important when borrowing a method from a library of
reusable components of problem solvers. It is important
to note that the fact that any concepts are used within
the framework of the method does not mean that the
formal record of their definitions is part of this method.
For example, a method that allows solving problems for
calculating the area of a triangle will include various
formulas for calculating the area of a triangle but will not
include the definitions of the concepts ‘area", ‘triangle",
etc., since if there are a priori correct formulas, these
definitions will not be used directly in the process of
solving the problem. At the same time, the formal
definitions of these concepts will be part of the declarative
semantics of this method.

Combining the method and its operational semantics,
that is, information about how this method should be
interpreted, we will call a skill.

skill
:=== [an ability]
:=== [a combination of a method with its comprehensive

specification – a complex representation of the
operational semantics of the method]

:=== [a method + a method of its interpretation]
:=== [an ability to solve the corresponding class of

equivalent problems]
:=== [a method plus its operational semantics, which

describes how this method is interpreted (performed,
implemented) and is at the same time the oper-
ational semantics of the corresponding problem-
solving model]

⇒⇒⇒ subdividing*:
{{{• active skill

:=== [a self-initiating skill]
• passive skill
}}}

Thus, the concept of a skill is the most important
concept from the point of view of constructing problem
solvers, since it combines not only the declarative part
of the description of the method of solving a class of
problems but also the operational one.

Skills can be passive skills, that is, such skills, the usage
of which must be explicitly initiated by some agent, or
active skills, which are initiated independently when a
corresponding situation occurs in the knowledge base.
To do this, in addition to the method and its operational
semantics, the sc-agent, which responds to the appearance
of a corresponding situation in the knowledge base and
initiates the interpretation of the method of this skill, is
also included in the active skill.

This separation allows implementing and combining
different approaches for solving problems, in particular,
passive skills can be considered as a way to implement
the concept of a smart software package.

V I I I . C O N C E P T S O F A C L A S S O F M E T H O D S
A N D A L A N G U A G E F O R R E P R E S E N T I N G

M E T H O D S

Like actions and problems, methods can be classified
into different classes. We will define a set of methods,
for which it is possible to unify the representation
(specification) of these methods, as a class of methods.

class of methods
⇐⇐⇐ family of subclasses*:

method
:=== [a set of methods, for which the representation

language of these methods is set]
333 procedural method for solving problems

⊃⊃⊃ algorithmic method for solving problems
333 logical method for solving problems

⊃⊃⊃ productional method for solving problems
⊃⊃⊃ functional method for solving problems

333 artificial neutral network
:=== [a class of methods for solving problems based

on artificial neural networks]
333 genetic "algorithm"
:=== [a set of methods based on a common ontology]
:=== [a set of methods represented in the same language]
:=== [a set of methods for solving problems, which

corresponds to a special language (for example,
an sc-language) that provides a representation of
methods from this set]

:=== [a set of methods that corresponds to a separate
problem-solving model]

Each specific class of methods mutually identically
corresponds to a language for representing methods
that belong to this (specified) class of methods. Thus,
the specification of each class of methods is reduced
to the specification of the corresponding language for
representing methods, i.e., to the description of its
syntactic, denotational and operational semantics.

Examples of languages for representing methods are
all programming languages, which mainly belong to
the subclass of languages for representing methods –
to languages for representing methods for information
processing. But now the need to create effective formal
languages for representing methods for performing actions
in the environment of cybernetical systems is becoming
increasingly relevant. Complex automation, in particular,
in the industrial sphere, is impossible without this.

There can be a whole set of such specialized languages,
each of which will correspond to its own model of
problem solving (i.e., to its own interpreter).

language for representing methods
:=== [a method language]

71



:=== [a language for representing methods that correspond
to a specific class of methods]

⊂⊂⊂ language
:=== [a programming language]
⊃⊃⊃ language for representing methods for information

processing
:=== [a language of representing methods for solving

problems in memory of cybernetical systems]
⊃⊃⊃ language of representing methods for solving

problems in the environment of cybernetical systems
:=== [a programming language for external actions

of cybernetical systems]

I X . C O N C E P T O F A P R O B L E M - S O LV I N G M O D E L

By analogy with the concept of a problem-solving
strategy, we introduce the concept of a problem-solving
model, which we will interpret as a meta-method for
interpreting the corresponding class of methods.

problem-solving model
⊂⊂⊂ method
:=== [a meta-method]
:=== [an abstract machine for interpreting the correspond-

ing class of methods]
:=== [a hierarchical system of "microprograms" that

provide interpretation of the corresponding class of
methods]

⊃⊃⊃ algorithmic problem-solving model
⊃⊃⊃ procedural parallel synchronous problem-solving

model
⊃⊃⊃ procedural parallel asynchronous problem-solving

model
⊃⊃⊃ productional problem-solving model
⊃⊃⊃ functional problem-solving model
⊃⊃⊃ logical problem-solving model

⊃⊃⊃ coherent logical problem-solving model
⊃⊃⊃ fuzzy logical problem-solving model

⊃⊃⊃ "neural network" problem-solving model
⊃⊃⊃ "genetic" problem-solving model

Each problem-solving model is defined by:
• the corresponding class of methods for solving

problems, i.e., the language of representing methods
of this class;

• the subject domain of this class of methods;
• the ontology of this class of methods (i.e., the deno-

tational semantics of the language of representing
these methods);

• the operational semantics of the specified class of
methods.

It is important to note that for the interpretation of
all problem-solving models, an agent-oriented approach
considered in [1] can be used.

specification*

⊃⊃⊃ problem-solving model*
=== narrowing the relation by the first

domain(specification*; class of methods)*
:=== [a specification of the class of methods*]
:=== [a specification of the language for representing

methods*]

The problem-solving model associates the syntax,
denotational and operational semantics of the language
for representing methods of the corresponding class with
a certain class of methods.

denotational semantics of the language for
representing methods of the corresponding class
:=== [an ontology of the corresponding class of methods]
:=== [the denotational semantics of the corresponding

class of methods]
:=== [the denotational semantics of a language (an sc-

language) that provides a representation of methods
of the corresponding class]

:=== [the denotational semantics of the corresponding
problem-solving model]

⇒⇒⇒ note*:
[If the question is about a language that provides
an internal representation of the methods of the
corresponding class in the ostis-system, the syntax
of this language coincides with the syntax of the
sc-code]

⊂⊂⊂ ontology

operational semantics of the language for
representing methods of the corresponding class
:=== [a meta-method of interpretation of the corresponding

class of methods]
:=== [a family of agents that provide interpretation (usage)

of any method that belongs to the corresponding
class of methods]

:=== [the operational semantics of the corresponding
problem-solving model]

Since each method corresponds to a generalized defini-
tion of problems solved using this method, then each class
of methods must correspond not only to a certain language
of representing methods that belong to the specified class
of methods but also to a certain language of representation
of generalized definitions of problems for various classes
of problems that are solved using methods that belong to
the specified class of methods.

X . C O N C E P T S O F A P R O B L E M S O LV E R A N D A
K N O W L E D G E P R O C E S S I N G M A C H I N E

Taking into account the system of concepts discussed
above, we will define the problem solver of an intelligent
computer system as a set of skills that allow the system
to solve problems of a particular class.

72



problem solver
:=== [a problem solver of an intelligent computer system]
:=== [a set of all the skills (abilities) acquired by the

computer system by now]
⊃⊃⊃ combined problem solver
⊃⊃⊃ hybrid problem solver

By the combined problem solver we will mean a solver
that provides all the functionality of an intelligent system,
that is, the solution of all problems that are related to the
direct purpose of the system and ensure the efficiency
of its work. Thus, for example, a solver that implements
some variant of logical inference cannot be considered
as combined, since to use a system that contains such a
solver it is necessary to have at least basic information
search tools that allow localizing the received answer as
well as means that ensure the translation of a question
from the user to the system and an answer from the
system to the user.

In general, the combined problem solver, in contrast to
the problem solver in a general sense, solves problems
related to:
• ensuring the main functionality of the system (solv-

ing explicitly defined problems on demand);
• ensuring the correctness and optimization of the

system (permanently throughout the system life
cycle);

• ensuring the automation of the development of an
intelligent system.

By the hybrid problem solver we will mean a problem
solver, within which several different problem-solving
models are used. It is obvious that the combined problem
solver is predominantly a hybrid problem solver, since
for the functioning of even a fairly simple intelligent
system it is necessary to solve problems of fundamentally
different classes discussed above.

In turn, by a knowledge processing machine we will
mean the set of interpreters of all skills that build some
problem solver. Taking into account the approach to
information processing used within the framework of
the OSTIS Technology and discussed in [1], a knowledge
processing machine is a sc-agent (most often – a non-
atomic sc-agent), which includes simpler sc-agents that
provide interpretation of the corresponding set of methods.

Thus, we can talk, for example, about a deductive
logical inference machine or an information search
machine.

X I . E X A M P L E O F T H E U S A G E O F T H E
D E V E L O P E D O N T O L O G I E S

Let us consider the usage of the abovementioned
fragments of ontology on the example of the description
in the knowledge base of ways to solve a simple problem
– the problem of finding roots of a quadratic equation.

As it is known from the school course in mathematics,
the problems of this class can be solved in at least two
ways – through the discriminant and the Vieta formulas
for the quadratic equation.

On the other hand, from the point of view of imple-
mentation in the ostis-system, both of these options can
also be implemented in two ways:
• in a particular way when an abstract sc-agent

designed to solve problems of a specific class in
a specific way is being developed;

• in a more general way when the corresponding
formulas are written in the form of logical rules,
which are further interpreted by a group of domain-
independent sc-agents. This option is worse in terms
of performance but much better in terms of flexibility
and extensibility of the system.

Figure 1 shows an example of implementing the
solution of problems of the considered class in both ways
(through the discriminant and Vieta formulas) in a more
particular way in the form of active skills. In this variant,
it is assumed that the sc-agent programs are implemented
in the SCP language, which is the basic language for
processing SC-code texts and whose programs are also
written in the SC-code. Based on this, the operational
semantics of the methods is an Abstract scp-machine, that
is, an interpreter of SCP programs.

In turn, figure 2 shows an example of the implemen-
tation of the same skills but in a more general way and
in the form of passive skills. In this case, the operational
semantics of the methods is a Non-atomic abstract sc-
agent of logical inference, which allows using logical
statements and, if necessary, calculating mathematical
expressions that are obtained as a result of using a logical
statement.

The presented figures also show how the declarative
semantics of the corresponding methods are set.

X I I . C O N C L U S I O N

The paper considers an ontological approach to the
development of problem solvers for intelligent computer
systems based on the OSTIS Technology. The formal
interpretation of such concepts as action, problem, class
of actions, class of problems, method, skill is clarified,
which together made it possible to define on their basis
the concepts of a problem-solving model and a problem
solver.

Examples of describing skills that allow solving one
and the same class of problems in different ways are
given.

In the future, the results obtained will increase the effi-
ciency of the component approach to the development of
problem solvers and automation tools for the development
of problem solvers as well as provide an opportunity not
only for the developer but also for the intelligent system
to automatically select ways to solve a particular problem.

73



Figure 1. Example of usage of active skills

Figure 2. Example of usage of passive skills

A C K N O W L E D G M E N T

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

The work was carried out with the partial financial
support of the BRFFR (BRFFR-RFFR No. F21RM-139).

R E F E R E N C E S

[1] D. Shunkevich, “Agentno-orientirovannye reshateli zadach
intellektual’nyh sistem [Agent-oriented models, method and
tools of compatible problem solvers development for intelligent
systems],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2018,
pp. 119–132.

[2] V. Golenkov, N. Guliakina, I. Davydenko, and A. Eremeev,
“Methods and tools for ensuring compatibility of computer systems,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2019, pp. 25–52.

[3] I. Davydenko, “Semantic models, method and tools of knowledge
bases coordinated development based on reusable components,” in
Otkrytye semanticheskie tehnologii proektirovanija intellektual’nyh
sistem [Open semantic technologies for intelligent systems],
V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2018, pp. 99–118.

[4] (2021, Jun) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

[5] V. Martynov, Semiologicheskie osnovy informatiki [Semiological
Foundations of Informatics]. Minsk: Nauka i tekhnika [Science
and technics], 1974.

[6] ——, Universal’nyi semanticheskii kod (Grammatika. Slovar’.
Teksty) [Universal Semantic Code (Grammar. Dictionary. Texts).
Minsk: Nauka i tekhnika [Science and technics], 1977.

[7] ——, Universal’nyi semanticheskii kod: USK-3.
[8] A. Hardzei, Theory for Automatic Generation of Knowledge

Architecture: TAPAZ-2. Transl. from Rus. I. M. Boyko. Rev. English
edn. Minsk: The Republican Institute of Higher School Publ.,
2017.

[9] ——, “Plagiarism problem solving based on combinatory se-
mantics,” in Open Semantic Technologies for Intelligent System,
V. Golenkov, V. Krasnoproshin, V. Golovko, and E. Azarov, Eds.
Cham: Springer International Publishing, 2020, pp. 176–197.

[10] A. Fayans and V. Kneller, “About the ontology of task
types and methods of their solution,” Ontology of designing,
vol. 10, no. 3, pp. 273–295, Oct. 2020. [Online]. Available:
https://doi.org/10.18287/2223-9537-2020-10-3-273-295

Онтологический подход к разработке
гибридных решателей задач

интеллектуальных компьютерных систем
Шункевич Д.В.

В работе рассмотрен онтологический подход к разработке
решателей задач интеллектуальных компьютерных систем на
основе Технологии OSTIS. Уточнена формальная трактовка
таких понятий как действие, задача, класс действий, класс за-
дач, метод, навык, что в совокупности позволило определить
на их основе понятие модели решения задач и решателя задач.
Полученные результаты позволят повысить эффективность
компонентного подхода к разработке решателей задач и
средств автоматизации разработки решателей задач.

Received 01.06.2021

74


