
Ontological approach to the development of a
software model of a semantic computer based

on the traditional computer architecture
Daniil Shunkevich, Denis Koronchik

Belarussian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: shunkevich@bsuir.by, denis.koronchik@gmail.com

Abstract—The paper considers an ontological approach
to the development of a software model of a platform for in-
terpreting semantic models of intelligent computer systems
(a software model of a semantic computer). The architecture
of the specified software model and its components are
considered in detail, the principles of their implementation
and the advantages of the decisions made in comparison
with analogues are indicated.

A distinctive feature of the work is the demonstration of
the usage of the ontological approach to the development of
software products on the example of the specified software
model of a semantic computer.

Keywords—ontological approach, OSTIS, semantic com-
puter, crossplatform development, graph database, seman-
tic networks

I . I N T R O D U C T I O N

Throughout the development of the field of artificial
intelligence, attempts to create specialized hardware
solutions designed to interpret a certain class of models,
for example, neural network [1] or logical [2] ones, have
been repeatedly made. Many of these attempts were
unsuccessful, while others led to the industrial production
and active usage of such specialized tools [3].

One of the main reasons for failures of such attempts
was the absence of an appropriate technology that would
allow implementing actively new hardware solutions in
the development of intelligent systems that use models
interpreted using these hardware tools. That is to say, the
absence of a large number of systems, for which the usage
of these models would obviously be in demand, as well as
the absence of a technology that would allow developing
such systems using new hardware solutions within a
reasonable time were the obstacle at that time. Confirming
this idea, we can introduce the relation between the rapid
development of neural network models in recent years
and the subsequent development of specialized hardware
solutions that are used widely [3].

One of the ways that allow testing, developing and in
some cases implementing new models and technologies,
regardless of the availability of appropriate hardware
tools, is the development of software models of these

hardware tools that would be functionally equivalent
to these hardware tools but at the same time would
be interpreted on the basis of the traditional hardware
architecture (in this article we will consider the von
Neumann architecture as the dominant one at present).
It is obvious that the efficiency of such software models
will generally be lower than for the hardware solutions,
but in most cases it is sufficient to develop the appropriate
technology along with the development of hardware tools
and to transfer gradually already working systems from
the software model to the hardware one.

These ideas were considered when creating the OSTIS
Technology, one of the key principles of which is the
focus on a fundamentally new hardware basis for the
development of intelligent computer systems – a semantic
computer [4]. Currently, along with the work on creating
a semantic computer, an active implementation of its
software model is underway, which is currently actively
used in the development of intelligent computer systems
for various purposes.

The work on this software model has been carried out
for a long time, and some results were published earlier
by the authors [5], [6]. In contrast to these papers, the
key emphasis in this paper is made on the ontological
approach to the development of various kinds of products
on the example of a software model of a semantic
computer.

The ontological approach to software development is
currently being explored as part of the Ontology Driven
Software Development trend [7]. The main advantages
of this approach are associated with the ability to
automate the processes of analysis, development and
evolution of models of software systems without taking
into account the peculiarities of their implementation on
specific platforms, which in turn increases the flexibility
of such systems and the efficiency of their evolution
(maintenance).

In this paper the OSTIS Technology will also be used
as the basis for the ontological approach, which, in turn,

75

illustrates such its property as reflexivity. Therefore, as
part of this paper, fragments of structured texts in the
SCn-code [8] (one of the OSTIS Technology standards)
will often be used, which are simultaneously fragments of
source texts of the knowledge base that are understandable
both to a human and to a machine. This allows making
the text more structured and formalized while maintaining
its readability.

I I . P R O B L E M D E F I N I T I O N

A. Architecture of ostis-systems

The OSTIS Technology is based on a universal method
of semantic representation (encoding) of information in
the memory of intelligent computer systems called SC-
code. Texts in the SC-code (sc-texts) are unified semantic
networks with a basic set-theoretic interpretation. The
elements of such semantic networks are called sc-elements
(sc-nodes and sc-connectors, which, in turn, can be sc-arcs
or sc-edges, depending on the directivity). The SC-code
alphabet consists of five main elements, on the basis of
which SC-code constructs of any complexity are built, as
well as more particular types of sc-elements (for example,
new concepts) are introduced.

Within the framework of the technology, several uni-
versal versions of visualization of SC-code constructs are
also proposed, such as SCg-code (graphic version), SCn-
code (non-linear hypertextual version), SCs-code (linear
string version).

Systems built on the basis of the OSTIS Technology
are called ostis-systems. Each ostis-system consists of
a complete model of this system described by means
of the SC-code (sc-model of a computer system) and a
platform for interpreting sc-models, which in general can
be implemented both in software and in hardware [9].
This ensures full platform independence of ostis-systems.

In turn, the sc-model of a computer system is con-
ventionally divided into the sc-model of the knowledge
base, sc-model of the problem solver and sc-model of the
computer system interface (both with user and with the
environment and other ostis-systems) as well as the model
of abstract semantic memory (sc-memory), in which SC-
code constructs are stored, and, accordingly, all the listed
sc-models (figure 1).

Due to the availability of the SC-code Alphabet and the
possibility of a complete description of the system using
the SC-code, it becomes possible to make ostis-systems
completely platform-independent. Thus, the development
of an ostis-system is reduced to the development of
its model and is carried out independently not only of
the operating system but also of the architecture of the
computer, on which the system runs. The platform, in
turn, can be implemented both in the software version
(in fact, in the form of a virtual machine) and in the
hardware version. Therefore, the most attention within

sc-model of the ostis-system

sc-model of the

knowledge base

sc-model of the
problem solver

sc-memory

platform for interpreting sc-models

ostis-system

 sc-model of the
 interface

Figure 1. The architecture of the ostis-system

this article is paid to the software version of the platform
implementation.

B. Principles which underlie the approach to the devel-
opment of a software version of the implementation of
the platform for interpreting sc-models

Since sc-texts are semantic networks, that is, in fact,
graph constructs of a certain type, at the lower level,
the problem of developing a software version of the
implementation of the platform for interpreting sc-models
is reduced to the development of means for storing and
processing such graph constructs.

Currently, a large number of the simplest models for
representing graph constructs in linear memory have been
developed, such as incident matrices, adjacency lists and
others [10]. However, when developing complex systems,
as a rule, it is usually necessary to use more efficient
models, both in terms of the amount of information
required for representation and in terms of the efficiency
of processing graph constructs stored in one form or
another.

The most common software tools focused on storing
and processing graph constructs include graph DBMS
(Neo4j [11], ArangoDB [12], OrientDB [13], Grakn
[14], etc.) as well as so-called rdf-storages (Virtuoso
[15], Sesame [16], etc.) designed for storing constructs
represented in the RDF model. To access information
stored within such tools, both languages implemented
within a specific tool (for example, the Cypher language
in Neo4j) and languages that are standards for a large
number of systems of this class (for example, SPARQL
for rdf storages) can be used.

The popularity and development of such tools lead
to the fact that at first glance it seems reasonable
and effective to implement a software version of the
implementation of the platform for interpreting sc-models
based on one of these tools. However, there are a
number of reasons why it was decided to implement
a software version of the implementation of the platform

76

for interpreting sc-models from scratch. These include
the following ones:

• to ensure the efficiency of storing and processing
information constructs of a certain type (in this case
– SC-code constructs, sc-constructs), the specificity
of these constructs must be taken into consideration.
Particularly, at that time, the experiments described
in [5] showed a significant increase in the efficiency
of the own solution compared to the existing ones;

• in contrast to classical graph constructs, where an arc
or an edge can be incident only to the graph vertex
(this is also true for rdf-graphs), for the SC-code,
it is quite typical when an sc-connector is incident
to another sc-connector or even two sc-connectors.
In this regard, the existing means of storing graph
constructs do not allow storing sc-constructs (sc-
graphs) explicitly. A possible solution to this problem
is the transition from the sc-graph to the incident
orgraph, an example of which is described in [17],
however, this option leads to the multiplication of
stored elements by several times and significantly
reduces the efficiency of search algorithms due to the
need to do a large number of additional iterations;

• the basis of information processing within the OSTIS
Technology is a multiagent approach, in which agents
of processing information stored in sc-memory (sc-
agents) react to events that occur in sc-memory and
exchange information by specifying the actions they
perform in sc-memory [18]. Therefore, one of the
most important problems is to implement within
the software version of the implementation of the
platform for interpreting sc-models the possibility
of subscribing to events that occur in the software
model of sc-memory, which is currently not practi-
cally supported within the modern means of storing
and processing graph constructs;

• the SC-code also allows describing external informa-
tion constructs of any kind (images, text files, audio
and video files, etc.), which are formally interpreted
as the contents of sc-elements that are signs of
external files of the ostis-system. Thus, a component
of the software version of the implementation of the
platform for interpreting sc-models should be the
implementation of file memory, which allows storing
these constructs in any generally accepted formats.
The implementation of such a component within
the modern means of storing and processing graph
constructs is also not always possible.

Due to all reasons outlined, it was decided to implement
a software version of the implementation of the platform
for interpreting sc-models "from scratch", taking into
account the features of information storing and processing
within the OSTIS Technology. Further, the architecture of
the platform implementation, the principles of storing
sc-constructs in traditional linear memory as well as

the implementation of tools for accessing and editing
constructs stored in the sc-memory software model will
be considered in detail.

I I I . G E N E R A L A R C H I T E C T U R E O F T H E
S O F T WA R E V E R S I O N O F T H E I M P L E M E N TAT I O N

O F T H E P L AT F O R M F O R I N T E R P R E T I N G
S C - M O D E L S

Let us consider the specification of the concept soft-
ware version of the implementation of the platform for
interpreting sc-models of computer systems in the SCn-
code. Within this and other fragments, the symbol ":==="
indicates alternative (synonymous) names of the described
entity, which reveal in more detail some of its features.

software version of the implementation of the platform
for interpreting sc-models of computer systems
:=== [a software version of the implementation of the basic

interpreter of logical-semantic models of computer
systems]

:=== [a version of the implementation of the basic in-
terpreter of logical-semantic models of computer
systems on traditional computers with the von
Neumann architecture]

⊃⊃⊃ web-oriented version of the implementation of the
platform for interpreting sc-models of computer
systems
⊂⊂⊂ multiuser version of the implementation of the

platform for interpreting sc-models of
computer systems

333 Software version of the implementation of the
platform for interpreting sc-models of
computer systems

Software version of the implementation of the
platform for interpreting sc-models of computer
systems
⇒⇒⇒ decomposition of the software system*:
{{{• Software model of sc-memory
• Implementation of the interpreter of sc-models

of user interfaces
}}}

The current Software version of the implementation
of the platform for interpreting sc-models of computer
systems is a web-oriented one, that is, in terms of the
modern architecture, each ostis-system is a website that is
accessible online through a usual browser. Such version of
the implementation has an obvious advantage – an access
to the system is possible from anywhere in the world
where there is an Internet connection, while no specialized
software is required to work with the system. On the
other hand, this version of the implementation provides
the possibility to work with the system for several users
parallely.

77

At the same time, the interaction of the client and
server parts is organized in such a way that the web
interface can be easily replaced with a desktop or mobile
interface, both universal and specialized ones.

This version of the implementation is distributed under
an open-source license; for storing source texts, the Github
hosting and a collective ostis-dev account are used [19].

The implementation is crossplatform and can be com-
piled from source texts in various operating systems.

Figure 2 shows the current architecture of the platform
for interpreting sc-models of computer systems.

sc-memory
C, C++

sc-agent

sc-agent

Binary dump
SCs, SCg

(GWF) sources

custom
interval

...

sc-builder

C
#,

 J
av

a,
 P

yt
ho

n,
 e

tc
.

Ap
pl

ic
at

io
n

Network
clients

HTTP server, Web-UI part
(sc-web)

Python, JS, TS

Web browser
Network
protocols

Network
protocols

Network server
(sc-server)

C++

Network
protocols

sc-agent

sc-agent

sc-agent

sc-agent

sc-machine

Network client

Figure 2. The architecture of the platform for interpreting sc-models
of computer systems

The illustration above shows that the core of the
platform is a Software model of sc-memory (sc-machine),
which can simultaneously interact with both the Implemen-
tation of the interpreter of sc-models of user interfaces (sc-
web [20]) and with any third-party applications using the
corresponding network protocols. In terms of the general
architecture, Implementation of the interpreter of sc-
models of user interfaces acts as one of the many possible
external components that interact with the Software model
of sc-memory over the network.

Software model of sc-memory
:=== [A software model of semantic memory implemented

on the basis of traditional linear memory and that
include storage facilities for sc-constructs and basic
tools for processing these constructs, including
ones for the remote access to them via appropriate
network protocols]

⇐⇐⇐ software model*:
sc-memory

∈∈∈ software model of sc-memory based on linear
memory

⇒⇒⇒ component of the software system*:

• Implementation of the sc-storage and means of
access to it

• Implementation of a basic set of
platform-dependent sc-agents and their
common components

• Implementation of the subsystem of interaction
with the environment using network protocols

• Implementation of auxiliary tools for working
with sc-memory

• Implementation of the scp-interpreter

Within the current Software model of sc-memory [21],
an sc-storage is understood as a component of the
software model that stores sc-constructs and accesses
them through a program interface. In general, the sc-
storage can be implemented in different ways. In addition
to the very sc-storage, the Software model of sc-memory
also includes the Implementation of file memory of the
ostis-system designed to store the contents of internal
files of ostis-systems. It is worth noting that when
switching from the Software model of sc-memory to
its hardware implementation, it will be reasonable to
implement file memory of the ostis-system on the basis
of traditional linear memory (at least, at the first stages
of the development of a semantic computer).

The current version of the Software model of sc-
memory assumes the possibility of saving the memory
state (snapshot) to the hard disk and further loading it
from the previously saved state. This ability is necessary
for restarting the system, in case of possible failures as
well as when working with source texts of the knowledge
base when the building from source texts is reduced to
creation of a snapshot of the memory state, which is then
placed in the Software model of sc-memory.

I V. P R I N C I P L E S O F I M P L E M E N TAT I O N O F T H E
S C - S T O R A G E

Let us consider the specification of the entity Imple-
mentation of the sc-storage and means of access to it in
the SCn-code:

Implementation of the sc-storage and means of access
to it
⇒⇒⇒ component of the software system*:

• Implementation of the sc-storage
∈∈∈ implementation of the sc-storage based

on linear memory
⇒⇒⇒ class of software system objects*:

segment of the sc-storage
:=== [a page of the sc-storage]
⇒⇒⇒ generalized part*:

element of the sc-storage
• Implementation of file memory of the

ostis-system

78

Within this implementation of the sc-storage, sc-
memory is modeled as a set of segments, each of which is a
fixed-sized ordered sequence of elements of the sc-storage,
each of which corresponds to a specific sc-element.
Currently, each segment consists of 216 − 1 = 65535
elements of the sc-storage. The allocation of segments of
the sc-storage allows, on the one hand, simplifying an
address access to elements of the sc-storage and, on the
other hand, realizing the possibility of unloading a part
of sc-memory from RAM to the file system if necessary.
In the second case, the sc-storage segment becomes
the minimal (atomic) unloaded part of sc-memory. The
mechanism for unloading segments is implemented by
the existing principles of organizing virtual memory in
modern operating systems.

The maximal possible number of segments is limited
by the settings of the software implementation of the
sc-storage (currently, the default number is 216− 1 =
65535 segments, but in general it may be different). Thus,
technically, the maximal number of stored sc-elements in
the active implementation is about 4.3×109 sc-elements.

By default, all segments are physically located in RAM,
if there is not enough memory amount, then a mechanism
for unloading part of the segments to the hard disk (the
virtual memory mechanism) is provided.

Each segment consists of a set of data structures that
describe specific sc-elements (elements of the sc-storage).
Regardless of the type of the sc-element being described,
each element of the sc-storage has a fixed size (currently –
48 bytes), which ensures the convenience of storing them.
Thus, the maximal size of the knowledge base in the
current software model of sc-memory can reach 223 GB
(without taking into account the contents of internal files
of the ostis-system stored on the external file system).

The described structure of the Implementation of the
sc-storage is illustrated in figure 3.

Figure 4 shows an example of encoding information
in the Implementation of the sc-storage written in the
SCg-code (a graphical version of the visualization of SC-
code texts). For clarity, labels of the access level in this
example are omitted.

sc-address
:=== [an address of the element of the sc-storage that

corresponds to the specified sc-element, within the
current state of the Implementation of the sc-storage
as part of the software model of sc-memory]

⇒⇒⇒ family of relations that precisely define the
structure of a given entity*:
• segment number of the sc-storage*
• number of the element of the sc-storage within

the segment*

Each element of the sc-storage in the current imple-
mentation can be precisely specified by its address (sc-

sc-storage

Segment

65535
sc-elements

Segment

65535
sc-elements

Segment

65535
sc-elements

...

sc-element

first_in_arc

CONTENT

sc-element

sc_type: sc_node...

first_out_arc

begin_addr

end_addr

first_in_arc

sc_type: sc_arc...

first_out_arc

next_in_arc

next_out_arc

prev_in_arc

prev_out_arc

sc-element

...
sc_type: sc_node...

sc-element

...
sc_type: sc_arc...

sc-element

...
sc_type: sc_arc...

Figure 3. An example of encoding information in the Implementation
of the sc-storage

address) that consists of a segment number and a number
of the element of the sc-storage within the segment. Thus,
the sc-address serves as the unique coordinates of the
element of the sc-storage within the Implementation of
the sc-storage.

The sc-address is not taken into account in any way
when processing the knowledge base at the semantic
level and is only necessary to provide access to the
corresponding data structure stored in linear memory
at the level of the Implementation of the sc-storage.

In general, the sc-address of the element of the sc-
storage that corresponds to the specified sc-element may
change, for example, when rebuilding the knowledge base
from source texts and then restarting the system. In this
case, the sc-address of the element of the sc-storage that
corresponds to the specified sc-element cannot change
directly during the activity of the system in the current
implementation.

For simplicity, we will use the term "sc-address of the
sc-element", meaning the sc-address of the element of the
sc-storage that uniquely corresponds to this sc-element.

element of the sc-storage
:=== [a cell of the sc-storage]
:=== [an element of the sc-storage that corresponds to the

sc-element]

79

Figure 4. The Structure of the Implementation of the sc-storage

:=== [an image of the sc-element within the sc-storage]
:=== [a data structure, each instance of which corresponds

to one sc-element within the sc-storage]

⇒⇒⇒ subdividing*:
{{{• element of the sc-storage that corresponds to

the sc-node
• element of the sc-storage that corresponds to

the sc-arc
}}}

element of the sc-storage that corresponds to the
sc-node
⇒⇒⇒ family of relations that uniquely define the

structure of a given entity*:
{{{• label of the syntactic type of the sc-element*
• label of the access level of the sc-element*
• sc-address of the first sc-arc that goes out of

this sc-element*
• sc-address of the first sc-arc that comes in this

sc-element*
• contents of the element of the sc-storage*
⇒⇒⇒ second domain*:

contents of the element of the sc-storage

:=== [the contents of the element of the
sc-storage that corresponds to the
internal file of the ostis-system]

}}}
element of the sc-storage that corresponds to the
sc-arc
⇒⇒⇒ family of relations that uniquely define the

structure of a given entity*:
{{{• label of the syntactic type of the sc-element*
• label of the access level of the sc-element*
• sc-address of the first sc-arc that goes out of

this sc-element*
• sc-address of the first sc-arc that comes in this

sc-element*
• specification of the sc-arc within the

sc-storage*
⇒⇒⇒ second domain*:

specification of the sc-arc within the
sc-storage

}}}

80

specification of the sc-arc within the sc-storage
⇒⇒⇒ family of relations that uniquely define the

structure of a given entity*:
{{{• sc-address of the initial sc-element of the

sc-arc*
• sc-address of the final sc-element of the

sc-arc*
• sc-address of the next sc-arc that goes out of

the same sc-element*
• sc-address of the next sc-arc that comes in the

same sc-element*
• sc-address of the previous sc-arc that goes out

of the same sc-element*
• sc-address of the previous sc-arc that comes in

the same sc-element*
}}}

Each element of the sc-storage that corresponds to
a certain sc-element is described by its syntactic type
(label), and, regardless of the type, sc-addresses of the
first sc-arc that comes in this sc-element and the first
sc-arc that goes out of this sc-element (they can be empty
if there are no such sc-arcs) are indicated.

The remainder of bytes, depending on the type of the
corresponding sc-element (sc-node or sc-arc), can be used
either to store the contents of the internal file of the ostis-
system (it can be empty if the sc-node is not a file sign)
or to store the specification of the sc-arc.

The sc-address of the first sc-arc that goes out of this
sc-element*, the sc-address of the first sc-arc that comes
in this element* and the contents of the element of the
sc-storage may generally be missing (to be "empty", with
value zero), but the size of the element in bytes will
remain the same.

Each sc-node in the current implementation can have
the contents (it can become an internal file of the ostis-
system). If the size of the contents of the internal file of
the ostis-system does not exceed 48 bytes (the size of
the specification of the sc-arc within the sc-storage, for
example, a small string sc-identifier), then this contents
is explicitly stored within the element of the sc-storage
as a sequence of bytes.

Otherwise, it is placed in a specially organised file
memory (for its organisation a separate platform module is
responsible, which in general can be arranged differently),
and a unique address of the corresponding file is stored
within the element of the sc-storage, which allows finding
it on the file system quickly.

Currently, sc-edges are stored in the same way as sc-
arcs, that is, they have a begin sc-element and an end
one, the difference is only in the label of the syntactic
type of the sc-element. This leads to some inconveniences
during processing, but sc-edges are currently used quite
rarely.

In terms of the software implementation, the data

structure for storing the sc-node and the sc-arc remains
the same, but the list of fields (components) changes in
it.

In addition, as it can be seen, each element of the
sc-storage (including the element of the sc-storage that
corresponds to the sc-arc) does not store a list of sc-
addresses of the sc-elements connected with it but stores
sc-addresses of one outgoing and one incoming arcs,
each of which, in turn, stores sc-addresses of the next
and previous arcs in the list of outgoing and incoming
sc-arcs for the corresponding elements.

All of the above allows:

• making the size of such a structure fixed (currently
– 48 bytes) and independent of the syntactic type of
the stored sc-element;

• providing the ability to work with sc-elements
without taking into account their syntactic type in
cases where it is necessary (for example, when
implementing search requests such as “Which sc-
elements are elements of this set”, “Which sc-
elements are directly related to this sc-element”,
etc.);

• providing the ability to access the element of the
sc-storage in a constant time;

• providing the ability to place the element of the sc-
storage in the processor cache, which, in turn, allows
speeding up the processing of sc-constructs.

The current Software model of sc-memory assumes that
all sc-memory is physically located on one computer. To
implement a distributed version of the Software model
of sc-memory, it is proposed to extend the sc-address by
specifying the address of the physical device where the
corresponding element of the sc-storage is stored.

Obviously, the type (class, kind) of the sc-element in
sc-memory can be set by explicitly specifying that this
sc-element belongs to the corresponding class (sc-node,
sc-arc, etc.).

However, within the platform for interpreting sc-models
of computer systems, there must be some set of labels of
the syntactic type of the sc-element that specify the type
of the element at the platform level and do not contain
a corresponding sc-arc of belonging (or rather, the basic
sc-arc) explicitly stored within sc-memory (its occurrence
is implied, but it is not stored explicitly, since this will
lead to an infinite increase in the number of sc-elements
that need to be stored in sc-memory). At a minimum,
there must be a label that corresponds to the basic sc-arc
class, since an explicit indication of belonging of the
sc-arc to this class generates another basic sc-arc.

Thus, basic sc-arcs that denote the belonging of sc-
elements to some known limited set of classes are
represented implicitly. This fact must be taken into
account in a number of cases, for example, when checking
whether an sc-element belongs to a certain class, when

81

searching for all outgoing sc-arcs from a given sc-element,
etc.

If necessary, some of these implicitly stored sc-arcs can
be represented explicitly, for example, in the case when
such an sc-arc must be included in any set, that is, another
sc-arc must be drawn into it. In this case, there is a need
to synchronize the changes connected with this sc-arc
(for example, with deleting it) in its explicit and implicit
representation. This mechanism is not implemented in
the current Implementation of the sc-storage.

Thus, it is impossible to completely stop using labels
of the syntactic type of the sc-element, however, though
an increase in their number raises the efficiency of the
platform due to the simplifications of certain operations
on the validation of types of the sc-element, but it leads
to an increase in the number of situations, in which the
explicit and implicit representation of sc-arcs must be
taken into consideration, which, in turn, complicates the
development of the platform and the development of the
program code for processing the stored sc-structures.

label of the syntactic type of the sc-element
:=== [a unique numerical identifier that precisely corre-

sponds to the specified type of sc-elements and
is attributed to the corresponding element of the
sc-storage at the implementation level]

⇐⇐⇐ second domain*:
label of the syntactic type of the sc-element*

⊃⊃⊃ label of the sc-node
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x1]

⊃⊃⊃ label of the internal file of the ostis-system
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x2]

⊃⊃⊃ label of the sc-edge of a common type
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x4]

⊃⊃⊃ label of the sc-arc of a common type
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x8]

⊃⊃⊃ label of the sc-arc of belonging
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x10]

⊃⊃⊃ label of the sc-constant
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x20]

⊃⊃⊃ label of the sc-variable
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x40]

⊃⊃⊃ label of the positive sc-arc of belonging
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x80]

⊃⊃⊃ label of the negative sc-arc of belonging
⇒⇒⇒ numerical expression in a hexadecimal

number system*:
[0x100]

⊃⊃⊃ label of the fuzzy sc-arc of belonging
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x200]

⊃⊃⊃ label of the permanent sc-arc
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x400]

⊃⊃⊃ label of the temporal sc-arc
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x800]

⊃⊃⊃ label of the non-binary sc-connective
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x80]

⊃⊃⊃ label of the sc-structure
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x100]

⊃⊃⊃ label of a role relation
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x200]

⊃⊃⊃ label of a non-role relation
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x400]

⊃⊃⊃ label of the sc-class
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x800]

⊃⊃⊃ label of an abstract entity
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x1000]

⊃⊃⊃ label of a material entity
⇒⇒⇒ numerical expression in the hexadecimal

number system*:
[0x2000]

⊃⊃⊃ label of the constant positive permanent sc-arc of
belonging

:=== [a label of the basic sc-arc]

82

:=== [a label of the sc-arc of the main type]
⇐⇐⇐ intersection*:
{{{• label of the sc-arc of membership
• sc-constant label
• label of the positive sc-arc of membership
• permanent sc-arc label
}}}

⊃⊃⊃ label of the variable positive permanent sc-arc of
membership

Labels of syntactic types of sc-elements can be com-
bined to obtain more specific label classes. In terms of
software implementation, such a combination is expressed
by the operation of bitwise addition of the values of the
corresponding labels.

Numerical expressions of some label classes may be
the same. This is done to reduce the size of the element
of the sc-storage by reducing the maximal size of the
label. There is no conflict in this case, since such label
classes, for example, the label of a role relation and the
label of a fuzzy sc-arc of belonging, cannot be combined.

It is important to note that each of the allocated label
classes (except the classes obtained by combining other
classes) uniquely corresponds to the ordinal number of
a bit in linear memory, which can be seen by looking
at the corresponding numerical expressions of the label
classes. It means that the label classes are not included in
each other, for example, specifying the label of a positive
sc-arc of belonging does not automatically indicate the
label of the sc-arc of belonging. This allows making
the operations of combining and comparing labels more
efficient.

Let us briefly consider the disadvantages of the current
implementation of the labels of syntactic types of sc-
elements and possible ways to eliminate them:
• At the moment, the number of labels of the syntactic

type of the sc-element is quite large, which leads
to arising a sufficiently large number of situations,
in which it is necessary to take into account the
explicit and implicit storage of sc-arcs of belonging
to the corresponding classes. On the other hand,
changing the set of labels for any purpose in the
current implementation is a rather time-consuming
problem (in terms of the extent of changes in the
platform code and sc-agents implemented at the
platform level), and an extension of the set of labels
without increasing the size of the element of the
sc-storage in bytes turns out to be quite impossible.
The solution to this problem is to minimize the
number of labels as much as possible, for example, to
the number of labels that correspond to the SC-code
Alphabet. In this case, the belonging of sc-elements
to any other classes will be written explicitly, and the
number of situations, in which it will be necessary
to take into account the implicit storage of sc-arcs,
will be minimal;

• Some labels from the current set of labels of the
syntactic type of the sc-element are used quite rarely
(for example, the label of the sc-edge of a common
type or the label of a negative sc-arc of belonging),
in turn, in sc-memory may exist classes that have
quite a lot of elements (for example, a binary relation
or a number). This fact does not allow using the
efficiency of the occurrence of labels in full.
The solution to this problem is to stop using the set
of labels known in advance and switch to a dynamic
set of labels (while their number can remain fixed).
In this case, a set of classes expressed as labels will
be formed on the basis of some criteria, for example,
the number of elements of this class or the frequency
of references to it.

label of the access level of the sc-element
⇐⇐⇐ second domain*:

label of the access level of the sc-element*
⇒⇒⇒ generalized structure*:
{{{• label of the reading access level of the

sc-element
• label of the writing access level of the

sc-element
}}}

In the current Implementation of the sc-storage, labels
of the access level are used to provide the ability to
restrict access of some processes in sc-memory to some
sc-elements stored in sc-memory.

Each element of the sc-storage corresponds to a label
of the reading access level of the sc-element and a label
of the writing access level of the sc-element, each of
which is expressed as a number from 0 to 255.

In turn, each process (most often one that corresponds
to some sc-agent) that tries to gain access to this element
of the sc-storage (read or change it) corresponds to the
reading and writing access level expressed in the same
numerical range. The specified access level for the process
is a part of the context of a process. Reading or writing
access to the element of the sc-storage is not allowed
if the process correspondingly has a lower reading or
writing access level than the element of the sc-storage
that is being accessed.

Thus, value zero of the label of the reading access
level of the sc-element and the label of the writing access
level of the sc-element means that any process can get
unlimited access to this element of the sc-storage.

V. I M P L E M E N TAT I O N O F M E A N S F O R
P R O C E S S I N G C O N S T R U C T S S T O R E D I N

S E M A N T I C M E M O RY

Let us consider the currently implemented means
of processing (access and editing) constructs stored in
semantic memory.

83

The basic means of access to constructs stored in sc-
memory are sc-iterators.

sc-iterator
:=== [ScIterator]
⇐⇐⇐ class of components*:

Implementation of the sc-storage
⊃⊃⊃ three-element sc-iterator

⇒⇒⇒ class of sc-constructs*:
three-element sc-construct

⊃⊃⊃ five-element sc-iterator
⇒⇒⇒ class of sc-constructs*:

five-element sc-construct

From a functional point of view, sc-iterators, as part of
the Implementation of the sc-storage, are a basic tool for
access to constructs stored in sc-memory, which allows
reading (viewing) constructs that are isomorphic to the
simplest templates – three-element sc-constructs and five-
element sc-constructs [8].

From the point of view of implementation, the sc-
iterator is a data structure that corresponds to a certain
additionally precised class of sc-constructs and allows
using the appropriate set of functions to consistently view
all sc-constructs of this class represented in the current
state of sc-memory (to iterate over sc-constructs).

Each class of sc-iterators corresponds to some known
class (template, pattern) of sc-constructs. When develop-
ing an sc-iterator, this template is precised, that is, some
(at least one) elements of the template are associated with
a specific sc-element known in advance (the starting point
for the search), and other elements of the template (those
that need to be found) are associated with some type of
the sc-element from the types that correspond to labels
of the syntactic type of the sc-element.

Then, by calling the corresponding function (or a class
method in OOP), all sc-constructs that correspond to
the received template are sequentially viewed (taking
into consideration the specified types of sc-elements
and sc-elements known in advance), that is, the sc-
iterator sequentially "switches" from one construct to
another as long as such constructs exist. The existence
of the following construct is checked immediately before
switching. In the general case, there may not be constructs
that correspond to the specified template, in this case,
iteration will not occur (there will be 0 iterations).

At each iteration, sc-addresses of sc-elements included
in the corresponding sc-construct are written to the
sc-iterator, so the found elements can be processed
appropriately, depending on the problem.

Currently, a five-element sc-iterator is implemented on
the basis of three-element sc-iterators and in this sense
is not atomic. However, the introduction of five-element
sc-iterators is reasonable in terms of the convenience for
the developer of programs for processing sc-constructs.

sc-template
:=== [ScTemplate]
⇐⇐⇐ class of components*:

Implementation of the sc-storage
:=== [a data structure in linear memory that describes

a generalized sc-structure, which, in turn, can
either be explicitly represented in sc-memory or
not represented in its current state but can be
represented if necessary]

Sc-iterators allow searching only for sc-constructs of
the simplest configuration. To implement the search for
sc-constructs of a more complex configuration as well
as the generation of complex sc-constructs, sc-templates
are used, on the basis of which the search or generation
of constructs are then carried out. The sc-template is a
data structure that corresponds to some generalized sc-
structure, i.e., a sc-structure that contains sc-variables.
Using the appropriate set of functions, the following
actions can be carried out:
• search in the current state of sc-memory for all

sc-constructs that are isomorphic to the specified
template. As search parameters, the values for any
of the sc-variables in the template can be specified.
After the search, a set of search results will be
developed, each of which is a set of pairs in the form
“an sc-variable from the template – the corresponding
sc-constant”. This set can be empty (in the current
state of sc-memory there are no constructs that are
isomorphic to the given template) or contain one or
more elements. Substitution of values of sc-variables
can be carried out both by the sc-address and by the
system sc-identifier;

• generation of an sc-construct that is isomorphic to
a given template. The parameters and results of
generation are developed in the same way as in the
case of search, except that in the case of generation,
the result is always single and a set of results is not
developed.

Thus, each sc-template factually assumes a set of
templates developed by specifying values for the sc-
variables included in the initial template.

It is important to note that the sc-template is a data
structure in linear memory that corresponds to some
generalized sc-structure in sc-memory but is not this
generalized sc-structure itself. It means that the sc-
template can be automatically developed on the basis
of the generalized sc-structure explicitly represented in
sc-memory and also developed at the level of the program
code by calling the corresponding functions (methods).
In the second case, the sc-template will exist only in
linear memory, while the corresponding generalized sc-
structure will not be explicitly represented in sc-memory.
In this case, the substitution of the values of sc-variables
will be possible only by the system sc-identifier, since

84

the corresponding template elements will not contain
sc-addresses.

When searching for sc-constructs that are isomorphic
to a given template, from the point of view of efficiency,
it is extremely important to consider, from which sc-
element the search should be initiated. As it is known,
in general, the search problem in the graph is an NP-
complete problem, but the search in the sc-graph allows
taking into consideration the semantics of the processed
information, which, in turn, allows reducing the search
time significantly.

One of the possible options for optimizing the search
algorithm implemented at the moment is the ranking of
three-element sc-constructs that are part of the sc-template,
according to the order of search for these sc-constructs
upon criterion of reducing the number of possible search
options that are generated by one or another three-element
sc-construct that contains sc-variables. Thus, at first, when
searching, those three-element sc-constructs that initially
contain two sc-constants are selected, and then those that
initially contain one sc-constant. After performing the
search step, the priority of sc-constructs changes, taking
into account the results obtained in the previous step.

Another optimization option is based on that specific
feature of formalization in the SC-code, that, in general,
the number of sc-arcs that come in a certain sc-element,
as a rule, is significantly lower than the number of sc-arcs
that go out it. Thus, it is reasonable to initiate the search
through the incoming sc-arcs.

It can be assumed that the features provided by sc-
templates allow eliminating the usage of sc-iterators
completely. However, this is not quite true for the
following reasons:
• search and generation by a template are implemented

on the basis of sc-iterators as a basic means of search-
ing for sc-constructs within the Implementation of
the sc-storage;

• sc-iterators make it possible to organize the search
process more flexibly, taking into account the seman-
tics of specific sc-elements involved in the search.
For example, we can consider the fact that for
some sc-elements the number of incoming sc-arcs is
significantly lower than the number of outgoing ones
(or vice versa). Thus, when searching for constructs
that contain such sc-elements, it is more efficient to
initiate a search from those sections where there are
potentially fewer arcs.

context of a process within the software model of
sc-memory
:=== [ScContext]
:=== [a context of a process run at the level of the software

model of sc-memory]
:=== [a meta description of a process in sc-memory run

at the level of the software model of sc-memory]

:=== [a data structure that contains meta information about
a process run in sc-memory at the platform level]

⇐⇐⇐ class of components*:
Implementation of the sc-storage

Each process that is run in sc-memory at the level
of the platform for interpreting sc-models of computer
systems (that most often corresponds to some sc-agent
implemented at the platform level) associates with the
context of a process, which is a data structure that
describes metainformation about this process. Currently,
the context of a process contains information about the
reading and writing access level for this process (See the
label of the access level of the sc-element).

When calling any functions (methods) connected with
access to constructs stored in sc-memory within the
process, one of the parameters is necessarily the context
of a process.

subscription to an event in sc-memory within the
software model of sc-memory
:=== [ScEvent]
:=== [a data structure that describes within the sc-memory

software model the correspondence between the
class of events in sc-memory and actions that should
be performed when events of this class occur in
sc-memory]

⇐⇐⇐ class of components*:
Implementation of the sc-storage

To make it possible to develop sc-agents within the
platform for interpreting sc-models of computer systems,
the possibility to subscribe to an event that belongs to
one of the classes of atomic events in sc-memory* [8]
is implemented, specifying the sc-element which should
be associated with the event of this class (for example,
the sc-element, for which an incoming or outgoing sc-arc
should be shown up). A subscription to an event is a data
structure that describes a class of expected events and a
function in the program code that should be called when
this event occurs.

All subscriptions to events are registered within the
event table. With any change in sc-memory, this table
is viewed and the functions that correspond to the event
that occurred are run.

In the current implementation, each event is processed
in a separate operating system thread, while at the
implementation level a parameter is set that describes the
number of maximal threads that can be run in parallel.

Thus, it is possible to implement sc-agents that respond
to events in sc-memory as well as to suspend its work
when running a certain process in sc-memory and wait for
some event to occur (for example, create a subproblem
for some group of sc-agents and wait for its solution).

To store the contents of internal files of ostis-systems,
the size of which exceeds 48 bytes, files that are

85

explicitly stored on the file system are used, which is
accessed by means of the operating system, on which the
Software version of the implementation of the platform
for interpreting sc-models of computer systems runs. The
implementation of file memory is described in more detail
in [5].

In addition, to implement a quick search for sc-elements
by their string sc-identifiers or their fragments (substrings),
an additional key-value storage is used, which corresponds
to the string sc-identifier an sc-address of the sc-element,
whose identifier is this string (in the case of the basic
and system sc-identifier) or the sc-element, which is a
sign of the internal file of the ostis-system (in the case
of a nonbasic sc-identifier).

V I . I M P L E M E N TAT I O N O F T H E B A S I C S E T O F
P L AT F O R M - D E P E N D E N T S C - A G E N T S A N D

T H E I R C O M M O N C O M P O N E N T S

Part of the Software model of sc-memory is the
Implementation of a basic set of platform-dependent sc-
agents and their common components, which allows the
user to navigate through the knowledge base via user
interface commands. This, in turn, allows beginning work
with the ostis-system immediately after installing the
platform and downloading the knowledge base without
the need to connect any additional modules.

Implementation of a basic set of platform-dependent
sc-agents and their common components
⇒⇒⇒ component of the software system*:

• Implementation of the basic set of search
sc-agents

• Implementation of the basic mechanism for
collecting junk information

• Implementation of the basic set of front end
sc-agents

The current implementation of the mechanism for
collecting junk information contains an sc-agent that
responds to the explicit addition of any sc-element to
the set "junk information" and carries out the physical
deleting of this sc-element from sc-memory

Implementation of the basic set of search sc-agents
⇒⇒⇒ component of the software system*:

• Implementation of an Abstract sc-agent for
searching for the semantic neighborhood of a
given entity

• Implementation of an Abstract sc-agent for
searching for all entities that are particular
towards a given one

• Implementation of an Abstract sc-agent for
searching for all entities that are common
towards a given one

• Implementation of an Abstract sc-agent for
searching for all sc-identifiers that correspond
to a given entity

• Implementation of an Abstract sc-agent for
searching for basic sc-arcs that are incident to
a given sc-element

Implementation of the basic set of front end sc-agents
⇒⇒⇒ component of the software system*:

• Implementation of an Abstract sc-agent for
processing user interface commands

• Implementation of an Abstract sc-agent for
translating from an internal knowledge
representation to an intermediate transport
format
⇒⇒⇒ note*:

[currently, an approach is used, in which,
regardless of the form of external repre-
sentation of information, the information
stored in sc-memory is firstly translated
into an intermediate transport format
based on JSON, which is then processed
by sc-agents of the user interface, which
are part of Implementation of the inter-
preter of sc-models of user interfaces]

V I I . P R I N C I P L E S O F I N T E R A C T I O N O F T H E
S O F T WA R E M O D E L O F S C - M E M O RY W I T H

E X T E R N A L R E S O U R C E S

The interaction of the software model of sc-memory
with external resources can be carried out through a
specialized program interface (API), but this option is
inconvenient in most cases, because:
• it is supported only for a very limited set of

programming languages (C, C++, Python);
• it requires that the client application that accesses

the software model of sc-memory factually forms a
whole unit with it, thus eliminating the possibility
of building a distributed group of ostis-systems;

• as a consequence of the previous item, the possibility
of parallel work with sc-memory of several client
applications is excluded.

To make it possible to access sc-memory remotely,
without taking into account the programming languages,
with which a specific client application is implemented,
it was decided to implement the possibility of accessing
sc-memory using universal protocols that do not depend
on the means of implementing a particular component
or system. The binary protocol SCTP [22] and the
text protocol based on JSON [23] were developed as
such protocols. Further, the protocols themselves will be
considered in more detail as well as the means that allow
interaction on the basis of these protocols.

86

Implementation of the subsystem of interaction with
the environment using network protocols
⇒⇒⇒ component of the software system*:

• Implementation of the subsystem of interaction
with the environment using the SCTP protocol

• Implementation of the subsystem of interaction
with the environment using protocols based on
the JSON format

SCTP is a binary protocol that allows performing
such operations as reading (search) and editing constructs
stored in sc-memory as well as track events that occur
in sc-memory.

The interaction between the client and the server on
the SCTP protocol is carried out by exchanging sctp-
commands, each of which is a set of bytes intended for
machine processing (but not for human perception).

SCTP
:=== [The Semantic Code Transfer Protocol]
⇔⇔⇔ analogy*:

HTTP
⇒⇒⇒ generalized implementation*:

• sctp-server
• sctp-client

should be distinguished*
333 {{{• SCTP

:=== [The Semantic Code Transfer Protocol]
• Stream Control Transmission Protocol

:=== [The Stream Control Transmission Proto-
col]

⇒⇒⇒ note*:
[A transport layer protocol in computer
networks developed in 2000.]

}}}

The stp-server processes stp-commands that come from
different sctp-clients and provides their interpretation in
sc-memory.

In general, stp-clients can be implemented in different
programming languages and have a different programming
interface. In fact, the problem of the stp-client is to
convert high-level commands presented in a convenient
for the programmer form into one or more low-level
sctp-commands, send them to the server, wait for the
sctp-result and interpret it.

sctp-command
⇒⇒⇒ generalized decomposition*:
{{{• sctp-command header

:=== [a part of the sctp-command that specifies
its type and some additional information
about it]

• arguments of the sctp-command

:=== [a part of the sctp-command that contains
its arguments and the dimension of which
may vary, depending on the type of the
command.]

}}}
⇒⇒⇒ inclusion*: example*:
• sctp-command for deleting an sc-element with

the specified sc-address
• sctp-command for creating a new sc-node of

the specified type
• sctp-command for getting the initial and final

elements of the sc-arc
⇒⇒⇒ note*:

[Running of each sctp-command assumes the occur-
rence of an sctp-result that uniquely corresponds to
this command.]

The SCTP protocol has a number of advantages:
• The SCTP protocol is crossplatform;
• The SCTP protocol can be implemented quite simply

in almost any programming language.
However, the SCTP protocol can be considered out-

dated at the moment, since it has a number of significant
disadvantages:
• SCTP protocol commands are low-level (focused

on work with single sc-elements or the simplest sc-
constructs of 3 or 5 elements). This leads to the fact
that performing even a simple transformation in the
knowledge base or a content-addressable retrieval
through a set of interrelated constructs is expressed
in the form of a fairly large set of sctp-commands.
Because for each command there is an sctp-result that
is also sent over the network, this unnecessarily loads
the network and greatly decreases the efficiency of
the system as a whole. In addition, the efficiency of
the system begins to depend heavily on the network
bandwidth;

• The SCTP protocol is not designed for human
perception.

Implementation of the subsystem of interaction with
the environment using the SCTP protocol
⇒⇒⇒ component of the software system*:

• Implementation of the sctp-server
• Implementation of the sctp-client

The Implementation of the subsystem of interaction with
the environment using the SCTP protocol includes the
Implementation of the sctp-client in C++, at the same time,
there are other implementations of sctp-clients within
the same software implementation of the platform, for
example, within the Implementation of the interpreter of
sc-models of user interfaces.

Due to the large number of disadvantages of the SCTP
protocol, it was decided to develop another protocol

87

based on some universally accepted text transport format.
The JSON format was chosen as such one. Currently,
the existing components of the platform and specific
ostis-systems are being transferred from using the SCTP
protocol to the text protocol based on the JSON format.
This protocol does not have its name yet.

Within the Protocol for interaction with sc-memory
based on JSON, each command is a json-object, in which
the command identifier, the type of the command and
its arguments are specified. In turn, the response to the
command is also a json-object, in which the command ID,
its status (run successfully/unsuccessfully) and the results
are specified. The structure of arguments and results of a
command is determined by the type of command.

The protocol based on the JSON format has a number
of advantages:
• JSON is a universally accepted open format, for

working with which there are a large number of
libraries for popular programming languages. This,
in turn, simplifies the implementation of the client
and server for the protocol built on the basis of
JSON;

• The implementation of the JSON-based protocol
does not apply fundamental restrictions on the
dimension (length) of each command, unlike the
binary protocol does. Thus, it becomes possible to
use non-atomic commands that allow, for example,
creating several sc-elements in one act of transferring
such a command over the network. Important exam-
ples of such commands are the Random template
generation command and the Random template
search command;

• It can be said that the JSON-based protocol is the
next step towards creating a powerful and universal
request language that is similar to the SQL language
for relational databases and that is designed to
work with sc-memory. The next step will be the
implementation of such a protocol based on one
of the standards for the external display of sc-
constructs, for example, SCs-code, which, in turn,
will allow transferring entire programs for processing
sc-constructs as commands, for example, in the SCP
language.

V I I I . I M P L E M E N TAT I O N O F A C C E S S O RY
T O O L S F O R W O R K I N G W I T H S C - M E M O RY

The Implementation of accessory tools for working
with sc-memory is currently represented only by the
Implementation of the collector of the knowledge base
from source texts written in the SCs-code.

The collector of the knowledge base from source texts
allows building a knowledge base from a set of source
texts written in a limited SCs-code into a binary format
perceived by the Software model of sc-memory. In this
case, the building is possible both "from scratch" (with

the destruction of a previously created memory snapshot)
and an additive building, when the information contained
in a given set of files is added to an already existing
memory state snapshot.

In the current implementation, the collector performs
"pasting together" ("merging") of sc-elements that have
the same system sc-identifiers at the source level.

I X . I M P L E M E N TAT I O N O F T H E I N T E R P R E T E R
O F S C - M O D E L S O F U S E R I N T E R F A C E S

Along with the implementation of the Software model
of sc-memory, an important part of the Software version
of the implementation of the platform for interpreting sc-
models of computer systems is the Implementation of the
interpreter of sc-models of user interfaces, which provides
basic means for viewing and editing the knowledge base
by the user, means for navigating through the knowledge
base (asking questions to the knowledge base) and can
be supplemented with new components, depending on
the problems solved by each specific ostis-system.

Implementation of the interpreter of sc-models of user
interfaces
:=== [sc-web]
⇒⇒⇒ programming language used*:

• JavaScript
• TypeScript
• Python

Figure 5 shows the Architecture of the Implementation
of the interpreter of sc-models of user interfaces. This
artwork shows the planned version of the architecture
of the Implementation of the interpreter of sc-models of
user interfaces, an important principle of which is the
simplicity and uniformity of connecting with any compo-
nents of the user interface (editors, visualizers, switches,
menu commands, etc.). For this purpose, the Sandbox
software middleware is implemented, within which low-
level operations of interaction with the server part are
implemented and which provides a more convenient
programming interface for developers of components.

The current Implementation of the interpreter of sc-
models of user interfaces has a number of disadvantages:
• The lack of a single unified mechanism for client-

server interaction. Some components (a visualizer
of sc-texts in the SCn-code, menu commands, etc.)
run over the HTTP protocol, some – over the SCTP
protocol using the WebSocket technology, which
leads to significant difficulties in the development
of the platform;

• The HTTP protocol assumes a clear separation of the
active client and the passive server that responds to
client requests. Thus, in practice, the server (in this
case, sc-memory) cannot send a message to the client

88

SC-MACHINE

SC
g-

vi
ew

er

SC
g-

ed
ito

r

SC
n-

vi
ew

er

SC
n-

ed
ito

r

M
en

u

Se
ar

ch

L
an

g
sw

itc
h

Sandbox

...

Network
protocols

Network client

Web browser

sc-web

Network
protocols

Figure 5. Architecture of the Implementation of the interpreter of
sc-models of user interfaces

in for convenience, which increases the security of
the system but significantly reduces its interactivity.
In addition, this variant of the implementation makes
it difficult to implement the multiagent approach
adopted in the OSTIS Technology, in particular,
it makes it difficult to implement sc-agents on
the front end. These problems can be solved by
constant monitoring of certain events on the front
end, however, this option is ineffective;
In addition, a part of the interface factually works di-
rectly with sc-memory using the WebSocket technol-
ogy, and the other one – through a middleware based
on the tornado library for the Python programming
language, which leads to additional dependencies on
third-party libraries;

• Some of the components (for example, the search
box by ID) are implemented by third-party means
and are not connected with sc-memory in practice.
It makes it difficult to develop the platform;

• The current Implementation of the interpreter of
sc-models of user interfaces is focused only on
conducting a dialogue with the user (in the "user
question – system answer" style). Obviously neces-
sary situations are not supported, such as running a
command that does not assume an answer; an error
or the absence of an answer; the need of a system
to ask a question to the user, etc;

• The ability for the user to interact with the system
without using special control components is limited.
For example, you can ask a question to the system
by drawing it in the SCg-code, but the user will
not see the answer, although it will be created in
memory by the corresponding agent;

• Most of the technologies used in the implementation

of the platform are now outdated, which makes it
difficult to develop the platform;

• The idea of platform independence of the user
interface (building an sc-model of the user interface)
is not implemented to the full. Currently, it is
likely to be difficult to describe the sc-model of
the user interface (including the exact placement,
dimensions, design of components, their behavior,
etc.) completely due to performance limitations,
however, it is quite possible to implement the ability
to ask questions to all interface components, change
their placement, etc., however, these capabilities
cannot be implemented in the current version of
the platform implementation;

• The interface part works slowly due to the disadvan-
tages of the SCTP protocol and some disadvantages
of the implementation of the server part in Python;

• The inheritance mechanism is not implemented when
adding new external languages. For example, adding
a new language, even very close to the SCg-code,
requires physically copying the component code and
making appropriate changes, thus two components
that are not connected in any way are obtained, which
begin to develop independently;

• A low level of documentation of the current Imple-
mentation of the interpreter of sc-models of user
interfaces.

Based on this, the requirements for the future (new)
version of the Implementation of the interpreter of sc-
models of user interfaces, which is currently being
developed, were formulated:

• Unify the principles of interaction of all interface
components with the Software model of sc-memory,
regardless of what type the component belongs to.
For example, the list of menu commands should be
formed through the same mechanism as the response
to the user request, and the editing command
generated by the user, and the command for adding
a new fragment to the knowledge base, etc;

• Unify the principles of user interaction with the
system, regardless of the method of interaction and
the external language. For example, it should be
possible to ask questions and run other commands
directly through the SCg/SCn interface. At the
same time, it is necessary to take into account the
principles of editing the knowledge base, so that the
user cannot add new information into the compliant
part of the knowledge base under the guise of asking
a question;

• Unify the principles of processing events that occur
when the user interacts with interface components
– the behavior of buttons and other interactive
components should not be set statically by third-
party means but implemented as an agent, which,
nevertheless, can be implemented randomly (not

89

necessarily at a platform-independent level). Any
action performed by the user at the logical level
should be interpreted and processed as the initiation
of the agent;

• Provide the ability to run commands (in particular,
ask questions) with a random number of arguments,
including those without arguments;

• Provide the ability to display the answer to the
question partially if the answer is very large and
it takes a long time for it to be displayed;

• Each displayed interface component should be in-
terpreted as an image of some sc-node described in
the knowledge base. Thus, the user should be able
to ask random questions to any components of the
interface;

• Simplify as much as possible and document the
mechanism for adding new components;

• Provide the ability to add new components based on
existing ones without creating independent copies.
For example, it should be possible to create a
component for a language that extends the SCg
language with new primitives, redefine the principles
of placement of sc-texts, etc;

• Minimize dependence on third-party libraries;
• Minimize the usage of the HTTP protocol (a boot-

strap loading of the general interface structure),
ensure the possibility of equal two-way interaction
between the server and client parts;

• Stop using the SCTP protocol completely, switch to
the JSON-based one, document it.

It is obvious that the implementation of most of the
above requirements is not only connected with the very
version of the implementation of the platform but also
requires the development of the theory of logical-semantic
models of user interfaces and the clarification of the
general principles of the organization of user interfaces
of ostis-systems within it. However, the possibility of
implementing such models in principle should be taken
into account within the platform implementation.

Next, let us consider the current set of components
that are included by default in the Implementation of the
interpreter of sc-models of user interfaces. As mentioned
earlier, this set can be extended by other components,
depending on the problems solved by a specific ostis-
system.

Implementation of the interpreter of sc-models of user
interfaces
⇒⇒⇒ component of the software system*:

• User interface command menu panel
• Component for switching the language of

identification of displayed sc-elements
• Component for switching the external

language of knowledge visualization
• Search box of sc-elements by ID

• Panel for displaying the user dialog with the
ostis-system

• Panel for visualization and editing knowledge
⇒⇒⇒ component of the software system*:

• Visualizer of sc.n-texts
• Visualizer and editor of sc.g-texts

User interface command menu panel contains displays
of command classes (both atomic and non-atomic) that
are currently available in the knowledge base and are
included in the decomposition of the Main menu of
the user interface (meaning a complete decomposition,
which in general can include several levels of non-atomic
command classes).

Interaction with the display of a non-atomic command
class initiates a command for displaying classes of
commands included in the decomposition of this non-
atomic command class.

Interaction with the display of an atomic command
class initiates the generation of a command of this
class with previously selected arguments based on the
corresponding generalized definition of the command class
(command class template).

The Component for switching the language of identifi-
cation of displayed sc-elements is a display of the set of
natural languages available in the system. The interaction
of the user with this component switches the user interface
to the mode of communication with a particular user
using the base sc-identifiers that belong to this natural
language. It means that when displaying sc-identifiers of
sc-elements in any language, for example, in the SCg-
or SCn-code, the base sc-identifiers that belong to this
natural language will be used. It is subject both to sc-
elements displayed within the Panel for visualization
and editing knowledge and to any other sc-elements,
for example, command classes and even the natural
languages themselves displayed within the Component
for switching the language of identification of displayed
sc-elements.

The Component for switching the external language of
knowledge visualization is used to switch the language of
knowledge visualization in the active window displayed
on the Panel for visualization and editing knowledge.
In the current implementation, SCg- and SCn-codes are
supported as such languages by default as well as any
other languages included in the set of external languages
of the SC-code visualization.

The Search box of sc-elements by ID allows searching
for sc-identifiers that contain a substring input in this box
(capitalization is respected). As a result of the search, a
list of sc-identifiers that contain the specified substring
is displayed, when interacting with which the question
“What is it?” is automatically put, the argument of which
is either the sc-element itself, which has this sc-identifier
(in case the specified sc-identifier is the base or system
one, and thus the specified sc-element can be uniquely

90

defined) or the internal ostis-system file itself, which is
the sc-identifier (in case this sc-identifier is not the base
one).

The Panel for displaying the user dialog with the ostis-
system displays a time-ordered list of sc-elements, which
are signs of actions that are initiated by the user within the
dialog with the ostis-system by interacting with displays
of the corresponding command classes (that is, if the
action was initiated in another way, for example, by
an explicit initiation through the creation of an arc of
belonging to a set of initiated actions in the sc.g-editor,
then it will not be displayed on this panel). When the
user interacts with each of the displayed signs of actions
on the Panel for visualization and editing knowledge,
a window that contains the result of performing this
action in the language for visualization is displayed, in
which it was displayed when the user viewed it the last
(previous) time. Thus, in the current implementation, this
panel can work only if the action initiated by the user
assumes the result of this action explicitly represented in
the memory. In turn, it follows that at present this panel,
as the Implementation of the interpreter of sc-models
of user interfaces in common, allows working with the
system only in the ”question-answer” dialog mode.

The Panel for visualization and editing knowledge
displays windows that contain an sc-text represented in
some language from a set of external languages of the
SC-code visualization and that, as a rule, is the result of
some action initiated by the user. If the corresponding
visualizer supports the possibility of editing texts of the
corresponding natural language, then it is at the same
time also an editor.

If necessary, the user interface of each specific ostis-
system can be supplemented with visualizers and editors
of various external languages, which in the current version
of the Implementation of the interpreter of sc-models
of user interfaces will also be placed on the Panel for
visualization and editing knowledge.

X . I M P L E M E N TAT I O N O F T H E I N T E R P R E T E R O F
P R O G R A M S O F T H E B A S E P R O G R A M M I N G
L A N G U A G E O F T H E O S T I S T E C H N O L O G Y

As a base programming language within the OSTIS
Technology, including for the implementation of programs
of sc-agents, an SCP Language [8] is proposed. The most
important feature of the SCP Language is the fact that its
programs are written in the same way as the knowledge
they process, that is, in the SC-code. This, on the one
hand, allows making ostis-systems platform-independent
(clearly separate the sc-model of a computer system and
the platform for interpreting such models) and, on the
other hand, requires the occurrence of the Implementation
of the scp-interpreter within the platform, that is, an
interpreter of SCP-programs.

The structure of the Implementation of the scp-
interpreter corresponds to the structure of an Abstract

scp-machine (an abstract model of the scp-interpreter)
considered in a number of papers, for example, in [18].
Next, let us consider this structure in the SCn-code.

Implementation of the scp-interpreter
⇐⇐⇐ software implementation*:

Abstract scp-machine
⇒⇒⇒ component of the software system*:

• Implementation of an Abstract sc-agent for
creating scp-processes

• Implementation of an Abstract sc-agent for
interpreting scp-operators

• Implementation of an Abstract sc-agent for
synchronizing the process of interpreting
scp-programs

• Implementation of an Abstract sc-agent for
killing scp-processes

• Implementation of an Abstract sc-agent for
synchronizing events in sc-memory and its
implementation

Implementation of an Abstract sc-agent for
interpreting scp-operators
⇒⇒⇒ component of the software system*:

• Implementation of an Abstract sc-agent for
interpreting scp-operators for generating
constructs

• Implementation of an Abstract sc-agent for
interpreting scp-operators of the
content-addressable retrieval of constructs

• Implementation of an Abstract sc-agent for
interpreting scp-operators for deleting
constructs

• Implementation of an Abstract sc-agent for
interpreting scp-operators for checking
conditions

• Implementation of an Abstract sc-agent for
interpreting scp-operators for managing
operand values

• Implementation of an Abstract sc-agent for
interpreting scp-operators for managing
scp-processes

• Implementation of an Abstract sc-agent for
interpreting scp-operators for managing events

• Implementation of an Abstract sc-agent for
interpreting scp-operators for processing the
contents of numerical files

• Implementation of an Abstract sc-agent for
interpreting scp-operators for processing the
contents of string files

The current Implementation of the scp-interpreter does
not include specialized tools for working with locks,
since the mechanism for locking sc-memory elements is
implemented at a lower level within the Implementation

91

of the sc-storage and the mechanism for accessing it.

X I . C O N C L U S I O N

The paper considers the current version of the imple-
mentation of the software implementation of the platform
for interpreting sc-models of computer systems built
using the OSTIS Technology. The components of this
implementation, their advantages and disadvantages are
considered in detail, the problems for the development of
components and the platform as a whole are formulated.

It is important to note that an ontological approach was
used to describe the implementation of the platform for
interpreting sc-models of computer systems, which makes
it possible to make such a description understandable
not only to a human but also to an intelligent computer
system and, ultimately, will allow changing-over to the
ontological design of the platform implementation, first
in software and later in hardware variants.

A C K N O W L E D G M E N T

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

The work was carried out with the partial financial
support of the BRFFR (agreement No. F21RM-139).

R E F E R E N C E S

[1] L. G. Komarcova and A. V. Maksimov, Nejrokomp’yutery: Ucheb.
posobie dlya vuzov. - 2-e izd., pererab. i dop. [Neurocomputers:
A Textbook for Universities. - 2nd ed., revised and enlarged],
ser. Informatika v tekhnicheskom universitete [Informatics at the
Technical University]. Moscow: MGTU im. N.E. Baumana
[Bauman Moscow State Technical University], 2004, (In Russ).

[2] (2021, Jun) PK PROLOG [PC PROLOG]. [Online]. Available:
http://www.prolog-plc.ru/

[3] (2021, Jun) USB Accelerator | Coral. [Online]. Available:
https://coral.ai/products/accelerator/

[4] V. Golenkov, N. Gulyakina, I. Davydenko, and D. Shunke-
vich, “Semanticheskie tekhnologii proektirovaniya intellektual’nyh
sistem i semanticheskie associativnye komp’yutery [Semantic
technologies of intelligent systems design and semantic associative
computers],” Otkrytye semanticheskie tehnologii proektirovanija
intellektual’nyh sistem [Open semantic technologies for intelligent
systems], pp. 42–50, 2019.

[5] D. N. Koronchik, “Unificirovannye semanticheskie modeli
pol’zovatel’skih interfejsov intellektual’nyh sistem i tekhnologiya
ih komponentnogo proektirovaniya [Unified semantic models of
user interface for intelligent systems and technology for their
develop],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2013,
pp. 403–406.

[6] D. Koronchik, “Realizaciya platformy dlya web-orientirovannyh
sistem, upravlyaemyh znaniyami [Implementation of web-platform
for systems based on knowledges],” in Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems], V. Golenkov, Ed.
BSUIR, Minsk, 2015, pp. 89–92.

[7] H.-m. Haav, “A comparative study of approaches of ontology
driven software development,” Informatica, vol. 29, pp. 439–466,
11 2018.

[8] (2021, Jun) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

[9] V. Golenkov, N. Guliakina, I. Davydenko, and A. Eremeev,
“Methods and tools for ensuring compatibility of computer systems,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2019, pp. 25–52.

[10] O. P. Kuznecov, Diskretnaya matematika dlya inzhenera: Uchebnik
dlya vuzov [Discrete Mathematics for an Engineer: A Textbook
for High Schools]. Moscow: Lan’, 2009.

[11] (2021, Jun) Graph Database Platform | Graph Database
Management System | Neo4j. [Online]. Available:
https://neo4j.com/

[12] (2021, Jun) ArangoDB, the multi-model database for graph and
beyond. [Online]. Available: https://www.arangodb.com/

[13] (2021, Jun) Home | OrientDB Community Edition. [Online].
Available: https://orientdb.org/

[14] (2021, Jun) Vaticle | Home. [Online]. Available: https://vaticle.com/
[15] (2021, Jun) OpenLink Software: Virtuoso Homepage. [Online].

Available: https://virtuoso.openlinksw.com/
[16] (2021, Jun) Welcome · Eclipse RDF4J™ | The Eclipse Foundation.

[Online]. Available: https://rdf4j.org/
[17] V. P. Ivashenko, N. L. Verenik, A. I. Girel’, E. N. Sejtkulov, and

M. M. Tatur, “Predstavlenie semanticheskih setej i algoritmy ih
organizacii i semanticheskoj obrabotki na vychislitel’nyh sistemah
s massovym parallelizmom [Semantic networks representation
and algorithms for their organization and semantic processing
on massively parallel computers],” in Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems], V. Golenkov, Ed.
BSUIR, Minsk, 2015, pp. 133–140.

[18] D. Shunkevich, “Agentno-orientirovannye reshateli zadach
intellektual’nyh sistem [Agent-oriented models, method and
tools of compatible problem solvers development for intelligent
systems],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2018,
pp. 119–132.

[19] (2021, Jun) OSTIS. [Online]. Available: https://github.com/ostis-
dev

[20] (2021, Jun) ostis-apps/sc-web: The sc-web enchancement of
https://github.com/deniskoronchik/sc-web/tree/master. [Online].
Available: https://github.com/ostis-apps/sc-web

[21] (2021, Jun) Sc-machine. [Online]. Available: http://ostis-
dev.github.io/sc-machine/

[22] (2021, Jun) Sctp-protocol - sc-machine. [Online]. Available:
http://ostis-dev.github.io/sc-machine/net/sctp/

[23] (2021, Jun) Websocket - sc-machine. [Online]. Available:
http://ostis-dev.github.io/sc-machine/http/websocket/

Онтологический подход к разработке
программной модели семантического
компьютера на основе традиционной

компьютерной архитектуры
Шункевич Д.В., Корончик Д.Н.

В работе рассмотрен онтологический подход к разработке
программной модели платформы интерпретации семанти-
ческих моделей интеллектуальных компьютерных систем
(программной модели семантического компьютера). Подроб-
но рассмотрена архитектура указанной программной модели,
детально описаны ее компоненты, принципы их реализации,
указаны преимущества принятых решений перед аналогами.

Отличительной особенностью работы является демон-
страция применения онтологического подхода к разработке
программных продуктов на примере указанной программной
модели семантического компьютера.

Received 01.06.2021

92

