
Development of a problem solver for automatic
answer verification in the intelligent tutoring

systems
Wenzu Li, Longwei Qian

Belarussian State University Informatics and Radioelectronics
Minsk, Belarus

lwzzggml@gmail.com, qianlw1226@gmail.com

Abstract—This article proposes an approach to develop-
ing a problem solver for automatic answer verification in
intelligent tutoring systems constructed using OSTIS Tech-
nology. The problem solver is developed based on multi-
agent technology. The developed problem solver automati-
cally verifies the correctness and completeness of the user
answer at the semantic level by calling the corresponding sc-
agent sets according to the type of the questions (multiple-
choice questions, fill in the blank questions, questions of
definition interpretation, etc.). Sometimes there may be
multiple standard answers for the question of definition
interpretation, but the problem solver can automatically
filter a semantic fragment of the standard answer in
advance that best matches the user answer according to the
semantic fragment of the user answer, and then continue
to verify the correctness and completeness between them.

Keywords—problem solver, answer verification, OSTIS
Technology, intelligent tutoring systems, ontology, knowl-
edge base

I. INTRODUCTION

With the development of modern information technology,
artificial intelligence as an important part of modern computer
applications is rapidly integrating into the field of education.
Applying artificial intelligence technology to the field of educa-
tion can not only provide new teaching methods and tools, but
also enable learners to spend less time acquiring more useful
knowledge, effectively improving the accuracy of information
retrieval and the efficiency of knowledge selection. At the same
time, the combination of artificial intelligence technology and
the educational process is also one of the important means to
ensure the fairness of education, so that every learner has an
equal opportunity to obtain knowledge. Especially since the
outbreak of COVID-19, intelligent tutoring systems (ITS) have
played an increasingly important role in distance education [3].

As more and more ITS used in different fields are developed,
most developers believe that ITS need to meet at least the
following basic functions:

• automatic verification of answers, if an error is found,
the cause of the error needs to be analyzed and corrective
measures taken;

• according to the learner’s level and learning situation,
automatically adjust the learning content and progress;

• automatic generation of various questions and exercises;
• have the ability to generate and understand natural lan-

guage, and realize relatively free Human-Machine con-
versation;

• have the ability to explain teaching content;

• automatic problem solving based on understanding the
teaching content.

As the most basic and critical function of ITS, automatic
answer verification can quickly check the user’s grasp of
new knowledge, and can greatly improve the user’s learning
efficiency, allowing users to obtain the most knowledge in a
limited time. Usually answer verification needs to solve the
following basic tasks:

1) subjective question answer verification and objective
question answer verification;

2) analysis of correctness and completeness of answers;
3) verification a type of question with multiple standard an-

swers, and these standard answers do not satisfy logical
equivalence (for example, the definition of a square);

4) whether the logic formula of standard answer and user
answer meets the equivalence;

5) analysis of decision sequence and logic rationality when
users solve problems;

According to the types of questions, automatic answer ver-
ification can be divided into: 1. objective question answer ver-
ification; 2. subjective question answer verification. Objective
questions refer to a type of question that has a unique standard
answer. In this article, objective questions include: multiple-
choice questions, fill in the blank questions and judgment
questions. Objective questions differ from subjective questions,
which have more than one potential correct answer and some-
times have room for a justified opinion. Subjective questions
in this article include: definition explanation questions, proof
questions and theorem interpretation questions. Because the
answers to objective questions are fixed and simple, ITS on the
market basically have the function of objective question answer
verification. However, since subjective question answer veri-
fication needs to involve natural language processing (NLP),
linguistics and other aspects of knowledge, currently only some
ITS have the function of subjective question answer verification
[4], [7].

With the development of semantic web, deep learning and
NLP technology, subjective question answer verification has
become a very important research direction. Therefore, we have
introduced in detail the existing subjective question answer
verification approaches and their advantages and disadvantages
in the literature [4], and on the basis of these approaches,
we propose an semantic-based answer verification approaches
(subjective question answer verification and objective question
answer verification). The basic principle of this approach is
to first decompose the standard answers and user answers in
the form of semantic graphs into substructures according to
the knowledge representation rules in the ostis-systems (system
built using OSTIS Technology (Open Semantic Technology for

169

Intelligent Systems)), and then calculate the similarity between
the semantic graphs by comparing the matching relationships
of the decomposed substructures, finally, the correctness of
the user answer is judged according to the similarity [1],
[2], [6]. A semantic graph is a network that represents se-
mantic relationships between concepts. In the ostis-systems,
the semantic graph is constructed using SC-code (as a basis
for knowledge representation within the OSTIS Technology, a
unified coding language for information of any kind based on
semantic networks is used, named SC-code). The user answer
in natural languages is converted to SC-code using the natural
language interface [5].

In literature [4], we only briefly introduced the process of
using semantics to verify user answers at the theoretical level,
and conducted a feasibility analysis of the proposed approach,
but the article does not involve the specific process of using
the program to implement each step. Therefore, in this article,
a problem solver for answer verification in the ostis-systems is
developed based on the answer verification approach proposed
in [4]. One of the key components of each intelligent system is
the problem solver, which provides the ability to solve various
problems. The developed problem solver mainly solves the
tasks (1), (2), (3) listed above, and for the solutions to the
remaining more complex tasks, we will introduce them in detail
in the subsequent articles. The discrete mathematics tutoring
system developed using OSTIS Technology will serve as a
demonstration system for the problem solver.

II. EXISTING APPROACHES AND PROBLEMS

According to the type of knowledge in the knowledge base
of the ITS, answer verification can be divided into:

• factual knowledge answer verification;
• logical knowledge answer verification.
Factual knowledge refers to knowledge that does not contain

variable types, and this type of knowledge expresses facts. In
the knowledge base of ostis-systems, objective questions and
their answers are usually described using factual knowledge.
Among them, the user answers to objective questions in the
form of natural language have been aligned (entity alignment)
with the existing knowledge in the knowledge base when they
are transformed into SC-code through the natural language
interface. Therefore, there is no need to consider the similarity
between concepts or relations at the language level when
calculating the similarity between the answers to objective
questions. That is, SC-nodes that represent the same concept or
relation in the knowledge base have a unique main identifier.

Logical knowledge usually contains variables, and there are
logical relations between knowledge. In the ostis-systems SCL-
code (a special sub-language of the SC language intended
for formalizing logical formulas) is used to represent logical
knowledge. The answers to subjective questions in the knowl-
edge base are described in the form of logical formula using
logical knowledge. Because, the semantic segment used to
represent the answer to subjective question in the knowledge
base contains variables (equivalent to the bound variable in the
predicate logic formula), and there is a strict logical sequence
between each sc-node in the semantic segment. Therefore,
when using the problem solver to calculate the similarity
between the semantic graph of standard answer and the se-
mantic graph of user answer, it is necessary to establish the
mapping relationship between the potential equivalent variables
between the two semantic graphs according to the semantic
structure and the position of the variables in the logical formula.
Among them, establishing the mapping relationship of potential
equivalent variables between semantic graphs is the most basic
and critical step in subjective question answer verification.

In this article, we can regard semantic graphs describing
standard answers and user answers as partial fragment of the
ontology (ontology is a type of knowledge, each of which is
a specification of the corresponding subject domain, focused
on describing the properties and relations of concepts that are
part of the specified subject domain) [2], [4], [6]. Therefore,
the approach to establishing a mapping relationship between
semantic graphs is similar to the approach to establishing a
mapping relationship between ontology. At present, there are
many mature tools and approaches to establishing the mapping
relationship between ontology, and we will consider them in
detail next.

Ontology mapping
With the rapid development of the new generation of seman-

tic web, the ontology as the foundation of the semantic web has
become a research hot-spot, and many ontology libraries with
rich semantic information and practical value have emerged.
These ontology libraries have huge differences due to different
developers, application purposes and application fields, and
they cannot communicate and inter-operate effectively with
each other. The ontology mapping is a key step to solve the
heterogeneity of ontology and realize knowledge sharing and
ontology inter-operation. The core idea of ontology mapping
is to calculate the similarity between elements (concepts, at-
tributes, and instances) in different ontology, and then establish
the mapping relationship between the elements according to the
similarity and mapping strategy.

Due to the rapid development of ontology mapping re-
lated technologies, many concepts with similar semantics and
different names have emerged, such as Ontology Mapping,
Ontology Alignment, Ontology Matching, Ontology In-
tegration, Ontology Fusion, and Ontology Merging. It is
generally believed that ontology mapping, ontology alignment
and ontology matching are concepts with the same semantics,
that is, the mapping relationship between elements in different
ontology is established according to the mapping strategy.
Ontology integration, ontology fusion, and ontology merging
generally produce new ontology, and ontology mapping is their
basic task [10], [11]. Ontology mapping involves multiple steps
such as ontology preprocessing. Since this article focuses on
the establishment of element mapping relationships between
ontology, other steps will not be introduced in detail.

There are already many mature ontology mapping algorithms
and mapping systems:

• a comprehensive similarity calculation algorithm that es-
tablishes semantic mapping relationships between ele-
ments (concepts, attributes, and instances) between RDFS
ontology is introduced in literature [9]. Taking concepts
between ontology as an example, the algorithm first uses
Edit Distance (Levenshtein Distance) to calculate the
similarity of names between concepts, and then calculates
the similarity of the instances of the concept according to
the ratio of the number of instances matched between
the concepts and the number of all instances, and finally,
the structural similarity of the concepts is calculated
according to the relationship between the number of the
same father and child concepts and the number of all
adjacent concepts between the concepts. Combine the
above three similarities and set different weights to get
the final similarity of the concept. Finally, according to
the comprehensive similarity between concepts and the
mapping strategy, the mapping relationship of equivalent
concepts between different ontology is established;

• with the rapid development of machine learning in recent
years, many ontology mapping approaches based on ma-
chine learning frameworks have emerged. An approach

170

to alignment of entities between knowledge graphs based
on machine learning is introduced in the literature [12].
The knowledge graph is regarded as a formal description
of things and their interrelationships in the objective
world. The approach consists of two parts: 1. knowledge
representation learning; 2. learning of mapping relation-
ships between entities; Knowledge representation learning
refers to the use of machine learning algorithms to learn
the semantic representation of entities and relationships
in the knowledge graph. The learning of the mapping re-
lationship between entities refers to learning the mapping
relationship of entity pairs between knowledge graphs
according to the manually labeled data sets [13];

• with the development of ontology mapping technology,
many mature ontology mapping systems have emerged,
among which the most representative ones are RiMOM
and ASMOW. RiMOM is an ontology mapping system
developed based on Bayesian decision theory. RiMOM
uses similarity propagation theory and multiple heuris-
tic rules to establish the mapping relationship between
concepts. ASMOV is an automated ontology mapping
tool developed by Jean-Mary et al. Its goal is to pro-
mote the integration of heterogeneous ontology. ASMOV
uses an iterative calculation method to analyze multiple
characteristics of elements to calculate the similarity of
element pairs between ontology, and to establish mapping
relationships between concepts, attributes, and instances
in turn [15], [16].

Although the ontology mapping approaches introduced
above have many advantages, they also have many problems:

• the traditional algorithm for calculating the similarity of
element pairs between ontology requires iterative calcula-
tion of the similarity between the current element in the
source ontology and each element in the target ontology.
Therefore, when the amount of knowledge contained in
the ontology is very large, it may take several minutes or
more to establish the mapping relationship between the
ontology, and real-time mapping cannot be performed;

• using machine learning algorithms for ontology mapping
has improved the accuracy of ontology mapping to a
certain extent, but it requires a huge amount of human
resources to label matching element pairs between ontol-
ogy;

• ontology mapping is a very complicated process, and
no approach is perfect. Especially in recent years, the
generation of big data has led to the generation of big
ontology, but the existing ontology mapping system and
approach cannot perform ontology mapping in a big data
environment.

Establishing the mapping relationship of potential equivalent
variable pairs between the semantic fragments of the answers to
subjective question is a key step of logical knowledge answer
verification. The part of the process of establishing the mapping
relationship between potential equivalent variables pairs is sim-
ilar to the establishment of the mapping relationship between
the equivalent element pairs of the ontology. However, in the
ostis-systems, the knowledge base is constructed using SC-
code, and the knowledge in the knowledge base has a specific
knowledge structure and knowledge representation approach,
so the existing ontology mapping algorithms cannot be used
directly. Therefore, based on the existing ontology mapping
approach and OSTIS Technology, this article proposes an
approach to establish the mapping relationship of the potential
equivalent variables pairs between the semantic fragments of
the answers to subjective questions based on the semantic
structure.

III. PROPOSED APPROACH

Based on the OSTIS Technology used to develop semantic
intelligence systems and the corresponding platforms, tools and
approaches, an approach to developing a problem solver for
automatic answer verification is proposed in this article.

Each ostis-system for different application fields includes a
platform for interpretation semantic models of ostis-systems,
as well as a semantic model of ostis-systems using SC-code
(sc-model of ostis-systems). At the same time, the sc-model of
the ostis-systems includes the sc-model of the knowledge base,
the sc-model of the problem solver and the sc-model of the
interface (in particular, the user-oriented intelligent interface).
The rules and methods for detailed design of the knowledge
base and problem solver in the ostis-systems are described in
[1].

Using the models, application tools and approaches provided
by OSTIS Technology in the framework of this work will
provide the following possibilities:

• the developed problem solver can be easily transplanted
to the ostis-systems for different application fields;

• verifying the correctness and completeness of user an-
swers at the semantic level;

• saving the user’s test record;
• analyzing the user’s test results from the semantic layer

and logic layer, and give reference opinions;
• answer verification does not depend on the natural lan-

guage (English, Russian, Chinese, etc.).
Next, we will introduce in detail the development process of

the problem solver for automatic answer verification. In order
to facilitate the explanation of the working principle of the
problem solver, the illustrations and knowledge base fragments
we choose in this article are all in English, but it needs to be
emphasized that the problem solver developed does not depend
on natural language.

IV. DEVELOPMENT OF PROBLEM SOLVER

In the ostis-systems, the problem solvers are constructed
based on a multi-agent approach. According to this approach,
the problem solver is implemented as a set of agents called sc-
agents. All sc-agents interact through common memory, passing
data to each other as semantic network structures (sc-texts) [1],
[2].

According to the requirements of the task, the developed
problem solver for answer verification in this article needs to
solve the following problems:

• the problem solver can not only verify the answer to
objective question with the only correct option, but also
verify the answer to objective question with multiple
correct options (multiple-choice questions with multiple
options and partially fill in the blank questions). If the
user’s answer is incorrect or incomplete, the correct
standard answer needs to be displayed at the end;

• for subjective questions, it is necessary to verify the
completeness and correctness of the user answer (for
example, the answer is correct but incomplete, or the
answer is partially correct, etc.). If the subjective ques-
tion has multiple logically unequal standard answers (for
example, the definition of triangle), the problem solver
can automatically select the appropriate standard answer
according to the user answer, and then verify the answer.
Finally, if the user answer is incorrect (complete error or
partial error), the problem solver also needs to find the
incorrect part of the user’s answer and display the correct
standard answer.

171

The problem solver of any ostis-system is a hierarchical
system of knowledge processing agents in semantic memory.
In order to achieve the tasks listed above, some sc-agents
are developed in this article. The hierarchy of the knowledge
processing agents in the problem solver for automatic answer
verification is shown in SCn-code (one of SC-code external
visualization languages) [6] as follows:

Problem Solver For Automatic Answer Verification
⇐ abstract sc-agent decomposition*:
{
• Sc-agent for computing semantic similarity of factual

knowledge
• Sc-agent for processing semantic similarity calculation

results of factual knowledge
• Sc-agent for computing semantic similarity of logical

knowledge
}

The basic principle of automatic answer verification in the
ostis-systems is to calculate the semantic similarity between
the standard answer and the user answer. In the knowledge
base, the answers to objective questions are described using
factual knowledge, and the answers to subjective questions are
described using logical knowledge [4]. Therefore, when using
the problem solver to verify the answer, it realizes the auto-
matic verification of the answer by calling different sc-agents
according to the type of question. It should be emphasized that
answer verification is only one of the main uses of the problem
solver. The problem solver can also calculate the similarity
between arbitrary semantic fragments constructed using sc-code
by calling different sc-agents.

When verifying the answer to the objective question, the
calling flow of sc-agents is as follows:

1) if the problem solver judges that the current question
is an objective question, the sc-agent for computing
semantic similarity of factual knowledge is called to start
calculating the similarity between the semantic graph of
standard answer and the semantic graph of user answer;

2) when the first step is completed, the problem solver
automatically calls the sc-agent for processing semantic
similarity calculation results of factual knowledge. The
final verification result is given by this sc-agent accord-
ing to the question type, characteristics (for example,
multiple-choice questions with multiple correct options)
and similarity between answers.

When verifying the answer to the subjective question, the
calling flow of sc-agents is as follows:

• if the problem solver judges that the current question is a
subjective question, the sc-agent for computing semantic
similarity of logical knowledge is called.

It should be emphasized that the answers to subjective
questions are described based on logical formula, so under
certain conditions, the logical equivalence between the answers
(equivalence judgment between the logic formulas) needs to be
considered. Due to the limitation of the number of pages in this
article, we will introduce the design approach and calling flow
of sc-agent for verifying logical equivalence in the following
article. Next, the specific functions and implementation process
of each sc-agent will be introduced in detail.

A. Sc-agent for computing semantic similarity of factual
knowledge

The basic function of the sc-agent for computing semantic
similarity of factual knowledge is to calculate the similarity

between semantic graphs described using factual knowledge.
Because the answers to objective questions in the knowledge
base are described using factual knowledge, the similarity
between the answers can be calculated using this sc-agent.
The similarity between answers is the basis for the objective
question answer verification. When the user answer in natural
language is converted to SC-code, it has been aligned with the
existing knowledge in the knowledge base (such as coreference
resolution, etc.), that is, elements with the same semantics have
the same main identifier in the knowledge base. Therefore, in
this article, the similarity between semantic graphs is calculated
based on semantic and knowledge representation structures [4],
[8].

The sc-agent for computing semantic similarity of factual
knowledge needs to complete the following tasks:

1) according to the representation rules of factual knowl-
edge, the standard answers and user answers in the form
of semantic graphs are decomposed into substructures;

2) using formulas (1), (2), and (3) to calculate the precision
Psc, recall Rsc and similarity Fsc between semantic
graphs.

Psc(u, s) =
|Tsc(u)⊗ Tsc(s)|
|Tsc(u)|

(1)

Rsc(u, s) =
|Tsc(u)⊗ Tsc(s)|

|Tsc(s)|
(2)

Fsc(u, s) =
2 · Psc(u, s) ·Rsc(u, s)

Psc(u, s) +Rsc(u, s)
(3)

The main calculation parameters in the formulas include:
• Tsc(u) — all substructures after the decomposition of the

user answers u;
• Tsc(s) — all substructures after the decomposition of the

standard answers s;
• ⊗ — binary matching operator, which represents the

number of matching substructures in the set of two
substructures.

Next, we will introduce the working algorithm of this sc-
agent in detail:

Algorithm 1 — The working algorithm of sc-agent for
computing semantic similarity of factual knowledge

Input: The specific objective question and the corresponding
semantic graph of standard answer and the semantic graph of
user answer. The condition of the sc-agent response is that two
semantic graphs that use factual knowledge to represent the
answer appear in the sc-memory, and the similarity between
them has not been calculated.

Output: The precision, recall and similarity between an-
swers, and the sc-node used to record the matching status of
substructures.

1) checking whether the standard answer and user answer
exist at the same time, if so, go to step 2), otherwise, go
to step 10);

2) according to the rules of factual knowledge represen-
tation (various types of sc-constructions), the semantic
graphs of standard answers and user answers are decom-
posed into substructures [4];

3) iteratively traverse each substructure of the standard
answer and user answer, classify them according to the
type of substructure (three element sc-construction, five
element sc-construction, etc.), and count the number of
all substructures;

4) one type of substructure is randomly selected from the
set of recorded standard answer substructure types;

172

5) according to the standard answer substructure type se-
lected in step 4), a corresponding type of substructure is
selected from the set of recorded user answer substruc-
ture types;

6) iteratively compare each substructure with the same sub-
structure type between the standard answer and the user
answer, and record the number of matched substructures
and the matched substructures. The criterion for judging
the matching of the same type of substructures is that
the sc-nodes at the corresponding positions between the
two substructures have the same main identifier. If the
substructure contains sc-links, the contents of the sc-links
at the corresponding positions must be also the same;

7) repeat step 4 — step 6 until all types of substructures
have been traversed;

8) using formulas (1), (2), (3) calculate precision, recall and
similarity, and generate semantic fragments for recording
sc-agent running results;

9) removing all temporary sc-elements created while the
sc-agent is running;

10) exit the program.

B. Sc-agent for processing semantic similarity calcula-
tion results of factual knowledge

The sc-agent for computing semantic similarity of factual
knowledge only calculates the precision, recall and similarity
between the standard answer and the user answer to the
objective questions. However, because some objective questions
have multiple correct options, it is necessary to comprehen-
sively consider the precision, recall and similarity to fully
judge the correctness of a question. Therefore, the sc-agent
for processing semantic similarity calculation results of factual
knowledge is developed in this article, its main function is to
further judge the correctness and completeness of the current
objective question based on the three information measurement
parameters obtained in the previous step and the specific types
and characteristics of the objective question [4].

The sc-agent for processing semantic similarity calculation
results of factual knowledge needs to complete the following
tasks:

1) judging the correctness and completeness of current
question according to the precision, recall and similarity,
as well as the evaluation strategies for the correctness and
completeness of objective questions;

2) according to the correctness and completeness of the
current question, generate some semantic fragments for
prompting users;

The evaluation strategies for the correctness and complete-
ness of objective questions mainly include the following:

• if the current question has the only correct option
(multiple-choice questions with a correct option, judgment
questions, and partially fill in the blank questions), then
only the standard answer and the user answer exactly
match, that is, the similarity is equal to 1 (Fsc = 1),
the question is considered correct, otherwise the question
is incorrect. The answer options in the semantic graph are
described using the three element sc-construction;

• if the current question has multiple correct options
(multiple-choice question with multiple correct options
and partially fill in the blank questions), it can be sub-
divided into the following situations for judgment:

– as long as the user answer contains the wrong option,
the question is considered wrong. According to the
definition of formulas (1), (2), (3), the similarity and
precision are both less than 1 at this time (Fsc < 1
and Psc < 1);

– the all options included in the user answer are
correct, but the number of correct options is less than
the number of correct options in the standard answer,
then the question is considered partially correct and
incomplete. In this case, the precision is equal to
1, the similarity is less than 1, and the ratio of
the number of all options in the user answer to the
number of all options in the standard answer is the
recall (Fsc < 1 and Psc = 1);

– if the options in the standard answer exactly match
the options in the user answer, then the question is
completely correct and complete. At this time, the
similarity is equal to 1 (Fsc = 1);

Next, we will introduce the working algorithm of this sc-
agent in detail:

Algorithm 2 — The working algorithm of sc-agent for
processing semantic similarity calculation results of factual
knowledge

Input: The semantic fragments of specific objective ques-
tion, as well as the precision, recall and similarity between
answers. The condition of the sc-agent response is that the
similarity between the semantic graphs of the answers described
using factual knowledge has been calculated, but the correct-
ness and completeness of the answers have not been judged.

Output: The final answer verification result of a specific
objective question, and the necessary semantic fragments used
to display the answer verification result.

1) checking whether all input parameters used for sc-agent
work meet the conditions, if so, go to step 2), otherwise,
go to step 5);

2) according to the evaluation strategies for the correctness
and completeness of objective questions, combined with
the precision, recall, and similarity between answers, ver-
ify the correctness and completeness of specific objective
question;

3) generating semantic fragments used to record the execu-
tion results of sc-agent;

4) removing all temporary sc-elements created while the
sc-agent is running;

5) exit the program.
Combining sc-agent for computing semantic similarity of

factual knowledge and sc-agent for processing semantic sim-
ilarity calculation results of factual knowledge can verify the
correctness and completeness of any type of objective question.
Fig. 1 shows an example of using the problem solver to
automatically verify the correctness and completeness of the
answers to the multiple-choice questions in SCg-code (SCg-
code is a graphical version for the external visual representation
of SC-code) [1], [6].

C. Sc-agent for computing semantic similarity of logical
knowledge

The basic function of the sc-agent for computing semantic
similarity of logical knowledge is to calculate the similarity
between semantic graphs described by logical knowledge.
Because the answers to subjective questions in the form of
semantic graphs in the knowledge base are described in the
form of logical formula using logical knowledge (SCL-code),
the similarity between the answers can be calculated using this
sc-agent [1], [4]. Usually, the answers to subjective questions
are not unique, so the similarity between answers becomes a
key indicator for evaluating the correctness and completeness
of user answers to subjective questions. Among them, user
answers in natural language can be converted into SCL-code
either manually or through natural language interfaces. Before

173

Figure 1. An example of automatic verification of answers to the multiple-choice questions

the subjective question answer verification, we assume that the
factual knowledge contained in the user answer (for example,
the constant sc-nodes used to represent concepts or relations)
has been aligned with the existing knowledge in the knowledge
base (through natural language interface) [5]. Therefore, in this
article, the similarity between logical knowledge is calculated
based on semantic and logical knowledge representation struc-
tures;

The sc-agent for computing semantic similarity of logical
knowledge needs to complete the following tasks:

1) automatic selection of potential equivalent standard an-
swer;

2) according to the representation rules of logical knowl-
edge, the standard answer and user answer in the form
of semantic graphs are decomposed into substructures;

3) establishing the mapping relationship of potential equiv-
alent variable sc-node pairs between the semantic graph
of the standard answer and the semantic graph of the
user answer;

4) using formulas (1), (2), and (3) to calculate the precision
Psc, recall Rsc and similarity Fsc between semantic
graphs.

Automatic selection of potential equivalent standard
answer

Because some subjective questions usually have multiple
standard answers (pre-stored in the knowledge base), and
between the logic formulas used to formalize these answers do
not satisfy logical equivalence. For example, the definition of
equivalence relation: 1. in mathematics, an equivalence relation
is a binary relation that is reflexive, symmetric and transitive;
2. for any binary relationship, if it is a tolerant relationship
and is transitive, then it is an equivalence relation. Therefore,
when calculating the similarity between answers, it is necessary
to filter a standard answer that best matches the user answer
from multiple possible standard answers in advance, and then
calculate the similarity between them.

Because the answers to the subjective question in the
knowledge base of the ostis-systems are described by logical
knowledge in the form of logical formula. Therefore, if there

are multiple standard answers to a question, and the logic
formulas between them do not satisfy the equivalence, we find
that the biggest difference between these answers is that the
predicates used to describe them are different (that is, the
constant sc-nodes used to represent concepts, relations, and
elements in different answers are different) [10]. Therefore, this
article proposes an approach to filtering the standard answer
that best matches the user answer according to the similarity
between all the predicates in the standard answer and all the
predicates in the user answer.

The approach to filtering the standard answer that best
matches the user answer according to the similarity between
the predicates mainly includes the following steps:

1) if sc-agent judges that there are multiple standard an-
swers to the current question, it will find all non-repeated
predicates in each answer (the constant sc-nodes used
to represent concepts, relations, and elements in the
answer);

2) using formulas (1), (2), and (3) to iteratively calculate the
similarity between all the predicates in the user answer
and all the predicates in each standard answer. Here,
the parameters in the formulas need to be given new
meanings.

• Tsc(u) — all non-repeated predicates in the user
answer u;

• Tsc(s) — all non-repeated predicates in the stan-
dard answer s;

• ⊗— binary matching operator, which represents the
number of matching between all the predicates in
the user answer and all the predicates in the standard
answer.

3) choosing the standard answer with the greatest similarity
to the user answer as the final standard answer.

Fig. 2 shows an example of filtering a standard answer in
advance that best matches the user answer according to the
predicate similarity between answers in SCg-code.

The establishment of mapping relationship of the poten-
tial equivalent variable sc-node pairs between answers

174

Figure 2. An example of filtering a standard answer that best matches the user answer according to the predicate similarity between answers

As we have already introduced, since the semantic graphs in
the knowledge base used to describe the answers to subjective
questions contain variables sc-nodes (equivalent to the bound
variables in the predicate logic formula), when calculating the
similarity between answers, the most critical step is to establish
the mapping relationship (injection) of potential equivalent
variable sc-node pairs between answers [11], [14]. Therefore,
based on the existing ontology mapping methods, this article
proposes an approach to establish the mapping relationship of
potential equivalent variable sc-node pairs based on the seman-
tic structures (various sc-constructions). In order to establish the
mapping relationship of potential equivalent variable sc-node
pairs, the following problems need to be solved first:

1) first, the position of the variable sc-nodes in the semantic
graph needs to be determined;

2) it is necessary to determine the semantic connotation of
the variable sc-nodes in the semantic graph.

Usually any predicate logic formula can be seen as con-
sisting of two parts: 1. connective (such as negation (¬) and
implication (→), etc.) used to describe logical relations, and
quantifiers (universal quantifier (∀) and existential quantifier
(∃)) used to carve the arbitrariness and existence of bound
variables; 2. atomic predicate formula that uses predicates to
describe variable attributes or relationships between variables.
The predicate formulas used to formalize the answer in this
article do not include free variables, so the variables in this
article specifically refer to bound variables [4], [10]. Because
the semantic graph used to describe the answer in the knowl-
edge base is constructed strictly according to the logic formula.
Therefore, the semantic graph used to represent the answer can
also be regarded as composed of these two parts.

In the ostis-systems, the sc-construction composed of sc-
tuple, relation sc-node, role relation sc-node and sc-connector
is used to describe logical connectives and quantifiers, atomic
predicate formula or multiple atomic predicate formulas that
satisfy conjunctive relation are contained in the sc-structure
and connected with the corresponding sc-tuple, and these sc-
elements together constitute the semantic graph used to repre-
sent the answer. The atomic predicate formula is described us-
ing various sc-constructions. In the semantic graph, all sc-tuples
and sc-connectors form a tree, which completely describes

the logical sequence between connectives and quantifiers in
the predicate formula. Because the sc-structure containing the
atomic predicate formula is connected to the corresponding sc-
tuple, as long as the position of each sc-tuple and sc-structure in
the semantic graph is determined, the position of each variable
sc-node in the semantic graph can be determined. In order to
determine the position of each variable sc-node in the semantic
graph, this article proposes an approach to numbering each
sc-tuple and sc-structure in the semantic graph according to a
depth-first search strategy (DFS). The approach mainly includes
the following steps:

1) starting from the root of the tree structure composed of
sc-tuples, each sc-tuple node in the tree is numbered
in turn according to the DFS strategy (the numbering
sequence starts from 0). If some nodes in the tree have
multiple child nodes, the sub-trees with these child nodes
as the root are sequentially numbered according to the
node priority specified below;

• if the child nodes and the parent node constitute
the semantic structure that expresses the implication
relation, then the priority of the conditional node
(this node is connected with the parent node using
a role relation ” if’ ”) is greater than the priority of
the conclusion node. That is, the node representing
the condition and the corresponding sub-tree priority
are numbered according to the DFS strategy;

• if a node has multiple child nodes, and there is a
node representing negative connective in the child
nodes, then the priority of this node is higher than
other nodes. If there are multiple nodes representing
negative connective in the child nodes, the priority
between them is related to the height of their corre-
sponding sub-tree, and the higher the height of the
sub-tree, the greater the priority;

• in the current version, for other situations, a node
is randomly selected for numbering.

2) according to the numbering sequence of sc-tuple, each
sc-tuple in the tree is traversed from small to large, and
the sc-structure connected to the current sc-tuple is num-
bered while traversing (the numbering sequence starts
from 1). If there are multiple sc-structures connected

175

to the same sc-tuple, the sc-structure will be numbered
according to the priority specified below.

• if there are multiple sc-structures connected to sc-
tuple that represents universal quantifier or existen-
tial quantifier, the sc-structure that only contains
variables is numbered preferentially;

• if there are multiple sc-structures connected to the
sc-tuple that represents the implication relation, the
sc-structure representing the condition is numbered
preferentially;

• in the current version, for other situations, the num-
bering is based on the number of elements contained
in the sc-structure. The fewer the number of ele-
ments contained in the sc-structure, the numbering
will be given priority.

Because the atomic predicate formula or the conjunctive
formula of the atomic predicate formula is included in the sc-
structure, once the position of the sc-structure in the semantic
graph is determined, the position of each atomic predicate
formula in the semantic graph can be determined indirectly.
In answer verification, if the standard answer and the user
answer are exactly equal, it means that the atomic predicate
formulas with the same semantics between the answers have
the same position in the semantic graph (That is, the numbering
sequence of sc-structure is the same). In the ostis-systems,
the atomic predicate formula is expressed using various sc-
constructions, so this article will establish the mapping rela-
tionship of potential equivalent variable sc-node pairs between
the answers according to the matching relationship of the
sc-constructions in the same position between the answers
[4], [8]. The establishment of mapping relationship of the
potential equivalent variable sc-node pairs between answers
mainly includes the following steps:

1) according to the numbering sequence of the sc-structure
in the semantic graph, each time a sc-structure pair with
the same number is found from the standard answer and
the user answer;

2) according to the priority order (from high to low) of
the various types of sc-constructions used to describe
the atomic predicate formula, it is determined in turn
whether the current sc-structure pair contains this type
of sc-construction at the same time. If the current sc-
structure pair contains this type of sc-construction at the
same time, then, according to the matching relationship
of each sc-element between the current sc-construction
in the standard answer and the current sc-construction in
the user answer, the mapping relationship of the potential
equivalent variable sc-node pairs between the current sc-
construction pair is established. The priority order of
various types of sc-constructions, and the criteria for
judging whether the same type of sc-constructions match
are as follows:

• because there may be multiple sc-constructions in
the same sc-structure, in order to ensure the unique-
ness and accuracy of the mapping relationship of the
potential equivalent variables sc-node pairs between
sc-constructions, this article proposes to establish
the mapping relationship between variables sc-nodes
according to the priority order of sc-constructions.
There are 14 types of sc-constructions in the current
version, and the order of priority between them is
determined by the number of sc-nodes contained in
the sc-construction. The greater the number of sc-
nodes, the higher the priority. If the number of sc-
nodes is the same, it is determined according to the

number of variable sc-nodes, the greater the number
of variable sc-nodes, the higher the priority;

• the criteria for judging the matching of the same
type of sc-constructions are: 1. the constant sc-node
at the corresponding position between them exactly
matches; 2. there is a mapping relationship between
the variable sc-nodes of the corresponding position,
or there is no mapping relationship between the
corresponding position variable sc-nodes, and there
is no mapping relationship between these variables
sc-nodes and other variables sc-nodes. If any pair
of sc-constructions of the same type in the same
position between the answers satisfy the above two
conditions at the same time, the mapping relation-
ship between the corresponding position variables
sc-nodes between the sc-constructions is established
(if there is already a mapping relationship between
the two variable sc-nodes, it will not be created
repeatedly).

3) repeat step 1 — step 2 until all potential equivalent
variable sc-node pairs between semantic graphs have
established a mapping relationship.

Fig. 3 shows an example of establishing the mapping rela-
tionship of potential equivalent variable sc-node pairs between
semantic graphs according to the numbering order of sc-
structures in SCg-code.

In Fig. 3, the definition of the inclusion relation is described
in the form of a semantic graph (∀A∀B(A ⊆ B)⇐⇒ (∀a(a ∈
A→ a ∈ B))).

When the mapping relationship between the potential equiv-
alent variable sc-node pairs between the semantic graphs is
established according to the positions of sc-tuples and sc-
structures in the semantic graphs, the similarity between the
answers can be calculated using formulas (1), (2), and (3).
The criteria for judging the matching of substructures are: 1.
the constant sc-nodes in the corresponding position between
substructures have the same main identifier in the knowledge
base or the same number in the semantic graphs (sc-tuple and
sc-structure); 2. there is a mapping relationship between the
variable sc-nodes at the corresponding position between the
substructures.

Next, we will introduce the working algorithm of this sc-
agent in detail:

Algorithm 3 — The working algorithm of sc-agent for
computing semantic similarity of logical knowledge

Input: The specific subjective question and the correspond-
ing semantic graph of standard answer and the semantic graph
of user answer. The condition of the sc-agent response is that
two semantic graphs that use logical knowledge to represent
the answer appear in the sc-memory, and the similarity between
them has not been calculated.

Output: The precision, recall and similarity between an-
swers, and the sc-node used to record the matching status of
substructures.

1) checking whether all input parameters used for sc-agent
work meet the conditions, if so, go to step 2), other-
wise,go to step 12);

2) checking whether the current question has multiple
standard answers, if so, automatically select a standard
answer that best matches the user answer according to
the approach introduced earlier;

3) according to the rules of logical knowledge representa-
tion, the semantic graphs of standard answers and user
answers are decomposed into substructures;

4) the sc-tuples and sc-structures in the semantic graph
of the standard answer and the semantic graph of the

176

Figure 3. An example of establishing the mapping relationship of potential equivalent variable sc-node pairs between semantic graphs

user answer are numbered respectively, and the mapping
relationship of potential equivalent variable sc-node pairs
between answers is established;

5) iteratively traverse each substructure of the standard
answer and user answer, classify them according to
the type of substructure, and count the number of all
substructures;

6) one type of substructure is randomly selected from the
set of recorded standard answer substructure types;

7) according to the standard answer substructure type se-
lected in step 6), a corresponding type of substructure is
selected from the set of recorded user answer substruc-
ture types;

8) iteratively compare each substructure with the same sub-
structure type between the standard answer and the user
answer, and record the number of matched substructures
and the matched substructures.

9) repeat step 6 — step 8 until all types of substructures
have been traversed;

10) using formulas (1), (2), (3) calculate precision, recall and
similarity, and generate semantic fragments for recording
sc-agent running results;

11) removing all temporary sc-elements created while the
sc-agent is running;

12) exit the program.

When the precision, recall and similarity between the an-
swers to the subjective questions are obtained, the completeness
and correctness of the user answers can be evaluated. According
to the similarity, user answers are divided into the following
situations:

• if the similarity is equal to 1, the user answer is com-
pletely correct (Fsc = 1);

• if the similarity is greater than 0 and less than 1 (0 <
Fsc < 1), there may be two situations:

– the user answer is partially correct and incomplete
(the default mode of the current version);

– the logical formulas used to formalize standard an-
swers and user answers may satisfy logical equiv-
alence (in the following article, we will introduce
in detail the approach to judging the equivalence
between answers based on predicate logic).

• if the similarity is equal to 0 (Fsc = 0), the user answer
is completely wrong.

V. CONCLUSION AND FURTHER WORK

Automatic answer verification is one of the most basic func-
tions of ITS, which can quickly check the user mastery of new
knowledge and improve the user learning efficiency. Therefore,
this article introduces in detail an approach to developing a
problem solver for automatic answer verification in the ITS
developed using OSTIS Technology. The developed problem
solver can not only verify the correctness and completeness of
the answer to the subjective question, but also the correctness
and completeness of the answer to the objective question.
Because the problem solver is developed based on multi-
agent technology, sc-agent for computing semantic similarity
of factual knowledge, sc-agent for processing semantic sim-
ilarity calculation results of factual knowledge, and sc-agent
for computing semantic similarity of logical knowledge are
developed in this article respectively. The developed problem
solver completes the answer verification by combining different
sc-agents according to the type of the question.

The developed problem solver for automatic answer verifi-
cation in this article has the following advantages:

• verify the correctness and completeness of user answers
based on semantics;

• by calling different sc-agents, the similarity between any
two semantic fragments in the knowledge base can be
calculated;

• because the problem solver is developed based on multi-
agent technology, it is easy to add new functions;

• because the ostis-systems developed for different appli-
cation fields have the same knowledge representation

177

approach and knowledge processing model, the problem
solver developed in this article can be easily transplanted
to other ostis-systems;

In future work, we hope to automatically generate some
comments and suggestions by analyzing the verification results
of user answers.

ACKNOWLEDGMENT

The work in this article was done with the support of
research teams of the Department of Intelligent Information
Technologies of Belarusian State University of Informatics and
Radioelectronics. Authors would like to thank every researcher
in the Department of Intelligent Information Technologies.

REFERENCES

[1] V. V. Golenkov and N. A. Guljakina, “Proekt otkrytoj semantich-
eskoj tehnologii komponentnogo proektirovanija intellektual’nyh
sistem. chast’ 1: Principy sozdanija project of open semantic
technology for component design of intelligent systems. part
1: Creation principles],” Ontologija proektirovanija [Ontology of
design], no. 1, pp. 42–64, 2014.

[2] V. Golenkov, N. Guliakina, I. Davydenko, and A. Eremeev,
”Methods and tools for ensuring compatibility of computer sys-
tems,” in Otkrytye semanticheskie tehnologii proektirovanija in-
tellektual’nyh sistem [Open semantic technologies for intelligent
systems], V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2019, pp.
25–52.

[3] Xu G. P., Zeng W. H., Huang C. L. Research on intelligent
tutoring system. Application research of computers, 2009, Vol.
26(11), pp. 4020-4030.

[4] Li W., Grakova N., Qian L. Ontological Approach for Question
Generation and Knowledge Control. Communications in Com-
puter and Information Science, 2020, Vol. 1282, pp. 161-175.

[5] Qian L., Sadouski M., Li W. Ontological Approach for Chinese
Language Interface Design. Communications in Computer and
Information Science, 2020, Vol. 1282, pp. 146-160.

[6] (2021, JAN) Ims.ostis metasystem. [Online]. Available:
https://ims.ostis.net

[7] Li X. J. Realization of automatic scoring algorithm for subjective
questions based on artificial intelligence. Journal of Jiangnan
University (Natural Science Edition), 2009, Vol. 08(03), pp. 292-
295.

[8] Peter A., Basura F., Mark J. SPICE: Semantic Propositional Image
Caption Evaluation. Computer Vision and Pattern Recognition
(cs.CV), 2016.

[9] Zhang Z. P., Zhao H. L., Tian S. X. Ontology integration method
based on RDFS. Computer Engineering and Applications, 2008,
Vol. 44(15), pp. 131-141.

[10] Pan M. Q., Ding Z. J. A Simple Method for Solving Pyrenex
Disjunction(Conjunction) Normal Forms. Computer Engineering
and Science, 2013, Vol. 30(10), pp. 80-84.

[11] Wan H. R., Yang Y. H., Deng F. Review on Research Progress
of Text Similarity Calculation. Journal of Beijing Information
Science (Technology University), 2019, Vol. 34(01), pp. 68-74.

[12] Zhu J. Z., Qiao J. Z., Lin S. K. Entity Alignment Algorithm
for Knowledge Graph of Representation Learning. Journal of
Northeastern University (Natural Science), 2018, Vol. 11(39), pp.
1535-1539.

[13] Socher R., Chen D., Manning C. D., et al. Reasoning with neural
tensor networks for knowledge base completion. Advances in
Neural Information Processing Systems, 2013, pp. 926-934.

[14] Su J. L., Wang Y. Z., Jin X. L., et al. Knowledge Graph Entity
Alignment with Semantic and Structural Information. Journal of
Shanxi University(Nat. Sci. Ed.), 2018, Vol. 42(1), pp. 23-30.

[15] Zhuang Y., Li G. L., Feng J. H. A Survey Entity Alignment of
Knowledge Base. Journal of Computer Research and Develop-
ment, 2016, Vol. 53(1), pp. 165-192.

[16] Wang X. Y., Hu Z. W., Bai R. J., et al. Review on Concepts,
Processes, Tools and Methods Ontology Integration. Library and
Information Service, 2011, Vol. 55(16), pp. 119-125.

Разработка решателя задач для
автоматической проверки ответов в

интеллектуальных обучающих системах
Ли Вэньцзу, Цянь Лунвэй

В данной работе предложен подход к разработке решателя
задач для автоматической проверки ответов в интеллек-
туальных обучающих системах, построенных с использо-
ванием Технологии OSTIS. Решатель задач разработан на
основе многоагентного подхода к обработке информации.
Разработанный решатель задач автоматически проверяет
правильность и полноту ответа пользователя на семантиче-
ском уровне, используя соответствующие наборы sc-агентов
в соответствии с типом вопросов (вопросы на выбор, вопросы
на заполнение пробелов, вопросына толкование определений
и т. д.). В ситуации, когда может существовать несколько
стандартных ответов (например, для вопросов на толкование
определений), решатель задач может автоматически заранее
отфильтровать фрагмент стандартного ответа, который наи-
лучшим образом соответствует ответу пользователя, а затем
продолжить проверку правильности и полноты между ними.

Keywords—решатель задач, проверка ответов, технология
OSTIS, интеллектуальные обучающие системы, онтология,
база знаний

С развитием современных информационных технологий
искусственный интеллект как важная часть современных
компьютерных приложений быстро применяется в сфере
образования. Применение технологий искусственного ин-
теллекта в сфере образования может не только предоставить
новые методы и инструменты обучения, но и позволить
учащимся тратить меньше времени на приобретение более
полезных знаний, эффективно повышая точность поиска
информации и эффективность отбора знаний. В то же
время сочетание технологий искусственного интеллекта и
образовательного процесса также является одним из важных
средств обеспечения справедливости образования, чтобы
каждый учащийся имел равные возможности для получения
знаний. Особенно после вспышки COVID-19 интеллектуаль-
ные обучающие системы (ИОС) играют все более важную
роль в дистанционном образовании. По мере того как раз-
рабатывается все больше и больше ИОС, используемых в
различных областях, большинство разработчиков считают,
что ИОС необходимо удовлетворять, по крайней мере,
следующим основным функциям:

• автоматическая проверка ответов, если обнаружена
ошибка, необходимо проанализировать причину ошиб-
ки и принять корректирующие меры;

• в соответствии с уровнем обучающегося и ситуацией
обучения автоматически корректируется содержание и
прогресс обучения;

• автоматическая генерация различных вопросов и
упражнений;

• обладая способностью генерировать и понимать есте-
ственный язык, а также осуществлять относительно
свободный человеко-машинный разговор;

• наличие способности объяснять содержание обучения;
• автоматическое решение вопросов на основе понима-

ния содержания обучения.
Являясь наиболее основной и важной функцией ИОС,

автоматическая проверка ответов может быстро проверить
усвоение пользователем новых знаний и значительно по-
высить эффективность обучения пользователя, позволяя
пользователям получить больше знаний за ограниченное
время.

Received 01.06.21

178

