УДК 621.382

УЧЕТ ВОЗДЕЙСТВИЯ ПРОТОНОВ ПРИ АНАЛИЗЕ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК АРСЕНИД-ГАЛЛИЕВОГО ПОЛЕВОГО ТРАНЗИСТОРА ЛОВШЕНКО И.Ю., СТЕМПИЦКИЙ В.Р.

Белорусский государственный университет информатики и радиоэлектроники (Минск, Республика Беларусь)

Аннотация. Представлены результаты моделирования воздействия потока протонов на электрические характеристики приборной структуры полевых транзисторов на основе GaAs. Определены зависимости максимального тока стока $I_{\rm C}$ и напряжения отсечки от величины флюенса и энергии протонов, а также температуры окружающей среды.

Ключевые слова: полевой транзистор, GaAs, флюенс протонов, эффекты смещений, не ионизационные потери энергии, моделирование.

THE INFLUENCE OF PROTONS IN THE ELECTRICAL CHARACTERISTICS OF ARSENIDE-GALLIUM FIELD EFFECT TRANSISTOR

I.YU. LOVSHENKO, V.R. STEMPITSKY

Belarusian State University of Informatics and Radioelectronics

(Minsk, Republic of Belarus)

Abstract. The results of simulation the influence of the proton flux on the electrical characteristics of the device structure of field-effect transistors based on GaAs are presented. The dependences of the maximum drain current IC and cut-off voltage on the fluence value and proton energy, as well as on the ambient temperature are shown.

Keywords: MESFET, GaAs, Fluence Proton, Displacement Effects, Nonionizing Energy Loss, Simulation

Введение

Элементная база современных объектов космической и ядерной техники подвергается воздействию ионизирующих излучений, основными из которых является гамма-излучение (γ), нейтронное (n), электронное (e), протонное (p). Альфа-частицы (α), осколки деления F_p и другие частицы, возникающие в ядерном реакторе или в зоне ядерного взрыва, также могут влиять на деградацию эксплуатационных характеристик. Однако их влияние не столь значительно (например, нейтрино, мезоны и др.) [1].

При воздействии потока частиц на приборные структуры микроэлектроники возможны два основных механизма: ионизация и повреждения, вызванные в результате упругого рассеяния первичных частиц, а также фрагментов, образующихся в ядерных реакциях (неупругое рассеяние) падающих протонов или нейтронов на ядрах мишени (эффекты смещений). Ионизация в данной работе не рассматривается. Нейтроны, протоны, альфачастицы, тяжелые ионы и фотоны очень высоких энергий вызывают эффекты смещений: изменяется расположение атомов в кристаллической решетке и увеличивается количество центров рекомбинации (дефектов), уменьшая концентрацию свободных носителей заряда и ухудшая эксплуатационные характеристики приборных структур. Наиболее чувствительными к эффектам смещений параметрами объемного материала являются время жизни и диффузионная длина неосновных носителей заряда, подвижность и концентрация носителей заряда [2]. Величина проявления эффектов смещений зависит от типа излучения частиц, общей дозы, потока и энергии излучения, температуры окружающей среды, рабочего напряжения, фактического состояния устройства в момент облучения и т.д. Эти проблемы затрудняют тестирование, увеличивают сложность использования теоретических расчетов ДЛЯ прогнозирования радиационного воздействия, повышают время проектирования приборных структур и требуют значительного количества тестовых образцов. В современных системах автоматизированного проектирования в микроэлектронике Silvaco [3] и Synopsys [4] реализованы модули учета эффектов смещений.

Таким образом, в работе представлены результаты оценки процессов деградации электрических характеристик приборных структур полевых транзисторов на основе GaAs под влиянием потока протонов посредством компьютерного моделирования.

Структура

Типовая приборная структура *n*-канального полевого транзистора на основе GaAs (*n*-GaAs MESFET) представлена на рис. 1. В качестве подложки выступает арсенид галлия, легированный бериллием до концентрации 10¹³ см⁻³, с кристаллографической ориентацией (100). Области канала, стока и истока сформированы с использованием ионной имплантации кремния через маску. Максимальная концентрация примеси в областях стока и истока составляет 1.2·10¹⁸ см⁻³. Глубина залегания сток-истоковых областей равна 0,342 мкм, области канала – 0,3 мкм. В качестве материала затвора используется титан. Контакты к областям стока и истока выполнены алюминием. Таким образом, при моделировании технологического маршрута формирования приборной структуры *n*-GaAs MESFET выделено 9 операций: задания исходных данных (область моделирования, расчетная сетка, параметры подложки) и последовательных операций имплантации бериллия (энергия E = 100 кэВ, доза $D = 2 \cdot 10^{11}$ см⁻²) и кремния (энергия E = 100 кэВ, доза $D = 10^{12}$ см⁻²), диффузии (длительность t = 10 минут, температура T = 850 C), формирования титанового затвора (толщина 0,3 мкм) и областей спейсеров (оксид кремния, максимальная толщина 0,4 мкм), имплантация кремния (энергия E = 50 кэВ, доза $D = 10^{13}$ см⁻²) и диффузия (длительность t = 10 минут, температура T = 850 C) для формирования сток-истоковых областей, формирование алюминиевых омических контактов (толщина 0,2 мкм).

Рис. 1. Приборная структура арсенид-галлиевого полевого транзистора

Напряжение отсечки и максимальный ток стока для полученной структуры при температуре окружающей среды T = 303 K равны $V_{\text{orc}} = -0.4 \text{ B}$ и $I_{\text{Cmax}} = 1.02 \text{ мкA}$ (при напряжениях на стоке $V_{\text{C}} = 1 \text{ B}$ и затворе $V_3 = 0 \text{ B}$) соответственно.

Результаты

Для прогнозирования деградации параметров, вызванного проникающим излучением, часто достаточно рассмотреть только первый этап процесса образования дефектов. Образование объемных дефектов в структуре полупроводникового прибора пропорционально неионизирующей потери энергии (англ. *Non-ionizing Energy Loss, NIEL*) – общей кинетической энергии, передаваемой атомам решетки. При моделировании и расчетах кроме параметра NIEL, также используют термин кинетическая энергия, высвобождаемая в материи (англ. *Kinetic Energy Released in Material, KERMA*). Отношения между *KERMA* и *NIEL* можно записать как

$$KERMA = NIEL \cdot F \cdot m,$$

(1)

где NIEL – потеря неионизирующей энергии; F – интегральный поток излучения (флюенс).

Параметр *NIEL* может быть использован при экстраполяции деградации параметров устройства, измеренной для частицы с данной энергией, на другие энергии («масштабирование *NIEL*»).

В специализированных программных комплексах приборно-технологического моделирования в микроэлектронике для описания воздействия потока частиц на

характеристики материала применяют модель радиационного флюенса (*Radiation Fluence Model*), которая позволяет прогнозировать скорость генерации дефектов. В соответствии с моделью общая плотность дефектных состояний *NT* из-за флюенса излучения с определенной энергией и типами излучения определяется как

$$NT = \alpha_D \cdot \rho \cdot NIEL \cdot F, \tag{2}$$

где α_D – коэффициент повреждения; ρ – плотность материала.

Неионизирующие потери энергии для GaAs определены с использованием проекта SR-NIEL [5] для значений пороговой энергии смещения $E_{d1} = 9,5$ эВ [6], $E_{d2} = 10$ эВ [7], $E_{d3} = 21$ эВ [8] и $E_{d4} = 25$ эВ [9]. Для полученных величин определены средние значения, которые описываются аппроксимирующей зависимость (рис. 2). Полученные результаты удовлетворительно согласуются с данными, представленными в работе [10].

Рис. 2. Зависимость неионизирующие потери энергии от энергии протонов

Проведено моделирование воздействия потока протонов на эксплуатационные характеристики приборной структуры *n*-канального арсенид-галлиевого полевого транзистора. Результаты влияния потока протонов с энергией $E_E = 2$ кэВ при температуре T = 303 К представлены на рис. 3.

Рис. 3. ВАХ при изменении флюенса протонов с энергией $E_p = 20$ кэВ: a -сток-затворная; $\delta -$ сток-стоковая

На рис. 4 представлены графики зависимости максимального тока стока и напряжения отсечки от величины флюенса протонов F_p с энергией $E_p = 2$ кэВ. Параметры выражены в относительных единицах (за 100% приняты значения без воздействия проникающего излучения).

Показано, что флюенс протонов оказывает разное влияние на величины максимального тока стока и напряжения отсечки кроме узкой полосы значений от $5 \cdot 10^{10}$ см⁻² до 10^{11} см⁻². Так при $F_p = 5 \cdot 10^{10}$ см⁻² разница между отклонением параметров составляет 1%, а при $F_p = 1, 2 \cdot 10^{11}$ см⁻² – 4,2%. Зависимость отклонения напряжения отсечки подчиняется линейному закону (достоверность аппроксимации $R^2 = 0,99$), а зависимость максимального тока стока носит более сложный характер.

На рис. 5 представлены графики зависимости максимального тока стока и напряжения отсечки от величины энергии протонов E_p для флюенса $F_p = 5 \cdot 10^{10}$ см⁻².

Рис. 4. Зависимость параметров арсенид-галлиевого полевого транзистора от величины флюенса протонов F_p (энергия $E_p = 2$ кэВ, температура T = 303 K)

По результатам моделирования установлено, что энергия протонов оказывает наибольшее влияние на электрические характеристики арсенид-галлиевого полевого транзистора в области от сотен эВ до 100 кэВ, что коррелирует с данными, представленными на рис. 2., за исключением диапазона энергий от 4 кэВ до 10 кэВ (т.е. при значениях E_p на 6 кэВ выше ожидаемых), при которых наблюдается сильная деградация электрических свойств приборной структуры вплоть до отказа транзистора. При значениях энергии E_p больше 1 МэВ величина отклонения параметров не превышает 1 % для максимального тока стока и 1,5 % для напряжения отсечки.

Рис. 5. Зависимость параметров арсенид-галлиевого полевого транзистора от энергии протонов E_p (флюенс $F_p = 5 \cdot 10^{10}$ см⁻², температура T = 303 K)

На рис. 6 представлены графики зависимости максимального тока стока от температуры при воздействии потока протонов разных флюенсов с энергией $E_p = 2$ кэВ для стандартных моделей переноса носителей заряда.

Установлено, что в диапазоне температур *T* от 133 К до 143 К поток протонов оказывает наибольшее влияние для всех рассматриваемых флюенсов с $E_p = 2$ кэВ. Увеличение флюенса приводит к сдвигу такой температуры в область более высоких значений: для флюенса $F_p = 10^{10}$ см⁻² температура T = 136 К ($I_{\text{Cmax}} = 2,2$ нА, что составляет 17,65% от значения без воздействия потока протонов), для флюенса $F_p = 2,5 \cdot 10^{10}$ см⁻² – T = 136 К ($I_{\text{Cmax}} = 1,56$ нА, 36,5%), для флюенса $F_p = 5 \cdot 10^{10}$ см⁻² – T = 139 К ($I_{\text{Cmax}} = 1,54$ нА, 54,06%).

При значениях температуры выше 273 К крутизна зависимости уменьшается. Увеличение флюенса приводит к более резкому изменению. Так для флюенсов F_p равных 10^{10} см⁻² и $2,5\cdot10^{10}$ см⁻² увеличение температуры на каждые 10 К приводит к уменьшению отклонения максимального тока стока в среднем на $3,8\cdot10^{-3}$ % и $9,0\cdot10^{-3}$ % соответственно. Для флюенса $F_p = 5\cdot10^{10}$ см⁻² крутизна равняется $1,32\cdot10^{-3}$ %, т.е. «насыщение» происходит при более высоких температурах.

Заключение

Разработана модель зависимости NIEL от энергии протонов, учитывающая различные значения пороговой энергии образования дефекта для GaAs, встречающиеся в литературе, и согласующаяся с последними теоретическими и экспериментальными данными. Из анализа результатов моделирования воздействия потока протонов на приборную структуру *n*-канального арсенид-галлиевого полевого транзистора можно сделать следующие выводы: флюенс протонов оказывает разное влияние на величины максимального тока стока и напряжения отсечки кроме узкой полосы значений от $5 \cdot 10^{10}$ см⁻² до 10^{11} см⁻²; энергия протонов оказывает наибольшее влияние в области от сотен эВ до 100 кэВ (вплоть до отказа транзистора); в диапазоне температур *T* от 133 К до 143 К поток протонов оказывает наибольшее влияние для всех рассматриваемых флюенсов с $E_p = 2$ кэВ (увеличение флюенса приводит к сдвигу температуры $T_{\rm kp}$ в область более высоких значений).

Благодарность

Исследования выполняются при финансовой поддержке и в рамках решения задач государственной программы научных исследований «Фотоника и электроника для инноваций» (задание 3.04).

Список литературы

1. Кулаков В.М., Ладыгин Е.А., Шаховцов В.И. Действие проникающей радиации на изделия электронной техники. – М. : Сов. Радио, 1980. – 224 с.

2. Allam E.E., Inguimbert C., Meulenberg A., Jorio A., Zorkani I. Gamma non-ionizing energy loss:Comparison with the damage factor in silicon devices. Journal of Applied Physics, American Institute of Physics. 2018;123 (095703):1-5.

3. Сайт компании Silvaco [Электронный ресурс]. – Режим доступа: http://www.silvaco.com.

4. Сайт компании Synopsys [Электронный ресурс]. – Режим доступа: http://www.synopsys.com.

5. Сайт проект SR-NIEL [Электронный ресурс]. – Режим доступа: http://www.sr-niel.org/index.php.

6. Mansouri E. Studies on Radiation-induced Defects in InP/InAsP Nanowire-based Quantum Disc-inwire Photodetectors. Halmstad : Halmstad University; 2018. – P. 48.

7. Pons D., Mooney P.M., Bourgoin J.C. Energy Dependence of Deep Level Introduction in Electron Irradiated GaAs. J. Appl. Phys. 1980;51:2038-2042.

8. Allam E.E. [et al.] Gamma and Electron NIEL Dependence of Irradiated GaAs. NSREC. 2016: P. 7.9. Claeys C., Simoen E. Radiation effects in Advanced Semiconductor Materials and Devices. Berlin : Springer. 2002. P. 404.

10. Chen N. J. [et al.] Computational simulation of threshold displacement energies of GaAs. Journal of Materials Research: Vol. 32, Issue 8:1555–1562.