БАТУРА М.П., АЛЕКСЕЕВ В.Ф., ЛУКЬЯНЕЦ С.В., КУЗНЕЦОВ А.П.

ИНЖЕНЕРНОЕ ТВОРЧЕСТВО КАК ОДИН ИЗ ЭЛЕМЕНТОВ ПОДГОТОВКИ ВЫСОКОКВАЛИФИЦИРОВАННЫХ СПЕЦИАЛИСТОВ

Рассмотрены вопросы обучения инженерному творчеству как одному из элементов подготовки высококвалифицированных специалистов в условиях многоуровневого университетского образования.

При разработке государственных стандартов высшего образования важно уделить особое внимание вопросам, решаемым при реализации в учебном процессе обучающе-исследовательского подхода. Одним из требований квалификационных характеристик выпускников должно являться умение проводить исследования в своей профессиональной области, обрабатывать и анализировать результаты исследований. При этом важнейшими формами подготовки студентов в условиях многоуровневого университетского образования в области научных исследований являются:

- учебные занятия по дисциплинам типового учебного плана,
- участие в выполнении научно-исследовательских работ (НИР), проводимых кафедрами и научно-исследовательскими лабораториями,
- изучение основ организации и проведения НИР в рамках специальной дисциплины "Основы научных исследований", а по некоторым специальностям по дисциплине "Основы инженерного творчества".

Почти все учебные курсы, начиная от математики, физики и кончая специальными дисциплинами, дают знания и навыки решения четко определенных инженерных задач (например, вычисление объема тела сложной формы в виде конструкции электронного устройства, расчет параметров надежности, выбор технологического оборудования и т. п.). Они призваны дать знания и привить навыки в постановке и решении творческих инженерных задач. Эти два класса задач имеют принципиальные отличия (табл.).

Различия четко	определенных и	и творческих	инженерных задач
----------------	----------------	--------------	------------------

Показатели	Инженерные задачи		
сравнения задач	четко определенные	творческие	
Постановка задачи	Имеется	Как правило, отсутствует	
Метод (способ) решения	Как правило, указан	Не указан	
Обучающий пример	Имеется	Отсутствует	
Результат решения	Как правило, однозначен и известен преподавателю	Как правило, многозначен и неизвестен преподавателю	

Из табл. видно, что творческие инженерные задачи несоизмеримо труднее и сложнее четко определенных задач. Отличия между этими типами задач требуют принципиально по-новому ставить обучение инженерному творчеству (ИТ). И здесь, по мнению авторов, предстоят педагогические поиски и новые находки.

Обучая (-ясь) умению ставить и решать творческие задачи, необходимо всегда помнить, что умение быстро и правильно решать четко определенные инженерные задачи является не менее важным, поскольку без него инженерное творчество превращается в беспочвенную фантазию, а результат ИТ, как правило, не может быть доведен до практической реализации.

Другая особенность состоит в том, что обучение нельзя ставить только на повторяющихся из года в год учебных задачах, как это делается в большинстве традиционных дисциплин. Вслед за рассмотрением учебных задач студент должен обязательно выполнить курсовую работу по решению реальной задачи. Реальная задача, в отличие от абстрактной, имеет конкретного заказчика (завод, КБ, НИИ, само учебное заведение и т.д.), т.е. имеются заинтересованные живые люди, с кем можно обсудить постановку задачи, на месте можно познакомиться с проблемной ситуацией, показать полученные решения, а удачные решения практически реализовать.

Только такие реальные задачи вызывают большой интерес и высокую активность у студентов, прочно закрепляют знания и навыки и одновременно дают значительную практическую пользу. Освоение методов ИТ только на учебных задачах аналогично обучению плаванию в бассейне без воды.

Можно предложить некоторые рекомендации преподавателям.

1. Задача заключается не в подготовке специалистов для выполнения стандартных операций, а в воспитании *творческих личностей*. Поэтому здесь обязателен *индивидуальный подход* к студентам. В связи с этим преподаватель *сам должен быть творческой личностью*, умеющей ставить и решать задачи ИТ. Ибо никто из нас не пошел бы (или не отдал своих детей) учиться игре на скрипке к учителю, который только хорошо знает нотную грамоту, но не умеет играть на инструменте.

Главная цель заключается не в том, чтобы "натаскать" студентов применять отдельные методы. Во-первых, механическое применение методов без эмоционального творческого подъема, без большого внутреннего желания решить задачу, мало что дает. Во-вторых, изучаемые методы выделяют только отдельные стороны и моменты в очень сложном и весьма отличающемся у отдельных людей творческом процессе. Поэтому главная цель — подготовить и сформировать специалистов со своей индивидуальной системой творческого мышления. При этом изучаемые методы ИТ ускоряют формирование творческой личности и расширяют ее потенциальные возможности.

- 2. При воспитании творчески мыслящих инженеров особое внимание должно быть уделено их эстетической подготовке. Здесь не имеется в виду изучение и понимание принципов художественного конструирования и технической эстетики, излагаемых в соответствующих учебниках, речь идет об умении понимать, чувствовать и руководствоваться (при поиске новых технических решений) внутренней функциональной красотой изделий.
- 3. Как относиться к имеющемуся опыту преподавания методов ИТ и что из него имеет смысл заимствовать?

В нашей стране и за рубежом имеется почти тридцатилетний опыт обучения эвристическим методам. Этот период можно назвать периодом "алхимии". Он сыграл большую положительную роль и имеет свои методические и педагогические находки и достижения. Эти находки, несомненно, должны быть использованы в дальнейшем.

Наряду с этим в последние годы велись разработки и апробация *новой* методологии обучения основам ИТ, отличающейся большей научной и педагогической обоснованностью. Целесообразно реализовать эту методологию, которая характеризуется следующими особенностями.

Инженерное образование

Во-первых, все методы ИТ должны иметь *единую научно обоснованную понятийную основу,* согласованную с понятийной основой инженерных, математических и других дисциплин, изучаемых в техническом университете.

Во-вторых, все эвристические методы должны иметь *двойную ориентацию*. Это значит, что они могут быть использованы как обычные эвристические методики, а также в них должна быть грамотно заложена возможность использования ПЭВМ. Каждый эвристический метод может быть реализован в виде диалоговой программы с применением ЭВМ.

В-третьих, наряду с эвристическими методами представляется целесообразным и необходимым использование специальных методов поискового конструирования, которые не могут быть реализованы без ПЭВМ. Это направление позволяет использовать уже имеющиеся теоретические и методические результаты в области искусственного интеллекта.

В-четвертых, методы технического творчества и поискового конструирования должны быть реализованы в виде комплекта документации, обеспечивающего и облегчающего их широкое внедрение в учебную и проектно-конструкторскую работу на достаточно высоком научно-методическом уровне. Такой комплект, называемый обучающе-рабочим модулем, основывается на каком-либо методе ИТ, ориентирован на конкретную инженерную специальность (группу специальностей) и включает:

- четко описанную методику постановки и решения задачи, имеющую межотраслевой или проблемно-ориентированный характер;
- необходимое информационное обеспечение;
- наборы учебных задач и заданий, обычно имеющих предметную или объектную ориентацию;
- программное обеспечение с инструкциями по использованию и развитию;
- рекомендации по использованию обучающе-рабочего модуля в учебной работе, НИР (ОКР) и в САПР.

Имеется еще одна отличительная особенность: после разбора учебных задач обучаемые должны обязательно решить реальные задачи.

- 4. При изучении ИТ на определенной специальности рекомендуется наряду с общими давать специализированные методы поискового конструирования, ориентированные на соответствующие классы изделий и технологий. При изучении рекомендуется рассматривать более сложные примеры, относящиеся к инженерной специальности обучаемых.
- 5. С какими дисциплинами имеет связь настоящий курс? В первую очередь следует отметить специальные инженерные дисциплины по изучению отдельных классов электронных устройств (систем), аппаратов, приборов, технологий и технологических процессов. В каждой из этих дисциплин нужно давать не статику сегодняшнего или вчерашнего дня, как это часто бывает, а диалектику прогрессивного развития техники. Необходимо показать, почему и благодаря каким творческим решениям прошлое поколение конструкций электронных систем или приборов было заменено настоящим. Какие сегодня стоят задачи совершенствования техники и технологии, каким требованиям должно удовлетворять следующее поколение электронных систем?

Решению этих задач должно уделяться повышенное внимание при выполнении учебной исследовательской работы студентов (УИРС), курсовых и дипломных работ и проектов, в том числе с использованием методов ИТ. В этом, в первую очередь, и состоит утлубленное проблемное изучение специальных дисциплин, которое со студенческой скамьи мобилизует и подключает большой творческий потенциал.

Так, при изучении дисциплины "Теоретические основы систем автоматизированного проектирования" (ТО САПР) рекомендуется отмечать, что при

выборе конструкторско-технологических решений необходимо использовать машинные методы ИТ. Это значительно расширяет возможности САПР и повышает их эффективность.

В курсе "Математическое моделирование изделий и технологий" особое внимание может быть уделено изучению наиболее универсальных методов, которые позволяют проводить оперативное моделирование и анализ технических объектов с произвольными, в том числе и новыми, принципами действия и техническими решениями. Такие методы и соответствующие автоматизированные системы моделирования значительно повышают эффективность использования методов ИТ.

После решения творческой инженерной задачи, как правило, приходится рассматривать серию четко определенных рутинных инженерных задач, однако часто для новых конструкторско-технологических решений нет готовых или подходящих методов расчета и оценки нужных показателей и характеристик. В этих случаях возникают задачи научного творчества, которые чаще всего связаны с разработкой математической модели или проведением экспериментальных исследований нового устройства или технологии. Методы постановки и решения таких задач могут быть рассмотрены, например, в дисциплине "Основы научных исследований"». При изучении этого курса необходимо выделить возникающие в таких случаях типичные ситуации и подробно их рассмотреть, чтобы будущий инженер знал, как проверить и обосновать жизнеспособность новой технической идеи.

На основе теоретических исследований авторами подготовлены предложения к рабочим программам соответствующих дисциплин.

Батура Михаил Павлович

Ректор университета, д-р техн. наук, профессор

Белорусский государственный университет информатики и радиоэлектроники, г.Минск

Тел.: (+375 17) 232-04-51 E-mail: rector@bsuir.unibel.by Алексеев Виктор Федорович

Профессор кафедры радиоэлектронных средств, канд. техн. наук

Белорусский государственный университет информатики и радиоэлектроники, г. Минск

Тел.: (+375 17) 239-84-10 E-mail: snto@bsuir.unibel.by

Лукьянец Степан Валерьянович

Первый проректор университета, доцент

Белорусский государственный университет информатики и радиоэлектроники, г.Минск

Тел.: (+375 17) 232-04-51 E-mail: kanc@bsuir.unibel.by Кузнецов Александр Петрович

Проректор по научной работе университета, д-р техн. наук, профессор

Белорусский государственный университет информатики и радиоэлектроники, г.Минск

Тел.: (+375 17) 239-89-55 E-mail: kuznap@bsuir.unibel.by