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I. INTRODUCTION 

The motion of an electron in an inner layer of a double semiconductor heterostructure is usually treated as 
two-dimensional. In addition, the planar motion is also restricted if an electron is placed in quantum dot 
localized in a middle layer of heterostructure. The Rashba [1] and Dresselhaus [2] spin-orbit interactions are 

presented by the formulas ( ) /
R R x y y x

V p p     and ( ) /
D D x x y y

V p p    , where 
x

  and 
y

  are the 

standard Pauli spin-matrices. The Rashba interaction strength can be controlled by an external electric field, 
and the Dresselhaus interaction strength can be varied by changing the width of quantum well along the z  

axis. In the general case the whole spin-orbit interaction has the form 
R D

V V . At the same time, the 
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considerable attention is paid to the special case, when the spin-orbit interactions of Rashba and 

Dresselhaus have equal strengths 
R D
  . 

As a rule, the circular quantum dot is simulated with the help of axially symmetric confinement potentials 

( )V  , where 2 2
x y  . In [3, 4], the simple but sufficiently adequate rectangular potential of finite depth 

was proposed. This model with discontinuous potential describes the main properties of circular quantum 
dots but without taking into account the individual characteristics. In [5], the smooth confinement potential of 

new type was applied in the case of 
R D
  . Now we use this potential in order to calculate the energy 

levels of electron for unequal but close strengths 
R D
  . 

II. METHODS AND RESULTS 

The circular quantum dot of radius 
o

  is described by means of the confinement potential 
0

( ) ( )V V v r , 

where 
0

V  is the depth of potential well. The function ( )v r  depends on ratio 
0

r     in the following way: 

( ) 0v r   for 0 r g  , 
1

( ) ( )v r v r  for g r s  , 
2

( ) ( )v r v r  for 1s r  , and ( ) 1v r   for 1r  . The functions 

1
( )v r  and 

2
( )v r  are of the form 

2
2 2

1 2 2 2

1 (1 )
( )

2 (1 ) ( )

s g
v r r

rg s g

 
  

   

,     

22 2

2 2 2

1 ( ) 1
( ) 1

2 (1 ) (1 )

g s
v r r

rg s

  
   

   

.   (1) 

The parameters g  and s  change within ranges 0 1g   and 1g s  . 

The total Hamiltonian can be written as a sum 
0 1

H H H  , where 
2 2

0
( ) / 2 ( ) ( ) ( ) ( ) / 2

x y R D x y x y
H p p V p p                is the effective electron mass and 

1
( ) ( ) ( ) / 2

R D x y y x
H p p        , ( ) / ( )

R D R D
       . It is easy to show that the solutions of the 

unperturbed Schrödinger equation 
0 0 0 0

H E    admit a factorization 

      
0 4 2

1 ( )1
( ) e x p ( ) ( ) 0 1 2

2 2

imR D

i
x y i x y e u m …

e

   
   
   

     
  


          







  
   (2) 

Here m  is the angular momentum quantum number. Introducing dimensionless quantities 2 2

0 0
2 /

o
e E   , 

2 2

0 0
2 /

o
v V    and 2

( ) /
o R D

a       we get the radial equation 

     
2 2

2

0 02 2

1
( ) 0

d u d u m u
e a v v r u

r d rd r r
      .    (3) 

In the regions 0 r g   and 1r  , the exact solutions of this equation are expressed via the Bessel functions 

and in the region g r s  , we get the solutions in terms of the confluent hypergeometric functions. 

We introduce the dimensionless perturbation 2 2

1 1
2 /

o
h H   . Since each energy level of the unperturbed 

system is doubly degenerate with two eigenfunctions 
0


  we consider the contribution of 

1
h  with the help of 

the perturbation theory in the degenerate case for the small value of  . We have the following equalities 

0 1 0 0 1 0
0h h

   
        

0 1 0 0 1 0
h h

   
         where  

    
2 2

1
0 0

2 ( 2 ) ( ) ( )m a J a r u r d r u r r d r
 

    .    (4) 

Then we obtain splitting 
0

e e

     for energy levels. Further, we calculate the dependence of energy on 

potential parameters.  

Now we present some numerical results in the case 1m  , 1a   for the lower energy levels. If 
0

1 0 0v   then 

0
7 8 .2 2 7 2e  , 1 .8 7 5 5 0  for 0 .1g  , 0 .3 2 5s   and 

0
1 2 .1 7 1 0e  , 1 .6 5 4 1 0  for 0 .9g  , 0 .9 7 5s  . If 

0
4 0 0v   then 

0
1 5 4 .1 7 5e  , 1 .9 5 6 0 5  for 0 .1g  , 0 .3 2 5s   and 

0
1 3 .6 8 5 0e  , 1 .6 8 9 4 4  for 0 .9g  , 

0 .9 7 5s  . 
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III. CONCLUSIONS 

The confinement model potential for quantum dot considered in the present paper is smooth, has finite depth 
and width and permits the exact solutions of the separated unperturbed Schrödinger equation for electron 
states in the presence of spin-orbit interaction of Rashba and Dresselhaus. The contribution of perturbation 

is really small in comparison with the unperturbed energy 
0

e  if the strength 
R

  is sufficiently close to the 

strength 
D

  ( 1 ). 
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I. INTRODUCTION 

Ferromagnet/wide-gap semiconductor/ferromagnet (FM/WGS/FM) nanostructures attract a great interest 
during the last decade regarding their prospects for creating information-processing devices, including 
spintronic devices. Previously, the tunneling magnetoresistance (TMR) in such nanostructures was 
calculated using one-band insulator model. In this article the charge carrier transport model in the 
ferromagnet/wide-gap semiconductor/ferromagnet based on two-band Franc-Keine model (FKM) and phase 
function model is proposed [1]. It is taken into account that tunneling barrier with the width d, which was 
founded by the band gap, does not represent the potential step, but the energy band-gap. Its upper border is 
the bottom of the conduction band EC, and the bottom part is the top of the valence band EV. Inside this area 
the wave vector of the electron is an imaginary value. 

II. MODEL 

In FKM in order to calculate tunnel current density following equation is used [1,2]:  

     
     

  ∫                  ∫              
       

 

 

 
    (1) 

where E is the full electron energy, Ep is the electron energy component which is parallel to the tunneling 

barrier surface, m and mi are the electron effective masses in electrode and WGS, q is the electron charge, 
fL(E), fS(E) are the Fermi- Dirac distribution functions for left and right electrodes, Tσ(E,Ep,V) is the tunnel 
transparency of the barrier, σ is the spin index (spin –up and spin-down).  

To find the transmission coefficients we develop a model on the basis of phase functions [3]. The model 
takes into account the barrier parameters, the image force potential and allows including the potential relief 
at the interfaces and in the volume of the wide-gap semiconductor. The main feature of the phase function 
method is that to obtain the transmission coefficients, so it is not necessary to approximate the potential 
barrier by rectangular potentials and to link the Schrödinger equation solutions from different regions. This 
process is too laborious for the potential of complex shape, besides it is very difficult to estimate faults of the 
results. In the phase function method not a wave function, but only its changes, as a result of potential 
actions, are calculated. Using phase function method it is possible to calculate tunneling transmission for 
potentials of any complexity, including complex and potentials depending from energy.  
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