DENSITY FUNCTIONAL THEORY-BASED STUDY OF Cu₂TiSnS₄ AND Cu₂VSnS₄ FOR PHOTOVOLTAIC APPLICATIONS

A. Kistanov¹, R. Botella¹, E. Korznikova², <u>A. Smirnov³</u>, S. Zhuk³ 1 Nano and Molecular Systems Research Unit, University of Oulu, 90014 Oulu, Finland 2 Institute for Metals Superplasticity Problems, Russian Academy of Sciences, 450001 Ufa, Russia 3 Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus

smirnov@bsuir.by

I. INTRODUCTION

 Cu_2ZnSnS_4 (CZTS) is a promising earth abundant and non-toxic intrinsic p-type semiconducting material [1]. However, similar radii of Cu and Zn atoms facilitates formation of anti-site defects which degrade performance of CZTS solar cells [2]. Thus, there is need to find an alternative to Zn to reduce cation disordering. In the present work, we fully replace Zn atoms in CZTS by Ti and V atoms and study the effects of the substitution on the band structure and stability of the alternative kesterite material using density function theory (DFT) [3].

II. METHODS AND RESULTS

The calculations have been performed by Vienna Ab initio Simulation Package (VASP). It has been found that upon Zn substitution by Ti in CZTS its band gap (E_g) decreases and shifts from direct to indirect compared to that of pristine CZTS (Fig. 1a-b). On the other hand, there is no E_g upon Zn substitution by V (Fig. 1c). The calculated binding energies of CZTS (10.16 eV), Cu_2TiSnS_4 (11.23 eV) and Cu_2VSnS_4 (11.52 eV) suggest high stability of the material after the Ti and V substitution.

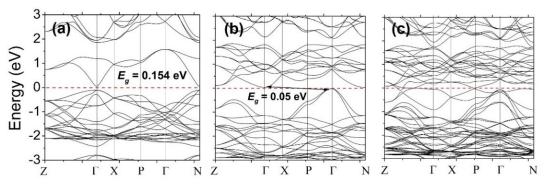


Figure 1. Band structure of (a) pristine CZTS, (b) Cu₂TiSnS₄, (c) Cu₂VSnS₄

III. CONCLUSIONS

In conclusion, Ti substitution enables to tune E_g and enhance thermodynamic stability of the material.

ACKNOWLEGMENTS

K.A.A. acknowledges Academy of Finland grant #311934 for the financial support. B.R. thanks funding from the European Research Council (grant agreement No. 101002219). K.E.A. acknowledges the financial support from the Russian Science Foundation grant No. 21-12-00275. The authors acknowledge CSC – IT Center for Science, Finland, for computational resources.

REFERENCES

[1] X. Liu, The current status and future prospects of kesterite solar cells: a brief review, Prog. Photovolt: Res. Appl. 2016, 24, 879-989.

[2] S. Bourdais, Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 2016, 6, 1502276.

[3] A.A. Kistanov, Impact of various dopant elements on the electronic structure of Cu2ZnSnS4 (CZTS) thin films: a DFT study, CrystEngComm. 2020, 22, 5786 – 5791.