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Abstract. Whole-slide image analysis is a long-lasting 

and laborious process. There are many ways of automatic 

analysis for histological images. The nuclei detection and 

classification is one of the most common and medically 

meaningful medical information-rich methods. However, 

sometimes the goal of nuclei detection is not to provide 

detailed information for the medical professionals but to 

be used for further aggregation. In such cases, nuclei 

segmentation exceeds requirements and takes extra 

resources during the data annotation. Keeping this in 

mind we optimized the existing state-of-art method for 

nuclei segmentation and classification to work with 

nucleus centers as input data. Combined with novel 

optimization technique and neural network activation 

function it resulted in the algorithm with has improved 

performance, easier training process and uses input data 

that is faster to produce. 
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I. INTRODUCTION

Whole-slide images (WSIs) are large images 
showing tissue morphology. Such images are the «gold 
standard» for cancer diagnosis. However large 
dimensions that can reach 100000px makes manual 
analysis an arduous task so histopathologists focus on 
important areas rather than analyzing every corner of an 
image [1]. Automatic analysis may reduce the workload 
but the outcome of algorithms must still be supervised 
by specialists. An ideal result of the automatic analysis 
would be the clinical outcome but intermediate results 
for example nuclei segmentation and classification 
produce significant insights into the data that can be 
used by specialists or other algorithms.  

Nuclear detection is an essential task that arises 
during WSI analysis. It helps to quantify WSI for 
clinical and research reasons [2]. Regularly, detection is 
a union of segmentation and classification subtasks. In 
this work, we prioritize nuclear localization without 
specific boundary selection what helped us to build a 
more efficient algorithm that requires nuclei centers 
annotation. Such annotations require less time to obtain 
in comparison with conventional nuclei boundaries. 

The nuclei detection problem is a regular object 
detection problem so a range of object detection methods 
were applied to it [3, 4] (F1 score equals 0.50 with 
classification and 0.94 for nuclei segmentation). 
However, relatively to WSIs and especially nuclei 
detection these methods do not show great performance 
comparing to other methods developed specifically for 
nuclei detection [5–7] (F1 for nuclei detection and 
classification falls in range of 0.7-0.86 depending on the 
method and dataset). There are several reasons for that i.e. 
large resolution of WSIs, data heterogeneity [8], many 
nuclei presented even on a small region of an image when 
current object detection methods work better with a 
relatively small number of various sized objects.  

In this work, we use HoVer-Net [5] as a baseline for 
our model and evaluation procedure. This deep-learning 
model produces state-of-art results by combining U-Net 
shaped architecture with predicting vertical and 
horizontal maps for nuclei to split nearly located ones 
and then infer segmentation masks and classes for each 
presented nuclei.  

As mentioned above WSI analysis is a laborious 
process, so is annotation and data preparation for deep 
learning. Therefore, we considered using points in 
nuclei centers as input data rather than complete 
boundaries around each nucleus. So the data preparation 
phase may be much faster and cheaper. In some works, 
instead of nuclei boundaries made by pathologists an 
algorithm was used to do that [9]. However, such 
methods can introduce an additional margin of error due 
to natural inaccuracies in machine learning algorithms. 
So we propose a method that works without considering 
nuclei segmentation. Even if in some cases 
segmentation is required [10], for example when nuclei 
shape features are the key for predicting an outcome, 
there are also cases when nuclei location and class 
would be enough [11] i.e. calculating amount of 
malignant nuclei on WSI. In addition to developing a 
deep-learning-based algorithm for processing point-
annotated nuclei, we showed improved performance 
using novel advances among optimization procedures 
and activation functions for our deep-learning model 
and HoVer-Net. 
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The main contributions of this paper are listed 
below: 

 Empirical evidence of performance improvement
when novel optimization procedure and
activation function are applied to the current
state-of-art method for nuclei segmentation and
classification.

 Efficient approach for nuclei detection using
nucleus center maps scaled by recent advances in
deep learning [12].

II. RELATED WORK

The main work which motivated us to work on 
optimizations and more effective use of medical 
annotations was the HoVer-Net deep learning 
architecture [5]. This model outperforms classical 
approaches from object detection like Mask-RCNN [13] 
or simplified detection procedures using segmentation 
networks such as U-Net [14] as well as their 
combinations [3]. Also, HoVer-Net shows surpassing 
accuracy in comparison with other deep learning models 
specified for nuclei detection [5–7]. Regarding the 
specifics of the deep-learning model, HoVer-Net can be 
seen as an improvement over typical U-Net with the 
residual and dense linkage between layers and several 
branches for classification and segmentation so an 
increased number of parameters and branches with 
specified purposes led to improved performance. 

As we decided to work with raw nuclei labels in 
the center of nuclei we rejected models which goal 
was to create a mask for each nuclei or object in the 
case of general object detection algorithms. However, 
this work [15] proposes using predicted centers of 
objects as anchors for further segmentation by 
pyramid-like neural networks. Considering we 
worked with histology data with nuclei of the same 
size and images depicting the same magnification in 
borders of a single dataset we did not use feature 
pyramids and followed the HoVer-Net pattern with 
residual convolution with dense deconvolution in U-
Net shape for predicting nuclei centers like in manner 
similar to the one described in [12]. 

III. MATERIALS

To provide relevant evidence that our method is as 
accurate as the original HoVer-Net we utilized the same 
subset of nuclei detection datasets. They included one 
classification dataset called CoNSeP [5] and several 
segmentation datasets which are CPM15 and CPM17 
[16] TNBC [7] and Kumar [17]. We cut images from all
datasets into square regions of the same size which we
conveniently call tiles in this paper. Every tile was of
size 256x256 pixels and they were extracted from
original images with 128-pixel step. Detailed

information on datasets is shown in Table 1. Also, we 
used the union of CPM datasets for the sake of 
comparing them with the HoVer-Net paper. Datasets 
CPM15 and TNBC which included train test split so we 
could compare our results with ones provided for the 
original paper. In other cases, we created a random train 
test split which stayed the same during the experimental 
procedure. The same is applied for K-Fold evaluation in 
which case folds for experiments on one dataset using 
different methods were the same. Considering the small 
number of nuclei of miscellaneous class so the train test 
split affects the accuracy of this class a lot, we removed 
it from the CoNSeP dataset and in our iteration of 
HoVer-Net model training we kept this fact in mind. 

TABLE I. DATASET INFORMATION 

Dataset N Images N Nuclei N tiles 

CPM15 15 2 905 306 

CPM17 32 7 570 337 

Kumar 30 21 623 1470 

TNBC 50 4 056 450 

CoNSeP 41 24 319 2009 

a)    b) 

Fig. 1. Predicted a) nucleus centers map and b) resulting nucleus 

central areas 

IV. METHOD

The algorithm for nuclei detection consists of two 
major parts. Firstly, we predict nuclei location using an 
adapted deep learning model. The deep learning model 
aims to predict nuclei locations as smoothed points in 
the nuclei centers. Ground truth data were single points 
blurred with a Gaussian kernel. Each channel on the 
resulting pseudo-image was the outcome for a single 
nuclei class. We trained the model with MSE loss. 

Secondly, we ran a watershed algorithm on masks 
obtained from the deep learning model so the nuclei are 
split and the final result is obtained by taking the center 
of mass for each selected region. The example of nuclei 
center map and result of detection algorithm are 
presented in the Fig. 1. 

Regarding the model, it was built with U-Net 
shaped architecture where the encoder is constructed 
from the residual blocks (2 convolutions with 
activations and residual link at the end) and the decoder 
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is made from dense blocks (3 convolutions with 
activations and acquired channels are attached to main 
features). The overview of the model is presented 
in Fig. 2. The whole algorithm can be viewed as a 
modification of a deep watershed [18] which uses a 
watershed algorithm to predict nuclei centers and 
separate them instead of regular segmentation masks. 

Fig. 2. Proposed Neural Network Architecture 

Considering we used batch normalization between 
convolutional layers we applied novel optimization 
algorithm AdamP [19]. In addition, we changed 
conventional ReLU activation to Mish [20]. Together 
these two advancements improved the accuracy of our 
deep learning model and HoVer-Net trained for 
comparison in the same conditions. 

V. RESULTS

To perform a thorough evaluation, we trained and 
tested both our algorithm and HoVer-Net with novel 
optimization technique and activation function using 
train test splits recommended by data providers. In 
several datasets, such splits were not provided so we 
created a random split and fixed it so the same data was 
used for training of both methods. On the other hand, 
we performed K-fold cross-validation with 5 folds to 
be able to obtain averaged scores considering relatively 
small sizes of datasets. 

For evaluation, we chose F1 scores as our method 
do not work with segmentation masks so panoptic 
quality [21], Dice score and Aggregated Jaccard Index 
which composes detection and segmentation 
performance are not suitable in our case. Scores for 
comparison are presented in Table II. 

Generally, both our model and HoVer-Net shows 
similar performance with some fracture of fluctuation. 

VI. CONCLUSION

We showed that nuclei can be detected without the 
segmentation step which regularly is executed in either 
manual way or by another algorithm or deep learning 
model. Such an approach does not lose performance 
while being faster in training and inference. So if the 
desired result does not include nuclei segmentation it 
can be avoided while gaining benefits from the 
proposed model. Additionally, we tested novel 
optimization and activation function on histology data 
showing that their performance is higher than traditional 
methods when applied to histology nuclei detection 
data. 

TABLE II. NEURAL NETWORKS TESTING SCORES 

Method 

Segmentation CoNSeP (Classification) 

CPM15 CPM17 
All 

CPM 
Kumar TNBC 

Epitheliu
m 

Inflammatory 
Spindl

e 
Mean 

Detectio
n 

HoVer-Net paper - 0.854 0.774 0.770 0.743 0.635 0.631 0.566 0.565 0.748 

K-Fold
HoVer-

Net 
0.882 0.892 0.896 0.864 0.878 0.766 0.781 0.694 0.747 0.815 

Our 0.868 0.895 0.893 0.875 0.879 0.727 0.775 0.658 0.720 0.793 

Train/Test 
HoVer-

Net 
- 0.870 - 0.829 - 0.699 0.677 0.616 0.664 0.772 

Our - 0.862 - 0.812 - 0.713 0.716 0.614 0.681 0.773 
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