Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

УДК 621.791.318.5:621.3.049.77

Колос

Александр Михайлович

ИССЛЕДОВАНИЕ ЛАЗЕРНОЙ МИКРОПАЙКИ SMD ЭЛЕМЕНТОВ ПРИ СБОРКЕ В ЭЛЕКТРОННЫХ МОДУЛЯХ

АВТОРЕФЕРАТ

на соискание степени магистра технических наук по специальности 1-41 80 02 Технология и оборудование для производства полупроводников, материалов и проборов электронной техники

Научный руководитель Ланин Владимир Леонидович д.т.н., профессор

ВВЕДЕНИЕ

Лазерные технологии являются критически важными для многих областей промышленности. К отраслям, в наибольшей степени нуждающимся в лазерных технологиях, относятся радиоэлектронная промышленность, телекоммуникации, авиакосмическая сфера, металлургия и медицина.

Большое разнообразие интегральных микросхем (ИМС) позволяет разработчикам радиоэлектронной аппаратуры значительно сократить время на ее проектирование, снизить массогабаритные характеристики и повысить надежность. Применение ИМС с планарными выводами и под поверхностный монтаж повышает плотность упаковки элементов в модулях за счет двухстороннего их размещения на плате.

Наиболее перспективным методом монтажа таких ИМС является лазерная пайка в сочетании с применением паяльных паст, дозирование которых возможно в автоматическом режиме пневматическим дозатором. Отличительные особенности данного процесса: локальность теплового воздействия, высокая стабильность температурно-временных режимов, гибкое регулирование подводимой тепловой энергии, отсутствие контакта с паяемым изделием, высокая производительность, возможность автоматизации, высокое качество и надежность паяных соединений [1]. Лазерное излучение может быть сфокусировано в пятно диаметром около 0,1 мм, что в сочетании с высокой плотностью мощности излучения обеспечивает возможность пайки электронных компонентов, не допуская их перегрева и деформации печатных плат. Именно поэтому лазерная пайка является единственным способом, обеспечивающим возможность пайки компонентов, монтируемых на платах, наклеенных на металлические теплоотводы для рассеивания тепла, выделяемого микросхемами при их функционировании.

Цель и задачи исследования

Целью диссертации является исследование лазерной микропайки при сборке в электронных модулях

Для выполнения поставленной цели в диссертации были сформулированы следующие задачи:

 разработать методику проведения эксперимента процесса для лазерной микропайкиSMD элементов;

- разработать систему микроконтроллерной системы управления координатным столиком;
- провести анализ температурных полей в процессе воздействия лазерного излучения;
 - провести контроль качества паянных соединений.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Современное использование лазерных систем для микропайкиSMD компонентов, характеризуется сложностью формирования технологического процесса, а также высокой стоимость оборудования.

В диссертации рассматриваются особенности касающиеся лазерной микропайкиSMD компонентов при сборке в электронных модулях.

Таким образом, актуальность темы обусловлена необходимостью разработки методики проведения исследования лазерной микропайки SMD компонентов.

Степень разработанности проблемы

Системы лазерной микропайкиSMD компонентов, представленные в Республике Беларусь, зачастую обладают недостаточным функционалом, либо имеют высокую стоимость. Поэтому существует необходимость разработки такого всестороннего решения, которое повысит эффективность процесса лазерной микропайкиSMD компонентов.

Цель и задачи исследования

Целью диссертации является исследование лазерной микропайки при сборке в электронных модулях

Для выполнения поставленной цели в диссертации были сформулированы следующие задачи:

- разработать методику проведения эксперимента процесса лазерной микропайки
- разработать систему микроконтроллерной системы управления координатным столиком
- провести анализ температурных полей в процессе воздействия лазерного излучения;
 - провести контроль качества паянных соединений.

Объектом исследования ПП для монтажа SMD компонентов.

Предметомисследованиятемпературные профили паянных соединений получаемых в процессе лазерной микропайки, а также их прочностные характеристики.

Область исследования

Содержание диссертационной работы соответствует образовательному стандарту высшего образования второй ступени (магистратуры) специальности 1-41 80 02 Технология и оборудование для производства полупроводников, материалов и проборов электронной техники.

Теоретическая и методологическая основа исследования

В основу диссертации легли работы белорусских и зарубежных ученых в области исследования лазерной микропайки поверхностного монтажа при сборке в электронных модулях.

Теоретической основой исследований, являются методы теории лазерной микропайки, теории поверхностного монтажа, работы систем лазерной микропайки. Для оценки эффективности предлагаемых решений используются методы математического и имитационного моделирования. Данная область науки относительно молода, однако методологическая основа для проведения исследований в этой области уже сформирована. Об этом свидетельствуют работы таких ведущих исследователей, как Т.Х. Майман, А. Джаван, А.М. Прохоров, Н.Г. Басов, У. Р. Беннет и др. Информационная база исследования сформирована на основе открытой информации, предоставляемой производителями систем лазерной микропайки, а также материалов научных конференций и семинаров. Инструментальной базой исследований являются программные комплексы САПР такие как ANSYS, SolidWorks. Программные комплексы для работы с данными MicrosoftWord, MicrosoftExel.

Научная новизна

Научная новизна и значимость полученных результатов заключается в следующем:

- разработана методика проведения эксперимента для исследования процесса лазерной микропайки SMD компонентов при сборке в электронных модулях;
- разработана система микроконтроллерной системы управления координатным столиком;
- разработана методика проведения оценки прочностных характеристик паянных соединений для SMDкомпонентов при сборке в электронных модулях.

Теоретическая значимость диссертации заключается в том, что в ней предложена методика исследования температурных профилей выводовSMD компонентов.

Практическая значимость диссертации состоит в том, что использование полученных результатов температурных полей выводов SMD компонентов позволит улучшить качественные характеристики процесса лазерной микропайки в дальнейших исследований. Также предложенную методику исследования процесса лазерной микропайки SMD элементов при сборке в электронных модулях можно включить в образовательную программу обучения студентов.

Основные положения, выносимые на защиту:

- 1. Температурные модели тепловых полей SMD компонентов получаемые в процессе лазерной микропайки.
- 2. Зависимость усилия на разрыв от времени нагрева лазерным лучом при следующих параметрах пайки: V=0.8 кB, f=12 Γ ц, V=0.8 кB, f=15 Γ ц, V=0.8 кB, f=20 Γ ц
- 3. Зависимости температуры от времени нагрева лазерным лучом при следующих параметрах пайки: V = 0.8 kB, v = 10 импульсов в секунду; V = 0.3 kB, v = 3 импульса в секунду.

Структура и объем работы.

Диссертация состоит из введения, общей характеристики работы, пяти глав с краткими выводами по каждой главе, общими выводами, заключением, библиографического списка и приложений.

В первой главе приведен анализ литературных источников, рассмотрены основные виды лазеров и их особенности, также рассмотрено основное оборудование для лазерной пайки. Во второй главе представлено моделирование температурных полей SMD компонентов. В третьей главе разрабатывается методика проведения эксперимента. В четвертой главе приведены результаты экспериментов, в ходе которых анализируются полученные результаты. В пятой главе приводится контроль качества паянных соединений.

Объем диссертационной работы составляет 75 страниц. Работа содержит 39 иллюстраций, 10 таблиц, библиографический список из 27 наименований.

ЗАКЛЮЧЕНИЕ

Лазерная пайка SMD компонентов имеет особые технологические свойства, заключающиеся в локальности теплового воздействия, отсутствии контакта с паяемым компонентом, высокой производительности процесса, возможности автоматизации, высоком качестве и надежности паяных соединений.

В результате исследований, были определены температурные профили лазерного нагрева, а также зависимости прочности соединения от длительности пайки. Экспериментально установлено, что наиболее оптимальным режимом считается пайка при следующих параметрах: f= 15 Γ ц, t = 16 Γ с. При этом режиме соединение имеет хорошую прочность, а также требуется меньшее время для пайки.

Преимущества лазерного излучения, по сравнению с инфракрасным, заключаются в высокой локализации мощности в зоне нагрева, безинерционности воздействия, что позволяет вести нагрев импульсами малой длительности, и точно дозировать энергию излучения при малой зоне термического влияния (0,25–2,0 мм).

Для электронных модулей с плотным поверхностным монтажом перспективно использование лазерных управляемых технологических систем со встроенной системой контроля качества соединений.

Оптимизация параметров импульсного лазерного излучения позволяет вести прецизионную скоростную пайку планарных выводов ИМС и многовыводных МаБИС к контактным площадкам печатных плат, безвыводных "чиповых" элементов на платы микросборок с высоким качеством, автоматизировать процесс, что наиболее полно отвечает требованиям современной технологии поверхностного монтажа.

Диссертационный проект выполнен самостоятельно, проверен в системе «Антиплагиат». Процент оригинальности составляет 65,9%. Цитирования обозначены ссылками на публикации, указанные в «Списке литературы».

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

- [1] OSTEC 2007 ТД Остек-Системы Кабельные трассы [Электронный ресурс]. 2012. Режим доступа: http://www.ostec.ru/smt.
- [2] Manko, H. H. Solders and Soldering: Materials, Design, Production and Analisys for Reliable Bonding. N.Y. 2000. 355 c.
- [3] Whitaker, J. C. Microelectronics. N.Y.: CRC, 2006. 2566 c.
- [4] Wassink K. R. J. Soldering in Electronics. Ayr, Scotland, Electrochem. Publ., 2002. 250 c.
- [5] Технология поверхностного монтажа / С.П. Кундас [и др.] Минск: Армита, 2000. 350 с.
- [6] Производственно-торговая фирма ООО «ТАБЕРУ» [Электронный ресурс]. Режим доступа: http://fr4.tabe.ru/fr4.html
- [7] ЛОТИС ТІІ Информация о компании. [Электронный ресурс]. Режим доступа: https://www.lotis-tii.com/rus/company.php
- [8] Джюд, М. Пайка при сборке электронных модулей / М. Джюд, К. Бриндли. Пер. с англ. М.: Издательский дом «Технологии», 2006. 416 с.
- [9] Голдберг, Г. Пайка диодным лазером: следующее поколение бесконтактной пайки / Г. Голдберг // Электронные компоненты. 2004. № 11. С. 43-45.
- [10] Nd:YAG-лазер. [Электронный ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/Nd:YAG- %D0%BB%D0%B0%D0%B7%D0%B5%D1%80
- [12] Ланин, В. Л. Лазерная пайка и микросварка изделий электроники/ В.
- Л. Ланин // Электронная обработка материалов. 2005. № 3.— С. 79–84. [13] Абакумов А. В., Ланин В. Л. Лазерная пайка интегральных микросхем
- на печатные платы // Радиопромышленность. 1991. № 5.–С. 16–19.
- [14] Lanin, V. L. Laser Soldering Surface Mount Components / V. L. Lanin, V.
- M. Bondarik, I. A. Zadrutskiy // ElektronikairElektrotechnika. 1999. № 4. C.22.
- [15] Аллас, А. А. Лазерная пайка в производстве радиоэлектронной аппаратуры / А. А. Аллас. СПбГУ: ИТМО, 2007. 134 с.
- [16] ГОСТ 31581-2012 Лазерная безопасность. Общие требования безопасности при разработке и эксплуатации лазерных изделий.
- [17] Джюд, М. Пайка при сборке электронных модулей / М. Джюд, К. Бриндли— М.: Издательский Дом «Технологии», 2006. 416 с.
- [18] Pulsed-laser Heating for Flip Chip Assembly / T. Thorsten; Z. E; A. Ghassem // Advanced Packaging; May/Jun 2006. C.5–15.
- [19] Аллас, А.А. Лазерная пайка в производстве электронной аппаратуры / А.А. Аллас; под ред. В.П. Вейко. СПб: СПбГУ ИТМО, 2007. 134 с.

- [20] Сборник технических статей [Электронный ресурс]. Режим доступа: http://www.teh-lib.ru/koe/tverdotelnye-lazery/Vse-stranitsy.html
- [21] Научно-образовательный проект "Лазерный портал" [Электронный ресурс].
- Режим доступа: http://www.laser-portal.ru/content 125
- [22] Энциклопедия физики и техники [Электронный ресурс]. Режим доступа: http://www.femto.com.ua/articles/part_1/0645.html
- [23] Han's Laser Technology Industry Group Co., Ltd. [Электронный ресурс]. Режим доступа: http://hanslaser.ru/products/gazovye-lazery/
- [24] Сборник технических статей [Электронный ресурс]. Режим доступа: http://www.teh-lib.ru/koe/poluprovodnikovye-lazery.html
- [25] Латиком лазерные технологии и компоненты [Электронный ресурс]. Режим доступа: http://www.laticom.ru/oborudovanie/lazernaya-svarka-i-naplavka/seriya-mul/mul-1/
- [26] Сборник технических статей [Электронный ресурс]. Режим доступа: http://www.teh-lib.ru/koe/poluprovodnikovye-lazery.html
- [27] ОКБ «БУЛАТ» [Электронный ресурс]. Режим доступа: http://www.laser-bulat.ru/products/lasersystems/lrs/#overview