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Abstract – In the article, recognition of state of agricultural 
vegetation from aerial photographs at various spatial 
resolutions was considered. Proposed approach is based on a 
semantic segmentation using convolutional neural networks. 
Two variants of High-Resolution network architecture (HRNet) 
are described and used. These neural networks were trained 
and applied to aerial images of agricultural fields. In our 
experiments, accuracy of four land classes recognition (soil, 
healthy vegetation, diseased vegetation and other objects) was 
about 93-94%. 

Keywords – convolutional neural network, semantic 
segmentation, aerial photograph, agricultural vegetation. 

I. INTRODUCTION 
The foundation of precision farming reliable and operative 

updated information of state of cultivated vegetation and soil. 
The most practical way to obtain such information is remote 
sensing. Remote sensing allows obtaining data as quickly as 
possible and with different spatial resolution. Such 
information can be the basis for vegetation monitoring and 
allows the user find areas affected by some diseases. Data for 
remote sensing of lands are usually recorded in two main 
representations – optical and spectrometric [1–7]. These 
approaches define different analysis algorithms and data 
acquisition equipment. In this paper, we have focused on 
optical data processing due to the less online availability of 
multispectral image data.  

One of the most available remote sensing data acquisition 
tools in agriculture are unmanned aerial vehicles (UAVs). In 
comparison with satellites UAVs are cheaper and more 
efficient [8–9]. Usage of images with GPS data allows us to 
prepare and visualize data about large and small crop areas. 
The data can be stored in GIS database and used for decision 
making based on processing and analysis.  

Usage of artificial convolutional neural networks (CNNs) 
is a popular approach in agricultural remote sensing data 
analysis. The networks may be used to solve various 
problems of precision farming [10]. For example, in [11–13] 
authors use CNNs to detect weeds with resulting accuracy 
obove 90%. An UAV is used for data collection and networks 
are used for semantic segmentation of images with object 
classification. The authors of [14] use residual CNN to detect 
flowers for the yield prediction task. This approach gives 
accuracy from 67 to 94%. It depends on the vegetation. In 
addition, a multilayer perceptron is used to predict yield, as 
shown by the authors of [15]. Their research is based on 
detection of growing fruits. In some case, more complicated 
neural architectures are required. CNNs can be used not only 
to assess the state of individual plants, but also to assess 
vegetation cover. For example, in [16] the authors analyzed 
Gaofen-2 satellite imagery to categorize vegetation with 
accuracy of 89-90%. Authors proposed two-leveled 
architecture. The first level consists of two convolutional 

kernels sets and is used for separation of farmlands and 
woodlands. The second one contains two coders for encoding 
of nonlinear features, which can be associated with vegetation 
category. Additionally, the authors of [17] used CNN-based 
semantic segmentation for thematic mapping of agricultural 
fields.  

One of the neural architectures that can be applied for 
remote sensing data processing is called High-Resolution 
networks (HRNet). It may be used for semantic segmentation. 
In [18] an application of this architecture for urban image 
processing is described.  

Our study is aimed at recognizing the affected areas of 
vegetation.It is based on detection of vegetation, the state of 
which has changed under the influence of disease. We tested 
two variants of the HRNet architecture for semantic 
segmentation of color images of remote sensing of crops. 

The results presented in the paper is a part of our study of 
the usege of the HRNet architecture for semantic 
segmentation of aerial imagery based on SegNet and U-Net 
architectures [19]. An algorithm for digital color image 
processing of various spatial resolutions was obtained. The 
task of classification the identified disease was not set at this 
stage of the study. 

II. PROBLEM FORMULATION 
The goal of this study is search of a conversion :  

, which form a map image  from the original 
remote sensing image of an agricultural vegetation field  . 
Each pixel of  ,  is a point in RGB space and every 
element in ,  contains the number of one of the four 
predefined classes (“soil”, “healthy vegetation”, “diseased 
vegetation”, and “other objects”). 

Input data for research are two sets of images: images of 
lone plants (for investigation of disease influence) and remote 
sensing imagery of experimental field of potato. Remote 
sensing images were photographed at heights of 5, 15, 50 and 
100 meters [20–21]. The corners of the experimental field 
were marked by four square marks with sides in one meter 
and two intersecting black lines 20 cm wide (fig. 1). These 
labels can be used to calculate the spatial resolution of 
images.  

Lonely plants were divided into three groups:  
- infected with alternaria disease;  
- infected with erwinia disease;  
- control group of healthy plants.  
Images of lone plants were taken daily at 8, 10, 12, 14 and 

16 hours for 8 days in July.  
In diseased leaves, chlorophyll is destroyed and the color 

of plants is changed. This fact was used in image analysis. In 
addition, the available images had a problem with sun's glare 
the on the leaves. These highlights add yellow color and these 
leaves can be recognized as affected by early disease.  
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Fig. 1. Original remote sensing images samples 

Analysis of color features of various images types shown 
significant difference between vegetation and soil images. 
However, color features of diseased and healthy leaves are 
not so significant and more appreciable in blue color channel. 
If color features would be represented in form of histogram 
for color channels than differences in shapes and peaks for 
vegetation and soil features would be visible for each 
channel. However, for healthy and diseased vegetation 
histograms would differ in shape only. 

We have observed that these color features cannot be 
used directly due to the mixing of objects of different classes. 
This mixing results in a number of color distortions of the 
features. These distortions significantly decrease similarity 
reduce the similarity of the color characteristics of object 
classes. Therefore, color features are not enough for 
classification, and in addition to color, it is necessary to 
analyze information about the structure. HRNet can be used 
to combine color and structural features. 

III. DATA PREPARING FOR TRAINING AND VALIDATION 
Training and validation sets were formed from the 

original high-resolution images. Our network consists of 
layers containing matrices of 256 256 elements, so the 
images were cut into intersecting fragments of the same size 
in pixels. The training set was formed from such fragments 
and their corresponding class labels, and was also 
supplemented with reflections and rotations of all fragments. 
Expert-created class masks can be represented as images 
containing the corresponding color values of the classes: soil 
or 0, healthy vegetation or 1, diseased vegetation or 2 and 
other objects or 3. 

IV. HRNET WITHOUT STREAMS CONNECTIONS 
We have proposed a HRNet-based CNN architecture 

without inter-thread connections [22, 23] (we call it A1 in the 
text below). It is presented in Figure 2. It segments images 
into four types of areas: soil, healthy vegetation, diseased 
vegetation, and other objects. In Fig. 2 MaxPooling layers 
halve the input matrix size, but UpSampling doubles the 
input matrix size. The following network details were 
empirically defined: 

- Input layer size: 256 256 3 (as color image). 
- Output convolutional layer: activation function – 

sigmoid, output layer size – 256 256 4. 
The reasons for choosing these architecture parameters: 

with a decrease in the number of filters and / or 
convolutional layers, we got a lower accuracy and metrics F1 
(described below); as the number of filters and / or 
convolutional layers were increased, the overall accuracy 
was higher, but the F1 scores and accuracy for some classes 
decreased due to imbalanced data. 

The categorical cross-entropy was chosen as the loss 
function [24]. 

Details of the training phase are: 
- Training algorithm: Adam [25] with parameters:  lr 0.0001, 0.9, 0.999, 1 10 ,  0 [26]. 
- Training set size: 10000 images. 
- The size of the validation set: 2000 images. 
- Accuracy for the validation set: 93.84 %. 
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V. HRNET WITH STREAMS CONNECTIONS 
The second CNN architecture called below A2 is based on 

HRNet with connections between streams with different 
resolution (Figure 3). The segmenter is a CNN that divides 
an image into four types of areas: soil, healthy vegetation, 
diseased vegetation, and other objects. 

This architecture differs from HRNet without streams 
connections in that there are additional connections between 
high-to-low resolution convolution streams. halve the size of 
the input matrix, and UpSampling doubles the size of the 
input matrix. The following network parameters were 
selected empirically: 

 

Fig. 2. Implemented HRNet architecture without connections between streams 

 

Fig. 3. Implemented HRNet architecture without connections between streams 

 

 
- The input layer size is 256 256 3 (as a color 

image). 
- In the output convolutional layer activation function is 

sigmoid, the output layer size is 256 256 4. 
Reasons for choosing these architecture parameters: with 

a decrease in the number of filters and / or convolutional 

layers we got a decrease in the accuracy and metric F1; as the 
number of filters and/or convolutional layers increased, the 
overall accuracy was increased, but the F1 scores and 
accuracy for some classes were decreased due to imbalanced 
data.  

The categorical cross-entropy also was chosen as the loss 
function. 
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Details of the training phase are the same: 
- Training algorithm: Adam with parameters: lr0.0001, 0.9, 0.999, 1 10 ,  0. 
- Training set size: 10000 images. 
- The size of the validation set: 2000 images. 
We obtained accuracy for the validation set of 93.9%. 

VI. OUTPUT DATA STRUCTURE 
These networks return on output matrix with sizes 

256×256×4 elements. The first two dimensions correspond to 
sizes of the input image slice, and the third one to number of 
sought classes: “soil”, “healthy vegetation”, “diseased 
vegetation” and “other objects”. Values of this matrix 
contain probabilities of input image pixel belonging to 
corresponding class. Additionally, these values can be 
normalized. As result, we can obtain a fuzzy value of classes 
membership for corresponding pixels. 

VII. SEGMENTATION ALGORITHM 
Shortly our segmentation algorithm (transformation :  ) can be represented as follows: 
1. Load an original color image  . 
2. Divide   into parts  with size 256256 pixels. For each part do: 

2.1. Copy the part as a color image .  
2.2. Transform  by segmenter ,  

into matrix  with the size of 256 256 4. 
2.3. Calculate the class index for every pixel x, y  of 

the image B : 0,255 , 0,255 : , , 
where ,  is a 4-component vector 

containing the probabilities of belonging to the 
predefined classes in the original image .  

2.4. Generate a pseudo-color output image 
( ). Choose the color for every pixel x, y  as 
follows: black for soil, dark-gray for healthy vegetation, 
light-gray for diseased vegetation, and white for others. 

3. Store the obtained  as the segmentation map. 

VIII. TESTING 
The segmenters described above were tested on a 

validation set. For each class, the segmentation accuracy was 
calculated, as well as for input image as a whole. The 
obtained estimates of accuracy in percent are presented in 
Table. 1. 

TABLE I. SEGMENTERS TEST RESULTS 

 
Classes 

Accuracy, % 
HRNet A1 HRNet A2 

Soil 86.1 88.87 
Healthy vegetation 98.25 97.04 
Diseased vegetation 64.36 72.16 
Other objects 87.06 87.97 
Average 93.84 93.9 

 
The imbalance in different classes requires additional 

assessments of the classification results, which are presented 
by the confusion matrices in Table 2. The values in the 
matrices are specified as the ratio of the number of pixels 
belonging to a class to the total number of pixels of all 
classes in the sample. The slight difference obtained between 

the two architectures described above requires further 
research. Maybe the features in some stream have a more 
significant effect than connections between streams. In this 
case, it would be more efficient to use a separate stream. 

For a comprehensive assessment of quality of the 
classification, we calculated following scores: precision, 
recall and F1-score, where TP means True Positives count, 
FP – False Positives count, FN – False Negatives count [27]:  ,  , 

2 , 
TABLE II. TWO CONFUSION MATRIXES 

 
Predicted  

classes 

Real classes 
HRNet A1 

Soil Healthy Diseased Others 
Soil 11.08 0.62 0.24 0.02 
Healthy 1.57 77.06 2.70 0.04 
Diseased 0.21 0.73 5.30 0.00 
Other objects 0.02 0.03 0.00 0.41 
 HRNet A2 
Soil 11.44 1.00 0.28 0.02 
Healthy 1.16 76.11 2.02 0.03 
Diseased 0.26 1.29 5.94 0.00 
Other objects 0.01 0.03 0.00 0.41 

 
The values of these indicators are collected in Table 3. 
Most of the classification errors occurred in regions 

containing elements from several classes. For example, near 
borders of soil and vegetation without significant disease 
damage. Also, for high resolution images, often a small area 
of one class may be surrounded by another class. Plant 
shadows can also introduce errors. 

TABLE III. PRECISION, RECALL AND F1 FOR A1 AND A2 

 
Classes 

HRNet A1 
Precision Recall F1 

Soil 0.93 0.86 0.89 
Healthy 0.95 0.98 0.96 
Diseased 0.85 0.64 0.73 
Others 0.91 0.87 0.89 
 HRNet A2 
Soil 0.90 0.89 0.89 
Healthy 0.96 0.97 0.96 
Diseased 0.79 0.72 0.76 
Others 0.90 0.88 0.89 

 
Estimates of classification errors for individual classes 

are presented in Table 4. As can be seen from this table, in 
the case of identifying soil as vegetation (along boundaries of 
vegetation and soil), many errors arise. However, the most 
significant problem is associated with identification of 
affected vegetation as healthy at site when the disease is in 
initial stage. 

Figures 4 and 5 present an original image and the masks 
of the found classes. 
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Table 1. Error estimation 

 
Predicted  

classes 

Error, % 
HRNet A1 

Soil Healthy Diseased Others 
Soil – 0.78 2.9 4.75 
Healthy 12.18 – 32.74 8.18 
Diseased 1.6 0.94 – 0.01 
Other objects 0.12 0.03 0 – 
 HRNet A2 
Soil – 1,28 3,35 5,31 
Healthy 8,98 – 24,5 6,71 
Diseased 2,03 1,65 – 0,01 
Other objects 0,11 0,04 0 – 

 

CONCLUSIONS 
The goal of our research is classification of remote 

sensing imagery into four classes: “soil”, “healthy 
vegetation”, “diseased vegetation” and “other objects". We 
proposed and compared implementation of two variants of 
neural network for this task. The soft is based on the Keras 
library. The networks are based on HRNet architecture. We 
achieved the overall accuracy about 93-94%. However, it 
should be noticed significant errors in areas with early 
disease stage. This fact may limit practical usability of the 
obtained results.  

One of directions of further researches is 
misclassification error decreasing.  

 

  
a) b) 

Fig. 4. Example of an original aerial image (a) and its ground truth segmented map (b) 

  
a) b) 

Fig. 5. Map from HRNet A1 (a) and map HRNet A2 (b) 
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