МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ИЗЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН ДИПОЛЬНОЙ АНТЕННОЙ

Исходя из того, что мобильный телефон является устройством излучающим электромагнитные волны, а точнее излучает антенна мобильного телефона, смоделируем дипольную антенну и взаимодействие электромагнитного излучения сотового телефона с телом человека, как с экранирующими материалами, так и без них.

Построение геометрической модели дипольной антенны

Для создания геометрической модели дипольной антенны в XFDTD необходимо выбрать окно редактирования геометрии. По умолчанию Geometry/View. Далее нажимаем кнопку Cylinder на панели окна Geometry/View.

В появившемся окне (рисунок 1) вводим данные о геометрических характеристиках цилиндра. Указывать значения выбираем в сантиметрах.

Cylinder	×
p1 (() p2
Name: Units: Point 1 X 0.2 Y 0 Z 0 Radii	Vinder Centimeters V Point 2 X 31 Y 0 Z 0 Radii
Inner: 0	Inner: 0
E. Mat. 1: PEC C Electric Magnetic	Apply Close

Рисунок 1 - Вид рабочего окна при моделировании дипольной антенны

Затем в этом же окне левой кнопкой мыши жмем на блок выбора материала (рисунок 2). Материалом антенны выбираем РЕС (материал обладающих хорошими электрическими свойствами).

E. Mat. 1: PEC	•			
Material 0: Freespace				
E. Mat. 1: PEC				
E. Mat. 6: med		C		
Add Material	_	-		

Рисунок 2 - Вид рабочего окна при моделировании дипольной антенны

Далее жмем кнопку Apply для создания заданного цилиндра.

Затем цилиндр необходимо копировать и вставить левее существующего. Это делается с помощью команды Edit/Copy and Paste в левой части окна (рисунок 3).

Рисунок 3 - Вид рабочего окна при моделировании дипольной антенны

В появившемся окне (рисунок 4) вводим необходимые параметры копирования.

Copy and Paste Objects	×
Bounding box of selected objects	
Minimum point (0.2000 , -0.5000 , -0.5000)
Maximum point (31.0000 , 0.5000 , 0.5000)
Centimeters	
Distance (x,y,z) ([-31.4] 🐳 🛛 🔿 💭)
Repeat 1 🕂 times	
OK Cancel	

Рисунок 4 - Вид рабочего окна при моделировании дипольной антенны

В окне редактирования геометрии (рисунок 5) появляется второй цилиндр

Рисунок 5 - Вид рабочего окна при моделировании дипольной антенны

В окне геометрии жмем на кнопку Mesh. С левой части окна в разделе New mesh parameters вводим следующие параметры: размерность сетки в сантиметрах, размер ячейки 0.588 см в каждом направлении, отступ вокруг модели 25 ячеек (рисунок 6). Ждем кнопку Generate Mesh.

Рисунок 6 - Вид рабочего окна при моделировании дипольной антенны

В правой части окна визуально показана область, в которой программы будет производить расчеты (рисунок. 7).

Рисунок. 7 - Вид рабочего окна при моделировании дипольной антенны (произведенный расчет)

Процесс размещения компонентов необходимо начинать с окна Geometry/View в режиме Mesh Mode. Для создания нагрузки будет использоваться простой резистор 50Ом. Его необходимо разместить в центре антенны. Для этого в геометрическом центре цилиндров жмем правой кнопкой мыши и в появившемся меню выбираем Edit Port (рисунок 8).

Orbit		
Pan		
Mouse Zoom		
Zoom All		
Zoom In		
Zoom Out		
✓ XY Plane		
YZ Plane		
ZX Plane		
3-D View		
Edit Port		
Save Data		
Export View to Image File		
Mesh Object		
Spatial location (mm): (-2.98.0.215.00)		
Cell location: (78, 27, 26)(X: 0)		

Рисунок 8 - Вид рабочего окна при моделировании дипольной антенны

После этого у нас откроется окно Run Parameters>Components/Ports в котором необходимо ввести значения компонента как показано на рисунке 9 и нажать кнопку Add Component.

Ħ	Port	Туре	(Amp/Phase)	Dir.(X,Y,Z)	Load/Switch Type	(R,L,C) or Switch Params (T	imestep,Duration)	Grid
	Y	Voltage	(1.00/0.00)	×,(78,27,26)	N/A	(5.00e+001,N,N)		Main
	pdate (Componen	t	Add componer	nt E	elete component	Delete All Co	mponen
-	arame	ter Calcula	tion			Static Voltages		
	On		·	Specify Active	Feed: 1	Enable Solv	er Voltage Poin	ts
°0	rt Spec	ifications -						_
àr	d: Ma	in 💽	•	Series Voltage 🔹		Amplitude:	1 (Volts)	
X-Directed -			•	+ Polarity		Phase: 0 (Degre		es]
				Parallel Load	Ψ.	Besistance:	50 (ohms)	
	y 27	÷			$\Lambda\Lambda\Lambda$	Canacitance:	none pF (e	-12 🔻
	z 26	÷				Inductance:	none mH (e	-3) 🔻
Port				(+)		Non-Linear Properties:		s
				_		Switch at	1 timeste	

Рисунок 9 - Вид рабочего окна при моделировании дипольной антенны

В окне Geometry/View можно увидеть размещенный нами компонент обозначенный зеленым цветом (рисунок 10).

Рисунок 10 - Вид рабочего окна при моделировании дипольной антенны

Задание параметров дипольной антенны

В ходе исследований было решено выбрать сигнал со следующими характеристиками:

Форма сигнала: Синусоидальный

Частота: 0.47 GHz

Количество временных отрезков: 2000

Данные параметры необходимо ввести окне Run Parameters>Waveform (рисунок 11).

Рисунок 11 - Вид рабочего окна при моделировании дипольной антенны

Затем для создания визуализации распространения электромагнитного излучения необходимо задать области, в которых будет происходить сохранение. Для этого возвращаемся к окну Geometry/View нажимаем в любом месте

геометрического образа антенны правой мышкой и в появившемся меню выбиpaeм Save Data>Transient Fields (рисунок 12).

Рисунок 12 - Вид рабочего окна при моделировании дипольной антенны

В ячейке Ending Time Step вводим 800, остальные значения оставляем без изменений и нажимаем кнопку Add Sequence. Затем в окне Geometry/View в любом месте геометрической модели антенны нажимаем правой кнопкой мыши и в появившемся меню выбираем Save Data> Near-Zone (рисунок 13).

Рисунок 13 - Вид рабочего окна при моделировании дипольной антенны

В окне Save Near-Zone Data необходимо установить флажок для параметра Ez Total и нажать кнопку Add Point, затем установить флажок для параметра Jz и нажать кнопку Add Point (рисунок 14).

Save Near-Zone Data	Save Far-Zone Data	Save Transient F	ield Snapshots
S	aved Near-Zone Quantities		Г
Field Quantity	Location	Grid	
Ez Total	x: 77, y: 27, z: 26	Main Grid	
Jz	x: 77, y: 27, z: 26	Main Grid	
		i ii	
Add Point	Delete Point	Delete All	
	Available Field Quantities		7
C Ex Scattered C Ex T	otal C Hx Scattered C	Hx Total 🔿 Jx	
C Ey Scattered C Ey Te	otal C Hy Scattered C	HyTotal 🔿 Jy	
C Ez Scattered C Ez Te	otal C Hz Scattered C	Hz Total 💿 Jz	
	Location		7
Grid: Main 💌	X: 77 🕂 Y: 27 📫	Z: 26 📫	

После этого геометрию антенны и отдельно сам проект необходимо сохранить. Это делается с помощью меню File>Geometry>Save и меню File>Project>Save (рисунок 15).

File	Edit	Results	Hel	p		
P	Project 🕨					
G	eometi	'Y	•	New		
0	uit	Ctrl+C)	Open		
	ave	Near-Z	one	Save	Ctrl+Y	
1.5	, urc	Hour 2		Save As		
_				Import		Jua
Field Quantity		Export				
	Ez Total			77 ir 27 z	26	

Рисунок 15 - Вид рабочего окна при моделировании дипольной антенны

Затем можно приступать к расчету. Для этого в окне Results>Run Calculation необходимо нажать на кнопку Calculate (рисунок 16).

Γ	Run Calculation	Plots	Far-Zone Data	FFT of Time Domain
				Undock
	1 thread requested.			^
	1 thread allocated.			
	time stepping beginning timestep 20 out of 2000 timestep 40 out of 2000 timestep 60 out of 2000 timestep 80 out of 2000	, last time step , 1.0% done. , 2.0% done. , 3.0% done. , 4.0% done.	will be 2000	
	Priority			Output Color:
	Low Normal	High	Number	of Processors:
	· · · ·	1	Coloulate	
	_			
		1m, 4s	est. remaining.	

Рисунок 16 - Вид рабочего окна при моделировании дипольной антенны

После окончания расчетов нужно заняться изучением результатов. Для этого в меню окна Geometry/View (рисунок 3.21) необходимо нажать на кнопку В появившемся окне в строке Transient Fields Sequence нажимаем на знак «+» делаем двойной щелчок мышью по открывшейся строчке. Затем кнопками с условными обозначениями можно управлять просмотром видеоизображения распространения электромагнитного излучения.

🐻 Field Controls									
Unload all fields Import Field Files F	Refresh Field List Options								
Single Transient Fields Transient Field Sequence									
xy Plane Z=26, Time Step=1 to 800 by 10									
Imported Fields	Imported Fields								
Loaded Fields Transient Field Sequence: vy Pl	ane 7-26. Time Step -1 to 800 b								
Transient rield Sequence, Ay Fi	ane 2–20, nine scep–1 to 000 b								
Field Sequence Controls	Active Field								
	Field MagE								
	Scale dB 💌								
0 🗧 79 🗧	Increment 10								
Start Stop	Interpolation 1								
	Mode Normal 💌								
Auto Repeat	Brightness								
	Apply								
Export Mpeg	Full Scale Values								
Selected Field Filename 1.xy26.t62	1.fld								

Рисунок 17 - Вид рабочего окна при моделировании дипольной антенны

Полученное видеоизображение можно сохранить как видеофайл, или каждый кадр как отдельный рисунок (рисунок 18-21). Для этого в окне Field Controls жмем кнопку Export Mpeg и в появившемся окне вводим в ячейке framerate 30 и ставим флажки на значениях Automatically Grab Snapshots и Save JPEG of Each Snapshot а также указываем путь к папке в которой будет сохраняться видеофайл. Затем возвращаемся к окну Field Controls и нажимаем кнопку Play. После окончания расчетов в окне MPEG Exporter убираем флажек с значения Automatically Grab Snapshots и жмем кнопку Encode.

Sprid location (m): (10:6: 0.01:00)

Рисунок 18 - Результат моделирования дипольной антенны

Рисунок 19 - Результат моделирования дипольной антенны (сохраненный отдельными рисунками)

Рисунок 20 - Результат моделирования дипольной антенны (сохраненный отдельными рисунками)

Рисунок 21 - Результат моделирования дипольной антенны (сохраненный отдельными рисунками)

Для получения результатов в виде графических зависимостей необходимо перейти к окну Results>Plots. В разделе окна Available Data Of Selected Туре выделяем третью строчку и жмем на кнопку Add Selected Plot. Затем нажимаем на кнопку Edit Plot Parameters и в появившемся окне подписываем оси Time (ns) и Voltage. Жмем кнопку Apply и в окне Results>Plots кнопку Plot. Получаем график (рисунок 22).

Рисунок 22 - Результаты моделирования представленные графической зависимостью

СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ

1. Предельно допустимые уровни электромагнитного излучения радиосредств сотовых систем подвижной связи / А.Л. Бузов, Ю.И. Кольчугин, К.В. Никонова и др. // Электросвязь. – 1997. – N 10. – С.24-25.

2. Временные допустимые уровни (ВДУ) воздействия электромагнитных излучений, создаваемых системами сотовой связи: Гигиенические нормативы. ГН 2.1.8 / 2.2.4.019-94. - М.: Информ.-издат. центр Госкомсанэпиднадзора России, 1995. – 7 с.

3. Антенно-фидерные устройства базовых станций подвижной связи: экологическая безопасность / А.Л. Бузов, Л.С. Казанский, В.А. Романов, Сподобаев Ю.М. // Мобильные системы. - 1998. - N 2. - С. 15-18.

5. Сподобаев Ю.М., Кубанов В.П. Оценка риска от воздействия ЭМП комплексов телекоммуникационных технических средств // Электромагнитные поля и здоровье человека: Материалы 2-й Междунар. конф. "Пробл. электромагн. безопасности человека. Фундамент. и прикл. исслед. Нормирование ЭМП: философия, критерии и гармонизация". 1999 г., Москва. – М., 1999. – С. 105-106.