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Abstract: The problem of series two-block decomposition of completely specified Boolean functions is considered.
Analysis and investigation of such systems are very important in logical design context. Recently, a method for solving
this problem was suggested based on using the ternary matrix cover approach. Using this method a computer program
developed. This paper is focused on decomposability of a system of Boolean functions. In decomposable systems, the
number of solutions and time elapsed to achieve them was investigated.
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1. INTRODUCTION

The problem of decomposition of Boolean functions
is one of the most important problems of logical design
that makes it an object of great attention by many
researchers in this field. The survey [Perkowski, 1995]
shows a considerable number of papers are already
published on this topic. It is important to find a
successful solution for this problem because it has a
direct influence on the quality and cost of digital
devices designed. We consider the problem of
decomposition of a system of Boolean functions in the
following statement. A system of completely specified

Boolean  functions y=f(x) is given where
Y=Y, Y2 oo Ym)y  X= (X1, X2, ..oy %), F(X) = (fa(X),
fa(X), ..., fm(X)). _The " superposition y= @ (W, z2),

w =g (z1) where z; and z, are vector variables whose
components are Boolean variables in the subsets Z; and
Z, respectively that form a partition of the set
X ={x1, X2, ..., Xn} of arguments. At that, the number of
components of the vector variable w must be less than
that of z;. Such a kind of decomposition is called two-
block disjoint decomposition by [Zakrevskij, 2009].
The subsets Z; and Z, are called bound and free sets
respectively. Only a few papers deal with the search for
the partition {Zi, Z;}, at which this problem has a
solution. Among the papers considering this question,
we can point out [Bibilo, 2009], [Jozwiak, 2000],
[Perkowski, 1995] and [Zakrevskij, 2007].

Searching for a solution of this kind is NP-complete
problem because it has been proved that this problem
equivalent with well-known set covering problem
(SCP). While to be aware of decomposability of the
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given system of Boolean functions, finding only one
such a pair is satisfying, due to analyzing of the task
and search for the best solution we were motivated to
find all possible solutions. For that we used the ternary
matrix cover approach [Pottosin, 2010]. Using a
compact table one can find rather easily the existence of
a solution of the problem for a given system of
functions, and if it does exist, the corresponding
superposition can be easily found.

2. DEFINITIONS AND SETTING THE PROBLEM

Let a system of completely specified fnctions
y=f(x), where y=(ys, VY2 ...,¥m), X=(X1, X2, ..., Xn)
and f(x) = (fi(x), f2(x), ..., fn(X)), be given by matrices
U, V that are the matrix representation of the system of
disjunctive normal forms (DNFs) of the given functions
[Zakrevskij, 2009]. Matrix U is a ternary matrix of | x n
dimension where | is the number of terms in the given
DNFs. The columns of U are marked with the variables
X1, X2, ... , Xn, and the rows represent the terms of the
DNFs (the intervals of the space of the variables
X1, X2, ..., Xn). The matrix V is a Boolean matrix. Its
dimension is | x m, and its columns are marked with the
variables yi, ¥, ..., Ym. The ones in this columns point
out the terms in the given DNFs. A row u in U absorbs
a Boolean vector a if a belongs to the interval
represented by u.

The task considered is set as follows. Given a
system of completely specified Boolean functions
y = f(X), the superposition y = ¢(w, z2), w = g (z1) must
be found where z; and z, are vector variables whose
components are Boolean variables in the subsets of the
set X = {x¢, X2, ..., Xn}, Z1 and Z, respectively such that



X=2Z10Z; and Z1inZ, = . At that, the number of
components of the vector variable w must be less than
that of z;. The main attention is paid to the search for
subsets Z; and Z, such that the task would have a
solution. It is clear that the subset Z; should have at
least two members while the subset Z, can have only
one.

3. INTRODUCING COVER MAP AND COMPACT
TABLE

Any family & of different subsets (blocks) of a set L
whose union is L, is called a cover of L. Let
L={1,2,..,1} be the set of numbers of rows of a
ternary matrix U. A cover = of L is called a cover of the
ternary matrix U if for each value x* of the vector
variable x there exists a block in  containing all the
numbers of those and only those rows of U, which
absorb x*. Block & corresponds to the value x*, which
is absorbed by no row of U. Other subsets are not in =.

Let t(x*, U) be the set of numbers of those rows of
U, which absorb x*. For every block nij of =, we define
the Boolean function =j(x) having assumed that
nj(x*) =1 for any x* e {0,1}m if t(x*, U)=mj, and
7j(x*) = 0 otherwise.

Let us define an operation v(ri, V) over the rows of
a binary matrix V, the result of which is the vector y*
(y* = v(ri, V)) obtained by component-wise disjunction
of rows V whose numbers are in the block =i. If i = &,
all the components of y* are equal to 0. It is shown in
[Pottosin, 2006] that f(x*) = y* = v(i, V) if wi(x*) = 1.

There is a convenient way to construct the cover of
a ternary matrix U when the number of arguments is not
large. This technique uses the cover map that has the
structure of the Karnaugh map. In any cell of a cover
map of U corresponding to a vector x*, there is the set
t(x*, U), which is a block of the cover of U.

Let a pair of matrices, U and V, give a system of
completely specified Boolean functions y = f(x), and let
the matrix U; be composed of the columns of U,
marked with the variables from the set Z; and the
matrix U, from the columns marked with the variables
from Z,. The «covers of U; and U, are
it ={r'y, n's, ..., &} and n? = {n?, 1%, ..., Wi} Let
us construct a table M. Assign the blocks
ni, wh, ...,nl  and the  Boolean  functions
7t (z1); ©ha(20); ... , ©h(z1) to the columns of M, and
721, 2, ..., s and w?1(z2), m?2(22), ..., ms(22) to the
rows of M. At the intersection of the i-th column,
1<i<r and the j-th row, 1<j<s, of M, we put the
value y* = v(nl m n?, V). The table M is called the
compact table. It gives the system of Boolean functions
y =f(x) in the following way: the value of the vector
Boolean function f(x*) is v(xli N 7n2j, V) at any set

argument values x*, for which nli(z1) A n2j(z2) = 1.

Having the compact table for a system of functions
y =f(x), it is easy to construct the desired systems
y = @(w, z2) and w = g (z1). The columns of the compact
table are encoded with binary codes; equal columns
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may have the same codes. The length of the code is
equal to [logzr’l where r”is the number of different
columns of the table and [ a| is the least integer, which
is not less than a. So, the system of functions w = g (z1)
is defined. The value of the vector variable w at any set
of values of the vector variable z; turning the function
nti(z1) into 1 is the code of the i-th column, 1<i<r.
Naturally, there is no solution to this task at the given
partition {Z1, Z,} of the set X of arguments if the length
of the code is not less than the length of z;. Otherwise,
the compact table whose columns are assigned with the
values of the variable w can be considered as a form of
representation of the other desired system of functions
y = @(w, o). The value of y at the value of w assigned
to the i-th column, 1<i<r, and at any value of z
turning n?j(z2) into 1, 1 <j <'s, is the vector that is at the
intersection of the i-th column and the j-th row
[Pottosin, 2010].

Example 1. Let a system of completely specified
functions y = f(x) was given by the following pair of
matrices:

X X X3 Xy X5 Y1 Y2
000 1-|1 101
01 00 -]2 102
01 - 013 103
USloZ oo-[4a YTlo1|a
00 - 015 01|5
11 01-|6 01|6
11 - 11]7 01]7

For the partition of the set of arguments into subsets
Z1 = {x1, x2, x3} and Zp = {xa, x5}, we have the following
matrices:

% Xp Xg X4 Xs

000]|1 1-11

0102 0-1(2

101 -3 1013

Ui = 0-o0la Uz = 0_|a

00 -|5 015

110|6 1-16

11 -]7 117
To find the length of w in the superposition
y=@W, ), w=g(z) where 2z1=(x1,x2,x3) and

2> = (x4, x5), We construct the covers of the ternary
matrices U; and Uy =t ={d, {3}, {5}, {7}, {6, 7},
{1, 4,5}, {2,3,4}} and =2 = {{1, 6}, {2, 4}, {1,6, 7},
{2,3,4,5}} (In continue we will discuss how to
obtained this covers). The corresponding compact table
is represented in Table1 that has seven different
columns.

Table 1 — The compact table for the system of functions in Example 1
with z; = (xl, X2, )C3) and z, = ()CA, )C5)

o 3 5 7 67 145 234
1,6 |00 |00 | 00| 00|01 10 00
24/00]00]00 00|01 | 01 11
16,7 00| 00|00 |01|01 10 00
2,3,45(00|10)01]00]00 11 11




Clearly, this task has no solution at the given subsets
Z1 and Z, because to encode the columns of the
compact table with the values of w, three variables are
needed that is not less than the length of z.

4. SEARCH FOR APPROPRIATE PARTITION

To search for an appropriate partition of the set of
arguments we use ternary matrix covers and compact
tables induced by them. Let a few free variables be to
find that constitute the set Z, (then the set of bound
variables would be Z; = X\ Z). To do this, we use the
operation of dividing a ternary matrix cover by the
cover of a column of the matrix. Let us determine the
operation to divide the cover & of a ternary matrix U by
the cover ' of its i-th column as:

1 2

nln=mxmx ... xa Ixngtlx .. xn

This operation can be easily fulfilled using the cover
map, which, as well as Karnaugh map, has the lines of
symmetry related to the variables of the Boolean space
represented by this map [Zakrevskij, 2007]. To
transform the cover map of a ternary matrix U into that
of the matrix obtained from U by deleting the i-th
column, one should superpose pair-wise the entries that
are symmetric with regard to the lines relative to x;, and
put the unions of the superposed entries into the
obtained entries. The obtained cover map would
represent the desired cover [Pottosin, 2010].

Example 2. Figure 1 shows the cover map of the
ternary matrix U from Example 1.

X5

X3

4 |\glo |1 |1 |a|5 4,5

24 | g | @ | @ | @ | @ | 3| 234

o | @o| 2 |6|67|7 |0 %

g | |0 | 9| D | DD %)
X2

X1
Figure 1 — The cover map of matrix U from Example 1

X5
X3

14|12 | 5 | 145
24 | @ | 3 | 234
6 |7 6,7
g | D D %)

X2
X1

Figure 2 — The cover map obtained by dividing = by the cover of the

column x4,
X3
1,45 5
2,34 3
6,7 7
%) %)
X2

X1

Figure 3 — The cover map obtained by dividing = by the covers of the
column x4 and xs
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The cover of U is n={9, {1}, {3}, {4}, {5}, {6},
{7}, {2,4}, {4,5}, {6,7}, {2,3,4}}. As it can be seen
from Figure 2 the division of n by the cover of the
column x4 will be {&, {3}, {5}, {6}, {7}, {1.4}, {2,4},
{6,7}, {1,4,5}, {2,3,4}}. Having transformed this map
by the described way with regard to xs, we obtain {&,
{3}, {6}, {7}, {6.7}, {1.4,5}, {2,3,4}} as a result of
dividing = by the covers of the columns x; and xs (see
Figure 3).

The method used for the search for an appropriate
partition consists in fulfilling the lexicographical
enumeration and testing by the above way every variant
of the set Z; if it would provide a solution of the task.

Example 3. Let the system of completely specified
Boolean functions from Example 1 be given. Consider
this variant that Z, = {x2, X4}, Z1 = {X1, X3, Xs}. For this
variant with the cover map in Figure 1, we obtain the
cover map shown in Figure4 and then we obtain
Figure 5 from Figure 4.

X5
X4
X3
24 o @ ][1] 1 [2]35][2345
| 9 | @9|@]|6|67|7 ]| 0| @

X1

Figure 4 — The cover map obtained by dividing = by the cover of the

column x;
X5
X3
12,4 %) 3,5 12,345
|6 @ 7 6.7

X1

Figure 5 — The cover map obtained by dividing = by the covers of the
column x; and X4

The compact table for the covers =t = {&, {6}, {7},
{3,5}, {67}, {1.2.4}, {1.23.4,5}} and =®={{1},
{4,5}, {6,7}, {2,3,4}} is represented by Table 2 that
have four different columns. To encode these columns,
two variables are sufficient. The codes of the columns
are shown at the bottom of Table 2.

Table 2 — The compact table for the partition from Example 3

@ 6 7 35 67 12412345
1,00 |[00| 00| 00 | OO | 10 10
4510000 00| 01 ] 00 | 01 01
6,7/ 00 01|01 ] 00 | 01 | OO 00
23400 ]00| 00| 10 |00 |11 11
00 01 01 10 01 11 11

To construct the system of functions y = g@(w, 2,)
and w=g(zy) that are the solution of the task, the
functions connected with the blocks of the covers
obtained must be constructed. The DNFs of the
functions connected with the blocks of m! can be
obtained from the cover map in Figure5:
nh(z) =x3 X5,  m(z1) =x1 X3 x5,  mia(z1) = X1 X3 X5,
na(z1) = X1 x3 x5, whs(z1) = x1 X3 x5, 7Te(Z1) = X1 X3 Xs,
7'517(21) = X1 X3 Xs.



Similarly, the DNFs %1(z2) = X2 x4, ©%2(22) = X2 Xa,
723(22) = x2 xa, m24(Z2) = x» Xxa are obtained. As a result of
simple minimization we obtain the following matrices
representing the desired superposition y = @(w, z2),
W =g (za):

W W, X X4 Y1 Y2
1101] [10 X, X3 Xs W, W,
01 11 01]. 00 - 10
1 100’10}’ - 00]|"|01
1 -00 01 1 -1 01
11 -0 01

5. IMPLEMENTATION AND RESULTS

We designed and developed special computer
program on MSVC++ to find all solutions of systems of
Boolean functions. Our program based on ternary
matrix cover approach and the general scheme of our
algorithm summarized in Figure 6. The experiments run
on a Pentium 2.26GHz CPU with 3 GByte of main
memory. As a benchmark, we generate many systems of
completely specified Boolean functions using a
prepared library explained in [Romanov, 1997],
[Romanov, 2001] and [Romanov, 2005]. We considered
three parameters for these systems; number of rows of
matrix U that indicate number of conjunctions, number
of columns of matrix U or number of arguments and
number of columns of matrix V or number of functions.
For every system and after generating matrices U and V
as SOP (Some Of Product), first of all we expand
matrix U to obtain corresponding matrix without don't
cares. The rows which have don’t cares will replace
with several suitable rows and consequently number of
DNFs of system will increase exponentially.

Then we begin to provide cover map; for that we
used gray code encoding system. On contrary to our
example in section 4 that cover map is a two
dimensional table, due to simplicity to store in
computer memory and referring for it and also in the
future calculations of compact table, we implemented it
as a one dimensional array. An example of our approach
with three variables is represented in Figure 5. The
order of replacement of the variables on the array is
important and this can be extended for any number of
variables.

X1

X2

e — — X3
(1000 [ 001 [ 011 | 010 [ 110 [ 111 | 101 | 100 |

Figure 5 — The cover map model for three variables using gray code
encoding system

In the array we store the values explained in section
4 and gray codes in the array of Figure 5 are
symbolically shown to represent the correctness of the
approach, but we also save the gray codes in the other
list. In fact, the method of storing information in the
mentioned array is as follows. Each row in matrix U,
numbered with integers started from one. We compare
the value of each row with gray codes list until the
equal value to be founded. Then we add the row
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number of compared row in corresponding element of
the array. We continue this way until all rows to be
compared and the row numbers to be added to the array
elements. At the final, we sweep the array and put the
empty set to the elements with no value added.

-Algorithm for one system of Boolean
functions
» Con « ConValue
» Arg « ArgValue
» Fun « FunValue
» Generate SOP (Con,Arqg,Fun)
(i.e Matrices U and V)
» Expand Matrix U
(i.e removing all don't ‘cares in
Matrix U with replacing the
according rows with new ones)
» Compute Cover Map
(Generate Gray Codes with Length 27
and fill out the Cover Map Array
According to the Algorithm Rules)
»C « 0 (To Count Number of Solutions)
» for k « 2 to n-1
»Combination Generator (n,k)
»for each combination of ()

Check Current Partition
1-Divide Cover Map Over Z;
2-Divide Cover Map over Z;
3-Compute Compact Table
4-Compute Number of
Different Columns (r) of
Compact Table
5-Encode the Columns of the
Compact Table
6-if log(r)< 2%1 then
Solution Founded
(Produce the Solution
i.e Matrices ¢@,W,YyandX)
»if Solution Founded then
Add this partition to the set
of Solutions and C « C + 1
»if C=0 then
Declare the system is not decomposable
> else
Print C (which is the number of all
solutions)

Figure 6 — Implemented algorithm for determining decomposability
of system of Boolean Functions and find total number of solutions of
system

To find all solutions of the task anyone should
enquire into all possible partitions which constructing
Z; and Z,. The relatively simple method to address the
appropriate partition can be done by lexicographical
enumeration. After computing cover map of the current
system of Boolean functions, in each stage we used
Donald E. Knuth algorithm [Knuth, 2011] to generate
all combinations of the arguments and of course for
each partition we check whether it is a solution of the
task or not. To obtain all k-element subsets of an n-
element set, this algorithm is one of the fastest ones.
Each k-element subsets is used to construct Z; elements
and rest of the arguments will be the elements of the Z,.



If a partition as a solution found, the program will
keep it and will calculate four matrices; Matrix @,
Matrix Y, Matrix X and Matrix W. These matrices are
the solution of the task. In fact the current system of
Boolean functions convert to two new systems with less
arguments; Matrices @ and Y as U and V respectively,
for the first system and also Matrices X and W as U and
V respectively, for the second system. Although we
obtain these matrices but they haven't influence in our
results in this paper. We'll utilize them in the future
works.

This manner is repeated for all partitions and if
appropriate partition wasn’t found, the program will
declare the current system of Boolean functions isn’t
decomposable; otherwise the program will print number
of solutions to the current system.

Now, we report experimental results for our
approach in decomposition of Boolean functions,
described in the previous sections. Due to space and
time limitations, the results are shown refer only to the
decompositions of systems with few arguments and too
few functions. The results summarized in Table 3.

Table 3 — Experimental results

Con | Arg | Fun | NTP | NS PS ET
8 5 2 25 21 84 <1
10 6 2 56 49 87 4
10 6 3 56 13 23 5
10 6 4 56 18 32 4
20 7 3 119 25 21 21
15 8 3 246 64 26 131
15 8 4 246 40 16 134
20 8 5 246 8 3 104
40 8 10 246 8 3 201
20 9 4 501 48 10 497
30 9 5 501 10 688
30 10 3 1012 | 58 3634
30 10 5 1012 | 55 5 3197
40 10 4 1012 | 98 10 3100
30 12 6 4082 | 673 | 16 | 20413

The results show that more than 95% of generated
systems are decomposable and all of them have several
solutions when the system is decomposable. The first
three columns in Table 3 represent the number of
conjunctions (Con), number of arguments (Arg) and
number of functions (Fun) respectively and these
informs the parameters of a generated system of
Boolean functions. The number of total partitions
(NTP) counted when 2 =< |Zy| =n—1. So it implies
that the total partitions will be Xr=3(;) which it is

equal to 2™ — (n+2). Number of Solutions (NS) is
part of results which it is found after the program was
executed and the percentage of the Solutions (PS) is
percent of NS to NTP. The last column represents
elapsed time (ET) which is the running time of the
program for each system of Boolean functions during
obtaining all solutions and calculated in seconds.
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CONCLUSION AND FUTURE WORK

We developed a computer program as an application
to determine decomposability of system of Boolean
functions via ternary matrix cover approach. The
ternary matrix cover and the representation of a system
of Boolean functions in the form of compact table are
simple to realize and we implemented several systems
with different parameters. Experimental results were
interesting and show that usually a system has more
solutions when it is decomposable. In the most cases
the number of solutions will be high when the number
of functions is small.

As a future work, optimization .in encoding of
compact table is proposed, because it has direct
influence on quality of obtained solutions. Also it is
useful to find a best partition among the solutions from
the syntheses point of view which is useful in practical
scene.
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AHHOTaNUA. PaccmarpuBaercs 3aJa4a
MOCJIENOBATEILHOM JIBYXOJIOYHOM JIEKOMITO3HIIN U
TIOJTHOCTBIO OIIPEICIICHHBIX OyIeBhIX QyHKIMN. AHAIN3
U HCCIENOBAaHUE TaKUX CHCTEM SBISIETCS BECbMa
BaXXHBIM [UIsl JIOTUYECKOIO IpOEKTHpoBaHuA. Panee
OBUT TMpeUIOKEH METOJ pEIICHHS JTOM 3a1add,
OCHOBAHHBIM Ha MCIOJIB30BAHUU IIOKPBITUS TPOUYHOU
MaTpuibl. Pa3paboTaHa KOMITBIOTEpHAs Mporpamma,
UCcHonb3ymomas d3ToT Meron. OCHOBHOE BHHMAaHUE
JIaHHOM PabOTHI COCPENOTOUCHO Ha Pa3IOKUMOCTH
cucteM OyneBbIX (QYHKIHHA. J[Is pa3ioKUMBIX CHCTEM
WCCIEAOBAJIOCh  YHMCIO  pElIeHHd U Bpemd,
3aTpaunBaEMO€E Ha UX MOJIyYEHHE.

KawueBble cioBa: OymneBa (yHKIUSA, JEKOMIO3HIIA,
KapTa IOKPBITH, KOMITAKTHAS Ta0IIUIIA.

BBEJIEHME

PaccmarpuBaeTcs 3aiad a AEKOMIIO3HIIUU CHUCTEMBI
OyseBbIX (DYyHKIMH B cieAyromieid mocranoBke. IlycTs
CHCTeMa TIOJIHOCTHIO ONPEAETICHHBIX OylIeBhIX (QyHKIIMI
y=1f(x), tme y=(y1, Y2, ..., Ym), X =(X1, X2, .es5Xn) H
f(X) = (fu(x), f2(x), ..., fmn(X)) 3amana marpuuamu U u V,

MPEICTABIAIOMNMHI cucTemMy JU3BIOHKTHBHBIX
HOopManmbHEIX  (opm (JH®) 3amaHHBIX (QyHKUIHI.
Marpumta U saBusgercs — TPOWYHOW  MaTpHICH
pasmeproct | xn, rme | — ‘umcno pasnMYHBIX

9NEMEHTAPHBIX KOHBIOHKLIMHA B 33aHHOW CHCTeMe
JH®. Cronbupr maTputibl U momMeueHbl IEPeMEHHBIMU
X1, X2, ..., Xn, @ CTPOKHM TPECACTABJISIIOT YIIOMSIHYTBIC
BIIEMEHTAPHBIC KOHBIOHKIHH (uHTEpBAITBI
MPOCTPAHCTBA MEPEMEHHBIX X1, X2, ... , Xn). Marpuna V
sBIsieTcsl OyeBON MaTpuued pasmepHocTH | x m, u ee
CTOJIOIBI  TIOMEUYCHBI  MEPEMEHHBIMH Y1, Y2, ..., Ym.
TpeOyercst  HailTh  cymepnosuuuo Y = @ (W, 22),
W=0(21), THe 1 ¥ Z» — BEKTOPHBIC MEPEMEHHBIC,
KOMIIOHEHTaMH KOTOPBIX SIBIISTFOTCSI OyIeBbI
NepEMEHHBIE 13 MOAMHOXKECTB Z1 U Z2 COOTBETCTBEHHO,
obpasymwlux pasouenne MHOXecTBa X = {X1, X2, ..., Xn}
apryMeHTOB Takoe, 4To X=Z1UZ; u Z1NZy=D.
[pu 3TOM YKCIIO KOMIIOHEHT Y BEKTOPHON MEepEeMEHHOM
W JI0JDKHO OBITh MeHbIIe ueM y Z1 [Zakrevskij, 2009].

OCHOBHAS YACTDH

Pazpaborana KOMITbIOTEpHASI mporpaMma
HaXOXKJCHWsI BCEX PEIICHUN paccMaTpuBaeMOU 3aladu
JUTSL 3aJTaHHOM CHCTeMBI OyIeBBIX QyHKIMA. B kauecTBe
MpUMEPOB TeHEPUPOBATIUCH MHOTHE CHCTEMEI
MOJHOCTHIO  OIPEICICHHBIX OylIeBbIX (QyHKIMHA C
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MOMOMIbIO  MPOTpaMM, ONMHCAHHBIX B  paboTax
[Romanov, 2001] u [Romanov, 2005]. MeHsutiuch Tpu
nmapamMeTpa OTHX CHCTEM. YHUCJIO OJIEMEHTAPHBIX

KOH’bIOHKHHﬁ, YHUCJIO aprymMeHTOB M 4YHUCJIO (byHKHPIﬁ.
3arem CTponjaChb MaTpulla MNOKPBLITHA, B KOTOpOfI
HCIIOJIB30BaJICA KOO Fpeﬂ U KOTOpas MNpeAaAcCTaBIsIaCh
KaK OJHOMCpHas CTpOKa.

Jlns  HaxoKIOeHUS BCEX pEUIeHHH HeoOXoauMo
paccMaTpuBaTh BCE BO3MOKHBIE pa3ouenus,
obpazoBaHHble MHOXKecTBaMU Z1 u Z2. CpaBHUTEIHHO
OpocTOH  MeTox  oOpamieHus K MOAXOIAIIEMY
pa3bueHuIo HCTIONB3YeT JIEKCUKOTPa(IIeCKIHA
nepebop. [locne momydeHWs MaTpHIbl HOKPBITHS IS
TEeKyIei cuctemMsl OyneBbIX QyHKINI Ha KaXKIOM 3Tare
TeHEPUPYIOTCSI BCE COUYETaHMs apryMEHTOB, a Ui
KaXJI0To pa3OueHus IpoBepseTCs, HMMeeTcd Ju A
HEero peuieHue Wi HeT. Ecmm s pasOueHus
CYIIECTBYET peIICHUE, IPOrpaMMa ero COXpaHser. ITo
HOBTOPSAETCS AN BCeX pa30HeHHH, U eCliu Moaxoslee
pa3bueHue He HaileHo, TO MporpamMMa OOBSABISIET
TEKYIIyIO CUCTEMY OyJeBBIX (pPYHKUIMH HEPa3IOKHMOM.
OO1mmas cxema alropuT™Ma IIPEACTaBIIeHa Ha pHc. 6.

Pesynbrarel, npuBecHHbIC B Tabl. 3, MOKa3bIBAIOT,
YTO CTEHEPUPOBAHHBIC CHUCTEMBI HMEIOT HECKOJIBKO
PCLICHUH, eClTi OHU Pa3NoKUMBI. TlepBbie TpH cTOJIOIA
B Tabna. 3 MPECTaBISAIOT COOTBETCTBEHHO YHCIIO
9IIEMEHTAPHBIX KOHBIOHKIHI (CON), YKCIIO apryMEeHTOB
(Arg) u wumcmo o¢yukumii  (Fun). O6miee uucio
pazbuennit (NTP) moncuurano, korga 2 < [Z;] =n — 1.
DTUM yucIoM OyaeT Eﬁ;%(:}, 4T0 paBHO 2% — (n + Z).
YacTeio pe3ynbTatoB siBiasiercss unciao pemeruii (NS),
MOJTy94aeMO€e B Pe3yJbTaTe BBITIOIHEHHS IPOTPAMMBI, H
nonss NS B mpouenrax (PS) mo ornomenuro kK NTP.
[Mocnennuit cronder; MPeACTABISAET BPEMsl MOIYUYCHHUS
Bcex pemenuit (ET) B cekyHaax.

3AKJIIOYEHUE U JAJTBHEHNIIHUE PABOTHI

Pa3paborana KOMIIBIOTEpHAS porpamMma
ONpEETCHUs.  PAa3IoKUMOCTH  CHCTEM  OyJleBBIX
GYHKIUH, WCHONB3YIONIas IOAXON, CBA3AaHHBIA C
HOKpBITUEM ~ TpoMYHOW  Martpuupsl.  HccrnenoBaHo
HECKOJIBKO CHCTEM C pa3M4HbBIMH IapaMeTpaMH.
OnpeneneHHbIN HHTEpEC HPEACTaBIAIOT

9KCIIEPHMEHTAIIBHBIE PE3yIAbTaThl, MOKA3bIBAIOILNE, YTO
€CJIM CUCTEMA Pa3lIoKUMa, TO paccMaTpUBaeMas 3ajada
MMEEeT HECKOJBbKO pelieHui. B OonpmmMHCTBE ciydaeB
YHCIIO0 PEeIICHUH BEIHMKO IPH MaJIoM 4yucie ¢pyHKIuil. B
KadecTBe  JaibpHeimend  paboThl  MpemoaraeTcs
HCCIIEIOBATh ONTUMH3AIMIO KOAWPOBAHHUS KOMITAaKTHOU
TaOJHIIBI, TOCKOJIBKY 3TO HEMOCPEACTBEHHO BIMSACT Ha
Ka4ecTBO MNoiy4aeMmoro pemieHus. IlonesHo Takxke B
IMPaKTUYEeCKOM TMJaHe€ ¢ TOUKM 3pEHHs CHHTE3a
JIOTHYECKUX CXEM HaXOoIUTh Hawiydilee pa3OHeHHe
MHO€CTBa APT'yMEHTOB.





