
JBE. CONCEPT AND APPLICATION

Lydia Mitkovets, Daniel Sidorov, students, Alevtina Gourinovitch,

PhD of Belarusian State University of Informatics and Radioelectronics, Minsk, 6 P.Brovki str.

Annotation. To save the information inside storage users try to reduce the files size to minimum by using data

compression software. It is a new algorithm for data compression in this article. It is j-bit encoding (JBE). This algorithm

manipulates each bit of data inside file to minimize the size without losing any data after decoding. It is classified lossless

compression. This basic algorithm is combining with other data compression algorithms to optimize the compression

ratio. The implementation of this algorithm consists in a combination of various data compression algorithms.

Keywords: data packaging, compression, compression encoding, source encoding.

Introduction

Data compression is an algorithmic transformation of data to reduce the amount of data it

occupies. This algorithm is applied for efficient usage of storage and data transfer devices.

Compression is the eliminating the redundancy contained in the source data. The simplest

example of redundancy is the repetition of fragments in the text (for example, words of natural or

machine language). Such redundancy is usually eliminated by replacing the repeated sequence with

a reference to the already encoded fragment with an indication of its length. Another type of

redundancy is the fact that some values in the compressed data are more common than other ones.

The reduction in data volume is achieved by replacing frequently occurring data with short the code

word, and rare data with long ones (entropy coding). Compression of data that does not have the

property of redundancy (for example, random signal or white noise, encrypted messages) is

fundamentally impossible without loss.

At the heart of any compression method is the data source model, or more precisely, the

redundancy model. In other words, data compression uses some a priori information about what kind

of data has compressed. Without such information about the source, it is impossible to make any

assumption about the transformation that would reduce the volume of the message. The redundancy

model can be static, immutable for the entire compressed message, or constructed or parameterized

at the compression (and recovery) stage.

All data compression methods are differed to two main classes:

 Lossless compression

 Loss compression

When using lossless compression, it is possible to completely restore the original data, loss

compression allows you to restore data with distortions that are usually insignificant from the point

of view of further use of the restored data. Lossless compression is usually used to the transmission

and storage of text data, computer programs, less often-to reduce the volume of audio and video data,

digital photos, etc., in cases where distortion is unacceptable or undesirable. Loss compression is

significantly more efficient than lossless compression. Loss compression is usually used to reduce

the volume of audio and video data and digital photos in cases where such reduction is a priority, and

full compliance of the original and restored data is not required.

Data compression is a way to reduce storage cost by eliminating redundancies that happen in

most files. There are two types of compression, loss and lossless. Loss compression reduced file size

by eliminating some unneeded data that won’t be recognize by human after decoding, this often used

by video and audio compression. Lossless compression on the other hand, manipulates each bit of

data inside file to minimize the size without losing any data after decoding. This is important because

if file lost even a single bit after decoding, that mean the file is corrupted.

Most compression methods are physical and logical. They are physical because look only at

the bits in the input stream and ignore the meaning of the contents in the input. Such a method

translates one-bit stream into another, shorter, one. The only way to understand and decode of the

output stream is by knowing how it was encoded. They are logical because look only at individual

contents in the source stream and replace common contents with short codes. Logical compression

method is useful and effective (achieve best compression ratio) on certain types of data [2].

Related Algoritms

A. Run Length Encoding

Run-length encoding (RLE) is one of basic technique for data compression. The idea behind

this approach is this: If a data item d occurs n consecutive times in the input stream, replace the n

occurrences with the single pair nd [2]. RLE is to compress runs of the same byte. This approach is

useful when repetition often occurs inside data. That is why RLE is one good choice to compress a

bitmap image especially the low bit one (example 8-bit bitmap image).

B. Burrows-wheeler transform

Burrows-wheeler transform (BWT) works in block mode while others mostly work in

streaming mode. This algorithm classified into transformation algorithm because the main idea is to

rearrange (by adding and sorting) and concentrate symbols. These concentrate symbols are used for

another algorithm to achieve good compression ratios. Since the BWT operates on data in memory,

it may encounter files too big to process in one fell swoop. In these cases, the file has to split up and

processed a block at a time [3]. To speed up the sorting process, it is possible to do parallel sorting or

using larger block of input if more memory available.

C. Move to front transform

Move to front transform (MTF) is another basic technique for data compression. MTF is a

transformation algorithm to do not compress data but can help to reduce redundancy sometimes [5].

The main idea is to move to front the symbols that mostly occur, so those symbols will have smaller

output number. This technique is to implement optimization for another algorithm likes Burrows-

wheeler transform.

D. Arithmetic coding

Arithmetic coding (ARI) is using statistical method to compress data. The method starts with

a certain interval, it reads the input file symbol by symbol, and uses the probability of each symbol

to narrow the interval. Specifying a narrower interval requires more bits, so the number constructed

by the algorithm grows continuously. To achieve compression, the algorithm is the following: a high-

probability symbol narrows the interval less than a low-probability symbol, with the result that high-

probability symbols contribute fewer bits to the output. Arithmetic coding, is entropy coder widely

used, the only problem is its speed, but compression tends to be better than Huffman (other statistical

method algorithm) can achieve [2]. This technique is useful for final sequence of the data compression

by the combination algorithm and gives the most for compression ratio.

Modified Algorithm

J-bit encoding (JBE) [8] works by manipulate bits of data to reduce the size and optimize input

for another algorithm. The main idea of this algorithm is to split the input data into two data where

the first data will contain original nonzero byte and the second data will contain bit value explaining

position of nonzero and zero bytes. Both data then can be compress separately with other data

compression algorithm to achieve maximum compression ratio. The compression process can be

describe as following:

1. Read input per byte, can be all types of file.

2. Determine read byte as nonzero or zero byte.

3. Write nonzero byte into data I and write bit ‘1’ into temporary byte data, or only write bit ‘0’

into temporary byte data for zero input byte.

4. Repeat step 1-3 until temporary byte data filled with 8 bits of data.

5. If temporary byte data filled with 8 bits then write the byte value of temporary byte data into

data II.

6. Clear temporary byte data.

7. Repeat step 1-6 until end of file is reach.

8. To write combined output data:

а) Write combined output data;

б) Write data I.

в) Write data II.

9. If followed by another compression algorithm, data I and data II can be compress separately

before combined (optional).

Figure 1 shows visual compression process for J-bit encoding step-by-step. The inserted

original input length is used to information for data I and data II size into the output beginning.

Figure 1. Step by step compression process for J-bit encoding

The decompression process can be describe as following:

1. Read original input length.

2. If was compressed separately, decompress data I and data II (optional).

3. Read data II per bit.

4. Determine whether read bit is ‘0’ or ‘1’.

5. Write to output, if read bit is '1' then read and write data I to output, if read bit is '0' then write

zero byte to output.

6. Repeat step 2-5 until original input length is reach.

Variant Combination

Four combinations of data compression algorithm have used to find out which combination

with the best compression ratio.

The combinations are:

1. BWT+MTF+ARI.

2. BWT+RLE+ARE.

3. RLE+BWT+MTF+RLE+ARI (as used in [3]).

4. RLE+BWT+MTF+JBE+ARI.

Those combinations have tested with six types of files. Each type consists of 80 samples. Each

sample has different size to show real file system condition. All samples are uncompressed, this

include raw bitmap images and raw audio without loss compression.

Figure 2. Experiment Samples

JBE Application

The structural data compression system looks like this:

Source Data –> Encoder –> Compressed Data –> Decoder –> Recovered Data

In this scheme: the data generated by the source is the source data, and their compact

representation is the compressed data. The data compression system consists of an encoder and a

source decoder. The encoder converts the source data to the compressed data, and the decoder is to

recover the source data from the compressed data. The recovered data generated by the decoder can

either exactly match the original data of the source, or slightly differ from them.

In lossless compression systems, the decoder recovers the source data absolutely accurately,

so the structure of the compression system is as follows:

Data Vector X –> Encoder –> B (X) –> Decoder - > X

The vector of source data X to be compressed is a sequence X = (𝑥1, 𝑥2, … , 𝑥𝑛) of finite

length. The sample 𝑥𝑖 (the components of the vector X) has selected from the finite alphabet of data

A. In this case, the size of the data vector n is limited, but it can be arbitrarily large. Thus, the source

at its output forms as data X a sequence of length n from the alphabet A.

The vector of source data X to be compressed is a sequence B(X) = (𝑏1, 𝑏2, … , 𝑏𝑛), размер

которой k зависит от X. It calls B(X) the code word assigned to vector X by the encoder (or the code

word into which vector X has transformed by the encoder). Since the compression system is non-

destructive, the same vector 𝑋𝑙 = 𝑋𝑚 has to correspond to the same code words B(𝑋𝑙)= B(𝑋𝑚).

Implement BWT+MTF+ARI

Let the input string be "ABACABAА".

1. BWT.

The conversion has implemented by three stages. At the first stage, a table of all cyclic shifts

of the input string has compiled. At the second stage, lexicographic (in alphabetical order) sorting of

the table rows is performed. In the third step, the last column of the conversion table has selected in

the output row. The following example illustrates the described algorithm:

Figure 3. BWT conversion algorithm

Thus, the result of the BWT(s) algorithm is "BCABAAAA".

2. MTF.

Initially, each possible byte value is written to a list (alphabet), in a cell with a number equal

to the byte value, i.e. (0, 1, 2, 3,..., 255). This list changes as the data is processed. As the next

character arrives, the number of the element containing its value has sent to the output. After that,

this symbol moves to the beginning of the list, shifting the remaining elements to the right.

Modern algorithms (for example, bzip2) use the BWT algorithm before the MTF algorithm,

so as an example, consider the string S = "BCABAAAA” obtained from the string "ABACABAA"

as a result of the Burroughs-Wheeler transformation (more on it later). The first character of the string

S = "B" is the second element of the alphabet "ABC", so the output is one. After moving 'B' to the

beginning of the alphabet, it takes the form "BAC". Further work of the algorithm:

Table 1 — MTF conversion algorithm:

Symbol List Output

B ABC 1

C BAC 2

A CBA 2

B ACB 2

A BAC 1

A ABC 0

A ABC 0

A ABC 0

Thus, the result of the MTF(S) algorithm is “12221000".

3. ARI.

Trying on arithmetic coding we get:

ARI(S) =101110100111101001001000

Thus, if we are dealing with eight-bit characters, then the input is 8*8=64 bits, and the output

is 24, that is, the compression ratio 62.5%.

Consider the same example, but with the addition JBE - BWT+MTF+JBE+ARI:

Points 1 and 2 are the same.

4. JBE.

Table 2-Algorithm for applying JBE encoding

Original Data 1 Temporary byte data Data 2

1 00000001 1 00000001 1 00000001 248 11111000

2 00000010 2 00000010 1 00000001 - -

2 00000010 2 00000010 1 00000001 - -

2 00000001 2 00000010 1 00000001 - -

1 00000000 1 00000001 1 00000001 - -

0 00000000 - - 0 00000000 - -

0 00000000 - - 0 00000000 - -

0 00000000 - - 0 00000000 - -

At the output, we have a record of the original input length + Data record I + Data record II

=24812221.

5. ARI.

Trying on arithmetic coding we get:

ARI(S) =101110111011001100110110

Thus, if we are dealing with eight-bit characters, then the input is 8*8=64 bits, and the output

is 24, that is, the compression ratio 62.5%.

Result

Figure 4 shows that 8-bit bitmap images have compressed with good compression ratio by

algorithms that combined with J-bit encoding.

Figure 5 shows that 24-bit bitmap images has compressed with better compression ratio by

algorithms that combined with J-bit encoding. A 24-bit bitmap image has more complex data than 8

bits since it is storing more color. Loss compression for image would be more appropriate for 24-bit

bitmap image to achieve best compression ratio, even thought that will decrease quality of the original

image.

Figure 6 shows: text files have compressed with better compression ratio by algorithms that

combined with J-bit encoding.

Figure 7 show: binary files have compressed with better compression ratio by algorithms that

combined with J-bit encoding.

Figure 8 shows: wave audio files have compressed by better compression ratio by algorithms

that combined with J-bit encoding.

Figure 9 shows: video files have compressed by the best compression ratio with the combined

J-bit encoding algorithms.

CONCLUSION

The modified data compression algorithm was proposed. The experiment has conducted. It

has used six file types with 80 different sizes for each file type. As a result, 4 combinational algorithms

have tested and compared. The proposed algorithm shows a better compression ratio after to insert

between" forward motion transformation" (MTF) and arithmetic encoding (ARI). The study provides

both the theoretical part and practical examples. The considered algorithm has the prospect of

introducing other data compression algorithms into the structure.

REFERENCES

1. Capo-chichi, E. P., Guyennet, H. and Friedt, J. K-RLE a New Data Compression Algorithm

for Wireless Sensor Network. In Proceedings of the 2009 Third International Conference on

Sensor Technologies and Applications.

2. Salomon, D. 2004. Data Compression the Complete References Third Edition. Springer-

Verlag New York, Inc.

3. Nelson, M. 1996. Data compression with Burrows-Wheeler Transform. Dr. Dobb's Journal.

4. Campos, A. S. E. Run Length Encoding. Available:

http://www.arturocampos.com/ac_rle.html (last accessed July 2012).

5. Campos, A. S. E. Move to Front. Available:

http://www.arturocampos.com/ac_mtf.html (last accessed July 2012).

6. Campos, A. S. E. Basic arithmetic coding. Available:

http://www.arturocampos.com/ac_arithmetic.html (last accessed July 2012).

7. Springer, Handbook of Data Compression Fifth Edition.

8. Agus Dwi Suarjaya. Information Technology Department Udayana University. Bali,

Indonesia. A New Algorithm for Data Compression Optimization.

