

Contents lists available at ScienceDirect

Journal of Luminescence

journal homepage: www.elsevier.com/locate/jlumin

Tm,Ho:Ca(Gd,Lu)AlO₄ crystals: Crystal growth, structure refinement and Judd-Ofelt analysis

Zhongben Pan^{a,b}, Pavel Loiko^c, Sami Slimi^d, Hualei Yuan^e, Yicheng Wang^b, Yongguang Zhao^{b,f}, Patrice Camy^c, Elena Dunina^g, Alexey Kornienko^g, Liudmila Fomicheva^h, Li Wang^b, Weidong Chen^{b,i}, Uwe Griebner^b, Valentin Petrov^b, Rosa Maria Solé^d, Francesc Díaz^d, Magdalena Aguiló^d, Xavier Mateos^{d,1,*}

^a School of Information Science and Engineering, Shandong University, Qingdao 266237, China

^b Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max-Born-Str. 2a, 12489, Berlin, Germany

^c Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252 CEA-CNRS-ENSICAEN, Université de Caen Normandie, 6 Boulevard du

Maréchal Juin, 14050, Caen Cedex 4, France

^d Universitat Rovira i Virgili, Dept. Química Física i Inorgànica, FiCMA-FiCNA, Marcel·li Domingo, 1, 43007, Tarragona, Spain

^e Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900, China

^f Jiangsu Key Laboratory of Advanced Laser Materials and Devices, Jiangsu Normal University, 221116, Xuzhou, China

g Vitebsk State Technological University, 72 Moskovskaya Ave., 210035, Vitebsk, Belarus

^h Belarusian State University of Informatics and Radioelectronics, 6 Brovka St., 220027, Minsk, Belarus

ⁱ Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou, China

ARTICLE INFO

ABSTRACT

Keywords: "Mixed" calcium rare-earth aluminate laser host crystals Ca(Gd,Lu)AlO4 (CALGLO) with up to 10.8 at.% Lu Aluminate crystals codoped with Tm^{3+} and Ho^{3+} ions are grown by the Czochralski method along the [001] direction. The Czochralski growth segregation of rare-earth ions is studied. The crystal structure is refined by the Rietveld method. Tm,Ho:Ca(Gd, Structure refinement Lu)AlO₄ crystallizes in the tetragonal system (sp. gr. I4/mmm) exhibiting a K₂NiF₄ type structure. The lattice Raman spectra constants are a = 3.6585(6) Å and c = 11.9660(9) Å for a crystal with a composition of CaG-Optical absorption d_{0.8947}Lu_{0.0551}Tm_{0.0448}Ho_{0.0054}AlO₄. The stability of Ca(Gd,Lu)AlO₄ solid-solutions is discussed. The polarized Judd-Ofelt theory Raman spectra are measured, revealing a most intense mode at 311 cm⁻¹ and a maximum phonon frequency of \sim 650 cm⁻¹. The polarized absorption spectra are measured. The transition intensities for the Ho³⁺ ion are analyzed using the modified Judd-Ofelt theory accounting for configuration interaction.

1. Introduction

Calcium rare-earth aluminates CaLnAlO₄ where Ln stands for Gd or Y (denoted as CALGO/CGA and CALYO/CYA, respectively) are attractive laser host crystals [1–3]. They crystallize in a tetragonal class having a K₂NiF₄-type structure and exhibit structural disorder: the Ca²⁺ and Gd³⁺|Y³⁺ cations are statistically distributed over the same Wyckoff site (4*e*, C_{4v}-symmetry) [4,5]. As a result, CaLnAlO₄ doped with laser-active trivalent rare-earth ions (RE³⁺) such as Yb³⁺, Tm³⁺, Ho³⁺, *etc.*, exhibit significant inhomogeneous broadening of spectral bands [6]. Despite their disordered nature, the CaLnAlO₄ crystals provide good thermal properties, such as high thermal conductivity (~6.7 Wm⁻¹K⁻¹ for

CaGdAlO₄) with moderate dependence on the RE³⁺ doping concentration, weak anisotropy of thermal expansion and negative thermo-optic coefficients leading to almost "athermal" behavior [7]. Tetragonal CaLnAlO₄ crystals exhibit natural birefringence [8] and enable polarized laser emission [9]. Due to the presence of the substitutional rare-earth site, the doping of CaLnAlO₄ crystals is relatively easy. Finally, particularly for Ln = Gd and Y, the CaLnAlO₄ compounds melt congruently (at ~1750 °C in the former case), so that large crystals can be grown relatively easy by the conventional Czochralski (Cz) method [10].

The reported thermal and spectroscopic properties of RE^{3+} -doped CaLnAlO₄ rendered these crystals excellent candidates for generation and amplification of ultrashort laser pulses [11,12], including the

¹ Serra Húnter Fellow.

https://doi.org/10.1016/j.jlumin.2022.118828

Received 7 June 2021; Received in revised form 22 February 2022; Accepted 6 March 2022 Available online 7 March 2022

^{*} Corresponding author. Universitat Rovira i Virgili, Dept. Química Física i Inorgànica, FiCMA-FiCNA-EMaS, Marcel·li Domingo, 1, 43007, Tarragona, Spain. *E-mail address:* xavier.mateos@urv.cat (X. Mateos).

^{0022-2313/© 2022} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

high-power regime [13] (e.g., thin-disk lasers [14,15]). In the past decades, the research activity mainly focused on Yb³⁺-doped crystals corresponding to the spectral range of ~1 µm [11–15]. More recently, the interest shifted towards the eye-safe spectral range of ~2 µm [16, 17]. The laser emission at ~2 µm is typically achieved using thulium (Tm³⁺) and/or holmium (Ho³⁺) dopant ions. The growth and spectroscopic characterization of singly doped and Tm³⁺,Ho³⁺-codoped CaGdAlO₄ and CaYAlO₄ crystals were reported in Refs. [3,18]. Furthermore, such materials were proven to be capable of generating femtosecond pulses at ~2 µm [16,17].

The CaLnAlO₄ crystals belong to a big class of oxides with a general chemical formula of ABCO₄, where $A^{2+} = Ca^{2+}$ or Sr^{2+} , B^{3+} is a rareearth cation, and $C^{3+} = Al^{3+}$ or Ga^{3+} [19]. Not all the possible ABCO₄ compositions are stable, exhibit the desired K₂NiF₄-type tetragonal structure and melt congruently. Other known compositions satisfying these conditions are SrLaAlO₄ and SrLaGaO₄ [20,21]. The search for other compositions of ABCO₄ crystals (and, in particular, CaLnAlO₄ ones) will help to improve the thermal and spectroscopic properties. Another option is the growth of "mixed" crystals (solid solutions) leading to compositional disorder and hence to additional broadening of the spectral bands of laser-active RE³⁺ dopant ions. As for the CaLnAlO₄ crystals, the Cz growth of stoichiometric compounds with other host-forming cations was reported only for Ln = Nd [4,22], Dy [23] and Tb [24]. However, all these ions are optically active and do not appear attractive for "mixed" crystals.

The lutetium ion (Lu^{3+}) is known as a passive host-forming cation for many oxide materials such as garnets $(Lu_3Al_5O_{12})$, sesquioxides (Lu_2O_3) , tungstates $(KLu(WO_4)_2)$ or perovskites $(LuAlO_3)$. Due to the closeness of ionic radii of Lu^{3+} and Yb^{3+} or Tm^{3+} ions, Lu-based oxides (as compared to their Gd-based counterparts) provide easier doping and weaker dependence of thermal properties on the doping level [25]. Unfortunately, so far, the CaLuAlO₄ compound has never been synthesized as a single crystal [26]. An alternative route can be the fabrication of a "mixed" material, e.g., Ca(Gd,Lu)AlO₄ with a partial substitution of Gd^{3+} by Lu^{3+} . First, this idea was exploited in Ref. [27] to produce Yb^{3+} -doped Ca(Gd,Lu)AlO₄ crystals (denoted as CLGA) with a maximum Lu^{3+} content of 5.5 at.%. Later, Tm^{3+} -doped crystals with a similar Lu^{3+} content were grown and their spectroscopic and laser properties were studied [28].

In the present work, we report on the first Cz growth of Tm^{3+} , Ho^{3+} codoped "mixed" Ca(Gd,Lu)AlO₄ (abbreviated: CALGLO) crystals preserving the tetragonal K₂NiF₄-type structure. These crystals feature increased Lu³⁺ content up to 10.8 at.% extending the understanding of solid-solution formation in the system Ca(Gd_{1-x}Lu_x)AlO₄.

2. Crystal growth

5 at.% Tm³⁺, 0.5 at.% Ho³⁺ (in the melt) codoped Ca(Gd_{1-x}Lu_x)AlO₄ (where x = 0.1 or 0.2 corresponds to batches #1 and #2, respectively) single crystals were grown by the Cz method using an argon atmosphere in an iridium crucible. An automatic system was employed to control the boule diameter. The polycrystalline materials were obtained by solid-state reaction from a mixture of the starting materials, Al₂O₃, RE₂O₃ (where RE = Gd, Lu, Tm and Ho) (purity: 5 N) and CaCO₃ (purity: 4 N). For that, the raw materials taken in stoichiometric composition according to the following formula were well mixed, ground and firstly heated to 1173 K for 12 h (h) to decompose CaCO₃ using a platinum crucible. Once the crucible was cooled down to room temperature, the obtained mixture was pressed into pellets and again reheated to 1673 K for 30 h to synthesize polycrystalline materials.

 $\begin{array}{l} 2\text{CaCO}_3 + 0.05\text{Tm}_2\text{O}_3 + 0.005\text{Ho}_2\text{O}_3 + \text{Al}_2\text{O}_3 + x\text{Lu}_2\text{O}_3 + (0.945 - x)\text{Gd}_2\text{O}_3 \\ \rightarrow 2\text{Ca}(\text{Gd}_{0.945 - x}\text{Lu}_x)\text{Tm}_{0.05}\text{Ho}_{0.005}\text{AlO}_4 + 2\text{CO}_2\uparrow \end{array}$

The synthesized polycrystalline material was placed in an iridium crucible and melted by an intermediate-frequency heater. A [001]-

oriented undoped CaGdAlO₄ seed was used, the pulling rate varied from 0.5 to 2 mm/h and the crystal rotation speed was kept at 8-15 revolutions per minute (rpm). Once the growth was completed, the crystals were removed from the melt and slowly cooled down to room temperature (RT, 293 K) at a stepped rate of 15-25 K/h. The photographs of the as-grown crystal boules of Tm,Ho:CALGLO are shown in Fig. 1(a,c). They have a cylindrical shape with slightly varying crosssection along the length of the boule (about 3.0 cm). The cross-section of all the grown boules is rounded, no natural crystal planes are observed. The as-grown crystals exhibit brown-yellow coloration which is typical for aluminate crystals [29-31] and is assigned to interstitial oxygen ions. The crystal boules with high Lu³⁺ content show some small cracks at their shoulders. We attribute this to the flat shape of the shoulders, which causes much larger radiant area during the crystal growth and cooling process. Though small cracks exist in the crystal, the samples cut from the crystal are still of high optical quality. The coloration is greatly removed by annealing at 950 °C for 24 h under N2 atmosphere with 5% H₂ (in oxygen-deficient conditions).

3. Experimental

The concentration of doping ions (Tm³⁺, Ho³⁺ and Lu³⁺) was measured by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) using an Agilent® 8800 triple quadrupole ICP-MS analyzer.

The X-ray powder diffraction (XRD) patterns were measured at RT using a Bruker D2 Phaser diffractometer for diffraction angles 2θ in the range of $10-90^{\circ}$ with Cu K α 1 radiation (1.54056 Å).

The crystal density was measured by the buoyancy method at 294 K, $\rho_{\text{meas}} = (m\rho_{\text{water}})/(m-m')$, where *m* and *m'* is the sample mass in air and in water, respectively, $\rho_{\text{water}} = 0.998 \text{ g/cm}^3$ is the density of water. Each ρ_{meas} value was averaged for 3 different samples from the same batch.

For polarized Raman and absorption measurements, rectangular samples oriented along the crystallographic axes (*a*, *c*) were prepared and polished (all lateral sides), as shown in Fig. 1(b,d). The polarized Raman spectra were measured using a confocal Raman microscope (Renishaw inVia) equipped with a \times 50 objective, a set of a polarizer, an analyzer and a $\lambda/2$ plate, and a cut-on filter. The excitation wavelength was 514 nm (Ar⁺ ion laser line).

The RT polarized absorption spectra in the range of 300–2200 nm were measured using a CARY 5000 (Varian) spectrophotometer equipped with a Glan-Taylor polarizer; the resolution (spectral bandwidth, SBW) was 0.2 nm. The IR transmission spectrum was measured using a Fourier transform infrared spectrometer (FTIR, model FI/IR 6700, Jasco).

4. Structural study

4.1. Crystal composition

The results on the concentration of doping ions (Tm³⁺, Ho³⁺ and Lu³⁺) are shown in Table 1. In particular, for batch #1, the actual doping levels were determined to be 4.48 at.% Tm, 0.54 at.% Ho and 5.51 at.% Lu corresponding to the stoichiometric chemical formula of CaG-d_{0.8947}Lu_{0.0551}Tm_{0.0448}Ho_{0.0054}AlO₄. The ion densities amounted to $N_{\rm Tm} = 5.54 \times 10^{20}$ cm⁻³ and $N_{\rm Ho} = 0.66 \times 10^{20}$ cm⁻³.

Let us analyze the segregation coefficients for three rare-earth ions, $K_{\text{RE}} = C_{\text{crystal}}/C_{\text{melt}}$, where C_{crystal} and C_{melt} are the doping levels in the crystal and in the raw materials (in the melt), respectively. For Tm³⁺ and Ho³⁺ ions, they are close to unity, $K_{\text{Tm}} = 0.90$ and $K_{\text{Ho}} = 0.76-1.07$ and for Lu³⁺ ones, $K_{\text{Lu}} = 0.54-0.55$ is much smaller. In the parent compound, CaGdAlO₄, the host-forming Ca²⁺ and Gd³⁺ cations statistically occupy the same type of site (Wyckoff symbol: 4*e*, site symmetry: C_{4v}, coordination number (C.N.) by oxygen: IX). It is expected that all the dopant cations replace for the Gd³⁺ ones. The observed difference in the segregation coefficients can be understood from the point of view of mismatch of ionic radii, namely $R_{\text{Tm}} = 1.052$ Å, $R_{\text{Ho}} = 1.072$ Å and R_{Lu}

Fig. 1. (a–d) Photographs of the Tm,Ho:CALGLO single crystals grown by the Czochralski method: (a,c) as-grown crystal boules, (b,d) polished cubic samples oriented along crystallographic axes; (a,b) 5.5 at.% Lu^{3+} , (c,d) 10.8 at.% Lu^{3+} (in the crystal). The full chemical formulas are given in Table 1. The growth direction is along the [001] axis.

Table 1
Raw and actual compositions of the Tm,Ho:CALGLO crystals grown by the Czochralski method, K_{RE} – segregation coefficient.

Crystal	Batch #1	Batch #2	
Raw composition			
Tm, at.%	5.0	5.0	
Ho, at.%	0.5	0.5	
Lu, at.%	10.0	20.0	
Actual composition			
Tm, at.% [cm ⁻³]	4.48 [5.54 $ imes$ 10 ²⁰]	4.50 $[5.55 \times 10^{20}]$	
Ho, at.% [cm ⁻³]	$0.54 \ [0.66 imes 10^{20}]$	$0.38 \ [0.47 \times 10^{20}]$	
Lu, at.% [cm ⁻³]	5.51 [$6.78 imes 10^{20}$]	$10.80 \ [13.3 imes 10^{20}]$	
Chemical formula	CaGd _{0.8947} Lu _{0.0551} Tm _{0.0448} Ho _{0.0054} AlO ₄	CaGd _{0.8432} Lu _{0.1080} Tm _{0.0450} Ho _{0.0038} AlO ₄	
K _{Tm}	0.90	0.90	
K _{Ho}	1.07	0.76	
K _{Lu}	0.55	0.54	

= 1.032 Å, compared with the larger R_{Gd} = 1.107 Å and especially R_{Ca} = 1.180 Å [32]. The results are compiled also in Fig. 2 where data on K_{RE} for other rare-earth ions in CaGdAlO₄ crystals from the literature [33–38] are added. The data were fitted using the following formula based on Onuma's principle [39]: $K_{RE} = K_0 - C(R_{RE} - R_{Gd})^2$ with the best-fit parameters $K_0 = 1.1 \pm 0.1$ and $C = 95 \pm 5$ Å⁻².

In the previous work on the parent CaGdAlO₄ crystals singly doped by Tm³⁺ and Ho³⁺ ions [18], lower segregation coefficients were reported, namely $K_{\rm Tm} = 0.61$ and $K_{\rm Ho} = 0.66$ (the crystal composition was analyzed by ICP atomic emission spectrometry). It seems that the addition of Lu³⁺ improves the segregation of Tm³⁺ and Ho³⁺ ions in CaGdAlO₄. We attribute this to much closer ionic radii of Lu³⁺ and the two above-mentioned dopant cations (as compared to Gd³⁺). The slight variation of $K_{\rm Tm}$ and $K_{\rm Ho}$ values determined by analyzing crystals grown from batches #1 and #2 (which is more evident for Ho³⁺ because of the low doping level) is mainly due to the error of the IPC-MS method and to a less extent – to a certain distribution of dopants in the single crystals.

It is known that a solid-solution of isostructural compounds can be formed if the relative difference between the ionic radii of the hostforming cation H (Gd³⁺, in our case) and the dopants D (Lu³⁺, Tm³⁺, Ho³⁺, ion our case), expressed by the formula $\Delta_{\rm R} = |(R_{\rm D} - R_{\rm H})/R_{\rm H}) \times 100\%$, does not exceed 15%. In our case, this parameter is maximum for Lu³⁺, $\Delta_{\rm R} = 6.8\%$, but the above-mentioned condition is still satisfied.

4.2. X-ray diffraction

The measured X-ray powder diffraction (XRD) patterns of the Tm,Ho: CALGLO crystals are shown in Fig. 3. In the same figure, we show the theoretical reflections from the Crystallography Open Database (COD) card #96-722-7258 for undoped CaGdAlO₄. The experimental XRD patterns match well the theoretical ones, indicating a single-phase nature of the material. The crystal structure was refined using the Rietveld method with the aim of the *match!* software, as shown in Fig. 4. The atomic coordinates from Ref. [30] were taken as a starting model for the Rietveld refinement. The obtained main crystallographic data and the refinement parameters are listed in Table 2. Tm,Ho:CALGLO crystallizes in the tetragonal system (sp. gr. $D^{17}_{4h} - I4/mmm$, No. 139) exhibiting a K₂NiF₄ type structure. For the crystal growth from the batch #1, the

Fig. 2. Segregation coefficients of rare-earth ions (RE³⁺) K_{RE} in CaGdAlO₄ crystals vs. their ionic radii for VIX-fold oxygen coordination (C.N. – coordination number), *circles* - experimental data (this work and Refs. [33–38]), *curve* – their fit according to the Onuma's principle [39], $K_{\text{RE}} = K_0 - C(R_{\text{RE}} - R_{\text{Gd}})^2$ where $K_0 = 1.1 \pm 0.1$ and $C = 95 \pm 5$ Å⁻² (this work).

Fig. 3. X-ray powder diffraction (XRD) patterns of Tm,Ho:CALGLO crystals, *vertical bars* mark theoretical reflections for undoped CaGdAlO₄ (COD card #96-722-7258), *numbers* indicate the Miller's indices (*hkl*).

lattice constants a = b = 3.6585 (6) Å, c = 11.9660(9) Å, the volume of the unit-cell V = 160.167 Å³ (number of the formula units per unit-cell Z = 2). The calculated crystal density is then $\rho_{calc} = 6.010$ g/cm³. The measured density ρ_{meas} amounted to 6.02 g/cm³ (batch #1) and 6.08 g/cm³ (batch #2), respectively, in agreement with the values calculated from the XRD data. The obtained lattice constants are slightly smaller than those for undoped CaGdAlO₄, a = 3.6632(3) Å and c = 11.998(2) Å [30], because of the smaller ionic radii of the dopant cations as compared to the host-forming ones.

The reliability factors obtained are listed in Table 2. For the crystal grown from batch #1, the weighted profile *R*-factor $R_{wp} = 2.82$, the expected *R*-factor $R_{exp} = 2.31$ and the Chi-squared $\chi^2 = (R_{wp}/R_{exp})^2 = 3.33$.

During the structure refinement, the fractional atomic coordinates in specific positions (*z* coordinates for the Wyckoff positions 4*e* in the considered structure) and the isotropic displacement parameters (B_{iso}) were optimized, Table 3. The site occupancy for the Wyckoff position 4*e* was taken assuming a random distribution of Ca²⁺ and RE³⁺ cations following the ratio of 1:1. Then, by considering the substitution of Gd³⁺ by RE³⁺ cations (Lu³⁺, Tm³⁺, Ho³⁺) according to their actual doping levels described above, the site occupancy factors (O.F.) were calculated, Table 3. We have also tried to refine the occupancy factors of the

Fig. 4. (a,b) Rietveld refinement of the XRD patterns of Tm,Ho:CALGLO crystals: observed (*black*), calculated (red) and differential (*blue*) patterns, *vertical dashes* – Bragg reflections (*green*), growth batch: (a) #1 and (b) #2, cf. Table 1.

Table 2

Crystallographic data and Rietveld refinement parameters for Tm,Ho:CALGLO crystals.

Parameter	Value
System	Tetragonal
Space group (IT number)	D ¹⁷ _{4h} - <i>I</i> 4/mmm (No. 139)
Number of formula units	Z=2
Point Group	4/mmm
Reduced Number of S.O.	8
General multiplicity	32
Centrosymmetry	Centric (-1 at origin)
Calculated density (g/cm ³)	6.010 (#1)
	6.028 (#2)
Lattice constants a, c (Å)	3.6585 (6), 11.9660 (9) (#1)
	3.6592 (4), 11.9689 (1) (#2)
$\alpha = \beta = \gamma$ (deg.)	90
Volume (Å ³)	160.167 (#1)
	160.264 (#2)
2θ range (deg)	12–90
20 step	0.02
Radiation	Cu-K α 1 ($\lambda = 1.5418$ Å)
No. of reflections	72
Refinement software	match! software
Reliability factors	$R_{\rm p} = 2.82, R_{\rm wp} = 4.22,$
	$R_{\rm exp} = 2.31$ and $\chi^2 = 3.33$ (#1)
	$R_{\rm p} = 2.57, R_{\rm wp} = 3.87,$
	$R_{\rm exp} = 2.31$ and $\chi^2 = 2.80$ (#2)

Wyckoff positions 4e(4c) and 2a occupied by O1 (O2) and Al atoms, respectively. This led to the O.F. values very close to unity.

A fragment of the crystal structure drawn using the VESTA software according to the determined set of atomic coordinates is shown in Fig. 5. The corresponding interatomic distances (Al – O, Ca|RE – O and Ca|RE – Ca|RE) are summarized in Table 4. Al³⁺ cations are located in 2*a* sites (symmetry: C_{4v}) and they are VI-fold oxygen coordinated forming

Table 3

Refined atomic coordinates (x, y, z) and isotropic displacement parameters B_{iso} determined via Rietveld refinement for Tm,Ho:CALGLO crystals and their estimated standard deviations.

Atoms	Site	x	у	Z	O.F.	$B_{\rm iso},{\rm \AA}^2$
Batch #1						
Са	4e	1/2	1/2	0.1402(0)	0.500	2.089(2)
Gd Lu	4 <i>e</i>	1/2	1/2	0.1402(0)	0.447 0.027	2.089(2)
Tm Ho	4 <i>e</i>	1/2	1/2	0.1402(0)	$0.022 \mid 0.002$	2.089(2)
Al	2a	0	0	0	1	0.467(8)
01	4 <i>e</i>	1/2	1/2	0.3304(0)	1	1.842(5)
02	4 <i>c</i>	0	1/2	0	1	1.863(3)
Batch #2						
Са	4 <i>e</i>	1/2	1/2	0.1404(0)	0.500	2.362(6)
Gd Lu	4e	1/2	1/2	0.1404(0)	0.416 0.054	2.362(6)
Tm Ho	4 <i>e</i>	1/2	1/2	0.1404(0)	0.027 0.001	2.362(6)
Al	2a	0	0	0	1	0.763(9)
01	4 <i>e</i>	1/2	1/2	0.3317(0)	1	2.730(3)
02	4 <i>c</i>	0	1/2	0	1	1.980(5)

Fig. 5. Fragment of the structure of a Tm,Ho:CALGLO crystal, *black lines* mark the unit-cell, blue polyhedra – $[AIO_6]$ and red polyhedra – $[Ca|REO_9]$, where RE = Gd, Lu, Tm or Ho.

Table 4

Selected interatomic distances for Tm,Ho:CALGLO crystals.

Value (Å)			
Batch #1	Batch #2		
O2 1.829(2) × 4	O2 1.829(6) × 4		
O1 2.028(4) × 2	O1 2.013(6) × 2		
O1 2.276(9) × 1	O1 2.289(8) × 1		
O2 2.482(0) × 4	O2 2.484(5) × 4		
O1′ 2.610(6) × 4	O1' 2.608(7) × 4		
$3.355(2) \times 1$	$3.361(8) \times 1$		
3.658(5) × 4	3.659(2) × 4		
3.687(5) × 4	3.684(1) × 4		
	$\begin{tabular}{ c c c c c } \hline Value (Å) \\ \hline \hline Batch \#1 \\ \hline O2 1.829(2) \times 4 \\ O1 2.028(4) \times 2 \\ O1 2.276(9) \times 1 \\ O2 2.482(0) \times 4 \\ O1' 2.610(6) \times 4 \\ 3.355(2) \times 1 \\ 3.658(5) \times 4 \\ 3.687(5) \times 4 \\ \hline \end{tabular}$		

distorted [AlO₆] octahedra elongated along the [001] direction. The distances from Al to two axial O1 atoms are 2.028(4) Å and thus longer than the "ideal" Al–O bond length (1.935 Å), whereas the distances to the four basal O2 atoms are 1.829(2) Å and thus shorter than the "ideal" bond length (here and below, the distances are specified for batch #1), Fig. 6. The Ca²⁺ | RE³⁺ cations statistically occupy the 4*e* sites (symmetry: C_{4v}) and they are IX-fold oxygen coordinated. There is one shorter (O1, 2.276(9) Å), four intermediate (O2, 2.482(0) Å) and four longer (O1' 3.687(5) Å) distances in the [Ca|REO₉] polyhedra, Fig. 6, leading to a mono-capped tetragonal anti-prismatic geometry. The

oxygen atoms are distributed over the 4e (O1) and 4c (O2) sites.

The structure of Tm,Ho:CALGLO is determined by a condensed framework of corner-sharing $[AlO_6]$ and $[Ca|REO_9]$ polyhedra. They form infinite layers parallel to the *a*–*b* plane. More generally, the structure of tetragonal (K₂NiF₄-type) ABCO₄ crystals can be divided into a sequence of layers running along the [001] direction with rock salt (S) and perovskite (P) structure [40]. In the case of Tm,Ho:CALGLO, the P and S "phases" comprise REAlO₃ and CaO, respectively.

In Fig. 7, we analyze the Al – O interatomic distances in $[AlO_6]$ octahedra for various MM'AlO₄ crystals possessing the tetragonal K₂NiF₄-type structure [4]. The distances to axial and basal O atoms, as well as their average values increase with the mean ionic radius of the M^{2+} and M'^{3+} cations, so that the average distance approaches the "ideal" value of 1.935 Å, calculated from the ionic radii of VI-fold coordinated Al³⁺ (0.535 Å) and O²⁻ (1.40 Å) [32] (typically, the Al – O distances are invariant [4]). This distortion of the [AlO₆] octahedra occurs as the Al – O2 bond distance is constrained by the unit-cell dimensions (both Al and O2 are located in special positions, Table 3), while the Al – O1 distances are constrained by the lattice constant *c* and the variable *z* atomic coordinate.

The second coordination sphere of $Ca^{2+} | RE^{3+}$ cations is composed of 9 nearest neighbor 4e sites, Fig. 8. The shortest metal-to-metal CaRE - Ca RE distance is 3.355(2) Å (\times 1), observed along the [u v w] = [001] direction. Other interactions correspond to intermediate distances of 3.658(5) Å (\times 4) and longest distances of 3.687(5) Å \times 4. The origin of the disorder is the second coordination sphere of RE³⁺ ions, namely the charge difference between the Ca^{2+} and RE^{3+} cations and the large difference in the metal-to-metal distances [6]. As only one apical site corresponds to the shortest Ca|RE - Ca|RE distance, it induces two families of local environment if it is occupied by Ca^{2+} or RE^{3+} cations. Each family contains surroundings with different distributions of Ca²⁺ and RE³⁺ cations over eight remaining 4e sites. This leads to significant inhomogeneous broadening of the spectral bands of optically active RE³⁺ cations. The introduction of Lu³⁺ further enhances the disorder, considering the difference in the ionic radii of Lu^{3+} and Gd^{3+} , which is expected to cause additional spectral broadening.

It is worth discussing the expected effect of RE^{3+} ions on the spectral line broadening. One may argue that the addition of optically active dopants (Tm^{3+} or Ho^{3+}) in high concentrations by itself can induce an additional "compositional" disorder. However, the doping level for both ions is limited by the detrimental energy-transfer upconversion capable of preventing the desired laser operation. In the (Tm^{3+} , Ho^{3+}) system, an optimum codoping ratio Ho/Tm between 1:10 and 1:5 is required to ensure a unidirectional $Tm^{3+} \rightarrow Ho^{3+}$ energy-transfer. These spectroscopic considerations limit in practice the actual doping levels for both ions. The Lu^{3+} cations are optically passive and thus do not induce unwanted spectroscopic processes. Moreover, the difference in the ionic radii in the pair $Gd^{3+} \mid Lu^{3+}$ is larger than in the pairs $Gd^{3+} \mid Tm^{3+}$, Ho^{3+} which enhances the additional spectral broadening. The drawback is the lower segregation coefficient for Lu^{3+} .

Let us also discuss the terminological aspect of calling the grown crystals "mixed". Strictly speaking, they should be called a substitutional single-phase solid solution. The term "mixed" crystal exists as a synonym to solid solution materials, e.g., $A_{1-x}B_x$ if there are only two parent compounds. As explained above, we assume that Tm^{3+} and Ho^{3+} as dopants hardly affect the spectral broadening, while Lu^{3+} is the cation aimed to fulfil this task. There is no universal definition for the *x* parameter in $A_{1-x}B_x$ to distinguish the term "doping" from the "mixed" crystal or solid-solution. From the point of view of optics, the borderline can be defined as the minimum value inducing a noticeable change on the spectroscopic properties. As shown in Ref. [41], this condition is satisfied in the grown crystals, so that the Lu^{3+} doping level is about x = 0.05-0.1, i.e., the compositions Ca(Gd_{0.9-0.95}Lu_{0.1-0.05})AlO₄ can be taken as the lower limit of the solid-solution definition.

It is not clear yet what is the upper limit (x) for the existence of such a solid solution. The single crystal growth of CaLuAlO₄ has never been

Fig. 6. Schematic of the [AlO₆] (left) and [Ca|REO₉] (right) polyhedra in the structure of Tm,Ho:CALGLO (batch #1).

Fig. 7. Al – O interatomic distances in [AlO₆] octahedra for MM'AlO₄ crystals with K₂NiF₄-type structure versus the mean ionic radius of M^{2+} and M'^{3+} cations (the data from the present work and Ref. [4]). Horizontal line – ideal Al – O distance calculated from the ionic radii of VI-fold coordinated Al³⁺ and O²⁻.

reported in the literature. In Ref. [26], the author attempted to grow CaLuAlO₄ using the standard procedure for CaGdAlO₄ resulting in polycrystalline, fine-grained, needle-like body of orange-red color with only the cubic Lu₂O₃ structure reliably identified. He concluded that CaLuAlO₄, if it exists at all, melts incongruently and the phase relationships in the CaO-Lu₂O₃–Al₂O₃ system differ greatly from those for the CaO-Gd₂O₃–Al₂O₃ one.

The stability of ABCO₄ crystals can be assessed from the following considerations. The ionic radii of the A^{2+} and B^{3+} cations provide the information about the deviation from the ideal perovskite lattice (for the P "phase"). Such a deviation will cause deformations in and between the P and S "phase" layers. For BCO₃ crystals with a perovskite structure, the so-called Goldschmidt's tolerance factor *t* is given by Ref. [42]:

$$t = \frac{R(B^{3+}) + R(O^{2-})}{\sqrt{2}(R(C^{3+}) + R(O^{2-}))}.$$
(1)

It is used to assess the geometric stability and distortion of BCO₃ crystal structures in terms of the constituent ionic packing. An ideal perovskite compounds adopts a cubic close packed structure with t = 1. When the ratio of the ionic radii deviates from the ideal value (so that $t \neq 1$, representing a loosely packed or tightly packed structure in the case of t < 1 and t > 1, respectively), a geometric strain and crystal distortions arise. With higher deviation from the t = 1 value, the crystal adopts structures of lower symmetries. Thus, t can be used to estimate the compatibility of different ions within a crystalline structure and to

Fig. 8. Second coordination sphere of $\rm Tm^{3+}|Ho^{3+}$ ions by $\rm Ca^{2+}|RE^{3+}$ cations in Tm,Ho:CALGLO.

evaluate its geometric strain and stability [43]. Taking into account the statistical distribution of A^{2+} and C^{3+} cations in the tetragonal ABCO₄ crystals, we should replace $R(B^{3+})$ by $(R(A^{2+}) + R(B^{3+}))/2$ [26].

Liebald analyzed the stability of various compounds of the ABCO₄ family possessing the K₂NiF₄ type structure [26]. Due to the presence of P layers in the structure, the range of tolerance factors t > 0.9 similar to free perovskite was assumed. As CaLaAlO₄ (t = 0.9494) is unstable [44], all the t values above 0.95 are considered to correspond to unstable structures. The lower limit for t is placed by CaNdGdO₄ (t = 0.9002) which is orthorhombic; a certain margin (t < 0.92) is assumed. Thus, the compounds with 0.92 < t < 0.95 are concluded to be most stable. For CaGdAlO₄ and CaYAlO₄, t = 0.9295 and 0.9236, respectively, i.e., well satisfying this condition, while for hypothetically existing CaLuAlO₄, t = 0.9157. Lower t values mean a strong distortion in the P-positions parallel to the a - b plane of the crystal structure. Since compounds with an ilmenite (FeTiO₃) type structure are formed for very small t values, the formation of a different crystal structure for ABCO₄ compounds with decreasing t probably represents a reaction of the K₂NiF₄ structure to the

distortion of the P layers.

From Eq. (1), modified for the case of ABCO₄ crystals and the abovementioned range for tolerance factors, we estimate the maximum content of Lu^{3+} in the CaGd_{1-x}Lu_xAlO₄ solid solution as x = 0.7. While this is a rough estimation, we expect that stable solid-solutions with Lu^{3+} content up to few tens of at.% may exist.

4.3. Raman spectroscopy

The factor group analysis [45] for the primitive cell of the D^{17}_{4h} symmetry predicts the following set of irreducible representations at the center of the Brillouin zone ($\mathbf{k} = 0$): $\Gamma = 2A_{1g} + 2E_g + 4A_{2u} + 5E_u + B_{2u}$ [46]. Four Raman active modes are all even species involving vibrations of mainly one type of atoms: $A_{1g} + E_g$ modes of Ca|RE and $A_g + E_g$ modes of O; 11 IR-active modes are $3A_{2u} + 4E_u$; two modes ($A_{2u} + E_u$) are acoustic and one (B_{2u}) is silent [46,47].

The polarized Raman spectra of the Tm,Ho:CALGLO crystal (batch #1) are shown in Fig. 9. They were measured using both *a*-cut and *c*-cut samples. In Fig. 9, we use Porto's notations [48]: $m(nk)\overline{l}$, where *m* and *l* are the directions of propagation of the incident and scattered light, respectively (in our case for the confocal geometry, $m \equiv l$), and *n* and *k* are the polarization states of the incident and scattered light, respectively. Thus, five spectra were measured, $a(nk)\overline{a}$, where *n*, $k = \pi$ or σ and $c(\sigma\sigma)\overline{c}$. The Raman spectra are strongly polarized.

In the spectra taken for *a*-cut crystals, all the Raman-active modes should appear: the $a(\pi\pi)\overline{a}$ geometry selects the A_{1g} phonons, and in the $a(\pi\sigma)\overline{a}$ geometry, the E_g modes appear. For the E_g geometry, as expected, only two intense modes at \sim 154 and 313 cm⁻¹ appear [46]. The low-frequency mode is assigned to Ca|RE vibrations in the *a-b* plane and the high-frequency one – to the similar O vibrations. For the $a(\sigma\sigma)\overline{a}$ A_{1 σ} geometry, another band at even higher frequencies with two maxima, at 514 and 542 cm⁻¹, appears and it is assigned to O vibrations. For the $a(\pi\pi)\overline{a}$ A_{1g} geometry, the spectrum presents the most intense band at 311 cm^{-1} and a weaker band at ~542 cm⁻¹. The band at ~311 cm⁻¹ is thus assigned to A_{1g} symmetry (Ca|RE vibrations along the *c*-axis) and the band with a complex structure (clearly revealed for the $a(\sigma\sigma)\overline{a}$ geometry) with two maxima at \sim 514 and 542 cm⁻¹ – to O vibrations. Note that the energy of the most intense mode is very different from the case of the isostructural SrLaAlO₄ crystal for which the two A_{1g} modes are at 222 (very intense) and 512 cm^{-1} (weak). Thus, we identify all 4 Raman-active modes. The bands at \sim 615 and 650 cm⁻¹ are probably due to defect-induced modes [46].

Fig. 9. Polarized Raman spectra of *a*-cut and *c*-cut Tm,Ho:CALGLO crystals (batch #1) (Porto's notations), $\lambda_{exc} = 514$ nm, *numbers* – Raman frequencies in cm⁻¹.

5. Optical absorption

5.1. Absorption spectra

The absorption spectra of the Tm,Ho:CALGLO crystal (batch #1) measured for π and σ light polarizations are shown in Fig. 10. The spectra contain bands assigned to Tm^{3+} dopant ions (the transitions from the ${}^{3}\text{H}_{6}$ ground-state to the excited-states from ${}^{3}\text{F}_{4}$ to ${}^{1}\text{D}_{2}$), as well as Ho^{3+} ones (the transitions from the ${}^{5}\text{I}_{8}$ ground-state to the excited-states from ${}^{5}\text{I}_{7}$ to ${}^{3}\text{H}_{6}$). In Fig. 10, the assignment of the Ho^{3+} multiplets is after [49]. In the UV, the sharp lines at 302–314 nm are due to optical absorption of the host-forming cations (Gd^{3+}, the ${}^{8}\text{S}_{7/2} \rightarrow {}^{6}\text{P}_{7/2}$ transition). The Lu^{3+} ions are optically inactive. In the visible, there is a broad structureless absorption band spanning from \sim 300 to 550 nm underlying the absorption of rare-earth ions. It is related to residual absorption of color centers.

5.2. Transition intensities of Ho^{3+} ions

The transition intensities of the Tm^{3+} ion in CALGLO crystals have been already analyzed [28]. In the present work, we focus on the Ho³⁺ ion. For this, the known absorption due to Tm^{3+} was subtracted from the spectra shown in Fig. 10. The Judd-Ofelt (J-O) formalism was applied to electric-dipole (ED) contributions to transition intensities. The contribution of magnetic-dipole (MD) transitions (for $\Delta J = J - J' = 0, \pm 1$, except for J = J' = 0) was calculated separately within the Russell–Sa-unders approximation on wave functions of Ho³⁺ under an assumption of a free-ion. The set of reduced squared matrix elements U^(k) was taken from Ref. [50]. The dispersion curves of CaGdAlO₄ reported in Ref. [8] were used. All the values were considered as polarization-averaged, $<..> = (2\sigma + \pi)/3$.

The absorption oscillator strengths were determined from the measured absorption spectra using:

Fig. 10. Polarized absorption spectra of a Tm,Ho:CALGLO crystal (batch #1) for π and σ light polarizations: (a) near-IR, (b) visible and UV.

$$< f_{\exp}(JJ') > = \frac{m_e c^2}{\pi e^2 N_{\rm Ho} \langle \lambda \rangle^2} < \Gamma(JJ') > , \qquad (2)$$

where m_e and e are the electron mass and charge, respectively, c is the speed of light, $\langle \Gamma(JJ') \rangle$ is the integrated absorption coefficient within the absorption band and $\langle \lambda \rangle$ is the "center of gravity" of the absorption band. The results are shown in Table 5.

In the standard J-O theory, the ED line strengths of the $J \rightarrow J'$ transitions $S^{ED}(JJ')$ are given by Refs. [51,52]:

$$S_{\text{calc}}^{\text{ED}}(JJ^{'}) = \sum_{k=2,4,6} U^{(k)} \Omega_{k},$$
 (3a)

$$U^{(k)} = \langle (4f^{n})SLJ || U^{k} || (4f^{n})S'LJ' \rangle^{2}.$$
 (3b)

Here, $U^{(k)}$ are the reduced squared matrix elements and Ω_k are the intensity (J–O) parameters (k = 2, 4, 6).

Let us take into account the possible configuration interaction. If only the lower-energy excited configuration of the opposite parity (4fⁿ⁻¹5 d¹ = 4f⁹5 d¹ for Ho³⁺) contributes to the configuration interaction, the ED line strengths are [53]:

$$S_{\text{calc}}^{\text{ED}}(JJ') = \sum_{k=2,4,6} U^{(k)} \widetilde{\Omega}_k, \tag{4a}$$

$$\widetilde{\Omega}_{k} = \Omega_{k} [1 + 2\alpha (E_{J} + E_{j'} - 2E_{f}^{0})].$$
(4b)

Here, the intensity parameters $\widehat{\Omega}_k$ are the linear functions of energies $(E_J \text{ and } E_{J'})$ of the two multiplets involved in the transition $J \rightarrow J', E_f^0$ is the mean energy of the 4fⁿ configuration and $\alpha \approx 1/(2\Delta)$, where Δ has the meaning of the average energy difference between the 4fⁿ and 4fⁿ⁻¹5 d¹ configurations. This approximation is typically referred to as the modified Judd-Ofelt (mJ-O) theory [53,54]. The $\widehat{\Omega}_k$ parameters for the mJ-O theory are transformed into Ω_k ones for the standard theory assuming a high-lying 4fⁿ⁻¹5 d¹ excited electronic configuration (i.e., the energy difference $\Delta \rightarrow \infty$ or, equivalently, $\alpha \rightarrow 0$).

The absorption oscillator strengths are related to the line strengths:

$$f_{\text{calc}}^{\Sigma}(JJ') = \frac{8}{3h(2J+1)\langle\lambda\rangle} \frac{(n^2+2)^2}{9n} S_{\text{calc}}^{\text{ED}}(JJ') + f_{\text{calc}}^{\text{MD}}(JJ'),$$
(5)

where *h* is the Planck constant, *n* is the refractive index of the crystal at $\langle \lambda \rangle$ and the superscript " Σ " stands for the total (ED + MD) value. In the standard J-O theory, there are three free parameters, (Ω_2 , Ω_4 , Ω_6), and in the mJ-O theory, there are four free parameters, (Ω_2 , Ω_4 , Ω_6 and α).

Let us discuss in detail the meaning of the intensity parameters. The

Table 5 Experimental and calculated absorption oscillator strengths^a for Ho^{3+} ions in Tm,Ho:CALGLO crystals.

$^5\mathrm{I}_8\!\!\rightarrow^{2S+1}\!\mathrm{L}_J$	$<\!\!\lambda\!\!>$,	<Γ>,	$< f_{exp} >$,	f_{calc}^{Σ} , 10^{-6}	
	nm	$\mathrm{cm}^{-1}\mathrm{nm}$	10 ⁻⁶	J–O	mJ-O
⁵ I ₇	1935	37.27	2.808	$4.459^{ED} + 0.568^{MD}$	$3.697^{ m ED}+\ 0.568^{ m MD}$
⁵ I ₆	1162	30.34	5.156	3.049 ^{ED}	2.829 ^{ED}
⁵ I ₅	898	2.03	0.610	0.585^{ED}	0.568^{ED}
⁵ F ₅	772	30.75	16.835	12.391^{ED}	11.367^{ED}
${}^{5}S_{2} + {}^{5}F_{4}$	656	13.81	11.327	13.430 ^{ED}	14.187^{ED}
${}^{5}F_{3}+{}^{5}F_{2}+{}^{3}K_{8}+{}^{5}G_{6}$	544	56.36	62.272	$63.291^{ED} +$	$62.984^{ED} +$
				0.126^{MD}	0.126^{MD}
⁵ G1 ₅	467	9.81	13.455	16.470 ^{ED}	16.015^{ED}
${}^{5}\text{G2}_{5} + {}^{3}\text{H}_{6} + {}^{3}\text{F}_{2}$	422	13.20	24.592	19.528^{ED}	21.247^{ED}
r.m.s. dev.				2.949	3.025

 $^a<\lambda>-$ "center of gravity" of an absorption band, $<\!\Gamma\!>-$ integrated absorption coefficient, $<\!f_{exp}\!>$ and f^{Σ}_{calc} – experimental and calculated absorption oscillator strengths, respectively, ED and MD stand for the electric-dipole and magnetic-dipole contributions, respectively, <> stand for polarization-averaging, $(2\sigma+\pi)/3$.

electronic states have wavefunctions described by spherical harmonics, thus having the parity of the angular quantum number. Regardless the number of electrons (*n*), all states in the 4fⁿ shell always have a definite parity. For a free ion, this means that the electric dipole f – f transitions are parity forbidden. The prohibition by parity on forced ED transitions is removed in the presence of a noncentrosymmetric perturbing field, e. g., a crystal field, due to an admixture of states of excited configurations of opposite parity (e.g., 4fⁿ⁻¹5 d¹) to those of the ground configuration 4fⁿ owing to the odd terms of the crystal field.

The matrix elements of the electric dipole operator are calculated by considering the crystal field as a first-order perturbation. This calculation is simplified under the following assumptions: (i) the states of the ground 4fⁿ configuration are taken as linear combinations of Russell-Saunders coupled states (the intermediate coupling scheme); (ii) the ground 4fⁿ and the excited 4fⁿ⁻¹5 d¹ configurations are completely degenerated and the excited configuration is located much higher than the ground one, so that its effect on all the multiplets of the ground configuration is identical, (iii) all the Stark sub-levels of the ground manifold are equally populated and (iv) the local field approximation applies. In this case, the line strengths of electric dipole f – f transitions are described by Eq. (3) and the set of intensity parameters (Ω_k) is identical for all the transitions. Such an assumption describes weak configuration interaction (WCI) or standard J-O theory.

The intensity parameters (Ω_k) contain the odd-order parameters of the crystal-field, radial integrals of wavefunctions of the ground 4fⁿ and perturbing configurations, *etc.* In principle, it is possible to calculate the (Ω_k) parameters *ab initio*, however, they are usually considered as a set of phenomenological parameters fitting the experimental absorption data [55].

The mJ-O theory is accounting for the fact that different multiplets of the ground configuration have different energies and, consequently, different energy gaps with respect to the excited configuration of opposite parity $4f^{n-1}5 d^1$ (which is considered to be completely degenerated). In this case, the intensity parameters should depend on the energy of the two multiplets involved in the transition, as well as the average energy gap between the $4f^{n}$ and $4f^{n-1}5 d^1$ configurations, as represented by Eq. (4b).

Note that one of the main assumptions of the standard Judd-Ofelt theory (the energy gap between the ground configuration $4f^n$ and any excited configuration is much higher than the energies of the multiplets involved in the considered transition) is violated for almost all the trivalent rare-earth ions except of Yb³⁺ and Ce³⁺. It is especially clear for higher lying $4f^n$ multiplets. Thus, strictly speaking, the configuration interaction should be considered for all these ions (including Ho³⁺ ones studied in the present work). Note that the effect of excited configurations is especially evident for Pr³⁺ ions for which the standard J-O theory fails to explain the experimental transition intensities. The explanation of the particular case of Pr³⁺ can be found elsewhere [56].

For the analysis, a total of 8 Ho³⁺ transitions in the CALGLO crystal were considered. The calculated absorption oscillator strengths are listed in Table 5. Both the J-O and the mJ-O theories provide close root-mean-square (r.m.s.) deviations between $\langle f_{exp} \rangle$ and $f_{calc}^{>}$, namely 2.949 and 3.025, respectively. However, the mJ-O theory better describes the transition to the metastable Ho³⁺ excited-state (⁵I₇), compare $\langle f_{exp} \rangle = 2.808 \times 10^{-6}$ with $f_{calc}^{>} = 5.027 \times 10^{-6}$ (J-O) and 4.265 × 10⁻⁶ (mJ-O). Thus, it was selected for further analysis.

The obtained intensity parameters are listed in Table 6. For the mJ-O

Table 6Intensity parameters of Ho³⁺ ions in CALGLO.

Parameter	J-O theory	mJ-O theory
$\Omega_2 imes 10^{20}$, cm 2	8.899	11.221
$\Omega_4 imes 10^{20}$, cm ²	11.194	13.586
$\Omega_6 imes 10^{20}$, cm ²	3.685	6.048
$\alpha imes 10^4$, cm	-	0.070

theory, they are $\Omega_2 = 11.221$, $\Omega_4 = 13.586$ and $\Omega_6 = 6.048 [10^{-20} \text{ cm}^2]$ and $\alpha = 0.070 [10^{-4} \text{ cm}]$, and the phenomenological parameter $\Delta = 1/(2\alpha) = 14.3 \times 10^4 \text{ cm}^{-1}$ (high-lying excited configuration).

The probabilities of radiative spontaneous transitions for emission channels $J \rightarrow J'$ are then determined from the corresponding line strengths in emission:

$$A_{\text{calc}}^{\Sigma}(JJ^{'}) = \frac{64\pi^{4}e^{2}}{3h(2J+1)\langle\lambda\rangle^{3}}n(\frac{n^{2}+2}{3})^{2}S_{\text{calc}}^{\text{ED}}(JJ^{'}) + A_{\text{calc}}^{\text{MD}}(JJ^{'}).$$
 (6)

Using the A_{calc} values, we have further determined the total probabilities of spontaneous radiative transitions from the excited states A_{tot} , the corresponding radiative lifetimes τ_{rad} and the luminescence branching ratios for the particular emission channels B(JJ'):

$$\tau_{\rm rad} = \frac{1}{A_{\rm tot}}, \text{ Where } A_{\rm tot} = \sum_{J'} A_{\rm calc}^{\Sigma} (JJ'); \tag{7a}$$

$$B(JJ') = \frac{A_{\text{cale}}^{\Sigma}(JJ')}{A_{\text{tot}}},$$
(7b)

The results are shown in Table 7. They are obtained using the mJ-O theory. For the $^{5}I_{7}$ Ho $^{3+}$ multiplet, τ_{rad} is 3.32 ms. Considering the residual difference between the $<\!\!f_{exp}\!>$ and f^{Σ}_{calc} values for the $^{5}I_{8} \rightarrow ^{5}I_{7}$ transition in absorption, the upper limit for the estimated radiative lifetime of the $^{5}I_{7}$ state is 5.04 ms.

Previously, for the Ho:CaGdAlO₄ crystal, the following J-O parameters were reported: $\Omega_2 = 3.65$, $\Omega_4 = 3.79$ and $\Omega_6 = 4.17 [10^{-20} \text{ cm}^2]$ [18] leading to the radiative lifetime of the ⁵I₇ state of 3.84 ms which reasonably agrees with our data.

In the present work, the transition intensities for Ho^{3+} ions were calculated based on the analysis of directly measured absorption spectra (a classical approach). For non-transparent materials for which the absorption data can be unavailable, other approaches are used based on the analysis of either (i) excitation or diffuse-reflection spectra [57,58], (ii) luminescence spectra for certain RE³⁺ ions with purely MD transitions [59,60] or even (iii) luminescence decay curves [61].

5.3. IR transmission spectrum

The IR transmission spectrum of a c-cut Tm,Ho:CALGLO crystal (batch #2) is shown in Fig. 11. The crystal exhibits a relatively broad

Fig. 11. IR transmission spectrum of a c-cut Tm,Ho:CALGLO crystal (batch #2).

transparency range (for oxide crystals), the IR absorption edge is found at 6.7 $\mu m.$

The broad transparency range of Tm,Ho:CALGLO crystals extending far in the IR, as well as their low-phonon-energy behavior leading to weak non-radiative path for the dopant rare-earth ions make them interesting for applications in lasers emitting above 2 µm (in the mid-IR spectral range). Note that originally, these crystals were grown for exploiting the ${}^{3}F_{4} \rightarrow {}^{3}H_{6}$ Tm³⁺ and ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ Ho³⁺ laser transitions around 2 µm. Other promising transitions of these ions are ${}^{3}H_{4} \rightarrow {}^{3}H_{5}$ (Tm³⁺, at ~2.3 µm) and ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$ (Ho³⁺, at ~3 µm).

6. Conclusions

To conclude, we explored the formation of substitutional solidsolutions in the system CaGd_{1-x}Lu_xAlO₄ as laser host materials for doping with laser-active Tm³⁺ and Ho³⁺ ions. The crystals of Tm,Ho: CALGLO with Lu³⁺ content up to 10.8 at.% (which is almost twice higher than in the previous studies for other laser-active rare-earth dopants) are grown by the Cz method using [001]-oriented seeds from CaGdAlO₄. The segregation coefficients for rare-earth ions (Lu³⁺, Tm³⁺ and Ho³⁺) are determined and correlated with their ionic radii

Table 7

Calculated probabilities of spontaneous radiative transitions^a of Ho³⁺ ions in CALGLO (the mJ-O theory).

Emitting state	Terminal state	<λ>, nm	$A^{\Sigma}_{\text{calc}}(\text{JJ}'), \text{s}^{-1}$	B(JJ')	$A_{\rm tot}$, s ⁻¹	$\tau_{\rm rad}$, ms
⁵ I ₇	⁵ I ₈	1935	$273.0^{ED} + 42.0^{MD}$	1	301.5	3.32
⁵ I ₆	⁵ I ₇	2909	$76.9^{ED} + 20.4^{MD}$	0.137	763.6	1.31
	⁵ I ₈	1162	654.6 ^{ED}	0.863		
⁵ I ₅	⁵ I ₆	3964	$33.9^{ED} + 9.5^{MD}$	0.063	584.1	1.46
	⁵ I ₇	1678	364.8 ^{ED}	0.554		
	⁵ I ₈	898	262.9 ^{ED}	0.383		
⁵ I ₄	⁵ I ₅	5507	$28.4^{ED} + 4.2^{MD}$	0.073	452.2	2.21
	⁵ I ₆	2305	177.2 ^{ED}	0.391		
	⁵ I ₇	1286	198.1 ^{ED}	0.451		
	⁵ I ₈	772	38.5 ^{ED}	0.085		
⁵ F ₅	⁵ I ₄	4354	$0.5^{ED} + 0.03^{MD}$	< 0.001	13235	0.076
	⁵ I ₅	2431	$44.2^{ED} + 0.8^{MD}$	0.002		
	⁵ I ₆	1507	$553.7^{ED} + 2.8^{MD}$	0.028		
	⁵ I ₇	993	2682 ^{ED}	0.171		
	⁵ I ₈	656	10230 ^{ED}	0.799		
${}^{5}S_{2} + {}^{5}F_{4}$	⁵ F ₅	3191	$57.7^{ED} + 6.8^{MD}$	< 0.001	36993	0.021
	⁵ I ₄	1841	$394.9^{ED} + 0.07^{MD}$	0.021		
	⁵ I ₅	1380	$1125^{ED} + 0.3^{MD}$	0.019		
	⁵ I ₆	1023	3062 ^{ED}	0.078		
	⁵ I ₇	757	7490 ^{ED}	0.380		
	⁵ I ₈	544	24901 ^{ED}	0.502		

^a $<\lambda>$ – mean emission wavelength of the emission band, $A^{\Sigma}_{calc}(JJ')$ – probability of radiative spontaneous transition, B(JJ') – luminescence branching ratio, A_{tot} and τ_{rad} – total probability of radiative spontaneous transitions and the radiative lifetime, respectively, ED and MD stand for the electric-dipole and magnetic-dipole contributions, respectively.

suggesting an empirical formula. The Tm,Ho:CALGLO crystals maintain the tetragonal (K₂NiF₄-type, sp. gr. *I4/mmm*) structure. The Rietveld refinement data include the fractional atomic coordinates and interatomic distances. The first (by oxygen) and second (by Ca²⁺|RE³⁺ cations) coordination spheres of rare-earth sites are described. The lowphonon-energy vibronic behavior of Tm,Ho:CALGLO crystals is revealed. The most intense Raman mode is found at 311 cm⁻¹ (assigned to A_{1g} symmetry) and the maximum phonon frequency is ~650 cm⁻¹. The polarized absorption spectra of Tm,Ho:CALGLO crystals are systematically studied. The Ho³⁺ transition probabilities are described using the modified Judd-Ofelt (mJ-O) theory accounting for the configuration interaction.

Future work regarding the growth of rare-earth-doped CALGLO crystals should focus on exploiting the limit of stability of the CaGd₁. $_xLu_xAlO_4$ solution. In the present work, using the Goldschmidt's tolerance factor *t* modified for the ABCO₄ structure, we estimated the upper limit of stability to be *x* ~0.7. The introduction of even higher Lu³⁺ content may greatly promote the spectral broadening for dopant ions and facilitate their segregation factors (as the difference of ionic radii of Yb³⁺|Tm³⁺|Ho³⁺ and Lu³⁺ is smaller as compared with Gd³⁺). Indeed, in the present work, the introduction of 10.8 at.% Lu³⁺ resulted in increased Tm³⁺ segregation coefficient $K_{Tm} = 0.90$, compared with its value of ~0.6 for the parent compound, CaGdAlO₄.

Credit author statement

Zhongben Pan: Investigation, Pavel Loiko: Conceptualization, Writing – original draft, Investigation, Sami Slimi: Investigation, Writing – original draft, Hualei Yuan: Investigation, Yicheng Wang: Investigation, Yongguang Zhao: Investigation, Patrice Camy: Supervision, Elena Dunina: Investigation, Alexey Kornienko: Investigation, Liudmila Fomicheva: Investigation, Li Wang: Investigation, Weidong Chen: Writing – original draft, Uwe Grieber: Supervision, Valentin Petrov: Writing – review & editing, Rosa Maria Solé; : Data curation, Investigation, Magdalena Aguiló; : Funding acquisition, Supervision Francesc Díaz: Funding acquisition, Xavier Mateos: Conceptualization, Writing – review & editing, Investigation.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the Spanish Government, Ministry of Science and Innovation (project No. PID2019-108543RB-I00) and by the Generalitat de Catalunya (project No. 2017SGR755). Y. Zhao acknowledges financial support from the Alexander von Humboldt Foundation through a Humboldt fellowship. National Natural Science Foundation of China (52072351). China Academy of Engineering Physics (CAEP) (YZJJLX2018005). Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (2008DP173016). Qilu Young Scholar Program of Shandong University. The Science Foundation of Fujian Province (2019J02015). Foundation of State Key Laboratory of Crystal Materials, Shandong University (KF2001).

References

- J. Petit, P. Goldner, B. Viana, Laser emission with low quantum defect in Yb: CaGdAlO₄, Opt. Lett. 30 (2005) 1345–1347.
- [2] J.A. Hutchinson, H.R. Verdun, B.H. Chai, B. Zandi, L.D. Merkle, Spectroscopic evaluation of CaYAlO₄ doped with trivalent Er, Tm, Yb and Ho for eyesafe laser applications, Opt. Mater. 3 (1994) 287–306.

- [3] R. Moncorgé, N. Garnier, P. Kerbrat, C. Wyon, C. Borel, Spectroscopic investigation and two-micron laser performance of Tm³⁺:CaYAlO₄ single crystals, Opt Commun. 141 (1997) 29–34.
- [4] R.D. Shannon, R.A. Oswald, J.B. Parise, B.H.T. Chai, P. Byszewski, A. Pajaczkowska, R. Sobolewski, Dielectric constants and crystal structures of CaYAlO₄, CaNdAlO₄, and SrLaAlO₄, and deviations from the oxide additivity rule, J. Solid State Chem. 98 (1992) 90–98.
- [5] L. Vasylechko, N. Kodama, A. Matkovskii, Y. Zhydachevskii, Crystal structure and optical spectroscopy of CaGdAlO₄:Er single crystal, J. Alloys Compd. 300 (2000) 475–478.
- [6] P.O. Petit, J. Petit, P. Goldner, B. Viana, Inhomogeneous broadening of optical transitions in Yb:CaYAIO₄, Opt. Mater. 30 (2008) 1093–1097.
- [7] P. Loiko, F. Druon, P. Georges, B. Viana, K. Yumashev, Thermo-optic characterization of Yb:CaGdAlO₄ laser crystal, Opt. Mater. Express 4 (2014) 2241–2249.
- [8] P. Loiko, P. Becker, L. Bohatý, C. Liebald, M. Peltz, S. Vernay, D. Rytz, J.M. Serres, X. Mateos, Y. Wang, X. Xu, J. Xu, A. Major, A. Baranov, U. Griebner, V. Petrov, Sellmeier equations, group velocity dispersion and thermo-optic dispersion formulas for CaLnAlO₄ (Ln =Y, Gd) laser host crystals, Opt. Lett. 42 (2017) 2275–2278.
- [9] P. Loiko, J.M. Serres, X. Mateos, X. Xu, J. Xu, V. Jambunathan, P. Navratil, A. Lucianetti, T. Mocek, X. Zhang, U. Griebner, V. Petrov, M. Aguiló, F. Díaz, A. Major, Microchip Yb, CaLnAlO₄ lasers with up to 91% slope efficiency, Opt. Lett. 42 (2017) 2431–2434.
- [10] D. Li, X. Xu, Y. Cheng, S. Cheng, D. Zhou, F. Wu, C. Xia, J. Xu, J. Zhang, Crystal growth and spectroscopic properties of Yb:CaYAlO₄ single crystal, J. Cryst. Growth 312 (2010) 2117–2121.
- [11] Y. Zaouter, J. Didierjean, F. Balembois, G. Lucas Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, B. Viana, 47-fs diode-pumped Yb³⁺:CaGdAlO₄ laser, Opt. Lett. 31 (2006) 119–121.
- [12] P. Sévillano, P. Georges, F. Druon, D. Descamps, E. Cormier, 32-fs Kerr-lens modelocked Yb:CaGdAlO₄ oscillator optically pumped by a bright fiber laser, Opt. Lett. 39 (2014) 6001–6004.
- [13] F. Druon, M. Olivier, A. Jaffrès, P. Loiseau, N. Aubry, J. DidierJean, F. Balembois, B. Viana, P. Georges, Magic mode switching in Yb:CaGdAlO₄ laser under high pump power, Opt. Lett. 38 (2013) 4138–4141.
- [14] K. Beil, B. Deppe, C. Kränkel, Yb:CaGdAlO₄ thin-disk laser with 70% slope efficiency and 90 nm wavelength tuning range, Opt. Lett. 38 (2013) 1966–1968.
- [15] A. Diebold, F. Emaury, C. Schriber, M. Golling, C.J. Saraceno, T. Südmeyer, U. Keller, SESAM mode-locked Yb:CaGdAlO₄ thin disk laser with 62 fs pulse generation, Opt. Lett. 38 (2013) 3842–3845.
- [16] Y. Wang, G. Xie, X. Xu, J. Di, Z. Qin, S. Suomalainen, M. Guina, A. Härkönen, A. Agnesi, U. Griebner, X. Mateos, P. Loiko, V. Petrov, SESAM mode-locked Tm: CALGO laser at 2 µm, Opt. Mater. Express 6 (2016) 131–136.
- [17] Y. Zhao, Y. Wang, X. Zhang, X. Mateos, Z. Pan, P. Loiko, W. Zhou, X. Xu, J. Xu, D. Shen, S. Suomalainen, A. Härkönen, M. Guina, U. Griebner, V. Petrov, 87 fs mode-locked Tm,Ho:CaYAlO₄ laser at ~2043 nm, Opt. Lett. 43 (2018) 915–918.
- [18] J. Di, X. Xu, C. Xia, Q. Sai, D. Zhou, Z. Lv, J. Xu, Growth and spectra properties of Tm, Ho doped and Tm, Ho co-doped CaGdAlO₄ crystals, J. Lumin. 155 (2014) 101–107.
- [19] A. Pajaczkowska, A. Gloubokov, Synthesis, growth and characterization of tetragonal ABCO₄ crystals, Prog. Cryst. Growth Char. Mater. 36 (1998) 123–162.
- [20] Z. Pan, X. Dai, Y. Lei, H. Cai, J.M. Serres, M. Aguiló, F. Díaz, J. Ma, D. Tang, E. Vilejshikova, U. Griebner, V. Petrov, P. Loiko, X. Mateos, Crystal growth and properties of the disordered crystal Yb:SrLaAlO₄: a promising candidate for highpower ultrashort pulse lasers, CrystEngComm 20 (2018) 3388–3395.
- [21] A. Dabkowski, H.A. Dabkowski, J.E. Greedan, SrLaGaO₄-Czochralski crystal growth and basic properties, J. Cryst. Growth 132 (1993) 205–208.
- [22] A. Novoselov, G. Zimina, L. Komissarova, A. Pajaczkowska, Synthesis and characterization of solid solutions in ABCO₄ system, J. Cryst. Growth 287 (2006) 305–308.
- [23] F. Guo, Q. Xie, L. Qiu, B. Zhao, X. Chen, J. Chen, Growth, magnetic and magnetooptical properties of CaDyAlO₄ crystals, Opt. Mater. 112 (2021) 110719.
- [24] M. Mei, L.L. Cao, Y. He, R.R. Zhang, F.Y. Guo, N.F. Zhuang, J.Z. Chen, Growth and magneto-optical properties of CaTbAlO₄ crystal, Adv. Mater. Res. 306 (2011) 1722–1727.
- [25] K. Beil, S.T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, Thermal and laser properties of Yb:LuAG for kW thin disk lasers, Opt Express 18 (2010) 20712–20722.
- [26] C. Liebald, Yb-dotierte Ultrakurzpuls-Lasermaterialien mit K₂NiF₄-Struktur -Züchtung und Verbesserung der Kristallqualität, Doctoral dissertation, Johannes Gutenberg-Universität Mainz, 2017 [in German].
- [27] Q. Hu, Z. Jia, A. Volpi, S. Veronesi, M. Tonelli, X. Tao, Crystal growth and spectral broadening of a promising Yb:CaLu_xGd_{1-x}AlO₄ disordered crystal for ultrafast laser application, CrystEngComm 19 (2017) 1643–1647.
- [28] Z. Pan, P. Loiko, J.M. Serres, E. Kifle, H. Yuan, X. Dai, H. Cai, Y. Wang, Y. Zhao, M. Aguiló, F. Díaz, U. Griebner, V. Petrov, X. Mateos, Mixed" Tm:Ca(Gd,Lu)AlO₄ a novel crystal for tunable and mode-locked 2 μm lasers, Opt Express 27 (2019) 9987–9995.
- [29] H. Bernhardt, On the coloration behaviour of undoped YAlO₃ crystals, Phys. Status Solidi 21 (1974) 95–98.
- [30] Q. Hu, Z. Jia, C. Tang, N. Lin, J. Zhang, N. Jia, S. Wang, X. Zhao, X. Tao, The origin of coloration of CaGdAlO₄ crystals and its effect on their physical properties, CrystEngComm 19 (2017) 537–545.

Z. Pan et al.

Journal of Luminescence 246 (2022) 118828

- [31] A. Pajaczkowska, A. Gloubokov, A. Klos, C.F. Woensdregt, Czochralski growth of SrLaAlO₄ and SrLaGaO₄ single crystals and its implications for the crystal morphology, J. Cryst. Growth 171 (1997) 387–391.
- [32] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751–767.
- [33] J. Di, X. Sun, X. Xu, C. Xia, Q. Sai, H. Yu, Y. Wang, L. Zhu, Y. Gao, X. Guo, Growth and spectral characters of Nd:CaGdAlO₄ crystal, Eur. Phys. J. Appl. Phys. 74 (2016) 10501.
- [34] Q. Hu, Z. Jia, S. Veronesi, J. Zhang, A. Sottile, M. Tonelli, E. Cavalli, X. Tao, Crystal growth and optimization of Pr:CaGdAlO₄ by the flux-Czochralski method, CrystEngComm 20 (2018) 590–596.
- [35] R. Li, X. Xu, L. Su, Q. Sai, C. Xia, Q. Yang, J. Xu, A. Strzęp, A. Półkoszek, Crystal characterization and optical spectroscopy of Eu³⁺-doped CaGdAlO₄ single crystal fabricated by the floating zone method, Chin. Opt Lett. 14 (2016), 021602.
- [36] S. Li, Y. Yang, S. Zhang, T. Yan, N. Ye, Y. Hang, Enhanced 2.86 µm emission from a Ho, Pr:CaGdAlO₄ crystal, J. Lumin. 228 (2020) 117620.
- [37] N. Zhang, H. Wang, Y. Yin, T. Wang, Z. Jia, J. Zhang, Q. Hu, N. Lin, X. Fu, X. Tao, Cracking mechanism and spectral properties of Er, Yb:CaGdAlO₄ crystals grown by the LHPG method, CrystEngComm 22 (2020) 955–960.
- [38] K. Hasse, T. Calmano, B. Deppe, C. Liebald, C. Kränkel, Efficient Yb³⁺:CaGdAlO₄ bulk and femtosecond-laser-written waveguide lasers, Opt. Lett. 40 (2015) 3552–3555.
- [39] K. Subbotin, P. Loiko, S. Slimi, A. Volokitina, A. Titov, D. Lis, E. Chernova, S. Kuznetsov, R.M. Solé, U. Griebner, V. Petrov, M. Aguiló, F. Díaz, P. Camy, E. Zharikov, X. Mateos, Monoclinic zinc monotungstate Yb³⁺,Li⁺:ZnWO₄: Part I. Czochralski growth, structure refinement and Raman spectra, J. Lumin. 228 (2020) 117601.
- [40] I. Zvereva, Y. Smirnov, J. Choisnet, Demixion of the K₂NiF₄ type aluminate LaCaAlO₄: precursor role of the local ordering of lanthanum and calcium, Mater. Chem. Phys. 60 (1999) 63–69.
- [41] Z. Pan, P. Loiko, J.M. Serres, H. Yuan, X. Dai, H. Cai, Y. Wang, Li Wang, Y. Zhao, R. M. Solé, M. Aguiló, F. Díaz, P. Camy, W. Chen, U. Griebner, V. Petrov, X. Mateos, Tm,Ho:Ca(Gd,Lu)AlO₄ crystals: optical spectroscopy and laser operation, J. Lumin. (2021), 118828. In press.
- [42] V.M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften 21 (1926) 477–485.
- [43] T. Sato, S. Takagi, S. Deledda, B.C. Hauback, S.I. Orimo, Extending the applicability of the Goldschmidt tolerance factor to arbitrary ionic compounds, Sci. Rep. 6 (2016), 23592-1-10.
- [44] I. Zvereva, Y. Smirnov, J. Choisnet, Demixion of the K₂NiF₄ type aluminate LaCaAlO₄: precursor role of the local ordering of lanthanum and calcium, Mater. Chem. Phys. 60 (1999) 63–69.
- [45] D.L. Rousseau, R.P. Bauman, S.P.S. Porto, Normal mode determination in crystals, J. Raman Spectrosc. 10 (1981) 253–290.
- [46] V.G. Hadjiev, M. Cardona, I. Ivanov, V. Popov, M. Gyulmezov, M.N. Iliev, M. Berkowski, Optical phonons probe of the SrLaAlO₄ crystal structure, J. Alloys Compd. 251 (1997) 7–10.

- [47] A.A. Kaminskii, X. Xu, O. Lux, H. Rhee, H.J. Eichler, J. Zhang, D. Zhou, A. Shirakawa, K. Ueda, J. Xu, High-order stimulated Raman scattering in tetragonal CaYAIO₄ crystal-host for Ln³⁺-lasant ions, Laser Phys. Lett. 9 (2012) 306–311.
- [48] T.C. Damen, S.P.S. Porto, B. Tell, Raman effect in zinc oxide, Phys. Rev. 142 (1966) 570–574.
- [49] W.T. Carnall, P.R. Fields, K. Rajnak, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr³⁺, Nd³⁺, Pm³⁺, Sm³⁺, Dy³⁺, Ho³⁺, Er³⁺, and Tm³⁺, J. Chem. Phys. 49 (1968) 4424–4442.
- [50] M.C. Pujol, C. Cascales, M. Rico, J. Massons, F. Diaz, P. Porcher, C. Zaldo, Measurement and crystal field analysis of energy levels of Ho³⁺ and Er³⁺ in KGd (WO₄)₂ single crystal, J. Alloys Compd. 323 (2001) 321–325.
- [51] B.R. Judd, Optical absorption intensities of rare-earth ions, Phys. Rev. 127 (1962) 750–761.
- [52] G.S. Ofelt, Intensities of crystal spectra of rare-earth ions, J. Chem. Phys. 37 (1962) 511–520.
- [53] A.A. Kornienko, A.A. Kaminskii, E.B. Dunina, Dependence of the line strength of f-f transitions on the manifold energy. II. Analysis of Pr³⁺ in KPrP₄O₁₂, Phys. Status Solidi B 157 (1990) 267–273.
- [54] P. Loiko, A. Volokitina, X. Mateos, E. Dunina, A. Kornienko, E. Vilejshikova, M. Aguilo, F. Diaz, Spectroscopy of Tb³⁺ ions in monoclinic KLu(WO₄)₂ crystal: application of an intermediate configuration interaction theory, Opt. Mater. 78 (2018) 495–501.
- [55] B.M. Walsh, Judd-Ofelt theory: principles and practices, in: Advances in Spectroscopy for Lasers and Sensing, Springer, Dordrecht, 2006, pp. 403–433.
- [56] E.B. Dunina, L.A. Fomicheva, A.A. Kornienko, M.V. Grigoreva, Effect of configuration interaction of rare-earth ion states on the intensity of intermultiplet transitions, J. Appl. Spectrosc. 85 (2018) 407–415.
- [57] W. Luo, J. Liao, R. Li, X. Chen, Determination of Judd–Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials, Phys. Chem. Chem. Phys. 12 (2010) 3276–3282.
- [58] Y. Zhang, B. Chen, S. Xu, X. Li, J. Zhang, J. Sun, X. Zhang, H. Xia, R. Hua, A universal approach for calculating the Judd–Ofelt parameters of RE³⁺ in powdered phosphors and its application for the β-NaYF₄:Er³⁺/Yb³⁺ phosphor derived from auto-combustion-assisted fluoridation, Phys. Chem. Chem. Phys. 20 (2018) 15876–15883.
- [59] Y. Tian, B. Chen, R. Hua, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, Y. Zheng, T. Yu, L. Huang, H. Yu, Optical transition, electron-phonon coupling and fluorescent quenching of La₂(MoO₄)₃:Eu³⁺ phosphor, J. Appl. Phys. 109 (2011), 053511-1-6.
- [60] A. Volokitina, P. Loiko, E. Vilejshikova, X. Mateos, E. Dunina, A. Kornienko, N. Kuleshov, A. Pavlyuk, Eu³⁺:KY(MoO₄)₂: a novel anisotropic red-emitting material with a layered structure, J. Alloys Compd. 762 (2018) 786–796.
- [61] M. Luo, B. Chen, X. Li, J. Zhang, S. Xu, X. Zhang, Y. Cao, J. Sun, Y. Zhang, X. Wang, Y. Zhang, D. Gao, L. Wang, Fluorescence decay route of optical transition calculation for trivalent rare earth ions and its application for Er³⁺-doped NaYF₄ phosphor, Phys. Chem. Chem. Phys. 22 (2020) 25177–25183.