УДК 621.3.049.77-048.24:537.2

ВЫРАЩИВАНИЕ МОНОКРИСТАЛЛОВ Cu₂ZnGeS₄

Ящук В.А.

Белорусский государственный университет информатики и радиоэлектроники, г. Минск, Республика Беларусь

Научный руководитель: Боднарь И.В. – д-р хим. наук, профессор, профессор кафедры ПИКС

Аннотация. Методом химических газотранспортных реакций выращены монокристаллы соединения Cu₂ZnGeS₄. Определен их состав и кристаллическая структура. Показано, что выращенные монокристаллы кристаллизуются в тетрагональной структуре.

Ключевые слова: метод Бриджмена, монокристаллы, кристаллическая структура

Введение. Вопрос создания новых эффективых полупроводниковых материалов, на основе которых могут быть созданы полупроводниковые приборы с новыми функциональными возможностями, приобретает все большую актуальность. К таким материалам относятся четверные соединения с общей формулой $Cu_2A^{U}B^{IV}X_4^{VI}$, где A = Zn, Cd; $B^{IV} = Si$, Ge, Sn и $X^{VI} = S$, Se, Te, которые образуют большой класс структурно родственных соединений. Указанные материалы, обладают прямыми межзонными переходами, большим коэффициентом оптического поглощения (> 10⁴ см⁻¹) и шириной запрещенной от 1.0 до 2.5 эВ. Это делает указанные материалы кандидатами для создания на их основе солнечных элементов с высоким КПД [1-4].

К таким материалам относится и соединение Cu₂ZnGeS₄. В литературе имеются ограниченные сведения о выращивании монокристаллов этого соединения.

В настоящей работе представлены данные о выращивании монокристаллов Cu₂ZnGeS₄, определение их состава и кристаллической структуры.

Основная часть. Монокристаллы Cu_2ZnGeS_4 выращивали методом химических газотранспортных реакций с использованием йода в качестве переносчика. Для выращивания указанных монокристаллов использовали поликристаллические слитки, полученные направленной кристаллизацией расплава в вертикальной однозонной печи. Исходными материалами служили медь, цинк, германий и сера чистотой > 99.999%. Элементарные компоненты, взятые в соотношениях $Cu_2ZnGeS_4 = 2:1:1:4$ в количестве ~ 15-20 г, загружали в двойные кварцевые ампулы с оттянутым в виде конуса дном. Перед загрузкой компонентов ампулы проходили химико-термическую обработку.

После вакуумирования ампулы до остаточного давления $\sim 10^{-3}$ Па ее помещали во вторую кварцевую ампулу большего диаметра, которую также вакуумировали. К наружной ампуле снизу приваривали кварцевый стержень, служивший держателем, который присоединяли к вибратору. В процессе нагревания ампулы в печи применяли вибрационное перемешивание, которое в значительной мере ускоряет образование соединения и препятствует нарушению целостности ампул.

В начальный период температуру в печи повышали со скоростью ~ 50 К/ч до ~ 720 К. При указанной температуре проводилась изотермическая выдержка в течение ~ 2-3 ч с включением вибрации. Это необходимо для того, чтобы такое легколетучее вещество как сера при этой температуре, когда давление пара его не превышает 1 атм, успело частично или полностью прореагировать с медью, цинком и германием. Затем с такой же скоростью температуру повышали до ~ 1400 К (без выключения вибрационного перемешивания) и снова выдерживали 2 ч. После этого вибрацию отключали и проводили направленную кристаллизацию расплава, понижая температуру печи со скоростью ~ 2 К/ч до ~ 1080 К и при этой температуре проводили отжиг полученных слитков в течение 300 ч.

Полученные поликристаллические слитки измельчали в порошок и использовали для выращивания монокристаллов. Процессы переноса и рост монокристаллов проводили в

кварцевых ампулах внутренним диаметром ~ 20 мм и длиной ~ 180 мм. Первоначально ампула состояла из двух секций. В одну из них загружали соединение Cu₂ZnGeS₄ в виде порошка в количестве 3-5 г, в другую – капилляр с йодом, предварительно откачанный и запаянный. Концентрация переносчика составляла ~ 5 мг/см³. Ампулу вакуумировали, а затем с помощью «магнитного» молотка вскрывали капилляр с йодом, который перегоняли в секцию, где находился порошок соединения. Подготовленную ампулу размещали в горизонтальной двухзонной печи. Нагрев вели таким образом, что температура зоны реакции, где находился порошок соединения, была на ~ 100 К ниже, чем зоны кристаллизации. Это необходимо для протекания реакции между кристаллами и йодом с образованием йодидов металлов и для очистки зоны кристаллизации от возможных неконтролируемых центров кристаллизации. Через определенное время температуру в зонах выравнивали и устанавливали 970 К, а затем повышали температуру в зоне реакции до создания градиента температур между зонами ~ 80 К.

Выращенные в таких условиях пластинчатые монокристаллы представлены на рисунке 1.

Рисунок 1 – Монокристаллы соединения Cu₂ZnGeS₄

Состав выращенных кристаллов определяли с помощью микрозондового рентгеноспектрального анализа на установке «*Cameca-MBX* 100» Относительная погрешность определения компонентов составляла ± 5%.

Структуру и параметры элементарной ячейки кристаллов устанавливали рентгеновским методом. Угловые положения линий дифракционного спектра записывали на рентгеновском аппарате ДРОН-3М в CuK_α – излучении с графитовым монохроматором.

Заключение. Данные микрозондовых рентгеноспектральных измерений показали, что содержание элементов в выращенных монокристаллах составляет *Cu:Zn:Ge:S* = 25.66:12.14:12.95:49.25, что удовлетворительно согласуется с заданным составом в исходной шихте Cu:Zn:Ge:S = 25.00:12.50:12.50:50.00.

Дифрактограмма, углы отражения (2θ), межплоскостные расстояния (d), относительные интенсивности рефлексов (I/I_0), индексы Миллера (hkl) для монокристаллов Cu₂ZnGeS₄ представлены в таблице 1 и на рисунке 2.

<i>2 θ</i> , град	d, Å	<i>20</i> , град	d, Å	hhl	1/1
эксперимент		расчет		ηκι	1/10
29.09	3.07	29.14	3.06	112	100
33.53	2.6703	33.57	2.6671	200	10
34.07	2.6293	34.02	2.6329	004	12
48.25	1.8844	48.26	1.8842	220	7
48.57	1.8727	48.59	1.8721	204	18
57.24	1.6080	57.26	1.6076	312	14
57.99	1.5890	58.00	1.5888	116	3.6
60.31	1.5333	60.34	1.5327	224	6
77.98	1.2242	77.98	1.2242	332	3.5
78.69	1.2149	78.68	1.2151	413	4.1
90.24	1.0870	90.25	1.0869	424	60

Таблица 1 – Результаты рентгеновского анализа кристаллов Cu2ZnGeS4

Рисунок 2 – Дифрактограмма кристаллов Cu₂ZnGeS₄

Результаты рентгеновских исследований показали, что на всех записанных дифрактограммах присутствуют максимумы отражения, характерные для тетрагональной структуры (кэстерит). По измеренным значениям углов дифракции были рассчитаны межплоскостные расстояния для различных плоскостей отражения, по которым методом наименьших квадратов определяли параметры элементарной ячейки. Для исследуемого соединения Cu₂ZnGeS₄ они равны: $a = 5.342 \pm 0.005$ Å, $c = 10,51 \pm 0.01$ Å.

Список литературы

1. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency / W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Yu Zhu D.B. Mitzi. // Adv. Energy Mater. – 2014, Vol.4. – DOI:10.1002/aenm.201301465.

2. Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu₂ZnSn(S,Se)₄ Solar Cells / T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Yu. Zhu, D.B. Mitzi // Adv. Energ. Mater. – 2013. – Vol. 3, N 34. – DOI:10.1002/aenm.201200348.

3. Indications of short minority-carrier lifetime in kesterite solar cells / I. Repins, C. Beall, N. Vora, C. De. Hart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W. C. Hsu, A. Goodrich, R. Noufi. // Sol. Energy Mater. Solar. Cells. – 2012. – Vol. 101, N 154. – DOI: 10.1063/1.4819849.

4. Phase-selective synthesis of bornite nanoparticles/ G.M. Ford, Q. Guo, R. Agrawal, H.W. Hillhouse. // Chem. Mater. – 2011. – Vol. 21. – P. 19286-19292.

UDC 621.3.049.77-048.24:537.2

GROWTH OF Cu₂ZnGeS₄ SINGLE CRYSTALS

V.A. Yashchuk

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus

I.V. Bodnar – Dr.Sc., professor, professor of the department of ICSD

Annotation. Cu_2ZnGeS_4 single crystals were grown by chemical vapor transport reaction method. Their composition and crystal structure were determined. It was shown that the obtained single crystals crystallize in a tetragonal structure.

Keywords: Bridgman method, single crystals, crystal structure