
58-я научная конференция аспирантов, магистрантов и студентов БГУИР, 2022 г

348

Amazon's Alexa Smart Home with its own Amazon Web Services and versatility due to the
number and variety of supported devices from other companies.

Integrating their products with the Siemens and Bosch Internet of Things-oriented kitchen equipment,
Phillips, and Xiaomi light bulbs will give you the best experience of living in a smart home. Moreover, constant
system and security updates will improve your day-to-day experience, making this integration really smooth
and comfortable.

Such a wide variety of IoT systems and gadgets that can be combined or replaced by one another
means that a new era of technologies has arrived; smart homes are already capable of performing 70 % of
our household routine and will soon join each other in such complex structures as smart cities, expanding the
possibilities of communication between the real world and the digital world. IoT used in business can quickly
create unimaginably huge volumes of raw data that are too large for people to view and process. In addition,
the data collected during the deployment of extensive IoT devices can be processed and analyzed to make
vital business forecasts or even train Artificial Intelligence systems based on the real data collected from
extensive sensor arrays.

All these facts make IoT a promising area of research and a sustainable technology for investment.
With all the benefits it brings to people, IoT is too important for further technological progress to abandon it.
In the near future, it will constantly expand, integrating with other technologies, such as Blockchain,
Augmented Reality, or AI, so that IoT will shape the technologies of the future, the future world, and the future
society.

References:
1. What is IoT? Oracle Corporation – American multinational computer technology corporation [Electronic resource] – Access

mode: https://www.oracle.com/internet-of-things/what-is-iot/ – Date of access: 23.03.2022.
2. Internet of Things (IoT) and non-IoT Active Device Connections Worldwide to 2025. Statista – Global Business Data

Platform Electronic resource] – Access mode: https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-
worldwide/ – Date of access: 27.03.2022.

3. Top Smart Home Companies in the USA. Home Automations – Internet portal about smart home systems and gadgets
[Electronic resource] – Access mode: https://home-automations.net/top-smart-home-companies-in-usa/ – Date of access:
27.03.2022.

GIT VERSION CONTROL SYSTEM

Shchirov P.D.

Belarusian State University of Informatics and Radioelectronics
Minsk, Republic of Belarus

Perepelitsa L.A. – Lecturer

This paper presents the basic ideas of Git version control system, reveals its role, fundamental advantages and impact on the
Software Development Cycle.

The term Git refers to a free and open source distributed version control system designed to handle

everything from small to very large projects with speed and efficiency. This type of software is the most
commonly used version control system. There are some reasons for that. Firstly, it can be successfully applied
for tracking changes in any set of files. Secondly, Git allows and encourages to have multiple local branches
that can be entirely independent of each other. The creation, merging, and deletion of those lines of
development takes seconds. Thirdly, Git makes collaboration easier, as it helps coordinate work among
developing source code programmers. It allows changes by multiple people to all be merged into one source.

The main goals of Git version control system are speed, data integrity, and support for distributed, non-
linear workflows (branch system). Switching from a centralized version control system to Git version control
system changes the whole process of software development. Mainly used for high-level agile software
development Git has other systems (CVS, Subversion, Perforce, Bazaar, and so on) as the competitors. The
main is Subversion.

Subversion (also known as SVN) is a free centralized management system. Comparing these two
systems, it becomes evident that both have different pros and cons. Thus, Git in comparison to SVN is hard
to learn and it does not have a friendly UI (user interface). In addition, Git’s speed decreases while it deals
with a large number of files. SVN, on the contrary, is much easier to learn, and SVN successfully controls a
large number of files. Nevertheless, despite its competitiveness, SVN is constantly losing its popularity. Why?
Let's list and analyse the main advantages of Git, thanks to which it tends to replace SVN:

1) Git is undoubtedly rich in its branching capabilities. Branches allow developing features, fixing bugs,
or safely experimenting with new ideas in a contained area of a repository. Compared to centralised version
control systems, Git branches are very easy to handle. They provide an isolated environment for every change
of a codebase, and ensures that the main branch always contains production-quality code. Using branch

https://home-automations.net/top-smart-home-companies-in-usa/
https://git-scm.com/about/free-and-open-source

58-я научная конференция аспирантов, магистрантов и студентов БГУИР, 2022 г

349

system is not only more reliable than directly editing production code, but also provides organisational benefits
by representing development work at the same granularity as the agile backlog [1].

2) Also, one of the main advantage of Git version is that it has a distributed model and all the users can
have their copy of the code on their local repository. Instead of a working copy, each developer gets their loсal
repository with a full history of commits (the "git commit" command is used to save changes to the local
repository). Having a full local history makes Git fast since it means no need in a network connection to create
commits and to inspect previous versions of a file. Distributed development also makes it easier to scale
engineering team. If someone breaks the production branch in SVN (Subversion), other developers can’t
check their changes until it is fixed. With Git, this kind of blocking does not exist. Similar to a branch system,
distributed development creates a more reliable environment. Even if the developers obliterate the repository,
it can be simply cloned [2].

3) Multiple source code management tools enhance the core Git functionality with pull requests. A pull
request is a way for the developers to merge any branch into their repository. This software makes it easier
for leaders of the project not only to keep track of changes, but also to let developers initiate discussions
around their work before integrating it with the rest of the codebase. When developers get stuck with a hard
problem, they can open a pull request to ask for help from the rest of the team. Alternatively, junior developers
can be confident that they are not destroying the entire project by treating pull requests as a formal code
review.

4) Git copes successfully with continuous integration and delivery environment. Its functionalities allow
developers to run scripts when certain technical movements occur inside a repository, letting developers
automate deployment to the content core. Any code can be built and deployed from specific branches in
different servers. Git can be configured to deploy the most recent commit from the develop branch to a test
server whenever a pull request is initialised. Combining this kind of build automation with a peer review leads
to the highest possible code confidence and security as it moves from development to the production stage.

5) Git can not be overestimated for product management. The possibility of more frequent releases
means more rapid customer feedback and faster updates as a reaction to that feedback. The feature branch

Figure 2 – Visualisation of repositories of centralised and
distributed systems.

Figure 1 – Visualization of branch
system of Git

58-я научная конференция аспирантов, магистрантов и студентов БГУИР, 2022 г

350

workflow also provides flexibility when priorities change. For instance, there’s no problem, being halfway
through a release cycle, to postpone one feature instead of another time-critical one. That initial feature can
be around in its branch until the software engineer has time to turn to it. Branch facilitates an agile workflow
where developers are encouraged to create and share smaller changes more frequently. In turn, changes
can get pushed down. The “git push” command is used to push the local repository content to a remote
repository. In such a way the deployment pipeline becomes faster than the monolithic releases that are
common with centralized version control systems. As the result, the faster release cycle is performed. This
functionality makes it easier to manage innovation projects, beta tests, and rapid prototypes, being
independent codebases.

6) It is worth mentioning that by choosing Git as a developing version control system, the company
attracts progressive software designers seeking deep and extensive knowledge of programming and latest
technologies, focusing on constant development.

In conclusion, Git is all about efficiency. It eliminates the software development process from wasting
time while passing commits over a network connection and integrating changes in a centralised version control
system. Moreover, it gives the possibility to minimise the amount of required man-hours and recruiting junior
software developers for a safe programming process. All these factors affect the Git system efficiency. Git
version control system gives the possibility for software programmers to substitute unnecessary sets of
activities, react to customer complaints immediately and accelerate the process of software development.
This system provides a career growth opportunities and extensive implementation. Being agile Git version
control system produces a great impact on the Software Development Cycle.

References:
1. Git Magic ─ [Electronic resource]. ─ Access mode: https://www.csc.kth.se/utbildning/kth/kurser/DD2385/material/gitmag

─ Date of access: 21.03.2022.
2. Pro Git ─ [Electronic resource]. ─ Access mode: https://git-scm.com/book/ru/v2 ─ Date of access: 15.12.2021.
3. A Detailed Introduction to Git ─ [Electronic resource]. ─ Access mode: https://tproger.ru/translations/beginner-git-cheatshet

─ Date of access 10.02.2022.
4. Git VS SVN ─ [Electronic resource]. ─ Access mode: https://www.perforce.com/blog/vcs/git-vs-svn-what-difference. ─ Date

of access: 18.03.2022.

THE ROLE OF PROGRAMMING: SHORT-TERM PERSPECTIVE

Emello Z. A.

Belarusian State University of Informatics and Radioelectronics
 Minsk, Republic of Belarus

Schakatovich A. N. – Senior Lecturer

The paper is concerned about the theories of what programming will look like in the near future and its role in society. It is
considered why programmers will become workless in 10 years. It is mentioned how to stay demanded in future and there was
made a prediction about society and its relationships with programming in prospect.

According to Gerd Leonhard, a German futurologist, in 10 years programmers will become workless
[1]. This declaration has caused lots of debates and arguments among people who are involved in the IT-
sphere.

The first point for arguments is AI. Will it replace programmers? The answer is yes and no. Although
there are already invented tools like Github Copilot [2], which can convert textual comments into code and
autofill pieces of repetitive code, they can’t be used for writing programs from scratch without involving
programmers, as many users wish to. Moreover, these tools can only be used by programmers in order to
automatize simple moves and make time for processing harder things. It will be possible to talk about
competition between AI and humans only when AI is capable of creating software by itself. But this will only
happen when computer systems will manage not just to collect and analyze data, but actually generate ideas
as we, humans, do. This scenario is quite hard to carry through, as scientists haven’t even revealed yet all
the secrets about our brain processes and how our mind actually generates ideas.

There is also a concept telling that programming will become more abstract and it will differ from what
we’ve got nowadays. This theory proposes that developers will stop using low-level programming languages
and start combining some “module” solutions, like in constructors of websites (wix.com) [3]. These thoughts
are far from the actual sense of programming. None of the things mentioned earlier can exist without support
of developers. If you wish to customize your program even a bit you have to possess knowledge of
programming, have an understanding of how algorithms work and be capable of using specific instruments.
The same problem goes for constructors of websites. As it is said, if you want something to be done right,
you’ve got to do it yourself.

But what will actually happen with programmers in 10 years?

