2015 № 3 (89)

УДК 681.5.015.3

ПАРАМЕТРИЧЕСКАЯ ИДЕНТИФИКАЦИЯ ДИНАМИЧЕСКИХ ОБЪЕКТОВ ПО ФАЗОЧАСТОТНЫМ ХАРАКТЕРИСТИКАМ

А.В. МАРКОВ, В.И. СИМАНЬКОВ

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 15 октября 2014

Описан метод параметрической идентификации динамических объектов по их фазочастотным характеристикам. Проведены сравнение и выбор численных методов первого порядка для решения задачи наименьших квадратов. Реализована параметрическая идентификация реального объекта управления предложенным методом по экспериментальным данным. Выполнено сравнение разработанного метода и метода «procest», реализованного в САПР МАТLAB.

Ключевые слова: линейные динамические модели, метод наименьших квадратов, параметрическая идентификация, численные методы, MATLAB.

Введение

Задача идентификации заключается в определении оператора, преобразующего входные воздействия в выходные параметры объекта [1]. Выделяют задачи структурной и параметрической идентификации. В первом случае определяют структуру и вид математической модели объекта. Затем проводят параметрическую идентификацию, заключающуюся в определении числовых значений параметров математической модели.

В настоящее время существуют автоматизированные, программные средства идентификации. Наиболее известен программный пакет «System Identification Toolbox» (далее – SITb) от Mathsoft [2, 3], интегрированный в САПР MATLAB. SITb включает в себя набор методов параметрической идентификации, как во временной области, так и в частотной. Алгоритмы, реализованные в SITb, подходят для большинства практических применений. В SITb в качестве оптимизируемой целевой функции используется модуль ошибки комплексной амплитудно-фазочастотной характеристики модели относительно объекта. В дополнение к этой методике предлагается в качестве целевой функции использовать ошибку фазочастотной характеристики, которая является вещественной функцией.

Описание метода

Структурную схему системы можно представить, как соединение типовых элементарных звеньев, порядок дифференциальных уравнений которых не выше второго. В модели определенной структуры три типа неизвестных параметров: коэффициент передачи k, постоянная времени T, коэффициент демпфирования ξ . В процессе параметризации все неизвестные параметры модели представляются в виде вектора θ : $G(s) \rightarrow G(i\omega, \theta)$.

При частотных методах идентификации модель объекта определяется по его амплитудно-частотной характеристике (АЧХ), фазочастотной характеристике (ФЧХ), либо по амплитудно-фазовой частотной характеристике (АФЧХ): $G(s) = G(j\omega) = A(\omega)e^{j\phi(\omega)}$, где $G(j\omega) - A\Phi$ ЧХ; $\phi(\omega) = \arg[G(j\omega)] - \Phi$ ЧХ; $A(\omega) = |G(j\omega)| - A\Psi$ Х.

Если выражение для АЧХ или АФЧХ системы содержит n неизвестных переменных, то для Φ ЧХ n–1, так как Φ ЧХ системы не зависит от статического коэффициента передачи системы k. Поэтому аппроксимация Φ ЧХ является более простой задачей численной оптимизации.

Для аппроксимации функций широко применяется метод наименьших квадратов. Суть метода состоит в том, чтобы найти такие значения коэффициентов целевой функции, при которых достигается минимум суммы квадратов разности между параметрами модели и экспериментальными данными.

С учетом вышесказанного, предлагается следующая последовательность действий.

1. Аппроксимация ФЧХ. Параметры, обеспечивающие минимум суммы квадратов ошибки ФЧХ модели, находятся путем минимизация функции (1).

$$e_{\varphi}(\theta_{\varphi}) = \sum_{\omega_{\min}}^{\omega_{\max}} \left[\hat{\varphi}(\omega) - \varphi(\omega, \theta_{\varphi}) \right]^{2}, \tag{1}$$

где $\phi(\omega,\theta_\phi)$ – ФЧХ модели; $\hat{\phi}(\omega)$ – эмпирическая ФЧХ объекта; θ_ϕ – параметры, определяющие вид ФЧХ; $\omega_{min}...\omega_{max}$ – диапазон частотных характеристик объекта.

2. Аппроксимация АЧХ. Найденные в предыдущем пункте параметры фиксируются, за неизвестный параметр принимается k системы и находится минимум одномерной функции:

$$e_{A}(k) = \sum_{\omega_{\min}}^{\omega_{\max}} \left[\hat{A}(\omega) - A(\omega, k) \right]^{2} = \sum_{\omega_{\min}}^{\omega_{\max}} \left[\hat{A}^{2}(\omega) - 2\hat{A}(\omega)A(\omega, k) + A^{2}(\omega, k) \right]$$
, где $\hat{A}(\omega)$ – эмпирическая

AЧХ объекта; $A(\omega,k)$ – АЧХ модели.Полученная функция является квадратичной вида

$$e_{\scriptscriptstyle A}(k) = ak^2 + bk + c. \tag{2}$$

Экстремум квадратичной функции (2) находится как

$$k = -\frac{b}{2a}. (3)$$

Полученное значение k обеспечивает минимальную сумму квадратов ошибки AYXмодели. Задача аппроксимации АЧХ при известных параметрах ФЧХ решается простым алгебраическим способом. Задача определения ФЧХ представляется более сложной, решить которую можно с применением численных методов. Следует заметить, что целевые функции для поиска минимума ошибки ФЧХ методом наименьших квадратов имеют аналитическое выражение, их производные могут быть вычислены аналитически, не прибегая к численной аппроксимации. Значит, можно использовать методы первого и второго порядка, методы нулевого порядка менее эффективны. Методы второго порядка обладают более высокой скоростью сходимости и сложностью, чем методы первого порядка. Для методов второго порядка требуется расчет матрицы Гессе, которая имеет n^2 элементов, при n параметрах функции. Затем необходимо ее обратить, что является относительно сложной вычислительной задачей. Также методы второго порядка могут расходиться, если начальные условия далеки от точки минимума, а также в точках, в которых функция не является выпуклой. Поэтому необходимо вводить дополнительные проверки и модификации для улучшения стабильности. Методы переменной метрики на сегодня признаны наиболее эффективными [4], однако они используют численные аппроксимации для расчета обратной матрицы Гессе. Для решения поставленной задачи не исключено применение любого из численных методов, однако, в рамках данной статьи выбор сделан в пользу методов первого порядка по причине их относительной простоты по сравнению с методами второго порядка и переменной метрики и эффективности по сравнению с методами нулевого порядка. Необходимо выбрать метод, который будет оптимальным для решения поставленной задачи.

Сравнение методов первого порядка

Пусть передаточная функция имеет вид:

$$G(s) = \frac{k}{s \lceil (Ts)^2 + 2\xi Ts + 1 \rceil}$$
, где $T = 0,1$; $\xi = 0,5$; $k = 10$.

Произведем параметризацию модели:

$$k \to \theta_1, T \to \theta_2, \xi \to \theta_3; G(j\omega, \theta) = \frac{\theta_1}{j\omega \left[\left(j\omega\theta_2 \right)^2 + j2\omega\theta_2\theta_3 + 1 \right]}.$$

У данной функции ФЧХ является суммой ФЧХ интегрирующего и колебательного звеньев, АЧХ – произведением. Выражения для ФЧХ и АЧХ элементарных звеньев содержатся в [5]. Подстановкой их в (1) получается целевая функция.

Произведен поиск значений θ , обеспечивающих минимум функции (1) методом наискорейшего спуска [6] (МНС) с различными начальными условиями. Результаты приведены в таблице и на рис. 1. Точность оценивается с помощью нормированной среднеквадратической ошибки (NRMSE – Normalized root mean square error):

$$NRMSE = 100 \cdot \left(1 - \frac{\|x - \hat{x}\|}{\|x - \langle x \rangle\|}\right),\tag{4}$$

где – \hat{x} выход модели; x – проверочные данные.

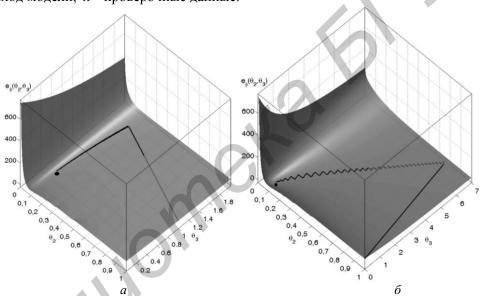


Рис. 1. Минимизация функции $e_{\varphi}(\theta_2, \theta_3)$ методом наискорейшего спуска с различными начальными условиями: $a - \theta^0_2 = \theta^0_3 = 1$; $\delta - \theta^0_2 = 1, \theta^0_3 = 0,025$

Из рис. 1 виден недостаток метода наискорейшего спуска при минимизации овражных функций. Алгоритм замедляется при попадании в «овраг», двигаясь по направлениям, ортогональным предыдущему. Это приводит к циклическим колебаниям поперек дна оврага. Как видно из табл. 1, скорость сходимости метода наискорейшего спуска существенно зависит от начальных условий.

Есть несколько методов решения этой проблемы, один из них — метод параллельных касательных [6]. В двумерном случае из ортогональности последовательных градиентов следует параллельность касательных к линиям уровня в точках, взятых через одну. Это означает, что в двумерном случае при минимизации квадратичной формы из точки θ^2 надо идти не по антиградиенту, а по направлению из θ^0 в θ^2 . Следующая точка оказывается последней, так как она является точкой минимума. Эта же идея ускорения сходимости алгоритма наискорейшего спуска может использоваться и в многомерном случае и не только для квадратичных форм.

Алгоритм имеет следующий вид:

- 1) из точки θ^0 делаем два шага, как в методе наискорейшего спуска и получаем точку θ^2 ;
- 2) из точки θ^2 идем не по антиградиенту, а по направлению $\theta^2 \theta^0$;

- 3) находим θ^3 как точку минимума функции в этом направлении и вычисляем антиградиент в ней;
- 4) проверяем условия окончания счета и, если они не выполнены, повторяем пункт 1, используя θ^3 вместо θ^0 .

Результаты численной оптимизации методом параллельных касательных (МПК) представлены на рис. 2 и в таблице.

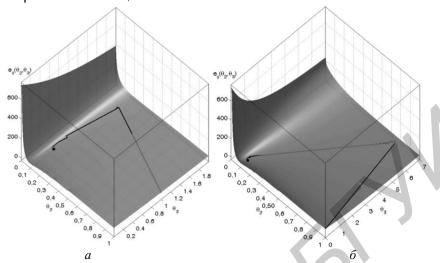


Рис. 2. Минимизация функции $e_{\varphi}(\theta_2, \theta_3)$ методом параллельных касательных с различными начальными условиями: $a-\theta_2^0=\theta_3^0=1$; $\delta-\theta_2^0=1, \theta_3^0=0,025$

Получено существенное ускорение по сравнению с методом наискорейшего спуска. Из рис. 2 видно, что при попадании в овраг метод параллельных касательных осуществляет поиск вдоль дна оврага. Как видно из таблицы 1, количество итераций уменьшается в 1,17–48,5 раз, в зависимости от начальных условий. Однако в этом алгоритме n шагов выполняется по методу наискорейшего спуска, где n — количество параметров функции, и лишь каждый n+1 шаг является ускоряющим. Чтобы ускорить сходимость, необходимо количество шагов по методу наискорейшего спуска свести к минимуму. Это позволяет сделать метод сопряженных градиентов (МСГ).

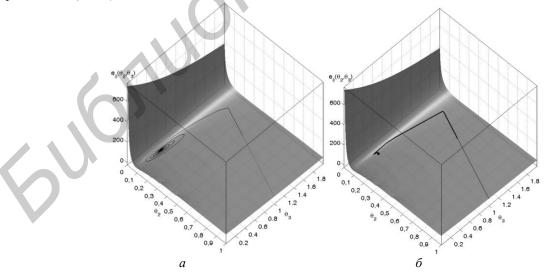


Рис. 3. Минимизация функции $e_{\varphi}(\theta_2, \theta_3)$ методом сопряженных градиентов a — Флетчера-Ривса; δ — Полака-Рибьера

На каждом шаге этого метода в качестве направления спуска используется не антиградиент, а его линейная комбинация с прежним направлением спуска [6]. Из рис. 3

и табл. 1 видно, что метод сопряженных градиентов в модификации Полака-Рибьера (МСГ ПР) в общем случае сходится быстрее, чем в модификации Флетчера-Ривза (МСГ ФР).

Параметр		$\hat{ heta}_2$	$\hat{ heta}_3$	$\hat{ heta}_2$	$\hat{ heta}_3$	$\hat{ heta}_2$	$\hat{ heta}_3$	$\hat{ heta}_2$	$\hat{ heta}_3$
Начальное приближение		1	1	0,025	1	1	0.025	0,025	0,025
Оценка параметров,	MHC	0,1000	0,5002	0,1000	0,5000	0,1000	0,5000	0,1000	0,4999
$\hat{\theta}_{\scriptscriptstyle N}$	МПК	0,1000	0,4999	0,1000	0,5000	0,1000	0,5000	0,1000	0,5000
	МСГ ФР	0,1000	0,5002	0,1000	0,4999	_	_	0,1000	0,5000
	МСГ ПР	0,1000	0,5000	0,1000	0,5000	0,1000	0,5000	0,1000	0,5000
Количество	MHC	776		14		85		20	
итераций, <i>N</i>	МПК	16 1501 11		12 54		16 >30000			10
	МСГ ФР							16	
	МСГ ПР			9		12		9	
NRMSE, %	MHC	99,9874 99,9921 99,9852 100,0000		99,9950 99,9986 99,9939		99,9909 99,9968 -		99,9939	
	МПК							99,9992	
	МСГ ФР							99,9988	
	МСГ ПР			100,0000		100,0000		100,0000	

Таблица 1. Результаты минимизации функции $e_{0}(\theta_{2},\theta_{3})$ методами первого порядка

Выяснено, что при аппроксимации Φ ЧХ объекта третьего порядка наивысшую скорость сходимости среди рассмотренных методов показывает метод сопряженных градиентов в модификации Полака-Рибьера. Из рис. 3, δ видно, что он имеет лучшую траекторию поиска по сравнению с остальными методами. Из табл. 1 видно, что он имеет наименьшее число итераций при наивысшей точности.

Экспериментальная проверка

Произведем параметрическую идентификацию реального динамического объекта разработанным методом и методом «procest», реализованным в SITb. Обычно производится несколько процедур параметрической идентификации для моделей нескольких структур и затем выбирается наилучшая модель. В данном примере параметрическая идентификация производится в предположении, что оптимальная структура модели уже выбрана.

$$G(s) = \frac{k(T_1 s + 1)}{s[(T_2 s)^2 + 2\xi T_2 s + 1](T_3 s + 1)},$$

$$T_1 \to \theta_1, T_2 \to \theta_2, T_3 \to \theta_3, \xi \to \theta_4, k \to \theta_5,$$

$$G(j\omega, \theta) = \frac{\theta_5(j\omega\theta_1 + 1)}{j\omega[(j\omega\theta_2)^2 + j2\omega\theta_4\theta_2 + 1](j\omega\theta_3 + 1)}.$$

Как и в примере для динамического объекта третьего порядка, идентификация будет произведена в два этапа. Сначала аппроксимация ФЧХ, затем — аппроксимация АЧХ. Для решения поставленной задачи применим метод сопряженных градиентов в модификации Полака-Рибьера, так как он показал наилучшую скорость сходимости. Результаты минимизации функции $e_0(\theta_1, \theta_2, \theta_3, \theta_4)$ представлены в табл. 2.

Для расчета k выполнена подстановка $\theta_1...\theta_4$ в (2) и рассчитаны a и b, затем полученные значения подставлены в (3).

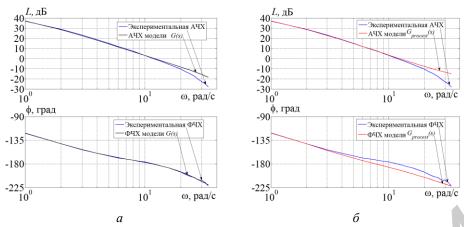


Рис. 4. Сравнение частотных характеристик модели a-G(s); $\delta-G_{procest}(s)$ и экспериментальных Для приведения двух оценок точности — по АЧХ и по ФЧХ — к одной, применим комплексную оценку точности модели — сравнение АФЧХ модели и объекта. Для этого подставим в формулу (4) $x=\hat{A}(\omega)e^{j\phi(\omega)}$, $\hat{x}=G(j\omega,\hat{\theta}_N)$.

Таблица 2. Результаты параметрической идентификации

Параметр			АЧХ						
		θ_1	θ_2	θ_3	θ_4	θ_5			
Начальное	G(s)	1,1	1,1	1,1	0,55	-			
приближение, θ^0	$G_{procest}(s)$	«auto»	«auto»	«auto»	«auto»	«auto»			
Полученная оценка, $\hat{\theta}_N$	G(s)	0,0415	0,0322	0.6106	0,7609	83,8827			
	$G_{procest}(s)$	-2,9593 10-3	2,0142 · 10-3	10-6	139,5194	81,829			
NRMSE, %	G(s)		96,8463						
	$G_{procest}(s)$		98,0548						
	G(s)	96,7622							
	$G_{procest}(s)$	97,5612							
Количество итераций, <i>N</i>	G(s)		1						
количество итерации, т	$G_{procest}(s)$	20							
Машинное время, с	G(s)								
	$G_{procest}(s)$								

Метод «procest» обеспечивает высокую точность аппроксимации $A\Phi YX$ и AYX. Однако высокая степень точности $A\Phi YX$ и AYX не означает высокую точность аппроксимации ΦYX , как видно из табл. 2 и рис. 4. В этом смысле разработанный метод более сбалансирован: оценки точности AYX, ΦYX и $A\Phi YX$ примерно одинаковы.

Метод «procest» достигает высокой степени точности за существенно меньшее количество итераций, так как в нем используется метод оптимизации второго порядка. Однако, оба метода выполняются за сопоставимое машинное время. Останов алгоритма «procest» происходит при достижении ограничения количества итераций. Увеличение количества итераций не дает существенного выигрыша в точности, но затрачиваемое машинное время возрастает прямо пропорционально количеству итераций. Метод «procest» использует численные аппроксимации первых и вторых производных целевой функции, в то время как разработанный метод использует аналитические выражения.

Коэффициенты передаточных функций $G_{procest}(s)$ и G(s) отличаются на порядки. Это объясняется тем, что метод «procest» и представленный метод работают с разными целевыми

функциями. Метод «procest» находит такие параметры θ , при которых достигается минимум ошибки АФЧХ модели: $\hat{\theta}_N = \arg\min_{\theta} \sum_{k=1}^N \left| \hat{A} \left(\omega_k \right) e^{j\hat{\phi}(\omega_k)} - G \left(j\omega_k, \theta \right) \right|^2$.

Представленный метод находит параметры, при которых достигается минимум ошибки ФЧХ: $\hat{\theta}_N = \arg\min_{\theta} \sum_{k=1}^N \left[\hat{\phi}(\omega_k) - \phi(\omega_k, \theta) \right]^2$.

В результате получаются передаточные функции с различными параметрами, однако со схожими динамическими характеристиками. При идентификации реальных объектов нет такой однозначности, как при идентификации по характеристикам математических моделей. Возможна неоднозначность: при увеличении точности аппроксимации ФЧХ снижается точность аппроксимации АЧХ и наоборот. Какая из этих характеристик важнее, решать оператору при решении конкретной практической задачи. На этапе идентификации можно оценить только точность имитации моделью реального поведения объекта.

Заключение

Предложенный метод может использоваться для параметрической идентификации динамических объектов, и имеет преимущество в точности аппроксимации ФЧХ перед методом «Process models estimation», предложенным в «System Identification Toolbox», при несколько сниженной точности аппроксимации АЧХ и АФЧХ, Достоинствами метода являются высокая скорость сходимости, сбалансированная точность аппроксимации частотных характеристик, сравнительная простота. Высокая скорость сходимости обусловлена тем, что точность вычислений градиента и целевой функции по аналитическим выражениям выше точности численной аппроксимации. Это позволяет делать точные шаги в точном направлении, что уменьшает количество итераций. Недостатком является сложность аналитических записей целевых функций и их градиентов, кусочно-заданные функции фазочастотных характеристик колебательных и форсирующих второго порядка звеньев. Это увеличивает вычислительную сложность алгоритма и снижает универсальность метода. Однако повышенная вычислительная сложность компенсируется снижением числа итераций и меньшим машинным временем. Разработанный алгоритм параметрической идентификации производится в два этапа: сначала аппроксимация ФЧХ объекта, затем аппроксимация АЧХ объекта. На первом этапе рекомендуется применять метод сопряженных градиентов в модификации Полака-Рибьера, на втором этапе – алгебраический метод определения экстремума квадратичной функции.

PARAMETRIC IDENTIFICATION OF DYNAMIC OBJECTS VIA PHASE-FREQUENCY CHARACTERISTICS

A.V. MARKOV, V.I. SIMANKOV

Abstract

The method of dynamic objects parametric identification via its phase-frequency characteristics is described. A comparison and selection of the first-order numeric methods for a solution of the least squares task is done. A parametric identification of the real plant via its empiric characteristics is implemented. A comparison of the developed method and method «procest», which is realized in the CAD MATLAB, is done.

Список литературы

- 1. Семенов А.Д., Артамонов Д.В., Брюхачев А.В. Идентификация объектов управления. Пенза, 2003.
- 2. Льюнг Л. Идентификация систем. Теория для пользователя. М., 1991.
- 3. Дьяконов В.П., Круглов В.В. МАТLAB. Анализ, идентификация и моделирование систем. СПб, 2001.
- 4. Мицель А.А., Шелест А.А. Методы оптимизации. Томск, 2002.
- 5. Ким Д.П. Теория автоматического управления. Т. 1. Линейные системы. М., 2003.
- 6. Струченков В.И. Методы оптимизации в прикладных задачах. М., 2009.