Н. П. МОЖЕЙ

УО БГУИР (г. Минск, Беларусь)

ОДНОРОДНЫЕ ПРОСТРАНСТВА, НЕ ДОПУСКАЮЩИЕ ЭКВИАФФИННЫХ СВЯЗНОСТЕЙ

Аффинная связность является эквиаффинной, если допускает параллельную форму объема (см. [1]). В данной работе изучаются трехмерные однородные пространства, не допускающие эквиаффинных связностей.

Пусть M – дифференцируемое многообразие, на котором транзитивно действует группа \bar{G} , $G = \bar{G}_{_{\! x}}$ — стабилизатор произвольной точки $x \in M$. Проблема классификации однородных пространств (M, \bar{G}) равносильна классификации (с точностью до эквивалентности) пар групп Ли (\bar{G} , G) (см., например, [2]). Пусть \bar{g} – алгебра Ли группы Ли \bar{G} , а g – подалгебра, соответствующая подгруппе G. Пара (\bar{g},g) называется изотропно-точной, если точно изотропное представление д. Там, где это вызывать разночтения, будем отождествлять дополнительное к g в \overline{g} , и факторпространство $\mathbf{m} = \overline{\mathbf{g}}/\mathbf{g}$. Аффинной связностью на паре (\bar{g},g) называется такое отображение $\Lambda:\bar{g}\to gl(m)$, что его ограничение на g есть изотропное представление подалгебры q, а все отображение является qинвариантным. Необходимое условие существования аффинной связности состоит в том, что представление изотропии для G должно быть точным, если \bar{G} эффективна на \overline{G}/G [3]. Тензоры кручения $T \in InvT_2^1(\mathsf{m})$ и кривизны $R \in InvT_3^1(\mathsf{m})$ имеют вид: $T(x_{\mathsf{m}},y_{\mathsf{m}}) = \Lambda(x)y_{\mathsf{m}} - \Lambda(y)x_{\mathsf{m}} - [x,y]_{\mathsf{m}}, \quad R(x_{\mathsf{m}},y_{\mathsf{m}}) = [\Lambda(x),\Lambda(y)] - \Lambda([x,y])$ ДЛЯ всех $x,y \in \overline{\mathsf{g}}$. Будем говорить, что Λ имеет *нулевое кручение* или является *связностью без кручения*,

если T=0. Тензор Риччи $Ric \in InvT_2(\mathsf{m})$ имеет вид $Ric(y,z)=\mathrm{tr}\{x \mapsto R(x,y)z\}$. Будем говорить, что аффинная связность Λ является локально эквиаффинной, если $\mathrm{tr}\Lambda([x,y])=0$ для всех $x,y\in \overline{\mathbf{g}}$ (то есть $\Lambda([\overline{\mathbf{g}},\overline{\mathbf{g}}])\subset \mathsf{sl}(\mathsf{m})$). Под эквиаффинной связностью будем понимать аффинную связность Λ (без кручения), для которой $\mathrm{tr}\Lambda(x)=0$ для всех $x\in \overline{\mathbf{g}}$, тогда $\Lambda(\overline{\mathbf{g}})\subset \mathsf{sl}(\mathsf{m})$.

Будем описывать пару (\overline{g} ,g) при помощи таблицы умножения алгебры Ли \overline{g} . Через $\{e_1,...,e_n\}$ обозначим базис \overline{g} ($n=\dim \overline{g}$). Будем полагать, что g порождается $e_1,...,e_{n-3}$, а $\{u_1=e_{n-2},u_2=e_{n-1},u_3=e_n\}$ — базис m. Для нумерации подалгебр используем запись d.n, а для нумерации пар — запись d.n.m, соответствующие приведенным в [4], здесь d — размерность подалгебры, n — номер подалгебры в $gl(3,\mathbb{R})$, а m — номер пары (\overline{g} ,g). Будем описывать аффинную связность через образы базисных векторов $\Lambda(u_1)$, $\Lambda(u_2)$, $\Lambda(u_3)$, тензор кривизны R через $R(u_1,u_2)$, $R(u_1,u_3)$, $R(u_2,u_3)$, а тензор кручения T — через $T(u_1,u_2)$, $T(u_1,u_3)$, $T(u_2,u_3)$. Например, выберем из пространств, найденных в [4], не допускающие эквиаффинную связность. Рассмотрим пару

при µ=-1 аффинная связность имеет вид

$$\begin{pmatrix} 0 & p_{1,2} & 0 \\ 0 & 0 & p_{2,3} \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} q_{1,1} & 0 & 0 \\ 0 & q_{2,2} & 0 \\ 0 & 0 & q_{1,1} \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ -p_{2,3} & 0 & 0 \\ 0 & p_{1,2} & 0 \end{pmatrix},$$

тензор кручения — $\left(p_{_{1,2}}-q_{_{1,1}}-1,0,0\right),\left(0,2p_{_{2,3}},0\right),\left(0,0,q_{_{1,1}}-p_{_{1,2}}+1\right)$. Тензор кручения нулевой при $q_{_{1,1}}=p_{_{1,2}}-1,\ p_{_{2,3}}=0$, тогда имеем локально эквиаффинную связность. Связность является эквиаффинной при $2q_{_{1,1}}+q_{_{2,2}}=0$, тогда (с учетом T=0) получаем $q_{_{2,2}}=-2p_{_{1,2}}+2$. В данном случае тензор Риччи также является симметрическим при $p_{_{2,3}}(q_{_{1,1}}-p_{_{1,2}}-q_{_{2,2}}-1)=0$, в частности, при T=0. При μ =0 аффинная связность —

$$\begin{pmatrix} 0 & p_{12} & p_{13} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} q_{11} & 0 & 0 \\ 0 & q_{22} & q_{23} \\ 0 & 0 & q_{11} \end{pmatrix}, \begin{pmatrix} r_{11} & 0 & 0 \\ 0 & r_{22} & r_{23} \\ 0 & p_{12} & r_{11} + p_{13} \end{pmatrix}.$$

Тензор кручения — $(p_{12}-q_{11}-1,0,0),(p_{13}-r_{11},0,0),(0,q_{23}-r_{22},q_{11}-p_{12}+1)$. Прямыми вычислениями получаем, что пара не допускает эквиаффинных связностей. Таким образом, в работе определено, при каких условиях пара не допускает эквиаффинных связностей.

ЛИТЕРАТУРА

- 1. Nomizu, K. Affine differential geometry / K. Nomizu, T. Sasaki. Cambridge Univ. Press, 1994.-263 p.
- 2. Онищик, А. Л. Топология транзитивных групп Ли преобразований / А. Л. Онищик. М. : Физ.-мат. лит., 1995. 384 с.
- 3. Кобаяси, Ш. Основы дифференциальной геометрии : в 2 т. / Ш. Кобаяси, К. Номидзу. М. : Наука, 1981. 2 т.
- 4. Можей, Н. П. Трехмерные редуктивные пространства разрешимых групп Ли / Н. П. Можей // Известия Гомельского государственного университета имени Франциска Скорины. -2016. -№ 6 (99). -C. 74–81.