Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет информационных технологий и управления

Кафедра теоретических основ электротехники

ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ. СБОРНИК ЗАДАЧ

В четырёх частях

Часть 4

А. П. Курулёв, И. Л. Свито, И. И. Петровский

АКТИВНЫЕ ЦЕПИ. ДЛИННЫЕ ЛИНИИ. НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

Рекомендовано УМО по образованию в области информатики и радиоэлектроники в качестве учебно-методического пособия для специальностей 1-36 04 01 «Программно-управляемые электронно-оптические системы», 1-36 04 02 «Промышленная электроника», 1-40 02 01 «Вычислительные машины, системы и сети», 1-40 02 02 «Электронные вычислительные средства», 1-40 05 01 «Информационные системы и технологии (по направлениям)», 1-53 01 02 «Автоматизированные системы обработки информации», 1-53 01 07 «Информационные технологии и управление в технических системах», 1-58 01 01 «Инженерно-психологическое обеспечение информационных технологий», 1-98 01 02 «Защита информации в телекоммуникациях», групп специальностей 39 01 «Схемы радиоэлектронных средств», 39 02 «Конструкции радиоэлектронных средств», 39 03 «Проекты радиоэлектронных систем и их применение на объектах», 41 01 «Радио-, микро- и наноэлектронная техника», 45 01 «Инфокоммуникационные технологии и системы связи»

Минск БГУИР 2022

Рецензенты:

кафедра электротехники и систем электропитания учреждения образования «Военная академия Республики Беларусь» (протокол №2 от 25.10.2021);

заведующий кафедрой полиграфического оборудования и систем обработки информации учреждения образования «Белорусский государственный технологический университет» кандидат технических наук, доцент М. С. Шмаков

Теория электрических цепей. Сборник задач. В 4 ч. Ч. 4 : Активные
 ТЗЗ цепи. Длинные линии. Нелинейные электрические цепи : учеб.-метод. пособие / А. П. Курулёв, И. Л. Свито, И. И. Петровский. – Минск : БГУИР, 2022. – 80 с. : ил.

ISBN 978-985-543-668-4 (ч. 4).

Содержит основные теоретические положения по расчёту активных цепей переменного тока, цепей с распределёнными параметрами, нелинейных цепей, примеры расчёта процессов в данных цепях, а также задачи для самостоятельного решения.

Часть 1-я издана в БГУИР в 2017 г. (авторы: А. П. Курулёв, И. Л. Свито, В. М. Коваленко, И. И. Петровский).

Часть 2-я издана в БГУИР в 2019 г. (авторы: А. П. Курулёв, И. Л. Свито, В. М. Коваленко, И. И. Петровский).

Часть 3-я издана в БГУИР в 2020 г. (авторы: А. П. Курулёв, И. Л. Свито, В. М. Коваленко, И. И. Петровский).

УДК 621.3.011.7(076) ББК 31.211я73

ISBN 978-985-543-668-4 (4. 4) ISBN 978-985-543-361-4 © УО «Белорусский государственный университет информатики и радиоэлектроники», 2022

Содержание

ПРЕДИСЛОВИЕ	4
ТЕОРИЯ И УСЛОВИЯ ЗАДАЧ	5
1. Активные электрические цепи	5
1.1. Эквивалентные схемы активных цепей	5
1.2. Транзисторные усилительные каскады	13
1.3. Интегрирующие и дифференцирующие цепи, конвертер	
сопротивления	18
1.4. Задачи для самостоятельного решения	24
2. Длинные линии	27
2.1. Первичные и вторичные параметры	27
2.2. Установившиеся и переходные процессы	32
2.3. Задачи для самостоятельного решения	49
3. Нелинейные электрические цепи	51
3.1. Особенности нелинейных цепей	51
3.2. Методы расчёта НЭЦ	51
3.2.1. Графический метод	52
3.2.2. Графоаналитический метод	55
3.2.3. Численный метод	59
3.3. Задачи для самостоятельного решения	69
МЕТОДИЧЕСКИЕ УКАЗАНИЯ, РЕШЕНИЯ	
И ОТВЕТЫ К ЗАДАЧАМ	72
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	

ПРЕДИСЛОВИЕ

Сборник задач в четырёх частях соответствует программе курса «Теория электрических цепей». Часть 4 сборника содержит: задачи по анализу активных цепей; задачи по расчёту электрических цепей с распределёнными параметрами или длинных линий; примеры решения задач по теории нелинейных электрических цепей.

Учебно-методическое пособие содержит также задачи для самостоятельного решения с методическими указаниями и ответами к ним, формулы для решения задач повышенной трудности, задачи, которые могут быть использованы для домашних заданий, контрольных работ, проведения зачётов, экзаменов и олимпиад.

Авторы выражают благодарность рецензентам (кафедре электротехники и систем электропитания учреждения образования «Военная академия Республики Беларусь» и заведующему кафедрой полиграфического оборудования и систем обработки информации учреждения образования «Белорусский государственный технологический университет» кандидату технических наук, доценту М. С. Шмакову) за полезные замечания и рекомендации, которые учтены при доработке рукописи.

Отзывы и предложения просим направлять по адресу: 220013, г. Минск, ул. П. Бровки, 6, БГУИР.

Авторы

ТЕОРИЯ И УСЛОВИЯ ЗАДАЧ

1. Активные электрические цепи

1.1. Эквивалентные схемы активных цепей

При анализе линейных активных цепей используют их эквивалентные схемы замещения и матричный метод. Например, для транзистора с общей базой (рис. 1, *a*) эквивалентная схема приведена на рис. 1, *б*.

Рис. 1

Разделим эквивалентную схему (см. рис. 1, δ) на две: активную (рис. 2, a) и пассивную (рис. 2, δ).

Рис. 2

Составим неопределённую матрицу проводимостей транзистора для его активной части (см. рис. 2, *a*). Для этого сначала, подключив источник ЭДС φ_1 к узлу 1, получим схему (рис. 3, *a*), для которой:

Рис. 3

Далее, подключив источник ЭДС φ_2 к узлу 2, получим схему (рис. 3, б), для которой:

$$Y_{12} = Y_{22} = Y_{32} = Y_{42} = 0,$$

т. к. $\alpha \dot{I}_{3} = 0$.

В схеме на рис. 3, *а* третьего узла нет, т. е. $\varphi_3 = 0$, поэтому

$$Y_{13} = Y_{23} = Y_{33} = Y_{43} = 0.$$

Подключив ЭДС φ_4 к узлу 4, получим схему (рис. 3, *в*), где

$$Y_{14} = \frac{\dot{I}_1}{\varphi_4} = -\frac{g_3\varphi_4}{\varphi_4} = -g_3;$$

$$Y_{24} = \frac{\dot{I}_2}{\varphi_4} = \frac{\alpha \dot{I}_1}{\varphi_4} = \frac{\alpha g_3\varphi_4}{\varphi_4} = \alpha g_3;$$

$$Y_{34} = \frac{\dot{I}_3}{\varphi_4} = \frac{0}{\varphi_4} = 0;$$

$$Y_{44} = \frac{\dot{I}_4}{\varphi_4} = \frac{g_3\varphi_4 - \alpha g_3\varphi_4}{\varphi_4} = (1 - \alpha)g_3$$

Таким образом, получили неопределённую матрицу проводимостей активной части схемы транзистора (см. рис. 2, *a*):

$$\begin{bmatrix} Y_{\rm H} \end{bmatrix}_{\rm a.u.} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & Y_{14} \\ Y_{21} & Y_{22} & Y_{23} & Y_{24} \\ Y_{31} & Y_{32} & Y_{33} & Y_{34} \\ Y_{41} & Y_{42} & Y_{43} & Y_{44} \end{bmatrix} = \begin{bmatrix} g_{\mathfrak{H}} & 0 & 0 & -g_{\mathfrak{H}} \\ -\alpha g_{\mathfrak{H}} & 0 & 0 & \alpha g_{\mathfrak{H}} \\ 0 & 0 & 0 & 0 \\ (\alpha - 1) g_{\mathfrak{H}} & 0 & 0 & (1 - \alpha) g_{\mathfrak{H}} \end{bmatrix}.$$

Аналогично получим неопределённую матрицу проводимостей транзистора для пассивной его части (см. рис. 2, б):

$$\begin{bmatrix} Y_{\rm H} \end{bmatrix}_{\Pi.{\rm Y}_{\rm L}} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & g_{\rm K} & 0 & -g_{\rm K} \\ 0 & 0 & g_{\rm 5} & -g_{\rm 5} \\ 0 & -g_{\rm K} & -g_{\rm 5} & g_{\rm K} + g_{\rm 5} \end{bmatrix}.$$

Неопределённая матрица проводимости в целом (см. рис. 1) равна сумме матриц $[Y_{\rm H}]_{\rm a.u.}$ и $[Y_{\rm H}]_{\rm n.u.}$:

$$[Y_{\rm H}] = [Y_{\rm H}]_{\rm a.u.} + [Y_{\rm H}]_{\rm n.u.} = \begin{bmatrix} g_{\mathfrak{I}} & 0 & 0 & -g_{\mathfrak{I}} \\ -\alpha g_{\mathfrak{I}} & g_{\kappa} & 0 & \alpha g_{\mathfrak{I}} - g_{\kappa} \\ 0 & 0 & g_{\mathfrak{I}} & -g_{\mathfrak{I}} \\ (\alpha - 1)g_{\mathfrak{I}} & -g_{\kappa} & -g_{\mathfrak{I}} & g_{\kappa} + g_{\mathfrak{I}} + (1 - \alpha)g_{\mathfrak{I}} \end{bmatrix}.$$

Пример 1. Для активной электрической цепи (рис. 4) определить комплексную передаточную функцию $K(j\omega)$, если $R_1 = R_2 = 10$ кОм, $R_3 = 50$ кОм, L = 10 мГн, $g_3 = 10^{-2}$ См, $g_6 = 0.5 \cdot 10^{-2}$ См, $g_\kappa = 0$, $\alpha = 0.92$.

Рис. 4

Решение. Так как ёмкость C_{ϕ} велика, то резистор R_3 по переменному току может быть включён между узлами 1 и 2. Поэтому упрощённая эквивалентная схема приведена на рис. 5.

Рис. 5

Эту схему разобьём на активную (рис. 6, *a*) и пассивную (рис. 6, *б*) части.

Рис. 6

Согласно рис. 6, *a*, неопределённая матрица проводимостей активной части схемы

$$\begin{bmatrix} Y_{\rm H} \end{bmatrix}_{\rm a.u.} = \begin{bmatrix} g_{\mathfrak{I}} & 0 & 0 & -g_{\mathfrak{I}} & 0 \\ -\alpha g_{\mathfrak{I}} & 0 & 0 & \alpha g_{\mathfrak{I}} & 0 \\ 0 & 0 & 0 & 0 & 0 \\ (\alpha - 1) g_{\mathfrak{I}} & 0 & 0 & (1 - \alpha) g_{\mathfrak{I}} & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Согласно рис. 6, б, неопределённая матрица проводимостей пассивной части схемы

$$\begin{bmatrix} Y_{\rm H} \end{bmatrix}_{\Pi,{\rm q.}} = \begin{bmatrix} g_2 + \frac{1}{j\omega L} + g_3 & -g_3 & -\left(g_2 + \frac{1}{j\omega L}\right) & 0 & 0 \\ -g_3 & g_3 & 0 & 0 & 0 \\ -\left(g_2 + \frac{1}{j\omega L}\right) & 0 & g_1 + g_2 + \frac{1}{j\omega L} + g_6 & -g_6 & -g_1 \\ 0 & 0 & -g_6 & g_6 & 0 \\ 0 & 0 & -g_1 & 0 & g_1 \end{bmatrix}.$$

Неопределённая матрица проводимостей всей схемы (см. рис. 5) равна

$$\begin{bmatrix} Y_{\rm H} \end{bmatrix} = \begin{bmatrix} Y_{\rm H} \end{bmatrix}_{a.{\rm q.}} + \begin{bmatrix} Y_{\rm H} \end{bmatrix}_{{\rm n. q.}} = \\ = \begin{bmatrix} g_{\mathfrak{g}} + g_2 + \frac{1}{j\omega L} + g_3 & -g_3 & -\left(g_2 + \frac{1}{j\omega L}\right) & -g_3 & 0 \\ -\alpha g_{\mathfrak{g}} - g_3 & g_3 & 0 & \alpha g_3 & 0 \\ -\left(g_2 + \frac{1}{j\omega L}\right) & 0 & g_1 + g_2 + \frac{1}{j\omega L} + g_6 & -g_6 & -g_1 \\ -\left(1 - \alpha\right)g_{\mathfrak{g}} & 0 & -g_6 & (1 - \alpha)g_{\mathfrak{g}} + g_6 & 0 \\ 0 & 0 & -g_1 & 0 & g_1 \end{bmatrix}$$

Так как узел 1 схемы является базовым, то, вычёркивая первую строку и первый столбец из матрицы [*Y*_н], получим определённую матрицу:

$$\begin{bmatrix} Y_0 \end{bmatrix} = \begin{bmatrix} g_3 & 0 & \alpha g_3 & 0 \\ 0 & g_1 + g_2 + \frac{1}{j\omega L} + g_6 & -g_6 & -g_1 \\ 0 & -g_6 & (1-\alpha)g_3 + g_6 & 0 \\ 0 & -g_1 & 0 & g_1 \end{bmatrix}.$$

Комплексная передаточная функция схемы

$$K(j\omega) = \begin{bmatrix} 0 & \alpha g_{3} & 0 \\ g_{1} + g_{2} + \frac{1}{j\omega L} + g_{5} & -g_{5} & -g_{1} \\ -g_{5} & (1-\alpha)g_{3} + g_{5} & 0 \end{bmatrix} = \\ \hline g_{3} & 0 & \alpha g_{3} \\ 0 & g_{1} + g_{2} + \frac{1}{j\omega L} + g_{5} & -g_{5} \\ 0 & -g_{5} & (1-\alpha)g_{3} + g_{5} \end{bmatrix} = \\ = \frac{-\alpha g_{3}g_{5}g_{1}}{g_{3} \left\{ \left(g_{1} + g_{2} + \frac{1}{j\omega L} + g_{5}\right) \left[(1-\alpha)g_{3} + g_{5}\right] - g_{5}^{2} \right\}} = \\ = \frac{-0.46 \cdot 10^{-8}}{2.5 \cdot 10^{-10} + \frac{29 \cdot 10^{-10}}{j\omega}} = -\frac{46 \cdot j\omega}{29 + 2.5 \cdot j\omega} = -\frac{1.58 \cdot j\omega}{1 + 0.086 \cdot j\omega}.$$

Пример 2. Активная электрическая цепь на рис. 7, *а* состоит из последовательного соединения резисторного усилителя на полевом транзисторе *VT* и цепочки *RC*. Параметры схемы: сопротивление в стоковой цепи транзистора $R_c = 3$ кОм; крутизна вольт-амперной характеристики (BAX) транзистора S = 1 мА/В; внутреннее сопротивление транзистора $R_{\rm BH} = 30$ кОм; для цепи *RC* R = 2 кОм, C = 0,01 мкФ. Определить комплексную передаточную функцию по напряжению активной электрической цепи.

Решение. Неопределённая матрица проводимостей всей цепи

$$[Y_{\rm H}] = [Y_{\rm H.a.}] + [Y_{\rm H.II.}],$$

где неопределённая матрица проводимостей активной части цепи (рис. 7, б)

$$\begin{bmatrix} Y_{\text{H.a.}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ S & g_{\text{BH}} & -(S + g_{\text{BH}}) & 0 \\ -S & -g_{\text{BH}} & S + g_{\text{BH}} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad g_{\text{BH}} = \frac{1}{R_{\text{BH}}};$$

неопределённая матрица проводимостей пассивной части цепи (рис. 7, в)

$$\begin{bmatrix} Y_{\text{H.II.}} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & g_{\text{c}} + g & -g_{\text{c}} & -g \\ 0 & -g_{\text{c}} & g_{\text{c}} + j\omega C & -j\omega C \\ 0 & -g & -j\omega C & g_{\text{c}} + j\omega C \end{bmatrix},$$
$$g = \frac{1}{2},$$

где $g_{\rm c} = \frac{1}{R_{\rm c}}; g = \frac{1}{R}.$

Так как ёмкость $C_{6\pi}$ велика, то сопротивление R_c по переменному току включено между узлами 2 и 3.

Неопределённая матрица проводимостей всей цепи есть сумма двух проводимостей:

$$\begin{bmatrix} Y_{\rm H} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ S & g_{\rm c} + g + g_{\rm BH} & -(S + g_{\rm c} + g_{\rm BH}) & -g \\ -S & -(g_{\rm c} + g_{\rm BH}) & S + g_{\rm c} + g_{\rm BH} + j\omega C & -j\omega C \\ 0 & -g & -j\omega C & g + j\omega C \end{bmatrix}$$

Определённая матрица проводимостей цепи (т. к. узел 3 заземлён, то из неопределённой матрицы [*Y*_н] вычеркнем третью строку и третий столбец):

$$\begin{bmatrix} 1 & (2) & (3) \\ 1 & 2 & 4 \\ \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ S & g_{c} + g + g_{BH} & -g \\ 0 & -g & g + j\omega C \end{bmatrix} \begin{bmatrix} 1 & (1) \\ 2 & (2) \\ 4 & (3) \end{bmatrix}$$

В скобках указаны номера строк и столбцов определённой матрицы проводимостей.

Комплексная передаточная функция цепи по напряжению

$$K(j\omega) = \frac{A_{14}}{A_{11}} = \frac{A_{(13)}}{A_{(11)}} = \frac{\left(-1\right)^{1+3} \begin{bmatrix} S & g_{c} + g + g_{BH} \\ 0 & -g \end{bmatrix}}{\left(-1\right)^{1+3} \begin{bmatrix} g_{c} + g + g_{BH} & -g \\ -g & g + j\omega C \end{bmatrix}} = \frac{-Sg}{\left(g_{c} + g + g_{BH}\right)\left(g + j\omega C\right) - g^{2}}.$$

Так как $g_{\rm BH} \ll g_{\rm c}$, то проводимостью $g_{\rm BH}$ можно пренебречь, тогда

$$K(j\omega) = \frac{-Sg}{(g_c + g)(g + j\omega C) - g^2} = \frac{-Sg}{g_c g \left(1 + j\frac{g_c + g}{g_c g}\omega C\right)} =$$
$$= -\frac{SR_c}{1 + j(R_c + R)\omega C} = -\frac{K}{1 + j\omega\tau_{ii}},$$

где $K = SR = 1 \cdot 10^{-3} \cdot 3 \cdot 10^{3} = 3$ – коэффициент усиления цепи;

 $\tau_{\rm II} = C(R_{\rm c} + R) = 0,01 \cdot 10^{-6} \cdot 5 \cdot 10^3 = 50$ мкс – постоянная времени цепи.

1.2. Транзисторные усилительные каскады

Пример 3. Транзистор включён по схеме с общим эмиттером (рис. 8). Входная характеристика транзистора $I_6(U_{36})$ дана на рис. 9, семейство выходных характеристик $I_{\kappa}(U_{3\kappa})$ – на рис. 10. ЭДС $E_1 = 0,3$ В; $E_2 = 20$ В; сопротивление $r_1 = 10$ кОм. Считая, что входная характеристика не зависит от напряжения $U_{3\kappa}$, определить напряжение U_2 на сопротивлении нагрузки при: а) $r_2 = 10$ кОм; б) $r_2 = 20$ кОм.

Решение. По входной характеристике определим ток базы I_6 из уравнения

Рис. 8

Рис. 9

(1)

Графическое решение методом пересечений приведено на рис. 11: ток базы $I_{5} = 20$ мкА.

Рис. 11

По выходной характеристике определим ток коллектора I_{κ} и напряжение $U_2 = r_2 I_{\kappa}$. Для коллекторной цепи транзистора (см. рис. 8)

$$U_{\mathfrak{I}\kappa}(I_{\kappa}) = E_2 - r_2 I_{\kappa}, \qquad (2)$$

где выходная характеристика $I_{\kappa}(U_{3\kappa})$ должна быть выбрана при найденном токе базы $I_6 = 20$ мкА. Графическое решение уравнения (2) приведено на рис. 12, где n = 1,2 обозначены прямые, удовлетворяющие уравнению (2) при значениях $r_2 = 10$ кОм и $r_2 = 20$ кОм. Для $r_2 = 10$ кОм ток $I_{\kappa} = 1,22$ мА, соответственно $U_2 = r_2 I_{\kappa} = 10 \cdot 10^3 \cdot 1,22 \cdot 10^{-3} = 12,2 \text{ B};$ для $r_2 = 20 \text{ кОм},$ соответственно $U_2 = r_2 I_{\kappa} = 20 \cdot 10^3 \cdot 0,85 \cdot 10^{-3} = 17 \text{ B}.$

Рис. 12

Пример 4. Транзистор включён по схеме с общим коллектором (рис. 13). Выходное напряжение снимается с эмиттера. Найти зависимость $U_{\text{вых}} = f(U_{\text{вх}}).$

Рис. 13

Решение. По первому закону Кирхгофа можем записать эмиттерный ток:

$$I_{\mathfrak{H}} = I_{\mathfrak{H}} + I_{\mathfrak{K}}.\tag{3}$$

В линейной области ток коллектора равен

$$I_{\kappa} = \beta I_{\delta}. \tag{4}$$

Тогда получим

15

$$I_{\mathfrak{H}} = (\beta + 1)I_{\mathfrak{H}}.$$
(5)

Чтобы найти выходное напряжение, нужно знать эмиттерный ток:

$$U_{\rm BMX} = R_{\rm p} I_{\rm p}.$$
 (6)

Найдём ток базы из уравнения

$$\varphi_{\rm BX} - \varphi_{\rm 5} = I_{\rm 5}R_{\rm 5} = \varphi_{\rm BX} - \varphi_{\perp} - (\varphi_{\rm 5} - \varphi_{\perp}) =
= U_{\rm BX} - (\varphi_{\rm 5} - \varphi_{\rm 3} + \varphi_{\rm 3} - \varphi_{\perp}) =
= U_{\rm BX} - (0,7 \,\mathrm{B} + U_{\rm Bbix}).$$
(7)

Здесь $\varphi_{\rm Bx}, \varphi_{\rm f}, \varphi_{\perp}, \varphi_{\rm g}$ – потенциалы входа, базы, земли и эмиттера соответственно. С учетом (5) и (6) получим

$$I_{5}R_{5} = U_{BX} - (0,7 \text{ B} + U_{BbIX}) =$$

= $U_{BX} - (0,7 \text{ B} + R_{9}(\beta + 1)I_{5}).$ (8)

Группируя слагаемые, получаем

$$I_{5}(R_{5}+R_{9}(\beta+1))=U_{BX}-0,7 \text{ B.}$$
(9)

Отсюда ток базы будет равен

$$I_{6} = \frac{U_{\rm BX} - 0.7 \,\mathrm{B}}{R_{6} + R_{9} \left(\beta + 1\right)}.\tag{10}$$

С учётом (5), (6) и (10) запишем выходное напряжение:

$$U_{\rm BMX} = R_{\rm g}I_{\rm g} = \frac{R_{\rm g}(\beta+1)(U_{\rm BX}-0,7\,{\rm B})}{R_{\rm f}+R_{\rm g}(\beta+1)}.$$
(11)

Выходной ток I_{3} в $(\beta + 1)$ раз больше тока базы I_{5} , в то время как выходное напряжение меньше единицы:

$$\frac{dU_{\rm BMX}}{dU_{\rm BX}} = \frac{R_{\rm g}(\beta+1)}{R_{\rm f} + R_{\rm g}(\beta+1)} \le 1.$$
(12)

Усиление мощности происходит за счёт усиления тока. Схема применяется для усиления мощности. Пример 5. Транзистор включён по схеме с общей базой (рис. 14). Выходное напряжение снимается с коллектора. Найти коэффициент усиления по

напряжению $K_U = \left| \frac{\Delta U_{\text{вых}}}{\Delta U_{\text{вх}}} \right|.$

Рис. 14

Решение. Проведём расчёт схемы с общей базой. В этой схеме входное напряжение поступает на эмиттер транзистора типа n-p-n-структуры, а выходной ток снимается с коллектора. Если входное напряжение $U_{\rm BX} > 0,7$ В, то переход база — эмиттер открыт и протекают базовый и коллекторный токи, причём

$$I_{\rm K} = \beta I_{\rm b}.\tag{13}$$

Оба эти тока соединяются и проходят во входной:

$$I_{9} = I_{\rm BX} = (\beta + 1)I_{6}.$$
 (14)

Если пренебречь единицей $I_{\kappa} = \beta I_{\delta} \approx I_{BX} = (\beta + 1)I_{\delta}$, то можно заключить, что

$$I_{\rm K} = I_{\rm BbIX} = I_{\rm BX},\tag{15}$$

т. е. схема ослабляет ток (не усиливает сигнал по току).

Чтобы найти выходное напряжение, нужно знать эмиттерный ток:

$$I_{3} = I_{BX} = (U_{BX} - 0.7 \,\mathrm{B}) / R_{3}.$$
(16)

С учётом (15), (16) и падения напряжения на открытом транзисторе $U_{69} \approx 0.7 \,\mathrm{B}$ найдём выходное напряжение из уравнения

$$U_{\rm BMX} = E - I_{\rm K} R_{\rm K} = E - \frac{R_{\rm K}}{R_{\rm g}} (U_{\rm BX} - 0.7 \,\mathrm{B}).$$
(17)

Это основная формула, которая связывает выходное и входное напряжения. В приращениях можем записать

$$\Delta U_{\rm Bbix} = -\frac{R_{\rm K}}{R_{\rm P}} \Delta U_{\rm Bx}.$$
 (18)

Тогда коэффициент усиления данной схемы по напряжению будет равен

$$\left|K_{U}\right| = \left|\frac{\Delta U_{\text{вых}}}{\Delta U_{\text{вх}}}\right| = \frac{R_{\text{к}}}{R_{\text{3}}}.$$
(19)

Подбирая R_{κ} и R_{3} , можно добиться $|K_{U}| > 1$, тогда коэффициент усиления по мощности будет равен коэффициенту по напряжению $|K_{U}|$. Таким образом, данная схема усиливает переменное входное напряжение и практически не меняет входной ток.

Схема используется в высокочастотных цепях как предварительный усилитель.

С помощью активных цепей с обратными связями можно осуществить интегрирование и дифференцирование сигнала.

1.3. Интегрирующие и дифференцирующие цепи, конвертер сопротивления

Пример 6. Схема с идеальным операционным усилителем (ОУ) изображена на рис. 15. В цепи обратной связи включён конденсатор $Z_2 = 1 / j\omega C$, а во входной ветви – резистор $Z_1 = R$. Найти передаточную функцию и показать, что данная схема осуществляет операцию интегрирования входного напряжения.

Рис. 15

Решение. Передаточная функция данной схемы равна $K_U(j\omega) = \frac{-1}{j\omega RC}$.

Как известно, основное уравнение ёмкости q = CU, где q – заряд ёмкости, C – ёмкость, U – напряжение на конденсаторе.

Запишем входное, выходное и напряжение на конденсаторе через разность потенциалов соответствующих точек схемы:

$$U_{\rm BX} = \varphi_1 - \varphi_{\perp} = \varphi_1 - \varphi_4 = \varphi_1, \, \text{т. к. } \varphi_{\perp} = 0;$$

$$U_{\rm BEX} = \varphi_3 - \varphi_{\perp} = \varphi_3 - \varphi_4 = \varphi_3;$$

$$U_{\rm c} \cong \varphi_2 - \varphi_3.$$
(20)

Основное уравнение ОУ имеет вид

$$U_{\rm Bbix} = K(\varphi_+ - \varphi_-) = -K\varphi_- = -K\varphi_2, \qquad (21)$$

где К – коэффициент усиления ОУ.

В линейном режиме $U_{\rm \tiny BMX} < \! U_{\rm \tiny IIII}$ перепишем потенциал φ_2 по модулю:

$$\varphi_2 \Big| = \frac{E_{\text{пит}}}{K}.$$
(22)

Учитывая, что коэффициент K составляет сотни тысяч единиц, получаем потенциал φ_2 в микровольтах, т. е. он исчезающе мал и им можно пренебречь по отношению к потенциалу входа φ_1 .

Уравнение для входного тока можно записать в следующем виде:

$$I_{\rm BX} = \frac{\varphi_1 - \varphi_2}{R} \approx \frac{\varphi_1 - \varphi_\perp}{R} \approx \frac{U_{\rm BX}}{R}.$$
 (23)

При достижении точки 2 входной ток раздваивается:

$$I_{\rm BX} = I_2 + I_{\rm BX\,OV} \approx I_2,\tag{24}$$

т. к. входы ОУ тока не потребляют, то весь ток идёт на заряд ёмкости.

Чтобы использовать основное уравнение ёмкости, воспользуемся следующим уравнением заряда:

$$I = \frac{dq}{dt}.$$
(25)

Тогда

$$q(t) = \int I(t)dt = \int I_2(t)dt = \frac{1}{R} \int U_{\rm BX}(t)dt.$$
 (26)

Используя основное уравнение ёмкости, получим

$$U_{\rm c} = \frac{q(t)}{C} = \frac{1}{RC} \int U_{\rm BX}(t) dt.$$
 (27)

С помощью соотношений $U_{\rm c}\cong \varphi_2-\varphi_3=-\varphi_3$ и $U_{\rm \tiny Bbix}=\varphi_3-\varphi_\perp=\varphi_3$ получим

$$U_{\rm Bbix} = \varphi_3 = -U_{\rm c} = -\frac{1}{RC} \int U_{\rm Bx}(t) dt.$$
(28)

Таким образом, выходное напряжение пропорционально интегралу от входного напряжения по времени. Множитель $\frac{1}{RC}$ используется для компенсации размерности времени.

Пример 7. В схеме примера 6 с идеальным операционным усилителем (ОУ) поменяем местами резистор $Z_2 = R$ и конденсатор $Z_1 = 1/j\omega C$ (рис. 16). Показать, что данная схема осуществляет операцию дифференцирования входного напряжения.

Рис. 16

Решение. Как известно, основное уравнение ёмкости q = CU, где q – заряд ёмкости, C – ёмкость, U – напряжение на конденсаторе.

Основное уравнение ОУ имеет вид

$$U_{\rm Bbix} = K(\varphi_{+} - \varphi_{-}) = -K\varphi_{-}, \quad \text{т. к. } \varphi_{+} = 0,$$
(29)

где К – коэффициент усиления ОУ.

По модулю выходное напряжение меньше напряжения питания:

$$E_{\text{пит}} > |U_{\text{вых}}| = |K| \cdot |\varphi_{-}|.$$
(30)

Следовательно, $|\varphi_{-}| = |\varphi_{2}| < \frac{E_{\text{пит}}}{K} \approx 0, \rightarrow \varphi_{2} \approx 0.$

Тогда напряжение на конденсаторе будет равно

$$U_{\rm c}(t) \cong \varphi_1 - \varphi_2 \cong \varphi_1 - 0 = U_{\rm BX}.$$
(31)

Определим заряд, который накапливает конденсатор:

$$q(t) = CU_{\rm c}(t) = CU_{\rm BX}(t). \tag{32}$$

Уравнение для входного тока можно записать в следующем виде:

$$I_{\rm BX} \equiv \frac{dq}{dt} \approx C \frac{dU_{\rm BX}}{dt}.$$
(33)

При достижении точки 2 входной ток раздваивается:

$$I_{\rm BX} = I_2 + I_{\rm BX\,OV} \approx I_2,\tag{34}$$

т. к. входы ОУ тока не потребляют, то весь ток идёт на сопротивление *R*.

21

Ток в цепи обратной связи практически совпадает с входным и создаёт по закону Ома падение напряжения между точками 2 и 3:

$$U_{23} = I_2 R = RC \frac{dU_{\rm BX}(t)}{dt}.$$
 (35)

Учитывая соотношения $U_{23} \cong \varphi_2 - \varphi_3 = -\varphi_3$ и $U_{\text{вых}} = \varphi_3 - \varphi_\perp = \varphi_3$, получим

$$U_{\rm Bbix} = -RC \frac{dU_{\rm Bx}(t)}{dt}.$$
(36)

Таким образом, выходное напряжение пропорционально операции дифференцирования входного напряжения по времени. Множитель *RC* используется для компенсации размерности времени. Знак минус появился из-за того, что напряжение поступает на отрицательный вход.

При помощи ОУ с обратными связями можно также моделировать одни элементы цепей с помощью других или создавать элементы, обладающие свойствами, которых нет у пассивных элементов.

Пример 8. Входное сопротивление цепи с идеальным операционным усилителем, изображенной на рис. 17, определяется как $Z_{BX} = U_1 / I_1$. В цепи обратной связи включён резистор R_1 . Показать, что данная схема обладает свойством изменять знак сопротивления нагрузки на противоположный $Z_{BX} = -Z_H$, т. е. является конвертером сопротивления.

Рис. 17

Решение. Все пассивные двухполюсники имеют положительное значение сопротивления, в котором ток течёт от «+» к «-» при подаче положительного напряжения. С помощью активного двухполюсника на операционном усилителе можно реализовать двухполюсник с отрицательным сопротивлением, т. е. когда ток потечёт от «-» к «+» при подаче положительного напряжения. Такая схема изображена на рис. 17.

Выходное напряжение ОУ в линейном режиме по определению равно

$$U_{out} \equiv \varphi_{out} - \varphi_{\perp} = K \Big(\varphi_p - \varphi_n \Big), \tag{37}$$

где K – коэффициент усиления ОУ; $\varphi_p \approx \varphi_n$ с точностью до нескольких микровольт, т. к. оба входа ОУ имеют одинаковые потенциалы.

Поэтому падения напряжения на обоих резисторах в цепи обратной связи одинаковы, и напряжение между входами *р* и *n* равно нулю:

$$\dot{U}_{ab} = \dot{I}_1 R_1 - \dot{I}_2 R_1 = 0. \tag{38}$$

Отсюда $\dot{I}_1 = -\dot{I}_2$. В ОУ очень большое входное сопротивление и весь ток устремляется в $Z_{\rm H}$, поэтому

$$\varphi_p - \varphi_\perp = \dot{U}_1 = \varphi_n - \varphi_\perp = \dot{I}_2 Z_{\rm H}. \tag{39}$$

Ток полностью определяется сопротивлением, подключённым к отрицательному входу, но направлен в другую сторону:

$$-\dot{I}_1 = \dot{I}_2 = \frac{\dot{U}_1}{Z_{\rm H}}.$$
(40)

По отношению к штриховой линии данная схема действует как двухполюсник, обеспечивающий ток не слева направо, а справа налево (рис. 18).

Рис. 18

В связи с этим входное сопротивление всей цепи $Z_{\rm BX} = -Z_{\rm H}$, т. е. цепь обладает свойством изменять знак сопротивления нагрузки на противоположный и является *инвертором* сопротивления.

Если всю схему заменить на одно сопротивление $Z'_{\rm H} = -Z_{\rm H}$, то можно реализовать любое отрицательное сопротивление с помощью положительного сопротивления $Z_{\rm H}$, включённого между точкой *b* и землёй.

Такая схема обозначается аббревиатурой NIC и может быть использована для компенсации потерь от положительных элементов, включённых в цепь. В ряде случаев это бывает полезным.

1.4. Задачи для самостоятельного решения

1. Параметры эмиттерного повторителя (рис. 19): $R_1 = 3,9$ кОм, $R_2 = 10$ кОм, $R_3 = 1$ кОм, $R_4 = 390$ Ом, блокировочный конденсатор $C_{6\pi} = 100$ мкФ, разделительный конденсатор и ёмкость эмиттера $C_p = C_3 = 10$ мкФ. Параметры биполярного транзистора VT: $R_3 = 100$ Ом, $R_5 = 10$ Ом, $R_K = 5$ кОм, коэффициент эмиттера по току в схеме с общей базой $h_{216} = \alpha = 0,97$. Рассчитать матричным методом комплексную передаточную функцию эмиттерного повторителя.

Рис. 19

Примечание. При расчёте схемы в динамическом режиме работы некоторые её элементы, обеспечивающие статистический режим работы, могут не рассматриваться: блокировочный $C_{6\pi}$ и разделительный C_p конденсаторы из-за их большой ёмкости; делитель напряжения (R_1, R_2) , смещающий рабочую точку на ВАХ в рабочее положение; цепочка термостабилизации (R_4, C_3) . Тогда электрическая схема, приведённая на рис. 19, упрощается (рис. 20). Заземление коллектора 2 и резистора R_3 в схеме (см. рис. 20) обусловлено малой величиной сопротивления переменному току конденсаторов $C_{6\pi}$ и C_3 .

Рис. 20

2. Определить коэффициент усиления транзисторного усилителя (рис. 21), эквивалентная схема которого приведена на рис. 22.

Рис. 21

Рис. 22

2. Длинные линии

2.1. Первичные и вторичные параметры

Однородная двухпроводная линия изображена на рис. 23.

Рис. 23

Первичные параметры (отнесённые к единице длины линии) однородной двухпроводной линии с медными проводами вычисляются по следующим формулам:

1. Для воздушной линии (параллельных проводов) (см. рис. 23, *a*):

– погонное активное сопротивление:

$$R_0 \approx \frac{8,33 \cdot \sqrt{f}}{a} \cdot 10^{-8} \text{ Om/m};$$

- погонная индуктивность:

$$L_0 \approx 0,9211 \mathrm{g} \frac{d}{a} \cdot 10^{-6}$$
 Гн/м;

– погонная ёмкость:

$$C_0 \approx \frac{12,07}{\lg \frac{d}{a}} \cdot 10^{-12} \, \Phi/\mathrm{M}.$$

2. Для коаксиального кабеля (см. рис. 23, б):

– погонное активное сопротивление:

$$R_0 \approx 4,16 \left(\frac{1}{a} + \frac{1}{b}\right) \sqrt{f} \cdot 10^{-8} \text{ Om/m};$$

– погонная индуктивность:

$$L_0 \approx 0,461 \lg \frac{b}{a} \cdot 10^{-6}$$
 Гн/м;

– погонная ёмкость:

$$C_0 \approx \frac{0.241\varepsilon}{\lg \frac{b}{a}} \cdot 10^{-10} \, \Phi/\mathrm{M},$$

где *с* – диэлектрическая проницаемость изоляции;

– погонная проводимость:

$$g_0 \approx \omega C tg \delta C M/M,$$

где *δ* – угол диэлектрических потерь.

Вторичные параметры однородной линии:

- *α* – коэффициент ослабления (затухания);

 $-\beta$ – коэффициент фазы;

- Z_B - волновое сопротивление.

Коэффициент распространения:

$$\gamma = \sqrt{\left(R_0 + j\omega L_0\right)\left(g_0 + j\omega C_0\right)} =$$
$$= \sqrt{R_0 g_0 - \omega^2 L_0 C_0 + j\omega \left(L_0 g_0 + R_0 C_0\right)} = \alpha + j\beta,$$

где коэффициент ослабления

$$\alpha = \sqrt{\frac{1}{2} \left(R_0 g_0 - \omega^2 L_0 C_0 + \sqrt{\left(R_0^2 + \omega L_0^2 \right) \left(g_0^2 + \omega^2 C_0^2 \right)} \right)},$$

а коэффициент фазы

$$\beta = \sqrt{\frac{1}{2} \left(\omega^2 L_0 C_0 - R_0 g_0 + \sqrt{\left(R_0^2 + \omega L_0^2\right) \left(g_0^2 + \omega^2 C_0^2\right)} \right)}$$

В области высоких частот (особенно для кабельных линий) $\omega L_0 \gg R_0$, а $g_0 \ll \omega C_0$, тогда

$$\alpha \approx \frac{R_0}{2} \sqrt{\frac{C_0}{L_0}} + \frac{g_0}{2} \sqrt{\frac{L_0}{C_0}};$$

$$\beta\approx\omega\sqrt{L_0C_0}$$

Фазовая скорость двухпроводной воздушной линии:

$$\nu_{\rm p} = \frac{\omega}{\beta} \approx \frac{1}{\sqrt{L_0 C_0}}$$

Фазовая скорость кабельной линии:

$$v_{\rm p} = \frac{\omega}{\beta} \approx \sqrt{\frac{2\omega}{R_0 C_0}}.$$

Так как $L_0 C_0 = \frac{\varepsilon \mu}{c^2}$, то $v_{\phi} = c \sqrt{\varepsilon \mu}$, где c – скорость света в вакууме

(≈3·10⁸ м/с); *ε*, *μ* – диэлектрическая и магнитная проницаемости среды, окружающей токоведущие проводники.

Для воздушной линии $\varepsilon \approx 1$ и $\mu \approx 1$, поэтому $v_{\phi} \rightarrow c \approx 3 \cdot 10^8$ м/с.

Волновое сопротивление линии:

$$Z_{\rm B} = \sqrt{\frac{R_0 + j\omega L_0}{g_0 + j\omega C_0}} = \sqrt{\frac{R_0}{g_0} \cdot \frac{1 + j\omega \frac{L_0}{R_0}}{1 + j\omega \frac{C_0}{g_0}}}$$

При частоте $\omega = 0$ волновое сопротивление $Z_{\rm B} = \sqrt{\frac{R_0}{g_0}}$.

При частоте $\omega = \infty$ волновое сопротивление $Z_{\rm B} = \sqrt{\frac{L_0}{C_0}}$.

Для высоких частот:

$$-Z_{\rm B} = 276 \lg \frac{d}{a}$$
, Ом – для воздушной линии (400–500 Ом);
 $-Z_{\rm B} = \frac{138}{\sqrt{\varepsilon}} \lg \frac{b}{a}$, Ом – для контактного кабеля (50–70 Ом).

Пример 9. Определить первичные и вторичные параметры коаксиальной пары из медного провода с полиэтиленовой изоляцией, а также длину волны и фазовую скорость, если частота f = 220 кГц, диаметр жилы d = 2,52 мм, внутренний диаметр внешнего проводника D = 9,4 мм, диэлектрическая проницаемость изоляции $\varepsilon = 1,1$, тангенс угла диэлектрических потерь tg $\delta = 0,5 \cdot 10^{-4}$, температура окружающей среды равна $t = +20^{\circ}$ С.

Решение. Первичные параметры:

1) погонное сопротивление кабеля:

$$R_0 = 8,35 \left(\frac{1}{d} + \frac{1}{D}\right) \sqrt{f} \cdot 10^{-2} = 8,35 \left(\frac{1}{2,52} + \frac{1}{9,4}\right) \sqrt{220 \cdot 10^3} \cdot 10^{-2} = 19,7 \text{ Om/km};$$

2) погонная индуктивность:

$$L_0 = 2 \lg \frac{D}{d} \cdot 10^{-4} = 2 \lg \frac{9,4}{2,52} \cdot 10^{-4} = 2,63 \cdot 10^{-4} \ \Gamma \text{H/km};$$

3) погонная ёмкость:

$$C_0 = \frac{\varepsilon}{18 \lg \frac{D}{d}} \cdot 10^{-6} = \frac{1,1}{18 \cdot \lg \frac{9,4}{2,52}} \cdot 10^{-6} = 46,5 \cdot 10^{-9} \text{ } \Phi/\text{KM};$$

4) проводимость изоляции:

$$g_0 = \omega C_0 \text{tg}\delta = 2\pi \cdot 220 \cdot 10^3 \cdot 46, 5 \cdot 10^{-9} \cdot 0, 5 \cdot 10^{-4} = 3, 2 \cdot 10^{-6} \text{ См/км.}$$

Вторичные параметры:

1) волновое сопротивление:

$$Z_{\rm B} = \sqrt{\frac{R_0 + j\omega L_0}{g_0 + j\omega C_0}},$$

т. к. $R_0 = 19,7 \ll \omega L_0 = 364$ и $g_0 = 3,2 \cdot 10^{-6} \ll \omega C_0 = 64000 \cdot 10^{-6}$, то

$$Z_{\rm B} \approx \sqrt{\frac{L_0}{C_0}} = \sqrt{\frac{2,63 \cdot 10^{-4}}{46,5 \cdot 10^{-9}}} = 75 \text{ Om};$$

2) коэффициент ослабления (затухания):

$$\alpha = \frac{R_0}{2} \sqrt{\frac{C_0}{L_0}} + \frac{g_0}{2} \sqrt{\frac{L_0}{C_0}} = \frac{19,7}{2} \cdot \frac{1}{75} + \frac{3,2 \cdot 10^{-6}}{2} \cdot 75 = 0,131 \text{ Hm/km} = 1,14 \text{ дБ/km};$$

3) коэффициент фазы:

$$\beta \approx \omega \sqrt{L_0 C_0} = 2\pi \cdot 220 \cdot 10^3 \sqrt{2,63 \cdot 10^{-4} \cdot 46,5 \cdot 10^{-9}} = 4,83$$
 рад/км;

4) фазовая скорость:

$$v_{\phi} = \frac{\omega}{\beta} = \frac{2\pi \cdot 220 \cdot 10^3}{4,83} = 286000 \text{ km/c};$$

5) длина волны:

$$\lambda = \frac{2\pi}{\beta} = \frac{6,28}{4,83} = 1,3$$
 м.

Пример 10. Трёхфазная линия длиной l = 900 км работает на частоте f = 50 Гц и напряжении $U_{\pi} = 400$ кВ. Первичные параметры линии: $R_0 = 0,08$ Ом/м; $L_0 = 1,336 \cdot 10^{-3}$ Гн/км; $C_0 = 8,6 \cdot 10^{-9}$ Ф/км; потери в изоляции $P_{\rm x} = 2$ кВт/км. Определить вторичные параметры линии: волновое сопротивление Z_C и характеристическую постоянную передачи $q_{\rm c}$.

Решение. Так как $P_{\rm x} = U_{\rm \varphi}^2 g_0$, то

$$g_0 = \frac{P_{\rm x}}{U_{\rm \phi}} = \frac{2000}{\left(\frac{400}{\sqrt{3}}\right)^2 \cdot 10^6} = 3,75 \cdot 10^{-8} \text{ Cm/km},$$

тогда сопротивление и проводимость на 1 км:

$$Z_0 = R_0 + j\omega_0 L_0 = 0,427 \cdot e^{j \cdot 79^\circ 30^\circ} \text{ Ом/км};$$
$$Y_0 = g_0 + j\omega_0 C_0 = 2,7 \cdot 10^{-6} \cdot e^{-j90^\circ} \text{ См/км}.$$

Волновое сопротивление:

$$Z_C = \sqrt{\frac{Z_0}{Y_0}} = 397e^{-j \cdot 5^{\circ}23'}$$
 OM

Характеристическая постоянная передачи:

$$q_{\rm c} = a_{\rm c} + jb_{\rm c} = \sqrt{Z_0 Y_0} = 1,073 \cdot 10^{-3} e^{j \cdot 84^{\circ} 37'} 1/{\rm km}.$$

2.2. Установившиеся и переходные процессы

Пример 11. Однородная длинная линия без потерь длиной l = 165 км работает на частоте f = 2000 Гц, напряжение на входе линии изменяется по закону $u_1 = U_{1m} \cos \omega t = 320 \cos \omega t$ В. Первичные параметры длинной линии: $L_0 = 1,67 \cdot 10^{-3}$ Гн/км, $C_0 = 6,67 \cdot 10^{-9}$ Ф/км. Найти распределение действующих значений напряжения и тока вдоль линии, замкнутой на заданную нагрузку в установившемся режиме. Построить графики U(y), I(y). Параметры нагрузки: $r_1 = 500$ Ом, $r_2 = 400$ Ом, L = 0,04 Гн. Схема нагрузки приведена на рис. 24.

Рис. 24

Решение. Изобразим линию в виде, представленном на рис. 25, где x – расстояние от начала линии до некоторого сечения; y – расстояние от конца линии до этого же сечения; u_1 – входное напряжение линии; i_1 – входной ток линии; u_2 – напряжение в конце линии; i_2 – ток в конце линии.

Рис. 25

Напряжение и ток в произвольном сечении линии без потерь, находящемся на расстоянии у от конца линии, описываются следующими выражениями:

$$\dot{U}(y) = \dot{U}_2 \cos\beta y + jZ_B \dot{I}_2 \sin\beta y;$$

$$\dot{I}(y) = j(\dot{U}_2 / Z_B) \sin\beta y + \dot{I}_2 \cos\beta y,$$
(41)

где

$$Z_{\rm B} = \sqrt{L_0 / C_0} = \sqrt{1,67 \cdot 10^{-3} / 6,67 \cdot 10^{-9}} = 500 \,\,\mathrm{Om};$$

$$\beta = \omega \sqrt{L_0 C_0} = 2\pi \cdot 2000 \sqrt{1,67 \cdot 10^{-3} \cdot 6,67 \cdot 10^{-9}} = 0,04187 \,\,\mathrm{pag/km}.$$

Преобразуем уравнения (41):

$$\begin{cases} \dot{U}(y) = \dot{U}_{2}(\cos\beta y + j(Z_{\rm B} / Z_{\rm H})\sin\beta y); \\ \dot{I}(y) = \dot{I}_{2}(j(Z_{\rm H} / Z_{\rm B})\sin\beta y + \cos\beta y), \end{cases}$$
(42)

где $Z_{\rm H} = \dot{U}_2 / \dot{I}_2$.

Согласно исходным данным

$$Z_{\rm H} = r_1 + \frac{r_2 j \omega L}{r_2 + j \omega L} = 500 + \frac{400 \cdot j 2\pi 2000 \cdot 0.04}{400 + j 2\pi 2000 \cdot 0.04} = 778, 4e^{j15^{\circ}} \text{ Om}.$$

Полагая y = l, из первого уравнения системы (42) выразим напряжение \dot{U}_2 :

$$\dot{U}_2 = \frac{\dot{U}_1}{\cos\beta l + j(Z_{\rm B}/Z_{\rm H})\sin\beta l}.$$

Подставляя численные значения, получим

$$\dot{U}_{2} = \frac{\left(320 / \sqrt{2}\right) e^{j90^{\circ}}}{\cos\left(0,04187 \cdot 165\right) + j\left(500 / 778, 4e^{j15^{\circ}}\right) \sin\left(0,04187 \cdot 165\right)} = 232e^{j68^{\circ}} \text{ B.}$$

Тогда ток в конце линии определится выражением

$$\dot{I}_2 = \frac{\dot{U}_2}{Z_{\rm H}} = \frac{232e^{j68^\circ}}{778, 4e^{j15^\circ}} = 0,298e^{j53^\circ} \text{ A}.$$

Комплексы действующих значений напряжения и тока в произвольном сечении линии, находящемся на расстоянии y от её конца, получим из уравнений (42) с учётом найденных значений \dot{U}_2 и \dot{I}_2 :

$$\dot{U}(y) = 232e^{j68^{\circ}} \cos(0,04187 \cdot y) + j\left(500/778,4e^{j15^{\circ}}\right) \sin(0,04187 \cdot y);$$

$$\dot{I}(y) = 0,298e^{j53^{\circ}} \left(j\left(778,4e^{j15^{\circ}}/500\right) \sin(0,04187 \cdot y) + \cos(0,04187 \cdot y)\right).$$

В комплексных выражениях $\dot{U}(y)$ и $\dot{I}(y)$ выделяем действительные и мнимые части:

$$\dot{U}(y) = \operatorname{Re}\left[\dot{U}(y)\right] + j\operatorname{Im}\left[\dot{U}(y)\right];$$
$$\dot{I}(y) = \operatorname{Re}\left[\dot{I}(y)\right] + j\operatorname{Im}\left[\dot{I}(y)\right].$$

Модули действующих значений напряжения U(y) и тока I(y) определяются выражениями

$$U(y) = \sqrt{\left(\operatorname{Re}\left[\dot{U}(y)\right]\right)^{2} + \left(\operatorname{Im}\left[\dot{U}(y)\right]\right)^{2}};$$
$$I(y) = \sqrt{\left(\operatorname{Re}\left[\dot{I}(y)\right]\right)^{2} + \left(\operatorname{Im}\left[\dot{I}(y)\right]\right)^{2}}.$$

По выражениям U(y) и I(y) с учётом численных значений построены графики, представленные на рис. 26, 27.

Рис. 26

Пример 12. Для однородной длинной линии без потерь длиной l = 165 км с параметрами из примера 11 найти распределение действующих значений напряжения и тока вдоль линии, заменив нагрузку волновым сопротивлением. Построить графики U(y) и I(y).

Решение. Полагая $Z_{\rm H} = Z_{\rm B}$, из уравнений (42) получим

$$\begin{cases} \dot{U}(y) = \dot{U}_2(\cos\beta y + j\sin\beta y) = \dot{U}_2 e^{j\beta y}; \\ \dot{I}(y) = \dot{I}_2(j\sin\beta y + \cos\beta y) = \dot{I}_2 e^{j\beta y}. \end{cases}$$

Модули действующих значений напряжения и тока в произвольном сечении линии не зависят от расстояния:

$$\begin{cases} U(y) = U_2; \\ I(y) = I_2. \end{cases}$$

В линии имеет место режим бегущих волн. Напряжение и ток в произвольном сечении линии равны входному напряжению и току:

$$U(y) = U_{1m} / \sqrt{2} = 320 / \sqrt{2} = 227 \text{ B};$$

 $I(y) = U_1 / Z_B = 227 / 500 = 0,454 \text{ A}.$

Графики U(y) и I(y) представлены на рис. 28, 29.

Пример 13. Для однородной длинной линии без потерь длиной l = 165 км с параметрами из примера 11 произвести расчёт установившегося режима при отключённой нагрузке (режим холостого хода). Построить графики U(y) и I(y).

Решение. В режиме холостого хода ток $\dot{I}_2 = 0$. Тогда уравнения (41) запишутся в виде

$$\dot{U}(y) = \dot{U}_2 \cos \beta y;$$

$$\dot{I}(y) = j(\dot{U}_2 / Z_B) \sin \beta y.$$

Полагая в первом уравнении y = l, определим напряжение \dot{U}_2 :

$$\dot{U}_2 = \frac{\dot{U}_1}{\cos\beta l} = \frac{227e^{j90^\circ}}{\cos(0,04187\cdot 165)} = 280e^{j90^\circ}$$
Комплексы действующих значений напряжения и тока в произвольном сечении линии, находящемся на расстоянии y от её конца, получим из последней системы уравнений с учётом найденного значения \dot{U}_2 :

$$\dot{U}(y) = 280e^{j90^{\circ}} \cos(0,04187 \cdot y);$$

$$\dot{I}(y) = j(280e^{j90^{\circ}} / 500) \sin(0,04187 \cdot y).$$

Из этих уравнений получим модули действующих значений напряжения и тока в произвольном сечении линии, находящемся на расстоянии *y* от её конца:

$$U(y) = 280 |\cos(0,04187 \cdot y)|;$$

$$I(y) = 0.56 |\sin(0,04187 \cdot y)|.$$

Графики U(y) и I(y) представлены на рис. 30, 31.

Рис. 30

Пример 14. К однородной длинной линии без потерь длиной l = 165 км с параметрами из примера 11 подключается источник постоянного напряжения $u_1 = U_{1m} = 320$ В. Построить графики $u_{\Pi}(x)$ и $i_{\Pi}(x)$ распределения падающих волн напряжения и тока в переходном режиме для момента, когда фронт падающих волн достигнет конца линии.

Решение. При подключении к линии источника постоянного напряжения в линии возникают падающие волны напряжения u_{Π} и тока i_{Π} , распространяющиеся вдоль линии с фазовой скоростью

$$v_{\Phi} = 1/\sqrt{L_0 C_0} = 1/\sqrt{1,67 \cdot 10^{-3} \cdot 6,67 \cdot 10^{-9}} = 3 \cdot 10^5 \text{ km/c}.$$

Величины напряжения и тока падающих волн равны $u_{\Pi} = 320 \text{ B}$ и $i_{\Pi} = u_{\Pi} / Z_{B} = 320 / 500 = 0,64 \text{ A}$. Графики распределения падающих волн напряжения и тока $u_{\Pi}(x)$ и $i_{\Pi}(x)$ представлены на рис. 32, 33.

Пример 15. Для примера 14 определить закон изменения напряжения и тока нагрузки в переходном режиме. Построить графики $u_{\rm H}(x)$ и $i_{\rm H}(x)$ распределения падающих волн напряжения и тока в переходном режиме в нагрузке.

Решение. Эквивалентная схема цепи расчёта переходного напряжения и тока в нагрузке линии представлена на рис. 34.

Рис. 34

Произведём расчёт $u_{\rm H}(t)$ классическим методом. Решение найдём в виде суммы принуждённой и свободной составляющих:

$$u_{\rm H}(t) = u_{\rm H\, \pi p}(t) + u_{\rm H\, c B}(t).$$

Определим принуждённую составляющую переходного напряжения на нагрузке:

$$u_{\rm H \, np}(t) = \frac{2U_{\rm \Pi}}{Z_{\rm B} + r_{\rm i}} \cdot r_{\rm i} = \frac{2 \cdot 320}{500 + 500} \cdot 500 = 320 \,{\rm B}.$$

Решая характеристическое уравнение цепи

$$Z(p) = pL + \frac{r_2(r_1 + Z_B)}{r_2 + r_1 + Z_B} = 0,$$

определим p = -7143, следовательно, $u_{\text{H cB}}(t) = Ae^{-7143t}$.

Для определения постоянной интегрирования решение

$$u_{\rm H}(t) = 320 + Ae^{-7143t}$$

рассмотрим при $t = 0+: u_H(0+) = 320 + A.$

Зависимое начальное условие $u_{\rm H}(0+)$ определим с учётом независимого начального условия $i_L(0-)=i_L(0+)=0$:

$$u_{\rm H}(0+) = \frac{2U_n}{Z_{\rm B} + r_1 + r_2} \cdot (r_1 + r_2) = \frac{2 \cdot 320}{500 + 500 + 400} \cdot (500 + 400) = 411 \,\rm{B}.$$

Тогда постоянная интегрирования $A = u_{\rm H} (0+) - 320 = 91 \, {\rm B}.$

Окончательно получим закон изменения напряжения на нагрузке $u_{\rm H}(t) = 320 + 91e^{-7143t}$ В.

Аналогично определим закон изменения тока в нагрузке:

$$i_{\rm H}(t) = 0,64 - 0,18e^{-7143t}$$
 A

Графики $u_{\rm H}(t)$ и $i_{\rm H}(t)$ представлены на рис. 35, 36.

Пример 16. Для примера 15 определить закон изменения отражённых волн напряжения и тока в сечении нагрузки в переходном режиме. Построить графики $u_{\rm O}(t)$ и $i_{\rm O}(t)$ распределения отражённых волн напряжения и тока в переходном режиме в нагрузке.

Решение. Если сопротивление нагрузки линии не равно волновому сопротивлению, то возникают отражённые волны напряжения и тока. Напряжение и ток в любом сечении линии, в том числе и в сечении нагрузки, складываются из напряжения и тока падающей волны и напряжения и тока отражённой волны, соответственно $u(t) = u_{\Pi}(t) + u_{O}(t), i(t) = i_{\Pi}(t) - i_{O}(t).$

Для сечения нагрузки $u_{\rm H}(t) = u_{\Pi}(t) + u_{\rm O}(t), i_{\rm H}(t) = i_{\Pi}(t) - i_{\rm O}(t).$

Из этих соотношений с учётом результатов примеров 8 и 9 получим

$$u_{\rm O}(t) = u_{\rm H}(t) - u_{\Pi}(t) = 320 + 91e^{-7143t} - 320 = 91e^{-7143t} \text{ B};$$

$$i_{\rm O}(t) = i_{\Pi}(t) - i_{\rm H}(t) = 0,64 - 0,64 + 0,18e^{-7143t} = 0,18e^{-7143t} \text{ A}.$$

Графики $u_{\rm O}(t)$ и $i_{\rm O}(t)$ представлены на рис. 37, 38.

Рис. 37

Рис. 38

Пример 17. Для примера 15 построить графики $u_O(x)$ и $i_O(x)$ распределения отражённых волн напряжения и тока при переходном режиме для момента времени, когда фронт отражённой волны достигнет точки на расстоянии 99 км от конца линии.

Решение. Возникнув в сечении нагрузки, отражённые волны напряжения и тока распространяются к началу линии с фазовой скоростью. Точки, отстоящей от конца линии на 99 км, фронт отражённой волны достигнет спустя время $t = 99 / v_{\phi} = 99 / 3 \cdot 10^5 = 3,3 \cdot 10^{-4}$ с. Напряжение и ток отражённой волны в про-извольном сечении линии из интервала [66, 165] км определяем по выражениям $u_{\rm O}(t)$ и $i_{\rm O}(t)$, полученным в примере 16, задаваясь значениями времени $t = x / v_{\phi}$. При этом *x* принимает значения из диапазона [0, 99] км.

Графики $u_{O}(t)$ и $i_{O}(t)$ представлены на рис. 39, 40.

Рис. 39

Пример 18. Для примера 17 построить графики u(x) и i(x) распределения напряжения и тока при переходном режиме для момента времени, когда фронт отражённой волны достигнет точки на расстоянии 99 км от конца линии.

Решение. Так как в произвольном сечении линии напряжение и ток складываются из падающих и отражённых волн $u(x) = u_{\Pi}(x) + u_{O}(x)$, $i(x) = i_{\Pi}(x) - i_{O}(x)$, то соответствующие распределения, представленные на рис. 41, 42, получаются из графиков на рис. 32, 39 и из графиков на рис. 33, 40 с учётом последних соотношений.

Рис. 41

Пример 19. Для примера 15 построить графики u(t) и i(t) распределения напряжения и тока при переходном режиме для точки, находящейся на расстоянии 99 км от конца линии.

Решение. Падающие волны напряжения и тока, возникающие в линии при подключении источника напряжения, достигнут точки на расстоянии 99 км от конца линии (или на расстоянии 66 км от начала линии) спустя время

$$t_1 = 66 / \nu_{\phi} = 66 / 3 \cdot 10^5 = 2, 2 \cdot 10^{-4} \text{ c.}$$

Далее падающие волны распространяются к нагрузке. Возникающие в сечении нагрузки отражённые волны достигают точки 99 км спустя время

$$t_2 = t_1 + 2.99 / v_{\phi} = 2, 2.10^{-4} + 2.99 / 3.10^5 = 9, 9.10^{-4} \text{ c}$$

После этого в точке на расстоянии 99 км от конца линии появляются отражённые волны, которые складываются с падающими. Закон изменения отражённых волн получен в примере 15. Построенные с учётом вышеизложенного графики u(t) и i(t) представлены на рис. 43, 44.

Пример 20. Для того чтобы длинная линия была неискажающей, на каждом её километре нужно дополнительно включить катушку индуктивности.

Длинная линия имеет следующие первичные параметры: $R_0 = 2,5$ Ом/км, $G_0 = 1 \cdot 10^{-6}$ См/км, $L_0 = 1,9 \cdot 10^{-3}$ Гн/км, $C_0 = 8 \cdot 10^{-9}$ Ф/км. Диапазон изменения частот для передачи сигналов по этой линии составляет от 100 до 10 000 Гц. Определить допустимую длину линии, при которой затухание не превышает 3,3 Нп.

Решение. В неискажающей линии амплитуды составляющих разных частот должны изменяться от начала к концу линии пропорционально, а фазовая скорость сигналов разной частоты должна быть одинаковой. Обе эти величины можно определить, если иметь постоянную передачи длинной линии:

$$\gamma = \sqrt{\left(R_0 + j\omega L_0\right)\left(G_0 + j\omega C_0\right)} = \alpha + j\beta.$$

Необходимые для решения задачи расчёты сведены в табл. 1.

Таблица 1

<i>f</i> , Гц	100	10000	
ω [рад/с] = $2\pi f$	628	$6,28 \cdot 10^4$	
$Z_0 = R_0 + j\omega L_0 \left[\text{Om/km} \right]$	2,5 + <i>j</i> 1,193	2,5 + <i>j</i> 119,3	
$Y_0 = G_0 + j\omega C_0 \left[\text{Cm/km} \right]$	$1,0+j5,024.10^{-6}$	$1,0+j502,4\cdot 10^{-6}$	
$\gamma = \sqrt{Z_0 Y_0} = \left(\alpha + j\beta\right) \cdot 10^{-3} \left[\mathrm{Km}^{-1}\right]$	1,906 + <i>j</i> 2,99	2,94 + <i>j</i> 255	
$\alpha \cdot 10^{-3}$	1,906	2,94	
$eta \cdot 10^{-3}$	2,99	245	
$\nu_{\rm p} = \frac{\omega}{\beta} \cdot 10^3 [{\rm Km/c}]$	209,4	255	
$\Delta t = \frac{l_{\text{max}}}{v_{\phi}} \cdot 10^{-3} [\text{c}]$	5,36	4,4	

Определим допустимую длину линии, при которой затухание не превышает 3,3 Нп. Находим её из наибольшего значения коэффициента затухания 2,94 $\cdot 10^{-3}$ Нп/км. Так как $\alpha_{\rm max} \cdot l_{\rm max} = 3,3$ Нп, то

$$l_{\text{max}} = \frac{3,3 \text{ H}\pi}{\alpha_{\text{max}}} = \frac{3,3}{2,94 \cdot 10^{-3}} = 1122 \text{ km}.$$

Фазовые скорости для различных частот разные, следовательно, для согласования берём ту, время распространения которой большее, а скорость меньшая. Для частоты $f = 100 \,\Gamma$ ц фазовая скорость равна $v_{\phi} = 209, 4 \cdot 10^3 \,$ км/с, а время распространения – $\Delta t = 5,36 \cdot 10^{-3} \,$ с.

Определим L_{лоп} из уравнения

$$L_0 + L_{\text{доп}} = \frac{R_0 C_0}{G_0} = \frac{2.5 \cdot 8 \cdot 10^{-9}}{10^{-6}} = 0,02 \,\Gamma\text{h}.$$

Тогда

$$L_{\rm доп} = \frac{R_0 C_0}{G_0} - L_0 = 0,02 - 1,9 \cdot 10^{-3} = 18,1 \cdot 10^{-3} \,\, \Gamma {\rm H}.$$

После включения дополнительной индуктивности $L_{\text{доп}}$ параметры станут равны

$$lpha = \sqrt{R_0 G_0} = 1,59 \cdot 10^{-3} \text{ Нп/км};$$

 $eta = \omega \sqrt{(L_0 + L_{\text{доп}})C_0} = \omega \sqrt{160 \cdot 10^{-12}} \text{ рад/км};$
 $v_{\phi} = \frac{\omega}{\beta} = 79 \cdot 10^3 \text{ км/c},$

т. е. фазовая скорость уменьшилась в два раза.

Следовательно, наибольшая допустимая длина линии, при которой затухание не превысит 3,3 Нп, будет равна

$$l_{\text{max}} = \frac{3,3 \text{ H}\pi}{\alpha} = \frac{3,3}{1,591 \cdot 10^{-3}} = 2074 \text{ KM}.$$

При этом длина линии увеличилась в 1,85 раза. Время распространения сигнала по линии длиной 2074 км будет равно

$$\Delta t = \frac{l_{\text{max}}}{v_{\phi}} = \frac{2074}{79 \cdot 10^3} = 26,25 \cdot 10^{-3} \text{ c.}$$

Таким образом, включение дополнительной катушки $L_{\text{доп}}$ привело к значительному снижению фазовой скорости, а следовательно, к задержке передачи сигнала в 2,5 раза.

2.3. Задачи для самостоятельного решения

1. Напряжение на приёмном конце двухпроводной линии без потерь с параметрами $L_0 = 2,88$ мГн/км, $C_0 = 3,85 \cdot 10^{-3}$ мкФ/км и длиной l = 1000 км равно $U_2 = U_m \sin \omega t$, где $U_2 = 50$ В (f = 1000 Гц). Линия нагружена на характеристическое сопротивление $z_2 = z_c$. Необходимо:

1) найти входное сопротивление линии z_1 , длину волны λ (потерями в линии пренебречь);

2) написать выражение для мгновенного напряжения $U_1(t)$ и тока $I_1(t)$ в начале линии;

3) построить график распределения действующих значений напряжения и тока вдоль линии.

2. Трёхпроводная линия длиной l = 900 км с линейным напряжением $U_{\Pi} = 400$ кВ (f = 50 Гц) имеет следующие параметры: $r_0 = 0,08$ Ом/км; $b_0 = \omega C_0 = 2,7$ См/км; $x_0 = \omega L_0 = 0,42$ Ом/км. Потери в изоляции составляют $P_0 = 2$ кВт/км на фазу. Определить волновое сопротивление z_c , коэффициент распространения $\gamma(\alpha, \beta)$, длину волны λ , скорость распространения волны v.

3. Длинная линия с $r_0 = g_0 = 0$ нагружена на характеристическое сопротивление $z_c = 500$ Ом. Длина волны $\lambda = 60$ м, скорость распространения волны $v = 3 \cdot 10^5$ км / с. Определить, на каком наименьшем расстоянии l нужно закоротить линию, чтобы она была эквивалентна индуктивности $L = 10^{-5}$ Гн. 4. Определить первичные параметры стальной двухпроводной длинной линии (R_0 – сопротивление линии на 1 км, C_0 – погонную ёмкость, L_0 – погонную индуктивность, G_0 – проводимость между проводами), если температура воздуха t = -14 °C при сухой погоде, расстояние между осями проводов a = 60 см, их диаметр d = 4 мм, частота тока f = 800 Гц, относительная магнитная проницаемость проводов $\mu = 120$.

5. Воздушная двухпроводная линия передач с коэффициентом фазы $\beta = 0,05$ рад/км работает на частоте f = 1910 Гц. Определить длину волны λ и скорость распространения сигнала v.

6. Линия передачи имеет первичные параметры $L_0 = 4 \text{ мГн/км}$ и $C_0 = 0,004 \text{ мк}\Phi/\text{км}$. Определить для рабочей частоты f = 1000 Гц коэффициент фазы β , длину волны λ и скорость распространения сигнала v.

7. На частоте f = 2000 Гц кабельная линия имеет затухание $\alpha = 0,25$ Нп/км и коэффициент фазы $\beta = 0,2$ рад/км. На входе приложено напряжение $U_1 = 5$ В. Определить напряжение на расстоянии n = 10 км от начала линии при условии, что она нагружена на характеристическое сопротивление.

8. На частоте f = 1,35 кГц линия имеет затухание $\alpha = 0,4$ Нп/км и коэффициент фазы $\beta = 0,25$ рад/км. На входе приложено напряжение $U_1 = 8$ В и ток $I_1 = 10$ мА. Определить напряжение на расстоянии l = 25 км от начала линии при условии, что она нагружена на характеристическое сопротивление.

9. Длинная линия имеет первичные параметры $R_0 = 12 \text{ Om/km}$, $L_0 = 3 \text{ мГн/km}$, $G_0 = 4 \text{ мСм/km}$ и $C_0 = 0,02 \text{ мк}\Phi/\text{кm}$. Определить волновое со-противление z_c при частоте f = 750 Гц.

3. Нелинейные электрические цепи

3.1. Особенности нелинейных цепей

В нелинейных цепях возможны такие преобразования токов и напряжений, какие не могут быть осуществлены с помощью линейных цепей. К таким преобразованиям относятся:

– преобразование переменного тока в постоянный и обратно;

– модуляция и демодуляция сигналов;

- усиление мощности, умножение и деление частоты;

– преобразование формы напряжения и тока и др.

Процессы в нелинейных электрических цепях (НЭЦ) описываются нелинейными уравнениями.

Цепь называется нелинейной, если она содержит хотя бы один нелинейный элемент.

Особенности НЭЦ:

1) к НЭЦ не применим принцип наложения;

2) в выходном сигнале НЭЦ появляются гармоники других частот, которые не содержал входной сигнал;

3) сопротивление нелинейного активного элемента имеет различные значения для постоянного и переменного тока.

3.2. Методы расчёта НЭЦ

Существует три группы методов расчёта НЭЦ:

1) графические методы, осуществляемые геометрическими построениями на основе заданных характеристик;

2) графоаналитические методы, основанные на том, что характеристика нелинейного элемента выражается приближённо аналитической функцией или аппроксимированной ломаной линией;

3) численные методы, основанные на приближённых способах решения алгебраических и дифференциальных уравнений (например, с помощью показательных или трансцендентных функций).

3.2.1. Графический метод

Для графического метода расчёта требуется ВАХ (вольт-амперная характеристика) НЭЦ.

Пример 21. На рис. 45 представлена цепь с одним нелинейным элементом, на рис. 46 – ВАХ нелинейного элемента (НЭ). Найти ток $I_{\rm H3}$ и напряжение $U_{\rm H3}$ на НЭ.

Рис. 45

Рис. 46

Решение. Для схемы (см. рис. 45) запишем уравнение по второму закону Кирхгофа:

$$E = IR + U_{\text{H2}},$$

откуда

$$I = \frac{E - U_{\rm H9}}{R}.$$
(43)

Если в уравнении (43) $U_{\rm H3} = 0$, то ток $I = \frac{E}{R}$ (точка А на рис. 46), а при I = 0 напряжение $U_{\rm H3} = E$ (точка Б на рис. 45). Проведя через точки А и Б пря-

мую линию, найдём точку пересечения этой линии с ВАХ НЭ (точка В). Координаты точки В ($I_{\rm H9}$ и $U_{\rm H9}$) являются искомым решением примера 21.

Пример 22. На рис. 47 представлена цепь с последовательным соединением двух нелинейных элементов. Определить суммарную ВАХ двух НЭ.

Решение. На рис. 48 изображены две вольт-амперные характеристики каждого нелинейного элемента в отдельности $I_1 = f(U)$ и $I_2 = f(U)$ и суммарная вольт-амперная характеристика I = f(U) двух НЭ, полученная путём сложения напряжений для всех значений тока, т. е. $I = I_1 = I_2$, $U = U_1 + U_2$.

Рис. 47

Рис. 48

Пример 23. На схеме (рис. 49) ток источника J = 0,35 А, характеристики нелинейных элементов НЭ1 и НЭ2 (симметричные) изображены на рис. 50 кривыми 1 и 2 соответственно. Определить токи $I_1 = f(U)$ и $I_2 = f(U)$ нелинейных элементов и мощность источника. Построить вольт-амперную характеристику цепи I = f(U).

Рис. 49

Рис. 50

Решение. Отмечая напряжения на входе цепи U и складывая соответствующие им токи ветвей из рис. 50, построим вольт-амперную характеристику I = f(U) (рис. 51).

Проведём горизонтальную линию на уровне J = 0,35 A и, опуская перпендикуляр на горизонтальную ось (см. рис. 51), получим напряжение на параллельном соединении U = 20 В. Тогда мощность источника

$$P_I = UJ = 0,35 \cdot 20 = 7$$
 BT.

При напряжении U = 20 в токи ветвей получим из характеристик нелинейных элементов 1 и 2, равными $I_1 = 0,25$ А и $I_2 = 0,1$ А (рис. 52).

Рис. 52

3.2.2. Графоаналитический метод

Аппроксимацию вольт-амперной характеристики (ВАХ) НЭ или её рабочей части проводят степенным полиномом (рядом Тейлора):

$$I = f(U) \approx a_1 \cdot (U - U_0) + a_2 \cdot (U - U_0)^2 + ... + a_k \cdot (U - U_0)^k,$$

где U_0 – напряжение в рабочей точке вольт-амперной характеристики (рис. 53).

Для нахождения коэффициентов аппроксимации *a_k* необходимо решить систему уравнений:

$$\begin{cases} I_0 = a_0; \\ I_1 = a_0 + a_1 \cdot (U_1 - U_0) + a_2 \cdot (U_1 - U_0)^2 + \dots + a_k \cdot (U_1 - U_0)^k; \\ \dots \\ I_k = a_0 + a_1 \cdot (U_k - U_0) + a_2 \cdot (U_k - U_0)^2 + \dots + a_k \cdot (U_k - U_0)^k. \end{cases}$$

Проведём аппроксимацию вольт-амперной характеристики НЭ ломаной линией (кусочно-линейная аппроксимация).

Например, в простейшем случае ломаная линия может состоять из двух прямых (рис. 54), уравнения этой линии имеют следующий вид:

$$\begin{cases} I = 0, \text{ если } U < U_0; \\ I = S(U - U_0), \text{ если } U > U_0, \end{cases}$$

где *S* – крутизна наклонной прямой.

Рис. 54

Этот вид аппроксимации позволяет применять специальный метод решения нелинейного дифференциального уравнения – метод «сшивания» (или «припасовывания»), суть которого состоит в том, что две прямые ломаной линии описываются различными линейными уравнениями, решения которых необходимо «сшить» на границе интервалов, т. е. в данном случае приравнять конечные значения для одного интервала к начальным значениям для другого интервала.

Пример 24. На схеме (рис. 55) U = 30 В, r = 20 Ом, характеристики нелинейных элементов НЭ1 и НЭ2 соответственно заданы зависимостями $I_1 = a_1U + a_2U^2$, где $a_1 = 0,01$ A/B, $a_2 = 0,003$ A/B², и $I_2 = b_1U + b_2U^2$, где $b_1 = 0,04$ A/B, $b_2 = 0,002$ A/B², $U \ge 0$. Определить токи и напряжения нелинейных элементов.

Рис. 55

Решение. Для схемы (см. рис. 55) по законам Ома и Кирхгофа

$$I = (E - U) / r;$$
$$I = I_1 + I_2.$$

После подстановки заданных зависимостей $I_1(U)$, $I_2(U)$ и совместного решения уравнений по законам Ома и Кирхгофа получим квадратное уравнение

$$(E-U)/r = (a_2+b_2)U^2 + (a_1+b_1)U,$$

т. е. при заданных числовых значениях

$$0,005U^2 + 0,1U - 1,5 = 0,$$

откуда U = 10 В. По заданным зависимостям находим токи $I_1 = 0, 4$ А, $I_2 = 0, 6$ А.

Пример 25. Характеристики нелинейных элементов схемы (рис. 56) аппроксимированы следующими уравнениями (токи – в амперах, напряжения – в вольтах): $I_1 = 0,01U_1 + 0,002U_1^2$; $I_2 = 0,01U_2 + 0,003U_2^2$; $I_3 = 0,04U_3 + 0,002U_3^2$ (аппроксимация справедлива при положительных значениях). Определить токи и напряжения нелинейных элементов при ЭДС E = 30 В.

Решение. По первому закону Кирхгофа

$$I_1 = I_2 + I_3$$
.

Для решения этого уравнения выразим все токи через общее напряжение *U* между узлами. Из рис. 56 следует, что

$$U = U_2 = U_3; U_1 = E - U.$$

После подстановки в уравнения для токов получим уравнение

$$0,01(30-U) + 0,002(30-U)^{2} = 0,01U + 0,003U^{2} + 0,04U + 0,002U^{2}$$

и (после алгебраических преобразований) квадратное уравнение

$$U^2 + 60U - 700 = 0$$
,

откуда U = 10 В. Второе решение U = -70 В не удовлетворяет условиям аппроксимации.

Подставив найденное значение напряжения U = 10 В равенства, определим напряжения: $U_2 = U_3 = 10$ В; $U_1 = E - U = 30 - 10 = 20$ В.

По уравнениям аппроксимации находим токи:

$$I_{1} = 0,01U_{1} + 0,002U_{1}^{2} = 0,01 \cdot 20 + 0,002 \cdot 400 = 0,2 + 0,8 = 1 \text{ A};$$

$$I_{2} = 0,01U_{2} + 0,003U_{2}^{2} = 0,01 \cdot 10 + 0,003 \cdot 100 = 0,1 + 0,3 = 0,4 \text{ A};$$

$$I_{3} = 0,04U_{3} + 0,002U_{3}^{2} = 0,04 \cdot 10 + 0,002 \cdot 100 = 0,4 + 0,2 = 0,6 \text{ A}.$$

3.2.3. Численный метод

Численный метод предполагает аппроксимацию ВАХ НЭ трансцендентными уравнениями.

Например, аппроксимация показательными функциями:

$$I = \sum_{k=1}^{n} A_k \cdot e^{a_k \cdot (U - U_0)},$$

гиперболическим тангенсом:

$$I = A + B \cdot \text{th}U.$$

Этот метод аппроксимации позволяет получить хорошее приближение выражения ВАХ НЭ.

Пример 26. На схеме (рис. 57) характеристики нелинейных элементов НЭ1 и НЭ2 аппроксимированы следующими уравнениями (ток – в амперах, напряжение – в вольтах), ЭДС источника *E* = 3 В:

$$I = 1,5 \cdot 10^{-3} U_1 + 2 \cdot 10^{-3} U_1^2;$$
(44)

$$I = 2,5 \cdot 10^{-3} U_2 + 1 \cdot 10^{-3} U_2^2.$$
(45)

Определить ток и напряжения на нелинейных элементах графически и методом итераций.

Рис. 57

Решение. Графическое решение. Записав уравнение по второму закону Кирхгофа

$$U_1(I) + U_2(I) = E, (46)$$

построим графики $U_1(I)$, $U_2(I)$ и $I[E-U_2(I)]$ (рис. 58). Последняя характеристика строится по характеристике $U_1(I)$ смещением на значение ЭДС E и зеркальным отражением относительно вертикальной оси (U_1 со знаком минус).

Точка пересечения графика $I[E-U_2(I)]$ с характеристикой $U_1(I)$ даёт решение задачи: I = 0,0062 A; $U_1 = 1,45$ B; $U_2 = 1,55$ B.

Решение методом итераций. При замене нелинейных элементов их статическими сопротивлениями $R_{\text{CT}\,k} = U_k \ / \ I_k$ по формуле

$$I_{k+1} = \frac{E}{R_1(I_k) + R_2(I_k)}$$
(47)

получим ток *k*-й итерации.

1-й шаг. Выберем приближённое значение тока I = 3 мA. Для нахождения соответствующих ему напряжений U_1 и U_2 перепишем уравнения характеристик (44) и (45) в виде

$$U_1^2 + 0,75U_1 - 500 \cdot I = 0; (48)$$

$$U_2^2 + 2,5U_2 - 1000 \cdot I = 0. \tag{49}$$

2-й шаг. Тогда из (46) получим

$$U_1(I_0) = \frac{-0,75 + \sqrt{0,5625 + 2 \cdot 3}}{2} = \frac{-0,75 + 2,5617}{2} = 0,9058 \text{ B},$$

а из (47)

$$U_2(I_0) = \frac{-2,5 + \sqrt{6,25 + 4 \cdot 3}}{2} = \frac{-2,5 + 4,272}{2} = 0,886 \text{ B}.$$

3-й шаг. Определим соответствующие этим напряжениям статические сопротивления нелинейных элементов:

$$R_{\rm CT1} = \frac{U_1(I_0)}{I_0} = \frac{0.9058}{3 \cdot 10^{-3}} = 301,933 \,\rm Om;$$

$$R_{\text{CT}2} = \frac{U_2(I_0)}{I_0} = \frac{0,886}{3 \cdot 10^{-3}} = 295,33 \text{ Om}.$$

4-й шаг. Далее по формуле (47) получаем ток следующей итерации:

$$I_1 = \frac{E}{R_1(I_0) + R_2(I_0)} = \frac{3}{301,933 + 295,33} = 5,023 \text{ MA}.$$

Затем весь процесс повторяем снова при возможной точности расчёта по заданным характеристикам до $I_{k+1} = I_k$. Весь расчёт в соответствии с приведённым алгоритмом сведём в таблицу (табл. 2).

Таблица 2

Номер						$R_{\text{CT}1k}$ +	
прибли-	I_k ,мА	U_{1k} ,B	U_{2k} ,B	$R_{\text{CT1}k}, \text{Om}$	$R_{\text{CT2}k}$,Ом	$+R_{CT2k},OM$	I_{k+1} ,мА
жения <i>k</i>							
0	3	0,9058	0,886	301,933	295,33	597,263	5,023
1	5,023	1,2535	1,3162	249,55	262,04	511,59	5,864
2	5,864	1,378	1,475	234,99	251,56	486,553	6,166
3	6,166	1,4204	1,53	230,367	248,14	478,507	6,27
4	6,27	1,435	1,549	228,87	246,995	475,863	6,304
5	6,304	1,44	1,55	228,426	245,876	474,302	6,325

Последние два значения отличаются друг от друга менее чем на 0,3 %, поэтому итерационный процесс завершился, дав результат, совпадающий с решением графическим методом.

Пример 27. На схеме (рис. 59) $r_1 = r_2 = 8$ Ом, ЭДС источника E = 16 В, характеристика нелинейного элемента задана уравнением (ток – в амперах, напряжение – в вольтах) $U(I) = 2\ln(I+1)$. Определить ток нелинейного элемента методом простой итерации.

Решение. Запишем уравнения цепи по законам Кирхгофа:

Рис. 58

Разрешим уравнения частично относительно тока *I* :

$$I = \frac{E - 4\ln(I+1)}{r_1} = 2 - 0,5\ln(I+1).$$
(50)

Выберем начальное приближение $I_0 = 2$ А. Применяя алгоритм $x_{k+1} = \varphi(x_k)$, где k = 0, 1, 2... - номер шага итерации, находим по (50) значения тока:

Последние два значения отличаются друг от друга менее чем на 1 %, поэтому итерационный процесс можно закончить.

Пример 28. Методом простой итерации определить напряжение U и ток нелинейного элемента, а также мощность источника ЭДС E = 36 B на схеме (рис. 60). Задана характеристика нелинейного резистора: $I = aU^2$, где $a = 2,5 \cdot 10^{-4}$ A/B²; сопротивления линейных резисторов $r_1 = 30$ OM, $r_2 = 60$ OM, r = 20 OM.

Решение. Запишем уравнения цепи по законам Кирхгофа:

$$I_{1}r_{1} + Ir + U(I) = E;$$

$$I_{1}r_{1} + I_{2}r_{2} = E;$$

$$I_{1} = I_{2} + I.$$

Рис. 60

Разрешим систему относительно напряжения U(I) и подставим численные значения:

$$E = \frac{E - Ir - U}{r_1} (r_1 + r_2) - Ir_2 = \frac{36 - I \cdot 20 - U}{30} (30 + 60) - I \cdot 60 = 36.$$

Разрешим уравнение частично относительно напряжения U(I):

$$U(I) = 24 - 0.01U^2 \equiv \varphi(U).$$
 (51)

Выберем начальное приближение $U_0 = 24$ В. Применяя алгоритм $x_{k+1} = \varphi(x_k)$, где k = 0, 1, 2... - номер шага итерации, находим по (51) значения напряжения:

1)
$$U(I) = 24 - 0,01U^2 = 24 - 0,01 \cdot 576 = 18,24$$
 B;
2) $U(I) = 24 - 0,01U^2 = 24 - 0,01 \cdot 18,24^2 = 24 - 3,33 = 20,67$ B;
3) $U(I) = 24 - 0,01U^2 = 24 - 0,01 \cdot 20,67^2 = 24 - 4,273 = 19,73$ B;
4) $U(I) = 24 - 0,01U^2 = 24 - 0,01 \cdot 19,73^2 = 24 - 3,892 = 20,1$ B;
5) $U(I) = 24 - 0,01U^2 = 24 - 0,01 \cdot 20,1^2 = 24 - 4,04^2 = 19,96$ B.

Итерационный процесс можно закончить, т. к. значения, полученные на четвёртом и пятом шагах, отличаются друг от друга менее чем на 1 %, поэтому ответом можно считать значение U = 20 В.

Тогда ток нелинейного элемента

$$I = aU^2 = 2,5 \cdot 10^{-4} \cdot 400 = 10^3 \cdot 10^{-4} = 0,1 \text{ A}.$$

Чтобы найти мощность источника ЭДС, определим ток I_1 :

$$I_1 = \frac{-U_{12} + E}{r_1} = \frac{-(Ir + U) + E}{r_1} = \frac{-22 + 36}{30} = \frac{14}{30}$$

Тогда мощность источника ЭДС

$$P_E = EI_1 = 36 \cdot \frac{14}{30} = 16,8 \text{ BT}$$

Пример 29. Методом простой итерации определить в цепи (рис. 61) токи *I*₁, *I*₂, *I*₃ и напряжения *U*₁, *U*₂. Характеристики нелинейных резисторов заданы (токи – в амперах, напряжения – в вольтах):

$$I_1 = \sqrt[3]{0,01U_1}; \tag{52}$$

$$I_2 = \sqrt[3]{0,005U_2}; \tag{53}$$

$$U = Ir; (54)$$

сопротивление линейного резистора r = 10 Ом; ЭДС источников: $E_1 = 11 \text{ B}$, $E_2 = 12 \text{ B}$.

Рис. 61

Решение. Запишем уравнения цепи по законам Кирхгофа:

$$U_1(I_1) = E_1 - Ir = 11 - I \cdot 10; \tag{55}$$

$$U_2(I_2) = E_2 - Ir = 12 - I \cdot 10;$$
(56)

$$I = I_1 + I_2, (57)$$

выберем начальные значения напряжений: $U_1 = 11 \text{ B}; \quad U_2 = 12 \text{ B}.$

На первом шаге вычислений, подставив начальные значения U_1, U_2 в (52) и (53), определим токи:

$$I_1 = \sqrt[3]{0,01U_1} = \sqrt[3]{0,01 \cdot 11} = 0,48 \text{ A}; I_2 = \sqrt[3]{0,005U_2} = \sqrt[3]{0,005 \cdot 112} = 0,395 \text{ A}.$$

По (57) и (54) ток $I = I_1 + I_2 = 0,875 \text{ A},$ а напряжение $U = Ir = 0,875 \cdot 10 = 8,75 \text{ B}.$

На втором шаге процесс вычислений повторяется. По (55) и (56) находим напряжения:

$$U_1(I_1) = E_1 - Ir = 11 - I \cdot 10 = 11 - 8,75 = 2,25 \text{ B};$$

 $U_2(I_2) = E_2 - Ir = 12 - 8,75 = 3,25 \text{ B}.$

Затем по (52) и (53) определим токи: *I*₁ = 0,283 A; *I*₂ = 0,254 A, по (57) и (54) *I* = 0,5366 A, *U* = 5,37 B.

Аналогично вычисленные значения токов и напряжений на следующих шагах итерации сведём в таблицу (табл. 3).

Значения, полученные на пятом и шестом шагах итерации, отличаются друг от друга менее чем на 2 %, поэтому можно закончить вычислительный

процесс и считать значения напряжений и токов, полученные на шестом шаге итерации, ответом задачи.

Номер						
приближе-	U_{1k} , B	U_{2k},\mathbf{B}	I_{1k}, A	I_{2k}, A	I_k, A	$U_k = I_k r, \mathbf{B}$
ния <i>k</i>						
0	11	12	0,48	0,395	0,875	8,75
1	2,25	3,25	0,283	0,254	0,5366	5,366
2	5,63	6,63	0,384	0,321	0,7056	7,056
3	3,944	4,944	0,3408	0,2917	0,6325	6,325
4	4,675	5,675	0,3606	0,3054	0,666	6,66
5	4,34	5,34	0,3518	0,2925	0,6511	6,511
6	4,49	5,49	0,3558	0,3017	0,6575	6,575

Таблица 3

Пример 30. Для схемы примера 29 (см. рис. 61) характеристики нелинейных элементов аппроксимированы следующими зависимостями (токи – в амперах, напряжения – в вольтах):

$$U_1 = 20I_1 + 1000I_1^3; (58)$$

$$U_2 = 30I_2 + 2000I_2^3; (59)$$

сопротивление линейного резистора r = 10 Ом; ЭДС источников: $E_1 = 11$ В, $E_2 = 12$ В. Определить все токи I_1, I_2, I_3 и напряжения U_1, U_2 методом Ньютона.

Решение. Запишем уравнения цепи по первому закону Кирхгофа:

$$I = I_1 + I_2, (60)$$

и с учётом (60) – по второму закону Кирхгофа:

$$E_1 - U_1(I_1) - r(I_1 + I_2) \equiv f_1(I_1, I_2) = 0;$$
(61)

$$E_2 - U_2(I_2) - r(I_1 + I_2) \equiv f_2(I_1, I_2) = 0.$$
(62)

Подставим числовые значения:

$$11 - 30I_1 - 1000I_1^3 - 10I_2 \equiv f_1(I_1, I_2) = 0;$$
(63)

$$12 - 40I_2 - 2000I_2^3 - 10I_1 \equiv f_1(I_1, I_2) = 0.$$
(64)

Вычислим производные:

$$\frac{\partial f_1(I_1, I_2)}{\partial I_1} = -30 - 3000I_1^2; \\ \frac{\partial f_1(I_1, I_2)}{\partial I_2} = -10; \\ \frac{\partial f_2(I_1, I_2)}{\partial I_2} = -40 - 6000I_2^2; \\ \frac{\partial f_2(I_1, I_2)}{\partial I_2} = -10.$$

Решение выполним по алгоритму расчёта:

$$x_{k+1} = x_k - \frac{\begin{vmatrix} f_1(x_k, y_k) & \partial f_1(x_k, y_k) / \partial y \\ f_2(x_k, y_k) & \partial f_2(x_k, y_k) / \partial y \end{vmatrix}}{J(x_k, y_k)};$$
(65)

$$y_{k+1} = y_k - \frac{\begin{vmatrix} \partial f_1(x_k, y_k) / \partial x & f_1(x_k, y_k) \\ \partial f_2(x_k, y_k) / \partial x & f_2(x_k, y_k) \end{vmatrix}}{J(x_k, y_k)},$$
(66)

где $J(x_k, y_k)$ – якобиан системы уравнений $f_1(I_1, I_2) = 0;$ $f_2(I_1, I_2) = 0,$ а $x = I_1, y = I_2,$ который определяется по формуле

$$J(x_{k}, y_{k}) = \begin{vmatrix} \partial f_{1}(x_{k}, y_{k}) / \partial x & \partial f_{1}(x_{k}, y_{k}) / \partial y \\ \partial f_{2}(x_{k}, y_{k}) / \partial x & \partial f_{2}(x_{k}, y_{k}) / \partial y \end{vmatrix}.$$
(67)

Сходимость проверяем в процессе итераций.

Выберем начальные приближения по уравнениям (63) и (64), отбросив третий и четвёртый члены: $I_{10} = 0,37$ A; $I_{20} = 0,3$ A.

Вычислим по (63) и (64) функции

$$f_1(I_{10}, I_{20}) = 11 - 30 \cdot I_{10} - 1000 \cdot I_{10}^3 - 10 \cdot I_{20} =$$

= 11 - 30 \cdot 0, 37 - 1000 \cdot (0, 37)^3 - 10 \cdot 0, 3 = -53, 763;

$$f_2(I_{10}, I_{20}) = 12 - 40 \cdot I_{20} - 2000 \cdot I_{20}^3 - 10 \cdot I_{10} =$$

= 12 - 40 \cdot 0, 3 - 2000 \cdot (0,3)^3 - 10 \cdot 0, 37 = -57, 7

и производные

$$\frac{\partial f_1(I_{10}, I_{20})}{\partial I_1} = -30 - 3000I_{10}^2 = -30 - 3000 \cdot (0,37)^2 = -440,7; \\ \frac{\partial f_1(I_{10}, I_{20})}{\partial I_2} = -40 - 6000I_{20}^2 = -40 - 6000 \cdot (0,3)^2 = -580; \\ \frac{\partial f_2(I_{10}, I_{20})}{\partial I_2} = -40 - 6000I_{20}^2 = -40 - 6000 \cdot (0,3)^2 = -580; \\ \frac{\partial f_2(I_{10}, I_{20})}{\partial I_2} = -10.$$

Якобиан (67) системы уравнений (63) и (64):

$$J(I_{10}, I_{20}) = \begin{vmatrix} -440, 7 & -10 \\ -10 & -580 \end{vmatrix} = 2,55 \cdot 10^5.$$

Токи первого приближения по (65), (66):

$$I_{11} = 0,37 - \frac{\begin{vmatrix} -53,76 & -10 \\ -57,7 & -580 \end{vmatrix}}{2,55 \cdot 10^5} = 0,37 - 0,12 = 0,25 \text{ A};$$
$$I_{21} = 0,3 - \frac{\begin{vmatrix} -440,7 & -53,76 \\ -10 & -57,7 \end{vmatrix}}{2,55 \cdot 10^5} = 0,3 - 0,0976 = 0,2024 \text{ A}.$$

Далее процесс вычисления повторяется:

$$f_1(I_{11}, I_{21}) = -14,125; \quad f_2(I_{11}, I_{21}) = -14,5; \quad \partial f_1(I_{11}, I_{21}) / \partial I_1 = -217,5;$$

$$\partial f_1(I_{11}, I_{21}) / \partial I_2 = -10; \quad \partial f_2(I_{11}, I_{21}) / \partial I_2 = -280; \quad \partial f_2(I_1, I_2) / \partial I_2 = -10;$$

$$J(I_{11}, I_{21}) = \begin{vmatrix} -217,13 & -10 \\ -10 & -280 \end{vmatrix} = 6,08 \cdot 10^4.$$

Токи второго приближения:

$$I_{12} = 0,25 - \frac{\begin{vmatrix} -14,13 & -10 \\ -14,5 & -280 \end{vmatrix}}{6,08 \cdot 10^4} = 0,25 - 0,063 = 0,187 \text{ A};$$

$$I_{22} = 0, 2 - \frac{\begin{vmatrix} -217, 5 & -14, 13 \\ -10 & -14, 5 \end{vmatrix}}{6,08 \cdot 10^4} = 0, 2 - 0,0496 = 0,1504 \text{ A}.$$

Следующие шаги итерации выполняются аналогично:

$$\begin{split} f_1\big(I_{13},I_{23}\big) &= -2,65; \ f_2\big(I_{13},I_{23}\big) = -2,62; \ \partial f_1(I_{13},I_{23}) \,/\, \partial I_1 = -134,9; \\ \partial f_1(I_{13},I_{23}) \,/\, \partial I_2 &= -10; \ \partial f_2(I_{13},I_{23}) \,/\, \partial I_2 = -175; \ \partial f_2(I_{13},I_{23}) \,/\, \partial I_2 = -10; \end{split}$$

$$J(I_{13}, I_{23}) = \begin{vmatrix} -134, 9 & -10 \\ -10 & -175 \end{vmatrix} = 2,351 \cdot 10^4.$$

Токи третьего приближения:

$$I_{13} = 0,187 - \frac{\begin{vmatrix} -2,65 & -10 \\ -2,62 & -175 \end{vmatrix}}{2,351 \cdot 10^4} = 0,187 - 0,0186 = 0,1684 \text{ A};$$

$$I_{23} = 0.15 - \frac{\begin{vmatrix} -134.9 & -2.65 \\ -10 & -2.62 \end{vmatrix}}{2.351 \cdot 10^4} = 0.15 - 0.0139 = 0.1361 \text{ A}.$$

И, наконец, последний шаг итерации даёт окончательный результат:

 $f_1(I_{14}, I_{24}) = -0,1875; \quad f_2(I_{14}, I_{24}) = -0,1548; \quad \partial f_1(I_{14}, I_{24}) / \partial I_1 = -115,076; \\ \partial f_1(I_{14}, I_{24}) / \partial I_2 = -10; \quad \partial f_2(I_{14}, I_{24}) / \partial I_2 = -150,976; \quad \partial f_2(I_{14}, I_{24}) / \partial I_2 = -10;$

$$J(I_{14}, I_{24}) = 1,72736 \cdot 10^4.$$

Токи четвёртого приближения: $I_{14} = I_1 = 0,167 \text{ A}$; $I_{24} = I_2 = 0,135 \text{ A}$; по (60) получим I = 0,302 A. Напряжения определим по (58) и (59): $U_1 = 8 \text{ B}$ и $U_2 = 8,99 \text{ B}$.

3.3. Задачи для самостоятельного решения

1. Найти напряжение на нелинейном сопротивлении и ток в цепи (рис. 62) аналитическим методом, если E = 2 В, $R_1 = 0,5$ Ом, а вольт-амперная характеристика нелинейного элемента аппроксимируется выражением

$$I = \alpha U_{\rm H}^2$$

где $\alpha = 1$.

Рис. 62

2. В цепи (рис. 63) $R_1 = 4$ Ом, $R_2 = R_3 = 2$ Ом, I = 6 А, вольт-амперная характеристика нелинейного элемента аппроксимируется зависимостью $U = \alpha \cdot I + \sqrt{b}$, где $\alpha = 1$ Ом, b = 16 В²/А. Определить показания всех приборов.

Рис. 63

3. Электрическая цепь состоит из последовательно соединённых активного сопротивления R = 10 Ом и нелинейного конденсатора. К цепи приложено синусоидальное напряжение $U(t) = 120\sin(\omega t)$ В. Из-за нелинейного конденсатора ток в цепи несинусоидален и может быть выражен рядом

$$i(t) = I_{1m} \sin\left(\omega t + \frac{\pi}{4}\right) + I_{3m} \sin\left(3\omega t + \alpha\right).$$

Определить амплитуду I_{3m} , если амплитуда первой гармоники $I_{1m} = 8$ А.

4. Напряжение $u(t) = 100\sin(\omega t)$ В приложено к нелинейному активному сопротивлению, вольт-амперная характеристика которого задана выражением $i(t) = 0, 3 \cdot u(t) + 0, 04 \cdot u^2(t)$, где u(t) измеряется в вольтах, а i(t) - в миллиамперах. Записать выражение тока и определить среднюю мощность, расходуемую в нелинейном сопротивлении.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ, РЕШЕНИЯ И ОТВЕТЫ К ЗАДАЧАМ

К разделу 1

1. Активная часть схемы (рис. 64) может быть упрощена (рис. 65), т. к. $R_6 = 10 \text{ Ом} - \text{мало}, a R_\kappa = 5 \text{ кОм} - \text{велико}.$

Рис. 65

Тогда неопределённая матрица проводимостей активной части упрощённой схемы (рис. 65) равна

$$\begin{bmatrix} Y_{\text{H.a.}} \end{bmatrix} = \begin{bmatrix} g_{\mathfrak{I}} & 0 & -g_{\mathfrak{I}} \\ -\alpha g_{\mathfrak{I}} & 0 & \alpha g_{\mathfrak{I}} \\ -(1-\alpha)g_{\mathfrak{I}} & 0 & (1-\alpha)g_{\mathfrak{I}} \end{bmatrix}.$$

Неопределённая матрица проводимостей пассивной части схемы (рис. 66):

Рис. 66 $\begin{bmatrix} Y_{\text{н.п.}} \end{bmatrix} = \begin{bmatrix} g_3 & -g_3 & 0 \\ -g_3 & g_3 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$

Неопределённая матрица проводимостей схемы в целом:

$$\begin{bmatrix} Y_{\rm H} \end{bmatrix} = \begin{bmatrix} Y_{\rm H.a.} \end{bmatrix} + \begin{bmatrix} Y_{\rm H.\Pi.} \end{bmatrix}.$$

Так как в первичной схеме по переменному току заземлён узел 2, то определённая матрица проводимостей образуется путём вычеркивания из неопределённой матрицы второй строки и второго столбца:

$$\begin{bmatrix} Y_0 \end{bmatrix} = \begin{bmatrix} g_{\mathfrak{I}} + g_{\mathfrak{I}} & -g_{\mathfrak{I}} \\ (\alpha - 1)g_{\mathfrak{I}} & (1 - \alpha)g_{\mathfrak{I}} \end{bmatrix},$$

а искомая комплексная передаточная функция:

$$K(j\omega) = \frac{A_{21}}{A_{22}} = \frac{(-1)^{1+2} \cdot (-g_{3})}{g_{3} + g_{3}} = 0,91.$$

2.

$$U_{\rm BMX} = \alpha I_{\rm BMX} R_2 \,.$$

Через элемент R_3 проходят токи двух источников: αI_3 и $U_{\rm BX}$, поэтому

$$i_{_{9}} = i_{_{9}} + i_{_{9}} = -\frac{U_{_{BX}}}{R_1 + R_9} + \frac{\alpha I_{_{9}}R_1}{R_1 + R_9},$$

тогда

$$K = \frac{U_{\rm BMX}}{U_{\rm BX}} = -\frac{\alpha R_2}{R_2 + R_1(1-\alpha)},$$

73

или

$$K = -\frac{\alpha g_1 g_2}{g_2 \left(g_1 + g_3 \left(1 - \alpha\right)\right)}.$$

К разделу 2

1. Вдоль линии в любом месте сопротивление одинаково и равно характеристическому:

$$Z_1 = Z_2 = Z_C = \sqrt{\frac{L_0}{C_0}} = \sqrt{\frac{2,88 \cdot 10^{-3}}{3,85 \cdot 10^{-3} \cdot 10^{-6}}} = 10^3 \sqrt{0,75} = 865 \text{ Om}.$$

Напряжение и ток в любой точке линии при согласованной нагрузке определятся из выражений $\dot{U} = \dot{U}_2 e^{\gamma x}$, $\dot{I} = \dot{I}_2 e^{\gamma x}$, где γ – коэффициент распространения волны для любой линии ($\gamma = \sqrt{(R_0 + j\omega L_0)(G_0 + j\omega C_0)} = \alpha + j\beta$).

Для линии без потерь $\alpha = 0;$ $\beta = \omega \sqrt{L_0 C_0};$ $\gamma = j\omega \sqrt{L_0 C_0};$ $\beta = \omega \sqrt{L_0 C_0} = 2\pi f \sqrt{2,88 \cdot 10^{-3} \cdot 3,85 \cdot 10^{-9}} = 2,1 \cdot 10^{-2} \frac{1}{\text{км}}.$

Длина волны за период равна $\lambda = vT = 300000 \cdot \frac{1}{1000} 300$ км, где v - фазо-

вая скорость.

Смещение волны в начале линии относительно конца (или начальная фа-

за):
$$\beta l = \frac{2\pi}{\lambda} \cdot \frac{1}{3} \lambda = \frac{2}{3} \pi$$
, где $\beta = \frac{2\pi}{\lambda}$, а $l = \frac{1}{3} \lambda = 100$ км.

Синусоидальное напряжение и ток в начале линии:

$$U_1(t) = 50\sqrt{2}\sin\left(\omega t + \frac{2}{3}\pi\right) = 71\sin\left(\omega t + \frac{2}{3}\pi\right);$$
$$i_1(t) = \frac{71}{865}\sin\left(\omega t + \frac{2}{3}\pi\right) = 0,082\sin\left(\omega t + \frac{2}{3}\pi\right).$$

График распределения действующих значений напряжения и тока вдоль линии изображён на рис. 67.

Рис. 67

2. Из условия задачи выразим проводимость фазы линии:

$$g_0 = \frac{P_0}{U_{\pi}^2} = \frac{2 \cdot 10^3}{\left(\frac{400 \cdot 10^3}{\sqrt{3}}\right)} = 3,75 \cdot 10^{-8} \text{ Cm/km}$$

Комплексное сопротивление и проводимость линии на километр и фазу:

$$z_0 = r_0 + jx_0 = 0,08 + j0,42 = 0,427e^{j79^\circ}$$
 Ом/км;
 $y_0 = g_0 + jb_0 = 3,75 \cdot 10^{-8} + j2,7 = 2,7 \cdot 10^{-6}e^{-j90^\circ}$ См/км.

Волновое сопротивление линии:

$$Z_{\rm B} = \sqrt{\frac{z_0}{y_0}} = \sqrt{\frac{0.427e^{j79^{\circ}}}{2.7 \cdot 10^{-6}e^{-j90^{\circ}}}} = 397e^{-j5^{\circ}} \text{ Om}.$$

Коэффициент распространения равен

$$\gamma = \sqrt{z_0 y_0} = \sqrt{0.427 e^{j79^\circ} \cdot 2.7 \cdot 10^{-6} e^{-j90^\circ}} = 1.073 \cdot 10^{-3} e^{j84^\circ} = 0.1007 \cdot 10^{-3} + j1.068 \cdot 10^{-3} = \alpha + j\beta,$$

где $\alpha = 0,1007 \cdot 10^{-3} \frac{\text{Hn}}{\text{км}}; \quad \beta = 1,068 \cdot 10^{-3} \frac{\text{рад}}{\text{км}}.$

Длина волны $\lambda = \frac{2\pi}{\beta} = 5880$ км, а фазовая скорость $v = \lambda f = 294000$ км/с.

3. Короткозамкнутая линия имеет входное чисто реактивное сопротивление. Для линии без потерь

$$Z_{\text{BXK3}} = \sqrt{\frac{\dot{U_1}}{\dot{I_1}}} = \sqrt{\frac{j\dot{I_2}z_C\sin\beta l}{\dot{I_2}\cos\beta l}} = jz_C \text{tg}\beta l \text{ Om},$$

т. к. для короткозамкнутой согласованно нагруженной линии $\dot{U} = j\dot{I}_2 z_C \sin\beta x$, $\dot{I} = \dot{I}_2 \cos\beta x$.

Чтобы найти расстояние, необходимо предварительно определить коэффициент β и частоту ω :

$$\beta = \frac{2\pi}{\lambda} = \frac{2 \cdot 3,14}{60} = 0,105 \frac{\text{pag}}{\text{M}},$$
$$\omega = 2\pi f = 2\pi \frac{v}{\lambda} = 2 \cdot 3,14 \frac{3 \cdot 10^8}{60} = 3,14 \cdot 10^7 \frac{1}{60}$$

Расстояние l выразим из равенства $jz_C tg\beta l = j\omega L$. Отсюда найдём

$$tg\beta l = \frac{j\omega L}{jz_C} = \frac{3,14 \cdot 10^7 \cdot 10^{-5}}{500} = 0,625;$$

$$\beta l = \arctan 0,62 = 32^\circ, \quad l = \frac{32^\circ}{\beta \left(\frac{\Gamma \text{pag}}{M}\right)} = \frac{32^\circ}{0,105 \cdot 57,3^\circ} = 5 \text{ M}.$$

4. Активное сопротивление 1 км линии постоянному току

$$R_0 = R_{t=-14^{\circ}C} \cdot (1+F(x)) = 38,4 \text{ Om/km},$$

где $R_{t=-14^{\circ}C} = R_0'(1-\alpha_R)(t^{\circ}-20) = 18,5$ Ом/км, при $\alpha_R = 0,0046$ – температурный коэффициент сопротивления стали; F(x) = 1,078 – поправочный коэффициент, учитывающий увеличение активного сопротивления линии вследствие поверхностного эффекта, где $x = 7,09 \sqrt{\frac{f\mu}{10^4 R_{t=-14^{\circ}C}}} = 5,1.$

Погонная индуктивность

$$L_0 = \left(4\ln\frac{a}{R} + Q(x)\mu\right) \cdot 10^{-4} = 88, 4 \cdot 10^{-4} \ \Gamma_{\rm H/KM},$$

где Q(x) = 0,547 (при x = 5,1) – коэффициент, учитывающий внутреннюю индуктивность линии.

Погонная ёмкость

$$C_0 = 1,05 \frac{1}{36 \cdot \ln \frac{a}{R}} \cdot 10^{-6} = 5,12 \cdot 10^{-9} \, \Phi/\text{KM},$$

где коэффициент 1,05 учитывает влияние изоляторов и соседнего провода на ёмкость линии (на радиочастотах этот коэффициент равен 1).

Погонная проводимость между проводами для сухой погоды

$$G_0 = G' + nf = 0,05 \cdot 10^{-6}$$
 См/км,

где $G' = 0,01 \cdot 10^{-6}$ См/км – проводимость изоляции при сухой погоде (при сырой погоде $G' = 0,5 \cdot 10^{-6}$ См/км); $n = 0,05 \cdot 10^{-9}$ – коэффициент диэлектрических потерь в изоляторах при сухой погоде (при сырой погоде $n = 0,25 \cdot 10^{-9}$).

5. Длина волны
$$\lambda = \frac{2\pi}{\beta} = \frac{6,28}{0,05} = 125,7$$
 км, а фазовая скорость

 $v = \lambda f = 1910 \cdot 125, 7 = 240 \cdot 10^3$ км/с.

6. Коэффициент
$$\beta = \omega \sqrt{L_0 C_0} = 2\pi \cdot 1000 \sqrt{4 \cdot 10^{-3} \cdot 0,004 \cdot 10^{-6}} = 0,025 \frac{\text{рад}}{\text{км}},$$

длина волны $\lambda = \frac{2\pi}{\beta} = \frac{6,28}{0,025} = 251,2$ км, фазовая скорость

 $v = \lambda f = 1000 \cdot 251, 2 = 251 \cdot 10^6$ м/с.

7. $\dot{U}_n = \dot{U}_1 e^{-n\gamma} = U_1 e^{-n\alpha} e^{-jn\beta} = 5e^{-10 \cdot 0.25} e^{-j10 \cdot 0.2} = 0,41 e^{-j2}$ B. 8. $\dot{U}_2 = 0,363 e^{-j6,25}$ MB, $\dot{I}_2 = 0,454 e^{-j6,25}$ MA. 9. $Z_{\rm C} = 4433 e^{-j18,9^\circ}$ OM.

К разделу 3

1. На основании второго закона Кирхгофа в схеме на рис. 45

$$E = IR_1 + U_{_{\rm H}},$$
 откуда $I = \frac{E - U_{_{\rm H}}}{R_1}.$

Но $I = \alpha U_{\rm H}^2$, тогда $\alpha U_{\rm H}^2 = \frac{E - U_{\rm H}}{R_{\rm I}}$ или $\alpha U_{\rm H}^2 + \frac{U_{\rm H}}{R_{\rm I}} - \frac{E}{R_{\rm I}} = 0$, откуда $U_{\rm H} = -\frac{1}{2\alpha R_{\rm I}} \pm \sqrt{\frac{1}{4\alpha^2 R_{\rm I}^2} + \frac{E}{\alpha R_{\rm I}}} = 1,22 \text{ B};$ $I = \alpha U_{\rm H}^2 = 1 \cdot 1,22^2 = 1,5 \text{ A}.$

2. Так как R_2 и R_3 параллельны, то $R = \frac{R_2 R_3}{R_2 + R_3} = 1$ Ом с током I_R . По

первому закону Кирхгофа $\,J=I_R+I$, откуда

$$I^2 - 10I + 9 = 0;$$

 $I = 5 \pm \sqrt{25 - 9} = 5 \pm 4 = 1 \text{ A}.$

Тогда показание вольтметра:

$$U_2 = \alpha I + \sqrt{bI} = 5$$
 B;
 $I_2 = \frac{U_2}{R_2} = 2,5$ A;
 $U_1 = R_1 J = 24$ B.

Проверка решения по первому закону:

$$I_2 + I_3 + I = 2,5 + 2,5 + 1 = 6$$
 A = J.

- **3.** $I_{3m} = 1,92$ A; $I_1^2 R + I_3^2 R = U_1 I_1 \cos \varphi_1$.
- 4. $i(t) = 200 + 30\sin(\omega t) 200\cos(2\omega t)$ MA; P = 1,5 BT.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Батура, М. П. Теория электрических цепей / М. П. Батура, А. П. Кузнецов, А. П. Курулёв ; под общ. ред. А. П. Курулёва. – 3-е изд., перераб. – Минск : Выш. шк., 2015.
- Курулёв, А. П. Теория электрических цепей. Справочник. В 3 ч. Ч. 3 : Четырёхполюсники. Активные цепи. Электрические фильтры. Длинные линии : учеб.-метод. пособие / А. П. Курулёв. – Минск : БГУИР, 2016.
- 3. Применение MATHCAD в общеинженерной практике. Методические указания / В. М. Коваленко [и др.]. Минск : БГУИР, 2010.
- 4. Теория электрических цепей. Методическое пособие к выполнению контрольных заданий / Л. Ю. Шилин [и др.]. Минск : БГУИР, 2010.
- Батюков, С. В. Теория электрических цепей. В 2 ч. Ч. 1 : Линейные электрические цепи : учеб.-метод. пособие / С. В. Батюков, Н. А. Иваницкая, Л. Ю. Шилин. – Минск : БГУИР, 2012.
- Батюков, С. В. Теория электрических цепей. В 2 ч. Ч. 2 : учеб.-метод. пособие / С. В. Батюков, Н. А. Иваницкая, Л. Ю. Шилин. – Минск : БГУИР, 2014.
- Теоретические основы электротехники / Г. И. Атабеков [и др.]; под ред. Г. И. Атабекова. – СПб. : Лань, 2009.
- Теория электрорадиоцепей. Учебные задачи. В 2 ч. Ч. 1 : учеб. пособие / В. Е. Гурский [и др.]. – Минск : МВИЗРУ, 2003.
- 9. Сборник задач по электротехнике и электронике / Ю. В. Бладыко [и др.]; под общ. ред. Ю. В. Бладыко. Минск : Выш. шк., 2013.
- Улахович, Д. А. Основы теории линейных электрических цепей / Д. А. Улахович. – СПб. : БХВ-Петербург, 2012.
- Шебес, М. Р. Задачник по теории электрических цепей / М. Р. Шебес,
 Н. В. Каблукова. М. : Высш. шк., 1990.

Св. план 2022, поз. 1

Учебное издание

ТЕОРИЯ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ. СБОРНИК ЗАДАЧ

В четырёх частях

Часть 4

Курулёв Александр Петрович Свито Игорь Леонтьевич Петровский Иосиф Иосифович

АКТИВНЫЕ ЦЕПИ. ДЛИННЫЕ ЛИНИИ. НЕЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ

Редактор Е. С. Юрец Корректор Е. Н. Батурчик Компьютерная правка, оригинал-макет В. М. Задоля

Подписано в печать 30.09.2022. Формат 60х84 1/16. Бумага офсетная. Гарнитура «Таймс». Отпечатано на ризографе. Усл. печ. л. 4,77. Уч.-изд. л. 5,0. Тираж 100 экз. Заказ 171.

Издатель и полиграфическое исполнение: учреждение образования «Белорусский государственный университет информатики и радиоэлектроники». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий №1/238 от 24.03.2014, №2/113 от 07.04.2014, №3/615 от 07.04.2014. Ул. П. Бровки, 6, 220013, г. Минск