УДК 621.3.049.77-048.24:537.2

НЕЙРОПРОТЕЗИРОВАНИЕ, ТЕХНОЛОГИИ НКИ И ЭКЗОКОРТЕКС

Погирейчик А.И., Рудько Р.В.

Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники» филиал «Минский радиотехнический колледж»,

г. Минск, Республика Беларусь

Научный руководитель: Кусенок Е. Н. – преподаватель высшей категории дисциплин общепрофессионального и специального циклов, председатель ЦК «Микро- и наноэлектроника»

Аннотация. Рассмотрены направления нейропротезирования с использованием технологий, таких как нейрокомпьютерный интерфейс и экзокортекс. В настоящее время данные технологии находятся на стадии разработки и тестирования на животных, однако устройства, созданные с их с применением являются перспективными. Внедрение данного рода технологий даст человеку, имеющему проблемы со здоровьем в области нейрохирургии, возможность жить полноценной жизнью, невзирая на наличие недуга.

Ключевые слова: Нейропротез, нейрокомпьютерный интерфейс, экзокортекс, бионетический протез, ЭМГ-датчик.

Нейрохирургия — раздел хирургии, занимающийся вопросами оперативного лечения <u>заболеваний</u> и травм нервной системы, включая головной мозг, спинной мозг и периферическую нервную систему, а также является основным способом решения проблем человека при потере конечностей или ощущений.

Одним из ведущих направлений нейрохирургии сегодня является нейропротезирование, благодаря использованию микроэлектроники.

Нейропротезирование занимается созданием и имплантацией искусственных устройств для восстановления нарушенных функций нервной системы или сенсорных органов, нейропротезов или нейроимплантов. Примерами из нашей жизни служат такие устройства: кохлеарные нейроимпланты, зрительные протезы и другие. Для увеличения вычислительной мощности мозга используются когнетивные нейропротезы.

Данный вид протезирования позволяет «оживить» культяпки с пальцами, которые раньше служили вершиной инженерного искусства в области медицины. Дает способность не только двигать, но и управлять протезом подсознательно, делая это точно и быстро.

Технологией для осуществления нейропротезирования может стать нейрокомпьютерный интерфейс (НКИ).

Нейрокомпьютерный интерфейс называют также прямым нейронным интерфейсом, это система созданная для обмена информацией между мозгом и электронным устройством. Существуют однонаправленные и двунаправленные интерфейсы. Данная технология осуществима при наличии приемника и передатчика сигнала. Приемником и передатчиком может стать любой аппарат, либо мозг, подключенный к интерфейсу, поэтому с помощью данной технологии можно производить обмен между двумя объектами.

Экзокортекс – это еще одна не менее интересная технология данного направления.

Экзокортекс – внешняя система обработки информации, которая помогает усилить интеллект или выступить нейропротезом для коры головного мозга. Если имплантирование и протезирование ограничивается минимальными размерами микросхем, то здесь мы можем создать компьютер размером со шкаф, подключить к нему мозг удаленно, либо с помощью проводного подключения, и многократно усилить и ускорить его работу, не отнимая при этом ресурсов организма.

Потенциал данной технологии зависит только от силы вычислительной мощности подключаемого устройства.

В качестве примера рассмотрим бионетический протез, с дальнейшей реализацией управления нейронами.

Бионетические протезы состоят из самой конечности, сделанной при помощи такой инновационной технологии как 3D печать. Биопечать происходит с использованием специально разработанных 3D-биопринтеров, подобно тому, как печатают на 3D-принтерах различные детали — послойно, по цифровой трехмерной модели. Картриджи принтеров при этом заправляют сфероидами — конгломератами клеток, которые наносят на специальную подложку — своеобразную биобумагу. Напечатав один слой из клеточных сфероидов, сверху наносят второй, который срастается с первым. Так постепенно получают объемный живой объект — ткань или орган. С помощью данных технологий можно воспроизводить высокоточные трехмерные модели человеческих органов, а также отдельные виды имплантов.

Протез создали, а как им управлять?! Очень важным моментом является изучение нейронов мозга и их использование, например, управление создаваемыми конечностями. На данной стадии развития протезами управляют, используя сокращения мышц, чем занимается специальный ЭМГ-датчик, который считывает электрический потенциал с мышц в момент их сокращения. Далее информация с датчиков, в виде электрического тока, попадает на микроконтроллер и через компьютерные алгоритмы преобразует ток в двигательные команды.

Нейроны также могут управлять конечностями с помощью тока. Если мы научимся подключать нейроны организма к датчику и тем самым считывать этот ток непосредственно с коры головного мозга и, следуя тому же принципу, что и с мышцами, управляя бионетически созданной конечностью, мы получим идеальный протез с минимальной задержкой: человек будет чувствовать бионетическую конечность как свою часть тела.

Микроэлектроника в нейрохирургии может помочь не только с нейропротезами, но и с психическими отклонениями, с помощью отключения, включения и изменения способов взаимодействия нейронов, их угнетения и стимуляции, можно исправлять различные психические недуги.

Сделав прогноз на будущее, можно предположить, что технологии, внедренные в человека, позволят ему с помощью смортфона выполнять необходимые действия, после того как он их просто представит в голове.

Список литературы

- 1. https://biomolecula.ru/articles/chto-takoe-neiroprotezirovanie-eto-vredno
- 2. https://motorica.org/
- $3.\ \underline{https://trends.rbc.ru/trends/industry/5f3550d79a7947722174e839}$
- 4. https://spbu.ru/news-events/novosti/uchenye-razrabotali-tehnologiyu-pechati-na-3d-bioprintere-personalizirovannyh
- 5. https://trends.rbc.ru/trends/industry/60d1999e9a7947b487c44729

UDC 621.3.049.77-048.24:537.2