
VISUAL SHADER PROGRAMMING

Metelitsa D. S., Savenko À. G.
Institute of Information Technologies of the Belarusian State University of Informatics and Radioelectronics

Minsk, Republic of Belarus

E-mail: savenko@bsuir.by

The paper presents a developed software tool for visual programming of shaders, designed to automate the process

of visual description of shaders by technical artists and programmers in order to speed up the prototyping process.

The result of the development will be visually presented immediately. The use of this tool by technical artists will

reduce the interaction between the artist and the programmer in the process of working on a project, since the

software tool does not require programming knowledge or other speci�c skills from the user. The result of shader

programming will be export to GLSL-code, compatible with a large number of game engines.

Introduction

The development of technology leads not only
to the simpli�cation of the work of a modern per-
son, but also to an increase in the quality of the
entertainment sector. Computer games and graph-
ics in cinematography have long been attractive not
only for children, but also for a much wider audi-
ence. The consumer makes more and more demands
on the quality of digital content, the level of image
modeling, the quality of detailing of graphic images.
The modern IT-sphere has long gone beyond the so-
lution of purely mathematical problems.

I. Computer graphics processing

A shader is a program that runs on a graphics
card's graphics processing unit (GPU). The shader
receives input data containing information about
vertex coordinates, polygons, normals, lighting, ver-
tex color, UV (texture coordinates), etc. The task
of the shader is to accept this data, process it, and
output the �nal result [1]. One of the basic con-
cepts of shader programming is the 3D model. It
includes two main items: vertex and texture. Each
vertex has its own coordinates, as well as a nor-
mal. The vertices are combined into polygons using
edges, and the polygons, in turn, form a polygonal
mesh. A texture is a simple image that is posi-
tioned on the model according to UV coordinates.
UV coordinates - the correspondence between the
coordinates on the surface of a three-dimensional
object (X, Y, Z) and the coordinates on the tex-
ture (U, V) (Figure 1). The values of U and V
usually range from 0 to 1. That is, each vertex of
the model has its corresponding coordinates on the
texture. The shader is executed for each individual
vertex/pixel separately. At the same time, it has
information only about the vertex / pixel that it is
currently processing. Those. at the time of writing
the shader, we don't know what color the adjacent
vertex/pixel is. There are pixel and vertex shaders.
A vertex shader is a shader that processes vertex
data and then passes it to the pixel shader. What
data the shader will transmit can be set by the pro-
grammer. The vertex shader is executed before the
pixel shader, and then data is passed from it to the

pixel shader. A pixel shader is a shader that takes
interpolated data from a vertex shader and, based
on it, calculates the color for each individual pixel
[2].

Figure 1 � Correspondence of coordinates (x, y, z) and
(u, v)

The rasterizer divides the triangle into pix-
els, for which the texture coordinates and color
are interpolated. Then, for each fragment, the fol-
lowing operations are performed: pixel ownership
check, texture mapping, applying fog e�ects, al-
pha test, stencil-test, depth test, blending, dither-
ing and boolean operations. After processing all
these methods, the resulting fragment is placed in
the frame bu�er, which is subsequently displayed
on the screen. [3]

II. Software Development

The developed software tool for visual
shader programming allows to reduce the �artist-
programmer� interaction in the process of working
on a project, since the software tool does not require
programming knowledge or other speci�c skills from
the user. The development of the software was car-
ried out in the C++ programming language. Dur-
ing development, the following modules were imple-
mented:

� UI - is responsible for rendering, interaction
with the user interface and the graph built
during the creation of the shader.

� Generator - generates GLSL-code according
to the graph obtained during the use of the
program.

� Render - Renders a circle/square using a base
or generated shader.

107



� Serialization - saves the description of the
graph to a �le, reads the description of the
graph from the �le and creates the necessary
objects based on this description.

� Utils is a set of utility methods and structures.
The scheme of interaction between software mod-
ules is shown in Figure 2.

Figure 2 � Scheme of interaction between modules

The development of shaders is based on math-
ematical algorithms for processing graphs. A shader
graph is a node-based GUI that allows designers and
artists to add and connect nodes to create a shader
without having to write any code. The basic idea is
this: a shader graph is a graphical representation of
a fragment shader (GLSL in this case). Each node
in this graph is a text block in GLSL code. For ex-
ample, the Multiply node takes two �oating point
numbers or vectors and returns the result of their
multiplication. In this case, a plain text format is
used to specify the nodes, instead of describing each
node with a class. This approach has a number of
advantages: nodes can be implemented quickly, and
nodes can be changed or added without recompiling
the engine. The nodes and links of the graph built
during the creation of the shader are data. Struc-
tures are used to describe them. Figure 3 shows the
pseudocode of the developed shader node bypass al-
gorithm.

Figure 3 � Pseudocode of the shader node traversal
algorithm

To generate the code, an �input� point is
needed, starting from which the graph will be by-
passed. The node with which it is connected is de-
termined along the link, and for that node, also
�nd the one with which it is connected (i.e., we
bypass the adjacent vertices of the graph sequen-
tially). Thus, initially we reach the node without
connections at the input, we write its code into a
string, and so on until we return back to the color
output node, and we actually get the code described
by the graph. The interface of the software tool is
similar to well-known and common shader editors.

The workspace is a grid, on the left is the preview
area, at the top is the main menu. Adding nodes
of the shader graph is carried out using the context
menu (right-clicking and selecting the node type)
(Figure 4).

Figure 4 � Adding Nodes

When adding textures to a graph, a dialog
box is used that allows you to load textures from
�les. Each pixel of a geometric object is painted
with the corresponding texture color. The output is
a three-dimensional texture e�ect that is correctly
perceived by the viewer. Figure 5 shows how the
texture is applied to the geometry of the object (in
this case, in the preview mode, the user can use the
mouse to change the angle of rotation of the object
to view all the applied e�ects).

Figure 5 � Applying a Texture to an Object

One of the most important functions of the
software is to export the developed shader to GLSL
code. It is this feature that allows you to combine
shaders created in the program with various custom
engines. Separately, it is worth mentioning that the
use of this PS does not require the presence of the
Internet and the installation of any additional soft-
ware. As a result, a software tool for visual pro-
gramming of shaders was developed, which practi-
cally does not require programming knowledge from
the user and has a convenient minimalistic interface
and a discreet, business-like design style.

III. References

1. Dev Tribe. Fundamentals of shader program-
ming [Electronic resource]. - Access mode:
https://devtribe.ru/p/unity/quick-theory-of-shaders-1.
Access date 09/20/2022.

2. Habr.com. Programming shaders in Unity
[Electronic resource]. - Access mode:
https://habr.com/ru/post/474812. Access date
09/20/2022.

3. GameDev.ru Shader programming in HLSL
[Electronic resource]. - Access mode:
https://gamedev.ru/code/articles/HLSL. Access
date 09/20/2022.

108


	Петухов В. И., Сатинов Е. Е., Журавлёв В. И.Синтез ПИД-регулятора температуры оптоэлектронного модуля с применением элемента Пельтье

