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Abstract

The statement of the problem of the dual control of the regression object
with multidimensional-matrix input and output variables and dynamic program-
ming functional equations for its solution are given. The problem of the dual
stabilization of the regression object at the given level is considered. In order to
solve the problem, the regression function of the object is supposed to be affine
in input variables, and the inner noise is supposed to be Gaussian. The optimal
control action at the last control step is obtained and is proposed to be used at
the arbitrary control step. The obtained control algorithm was programmed for
numerical calculations and tested for a number of objects.

1 Introduction

The problem of the dual control of the multidimensional regression object is formu-
lated as follows [1, 2, 3]. The control system with controlled object O, controller
C, feedback path and driving action gs is considered (Figure 1). The controlled
object O is described at the instant of time s by the probability density function
fYs(ys,Θ, Us), s = 0, 1, 2, ..., n, where Ys = (Yi1,i2,...,ip,s) is the p-dimensional matrix of
the output of the object, Us = (Ui1,i2,...,iq ,s) is the q-dimensional matrix of the input
of the object (control action), Θ = {Θ1,Θ2, ...,Θm} is a set of the parameters of the
controlled object consisting of the random multidimensional matrices Θ1,Θ2, ...,Θm

with known priory joint probability density function fΘ,0(θ). We will call the set Θ a
generalized parameter of the object . It is supposed, that the generalized parameter
takes constant value for all of the instants of time s = 0, 1, 2, ..., n. The driving action
gs is supposed to be known deterministic multidimensional-matrix sequence. The qual-
ity of the functioning of the system at each instant of time s is estimated by a specific
loss function Ws(Ys, gs). A system, for which the total for n+ 1 instants of time total
average risk

R = E(
n∑

s=0

Ws(Ys, gs)) =
n∑

s=0

Rs, Rs = E (Ws(Ys, gs)) , (1)

is minimal, is called optimal system. The control action Us belongs to some permissible
area Ū . The controller C uses all of the past information in the form of observations
u⃗s−1 = (u0, u1, ..., us−1), y⃗s−1 = (y0, y1, ..., ys−1) to determine the control action us at
the instant of time s. The task consists of determining the sequence of the conditional

1



Figure 1: To the statement of the dual control problem

probability density functions fUs(us/u⃗s−1, y⃗s−1), i = 0, 1, 2, ..., n, for which the total
average risk R (1) is minimal.

As it is known [2, 3], the optimal control actions Us are not random and will
be denoted us. In this conditions the controller C will be described by conditional
probability density function fYs(ys, θ, us). We will use the following simplified notation:
fΘ,0(θ) = f0(θ), fYs(ys, θ, us) = f(ys, θ, us).

The optimal control algorithm un, un−1, ..., u0, is determined in pointed inverse order
from the following functional equations:

f ∗
n(u⃗n−1, u

∗
n, y⃗n−1) = min

un∈Ū
ϕn(u⃗n, y⃗n−1), (2)

f ∗
n−m(u⃗n−m−1, u

∗
n−m, y⃗n−m−1) = min

un−m∈Ū
[ϕn−m(u⃗n−m, y⃗n−m−1)+

+
∫
Ω(yn−m)

f ∗
n−m+1(u⃗n−m, u

∗
n−m+1, y⃗n−m)f(yn−m/u⃗n−m, y⃗n−m−1)dΩ], m = 1, 2, ..., n, (3)

where ϕs is determined by expression

ϕs(u⃗s, y⃗s−1) =
∫
Ω(ys)

Ws(ys, gs)f(ys/u⃗s, y⃗s−1)dΩ, s = 0, 1, 2, ..., n, (4)

in which
f(ys/u⃗s, y⃗s−1) =

∫
Ω(θ)

f(ys/θ, us)fs(θ)dΩ, (5)

fs(θ) =
f0(θ)

∏s−1
v=0 f(yv/θ, uv)∫

Ω(θ)

f0(θ)
∏s−1

v=0 f(yv/θ, uv)dΩ
, (6)

and u∗n−m+1 is optimal control action for the instant of time (n−m+ 1).

2 Stabilization of the object at the given level

We will consider the task of reaching the required value of the regression function by
sequential control actions in production operation mode and stabilization it at this
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level. The task is formulated in this case as follows. The controlled object is described
at the s-th instant of time by Gaussian probability density function

fYs(ys/C, us) = N(ψ(C, us), dY ),

where ψ(C, us) is a regression function, dY is a variance-covariance matrix of the inner
noise, C is a generalized parameter of the object. Note, that we denote now the
generalized parameter C instead of Θ in expressions (5), (6). Let us approximate the
regression function by affine function:

ψ(C, us) = C0 +
0,q (C1us) = Ct,0 +

0,q (usCt,1) = ψ(Ct), (7)

where Ck, k = 0, 1, are kq-dimensional random matrices, Ct,k = (Ck)
Bp+kq,kq , Ck =

(Ct,k)
Hp+kq,kq , and Hp+kq,kq, Bp+kq,kq are the transpose substitutions of the type ”back”

and ”onward” respectively [4]. Let us combine the matrices Ck into a one-dimensional
cell C = {Ck}, k = 0, 1. For the task of the object stabilization at the level g we choose
the loss function in the form of W (Ys) = ||Ys − g||2, where || · || is the Euclidean norm
of a multidimensional matrix.

Let the random cell Ct = {Ct,k}, k = 0, 1, ...,m, (m = 1) has the Gaussian priory
probability density function described by the following expression [5]:

f(ct) =MCexp

−1

2

m∑
i=0

m∑
j=0

0,qj
(
0,qi

(
(ct,i − νct,i)d

i,j
ct

)
(ct,j − νct,j)

) .
The calculation of the control actions un, un−1, , ..., u0, is connected with the formu-

lae (2)–(6). The posterior probability density function fn(c) (6) and the probability
density function f(yn/u⃗n, y⃗s−1) (5) are defined with help of the results of the article
[5]. It allowed us to calculate the function ϕn(u⃗n, y⃗n−1) (4) provided the loss function
W (Yn, g) = ||Yn − g||2 and minimize it in accordance with the expression (2). As a
result, we received the optimal control action at the last n-th instant of time. The
calculation of the optimal control actions for instants of time n − 1, n − 2, ..., 0 in
accordance with the expression (3) is connected with irresistible both analytical and
numerical difficulties. However, the control action obtained at the last instant of time
can be used at any instant of time. We will call this control action as the algorithm of
the optimal dual control with passive information storage.

3 Computer simulation

The algorithm of the optimal dual control with passive information storage was realized
programmatically, utilized at a number of objects and showed results acceptable for
practice. For instant, the regression object with vector input and output variables
(p = q = 1) and affine regression function (7) was simulated with following parameters:

c0 =

(
1
2

)
, c1 =

(
1 2
3 4

)
, dY =

(
0.001 0
0 0.001

)
. (8)
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Figure 2: The points of the dual control actions

The prior characteristics of the coefficients of the approximating polynomial (7) and
initial control action u0 are simulated as random.

The sequence of the control actions is showed in the Figure 2 for some variant of
the simulation. The figure illustrates the stabilization of the regression function at the
level g = (9 20). As it follows from the object description (8), the regression function
has the value y = g = (9 20) provided control action u = (2 3). One can sees in the
figure that this value of the control action is reached by 5 iterations.
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