
Comprehensive library of reusable semantically
compatible components of next-generation

intelligent computer systems
Maksim Orlov

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: orlovmassimo@gmail.com

Abstract—The most important stage in the evolution
of any technology is the transition to the component
design based on a constantly augmented library of reusable
components. In the article, an approach to the design of
knowledge-driven systems is considered, focused on the
usage of compatible reusable components, which significantly
reduces the complexity of developing such systems.

Keywords—Component design of intelligent computer
systems; reusable semantically compatible components;
knowledge-driven systems; semantic networks, ontology
design.

I. INTRODUCTION

As the analysis of modern information technologies
shows, along with achievements, they have a number of
serious disadvantages associated with the complexity of
their development and maintenance. In particular, such
disadvantages include the following ones [1], [2], [3]:

• there is no general unified solution to the problem
of the semantic compatibility of computer systems,
which causes a high complexity of creating complex
integrated computer systems;

• there is a variety of semantically equivalent imple-
mentations of problem-solving models, duplication
of knowledge base and user interface components
that differ not in the essence of these components
but in the form of representation of the processed
information;

• the degree of dependence of computer system
architectures on the platforms on which they are
implemented is high, which causes the complexity
of transferring computer systems to new platforms;

• modern information technologies are not oriented
to a wide range of developers of applied computer
systems;

• there is a lack of a unified approach to the alloca-
tion of reusable components and the formation of
libraries of such components, which leads to a high
complexity of reusage and integration of previously
developed components in new computer systems.

Most of the existing systems are created as self-
contained software products that cannot be used as
components of other systems. It is necessary to use either
the whole system or nothing. A small number of systems
support a component-oriented architecture capable of
integrating with other systems [4], [5]. However, their
integration is possible if the same technologies are used
and only when designed by one development team [6].

Repeated re-development of existing technical solutions
is conditioned either by the fact that known technical
solutions are hardly integrated into the system being
developed or by the fact that these technical solutions
are difficult to find [7]. This problem is relevant both
in general in the field of computer systems development
and in the field of knowledge-based systems development,
since in systems of this kind the degree of consistency of
various knowledge types affects the ability of the system
to solve non-trivial problems [8].

To solve these problems, it is proposed to implement
a comprehensive library of reusable semantically compat-
ible components of next-generation intelligent computer
systems.

The development technology should allow components
to be reused, integrated with other components built using
both this and other technologies. It should also be open to
allow using components by different development teams.

Reusage of ready-made components is widely used in
many industries related to the design of various kinds
of systems, since it allows reducing the complexity of
development and its cost (by minimizing the amount
of work due to the absence of the need to develop any
component), improving the quality of the created content,
and reducing professional requirements for computer
system developers [9], [10]. Thus, the transition is made
from programming components or entire systems to their
design based on ready-made components. The usage
of ready-made components assumes that the distributed
component is verified, tested, evaluated, and documented,
and possible limitations are eliminated or specified and

261



known.
The following problems exist in the implementation of

the component approach to the design of next-generation
intelligent computer systems [11]:

• incompatibility of components developed within
different projects due to the lack of unification
in the principles of representing different types of
knowledge within the same knowledge base and,
as a consequence, the lack of unification in the
principles of allocation and specification of reusable
components;

• the inability to automatically integrate components
into the system without manual user intervention;

• testing, verification, and analysis of the components
quality are not carried out; advantages, disadvantages,
limitations of components are not identified;

• the development of standards that ensure the com-
patibility of these components is not being carried
out;

• many components use the language of the developer
for identification (usually English), and it is assumed
that all users will use the same language. However,
for many applications, this is unacceptable – identi-
fiers that are understandable only to the developer
should be hidden from end users, who should be
able to choose the language for the identifiers they
see;

• the lack of tools to search for components that meet
the specified criteria [12].

The purpose of the work is to create conditions for
effective, meaningful, and mass design of next-generation
intelligent computer systems and their components by
creating an environment for the collection and sharing
of components of these systems. Such conditions are
realized by unlimited expansion of constantly evolving
semantically compatible intelligent computer systems and
their components. The spheres where the technology of
component design of semantically compatible intelligent
systems is applied in practice have no limits.

II. ANALYSIS OF EXISTING APPROACHES TO SOLVING
THE PROBLEM

At the moment, there is no comprehensive library of
reusable semantically compatible components of computer
systems in general, aside from intelligent ones. There are
some attempts to create libraries of typical methods for
traditional computer systems, but such libraries do not
solve the above problems.

Traditional solutions include package managers of
programming languages and operating systems, as well as
separate systems and platforms with built-in components
and tools for saving created components.

Library components can be implemented in different
programming languages and can also be located in
different places, which leads to the fact that a tool is

needed in the library to find components and install them
[13].

Modern package managers such as npm, pip, apt,
maven, poetry, and others have the advantage of being able
to resolve conflicts when installing dependent components,
but they do not take into account the semantics of
components but only install components by identifier
[14]. Libraries of such components are only a storage
of components, which does not take into account the
purpose of components, their advantages and disadvan-
tages, scope of application, hierarchy of components, and
other information necessary for the intellectualization of
component design of computer systems. This storages are
realized as some kind of repository, that is not compatible
together [15]. There is no single interacting system to
store, analyze and supply reusable components. Similarly,
a significant disadvantage of the modern approach is the
platform dependency of components. Modern component
libraries are focused only on a specific programming
language, operating system, or platform.

Based on the Modelica language, a large number of
freely available component libraries have been developed,
one of which is the Modelica_StateGraph2 library, which
includes components for modeling discrete events, reac-
tive and hybrid systems using hierarchical state diagrams
[16]. The main disadvantage of Modelica-based systems
is the lack of component compatibility and sufficient
documentation.

Microsoft Power Apps is a set of applications, services,
and connectors, as well as a data platform that provides a
development environment for efficiently creating user
applications for business. The Power Apps platform
provides tools for creating a library of reusable graph-
ical interface components, as well as pre-created text
recognition models (reading visiting cards or cheques)
and an object detection tool that can be connected to
the application being developed [17]. The Power Apps
component library is a set of user-created components
that can be used in any application. The advantage of the
library is that components can configure default properties
that can be flexibly edited in any applications that use
the components. The disadvantage lies in the lack of
semantic compatibility of components, the specification of
components; the problem of the presence of semantically
equivalent components has not been solved; there is no
hierarchy of components and means of searching for these
components.

WebProtege is a multi-user web interface that allows
editing and storing ontologies in the OWL format in a
collaborative environment [18]. This project allows not
only creating new ontologies but also loading existing
ontologies that are stored on the Stanford University
server. The advantage of this project is the automatic
error checking in the process of creating ontology objects.
This project is an example of an attempt to solve the

262



problem of accumulation, systematization, and reusage
of existing solutions, however, the disadvantage of this
solution is the isolation of the ontologies being developed.
Each developed component has its own hierarchy of
concepts, an approach to the allocation of classes and
entities that depend on the developers of these ontologies,
since within this approach, there is no universal model of
knowledge representation, as well as formal specification
of components represented in the form of ontologies
[19]. Consequently, there is a problem of their semantic
incompatibility, which, in turn, leads to the impossibility
of reusage of the developed ontologies in the knowledge
bases design. This fact is confirmed by the presence on
the Stanford University server of a variety of different
ontologies on the same topics [20].

The IACPaaS platform is designed to support the
development, management, and remote usage of applied
and instrumental multi-agent cloud services (primarily
intelligent) and their components for various subject
domains [21]. The platform provides access to:

• application users (specialists in various subject
domains) – to applied services;

• developers of applied and instrumental services and
their components – to instrumental services;

• intelligent services managers and management ser-
vices.

The IACPaaS platform supports:
• the basic technology for the development of applied

and specialized instrumental (intelligent) services
using the basic instrumental services of the platform
that support this technology;

• a variety of specialized technologies for the de-
velopment of applied and specialized instrumental
(intelligent) services, using specialized platform tool
services that support these technologies.

The IACPaaS platform also does not contain the
means for a unified representation of the components
of intelligent computer systems and the means for their
specification and automatic integration.

III. PROPOSED APPROACH

Within this article, it is proposed to take an OSTIS
Technology [22] as a basis, the principles of which
make it possible to implement a library of semantically
compatible components of intelligent computer systems
and, accordingly, provide the ability to quickly create
knowledge-driven systems using ready-made compatible
components.

The systems developed on the basis of the OSTIS Tech-
nology are called ostis-systems. The OSTIS Technology is
based on a universal method of semantic representation
(encoding) of information in the memory of intelligent
computer systems, called an SC-code. Texts of the SC-
code (sc-texts) are unified semantic networks with a
basic set-theoretic interpretation, which allows solving the

problem of compatibility of various knowledge types. The
elements of such semantic networks are called sc-elements
(sc-nodes and sc-connectors, which, in turn, depending on
orientation, can be sc-arcs or sc-edges). The Alphabet of
the SC-code consists of five main elements, on the basis
of which SC-code constructions of any complexity are
built, including more specific types of sc-elements (for
example, new concepts). The memory that stores SC-code
constructions is called semantic memory, or sc-memory.

Within the technology, several universal variants of
visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant).

Within this article, fragments of structured texts in the
SCn code [23] will often be used, which are simulta-
neously fragments of the source texts of the knowledge
base, understandable to both human and machine. This
allows making the text more structured and formalized,
while maintaining its readability. The symbol “:=” in
such texts indicates alternative (synonymous) names of
the described entity, revealing in more detail certain of
its features.

The basis of the knowledge base within the OSTIS
Technology is a hierarchical system of subject domains
and ontologies. Based on this, in order to solve the
problems set within this article, it is proposed to develop
the following system of subject domains and ontologies:

Subject domain of reusable ostis-systems components
⇒ private subject domain*:

Subject domain and ontology of a comprehensive
library of reusable semantically compatible
ostis-systems components

Subject domain and ontology of a comprehensive
library of reusable semantically compatible
ostis-systems components
⇒ private subject domain*:

• Subject domain and ontology of the
library of reusable components of
ostis-systems knowledge bases

• Subject domain and ontology of the
library of reusable components of
ostis-systems problem solvers

• Subject domain and ontology of the
library of reusable components of
ostis-systems interfaces

In the subject domain and ontology of the library of
reusable semantically compatible ostis-systems compo-
nents, the concepts and principles most common to all
child subject domains are described, which are valid for
any library of reusable components.

The idea of a component library is not new, but the
semantic potency of the OSTIS Library is significantly

263



higher than for analogues due to the fact that the vast
majority of library components are knowledge base com-
ponents represented in a unified knowledge representation
language (SC-code). Thus, the OSTIS Library provides
a high level of semantic compatibility of components,
which leads to a high level of semantic compatibility of
ostis-systems using the library of reusable ostis-systems
components.

Next, we will consider in more detail the fragments of
sc-models of the specified subject domain and ontology.

IV. CONCEPT OF A LIBRARY OF REUSABLE
OSTIS-SYSTEMS COMPONENTS

The basis for the implementation of the component
approach within the OSTIS Technology is the OSTIS
Library. The OSTIS Metasystem is focused on the de-
velopment and practical implementation of methods and
tools for component design of semantically compatible
intelligent systems, which provides an opportunity to
quickly create intelligent systems for various purposes.
The OSTIS Metasystem includes the OSTIS Metasystem
Library.

library of reusable ostis-systems components
⇒ abbreviation*:

[library of ostis-systems components]
:= [library of reusable OSTIS components]
∋ typical example ′:

OSTIS Library
:= [Library of reusable ostis-systems compo-

nents as part of the OSTIS Metasystem]
:= [OSTIS Metasystem Library]

⇐ combination*:
{{{• library of typical subsystems of

ostis-systems
• library of templates for typical

ostis-systems components
• library of ostis-platforms
• library of reusable knowledge base

components
• library of reusable problem solver

components
• library of reusable user interface

components
}}}

The constantly expanding OSTIS Library significantly
reduces the time for the development of new intelligent
computer systems. The library of ostis-systems allows
getting rid of duplication of semantically equivalent
information components as well as from the variety of
forms for the technical implementation of the problem-
solving models used.

Currently, a large number of knowledge bases in a vari-
ety of subject domains have been developed. However, in

most cases, each knowledge base is developed separately
and independently of the others in the absence of a single
unified formal basis for the knowledge representation, as
well as common principles for the formation of concept
systems for the described subject domain. In this regard,
the developed bases are, as a rule, incompatible with
each other and are not suitable for reusage. A component-
based approach to the development of intelligent computer
systems, implemented in the form of a library of reusable
ostis-systems components, allows solving the described
problems. In the field of development of problem solvers,
there are also a large number of specific implementations,
however, problems of compatibility of different solvers
when solving a single problem are hardly considered.
Hypothetically, the existence of a universal problem
solver combining all known problem-solving methods and
ways is possible. However, the usage of such a solver
for applied purposes is not advisable. Thus, the most
acceptable option is to create a library of compatible
components, from which a solver that meets the necessary
requirements can later be compiled.

Functionality of the library of reusable ostis-systems
components:

• Storing reusable ostis-systems components and their
specifications. At the same time, some of the compo-
nents specified within the library may be physically
stored in another place due to the peculiarities of
their technical implementation (for example, the
source texts of the ostis-platform may be physically
stored in a separate repository but be specified as a
component in the corresponding library). In this case,
the specification of the component within the library
has to contain the description of (1) the location of
the component and (2) the scenario of its automatic
installation in a child ostis-system.

• Viewing available components and their specifi-
cations, as well as searching for components by
fragments of their specification.

• Storing information about which of the library
components and which version are used (have been
downloaded) in particular consumer ostis-systems.
This is necessary at least to take into account the
demand for a particular component, to assess its
importance and popularity.

• Systematization of reusable ostis-systems compo-
nents.

• Providing versioning of reusable ostis-systems com-
ponents.

• Searching for dependencies between reusable com-
ponents within the library of components.

• Ensuring automatic updating of components bor-
rowed into the child ostis-systems. This function can
be turned on and off upon request of the developers
of the child ostis-system. Simultaneous updating of
the same components in all systems using it should

264



not lead to inconsistency between these systems
in any context. This requirement may be quite
complicated but is essential for the operation of
the OSTIS Ecosystem.

library of reusable ostis-systems components
⇒ generalized decomposition*:

{{{• knowledge base of the library of reusable
ostis-systems components

• problem solver of the library of reusable
ostis-systems components

• interface of the library of reusable
ostis-systems components

}}}

A knowledge base of the library of reusable ostis-
systems components is a hierarchy of reusable ostis-
systems components and their specifications, as well
as a system of concepts necessary for the specification,
installation, and search of components.

A problem solver of the library of reusable ostis-
systems components implements the functionality of the
ostis-systems library described above.

An interface of the ostis-systems library provides access
to reusable components and features of the ostis-systems
library for the user and other systems. The interface
allows the manager of reusable ostis-systems components,
which is part of a child ostis-system, to connect to
the library of reusable ostis-systems components and
use its functionality, that is, for example, to access
the specification of components and install selected
components in a child ostis-system, get information about
the available versions of the component, its dependencies,
etc.

V. PLACE OF THE OSTIS LIBRARY IN THE
ARCHITECTURE OF THE OSTIS ECOSYSTEM

Developers of any ostis-system can include a library
in its structure, which will allow them to accumulate
and distribute the results of their activities among other
participants of the OSTIS Ecosystem in the form of
reusable components. The decision to include the com-
ponent in the library is made by the expert community
of developers responsible for the quality of this library.
Component verification can be automated. Within the
OSTIS Ecosystem, there are many libraries of reusable
ostis-systems components that are subsystems of the
corresponding maternal ostis-systems. The main library of
reusable ostis-systems components is the OSTIS Metasys-
tem Library. The OSTIS Metasystem acts as a maternal
system for all ostis-systems being developed, since it
contains all the basic components (Figure 1). The maternal
system is responsible for some class of components
and is a SAD for this class, contains methods for the
development of such components, their classification,

detailed explanations for all subclasses of components.
Thus, a hierarchy of maternal ostis-systems is formed. The
maternal ostis-system, in turn, can be a child ostis-system
for some other ostis-system, borrowing components from
the library that is part of this other ostis-system.

Publishing a component to a certified library requires
additional effort from the developer to ensure the quality
of the component specification and description of its
relationship with other components, however, provides
the following benefits of using the OSTIS Ecosystem
infrastructure.

• Downloads of components registered in a certified
library are captured and tracked. the quality and
importance of the component is automatically proven
by the number of its downloads, this is visible to all
members of the community. Thus, the rating of the
developer is formed, it becomes more popular and
in demand. Registering a component in the library
is automatically a “quality mark”, showing other
developers that the component has been verified and
the risk of problems when using it is significantly
reduced.

• Creating proprietary components that can be dis-
tributed under a paid license.

ostis-system
⊃ maternal ostis-system

:= [ostis-system that includes a library of
reusable components]

∋ OSTIS Metasystem
⊃ child ostis-system

:= [ostis-system that contains a component
borrowed from a library of reusable com-
ponents]

Integration of reusable ostis-systems components is
reduced to bonding key nodes by identifiers and eliminat-
ing possible duplications and contradictions based on the
specification of the component and its content. Integration
of any ostis-systems components occurs automatically,
without the intervention of the developer. This is achieved
through the usage of the SC-code and its advantages, the
unification of the specifications of reusable components,
and the thorough selection of components in libraries by
the expert community responsible for this library.

VI. CONCEPT OF A REUSABLE OSTIS-SYSTEMS
COMPONENT

A reusable ostis-systems component is understood as a
component of some ostis-system that can be used within
another ostis-system. This is a component of the ostis-
system that can be used in other ostis-systems (child
ostis-systems) and contains all those and only those sc-
elements that are necessary for the functioning of the
component in the child ostis-system. In other words, it is

265



Figure 1. Architecture of the OSTIS Ecosystem

a component of some maternal ostis-system, which can
be used in some child ostis-system. Reusable components
must have a unified specification and hierarchy to support
compatibility with other components. The compatibility
of reusable components leads the system to a new quality,
to an additional expansion of the set of problems to be
solved when integrating components.

reusable ostis-systems component
:= [reusable OSTIS component]
:= frequently used sc-identifier*:

[reusable component]
⊂ ostis-system component

The ostis-system component is an integral part of
the ostis-system, which contains all those (and only
those) sc-elements that are necessary for its func-
tioning in the ostis-system. The difference between
a reusable ostis-systems component and an ostis-
system component is that a reusable component has
a specification sufficient to install this component in a
child ostis-system. The specification is part in the knowl-
edge base of the library of reusable components for the
corresponding maternal ostis-system.

Necessary requirements for reusable ostis-systems
components:

• there is a technical possibility to embed a reusable
component into a child ostis-system;

• completeness of a reusable component: the compo-
nent has to fully perform its functions, correspond
to its purpose;

• coherence of a reusable component: a component

should logically perform only one task from the
subject domain for which it is intended. A reusable
component has to perform its functions in the most
general way so that the range of possible systems
in which it can be embedded is the widest;

• compatibility of a reusable component: the com-
ponent should strive to increase the level of
negotiability of the ostis-systems in which it is
embedded and have an ability to be integrated
automatically into other systems;

• self-sufficiency of the components (or groups of
components) of the technology, i.e. their ability to
function separately from other components without
losing the reasonableness of their usage.

VII. CLASSIFICATION OF REUSABLE OSTIS-SYSTEMS
COMPONENTS

Let us consider the classification of reusable ostis-
systems components. The class of a reusable ostis-
systems component is an important part of the component
specification, which allows better understanding of the
purpose and application scope of this component, as well
as the class of a reusable component is the most important
criterion for searching for components in the ostis-systems
library. The main feature of the classification of reusable
components is the attribute of the subject domain to which
the component belongs. Here the structure can be quite
extensive in accordance with the hierarchy of areas of
human activity. The following list is not full, it is a short
example.

reusable ostis-systems component

266



⊃ reusable component of subject domain of
medicine

⊃ reusable component of subject domain of
mathematics

⊃ reusable component of subject domain of
economics

⊃ reusable component of subject domain of art
⊃ reusable component of subject domain of

computer systems
⊃ reusable component of subject domain of plants

reusable ostis-systems component
⇒ subdividing*:

{{{• reusable knowledge base component
⊃ semantic neighborhood
⊃ subject domain and ontology
⊃ knowledge base
⊃ template of a typical ostis-systems

component
∋ Template for the subject

domain description
∋ Template for the relation

description
• reusable problem solver component

⊃ atomic knowledge processing
agent

⊃ knowledge processing program
• reusable interface component

⊃ reusable user interface component
for display

⊃ interactive reusable user interface
component

}}}

For knowledge base components, the most important
feature of the classification of reusable components is
the type of knowledge used. For the components of the
problem solver, there is a problem-solving model, for
interface components – the type of interface in accordance
with the classification of user interface components.

reusable ostis-systems component
⇒ subdividing*:

{{{• atomic reusable ostis-systems component
∋ semantic neighborhood of set
∋ sc-agent of set power calculating

• non-atomic reusable ostis-systems
component
∋ abstract sc-agent of logical

inference
∋ knowledge base of geometry

}}}

The typology of the ostis-systems components by
atomicity. An atomic reusable ostis-systems component is

a component that in the current state of the ostis-systems
library is considered as indivisible, that is, does not
contain other components in its structure. The belonging
of a reusable ostis-systems component to a class of
atomic components depends on its specification and on
the currently existing components in the library. A non-
atomic reusable component in the current state of the
ostis-systems library contains other atomic or non-atomic
components in its structure and does not depend on its
parts. Without any part of the non-atomic component,
its purpose restricts. In general, an atomic component
can become non-atomic if it is decided to allocate some
of its parts as a separate component. All of the above,
however, does not mean that even in the case of its
platform independence, the atomic component is always
stored in sc-memory as a formed sc-structure.

For example, a platform-independent implementation
of the sc-agent will always be represented by a set of
scp programs but will be an atomic reusable OSTIS
component if none of these programs will be of interest
as an independent component. In general, a non-atomic
component can become atomic if it is decided for some
reason to exclude all its parts from consideration as
separate components. It should be noted that a non-atomic
component does not necessarily have to be composed
entirely of other components – it may also include parts
that are not independent components. For example, an
agent implemented in the SCP language, which is a
non-atomic reusable component, may include both scp
programs that may (or may not) be reusable components,
as well as an agent scp program that does not make sense
as a reusable component.

reusable ostis-systems component
⇒ subdividing*:

{{{• dependent reusable ostis-systems
component
∋ chemistry visualizer
∋ subject domain of artificial neural

networks
• independent reusable ostis-systems

component
∋ semantic neighborhood of set
∋ interface button component

}}}

The typology of ostis-systems components by depen-
dency. A dependent reusable ostis-systems component
depends on at least one other component of the ostis-
systems library, i.e. it cannot be embedded in a child
ostis-system without the components on which it depends.
The independent component does not depend on any other
component of the ostis-systems library.

reusable ostis-systems component

267



⇒ subdividing*:
{{{• reusable ostis-systems component stored

as external files
• reusable ostis-systems component stored

as an sc-structure
}}}

reusable ostis-systems component stored as external
files
⇒ subdividing*:

{{{• reusable ostis-systems component stored
as source files

• reusable ostis-systems component stored
as compiled files

}}}

The typology of ostis-systems components by their
storage method. At this stage of development of the OSTIS
Technology, it is more convenient to store components in
the form of source texts.

reusable ostis-systems component
⇒ subdividing*:

{{{• platform-dependent reusable ostis-systems
component
⊃ ostis-platform
⊃ abstract sc-agent that is not

implemented in the SCP Language
• platform-independent reusable

ostis-systems component
⊃ reusable knowledge base

component
⊃ SCP agent
⊃ SCP program

}}}

The typology of ostis-systems components depending on
the ostis-platform. A platform-dependent reusable ostis-
systems component is a component partially or fully
implemented with the help of any third-party means
from the point of view of the OSTIS Technology. The
disadvantage of such components is that the integration
of such components into intelligent systems may be
accompanied by additional difficulties depending on the
specific means of implementing the component. As a
potential advantage of platform-dependent reusable ostis-
systems components, it is possible to allocate their, as a
rule, higher performance due to their implementation at
a level closer to the platform. In general, a platform-
dependent reusable ostis-systems component can be
supplied either as a set of source codes or compiled.
The process of integrating a platform-dependent reusable
ostis-systems component into a child system developed
using the OSTIS Technology strongly depends on the
implementation technologies of this component and in

each case may consist of various stages. Each platform-
dependent reusable ostis-systems component must have
the appropriate detailed, correct, and understandable
instructions for its installation and implementation in
the child system. A platform-independent reusable ostis-
systems component is a component that is entirely
represented in the SC-code. In the case of a non-atomic
reusable component, this means that all the simpler
components that are part of it must also be platform-
independent reusable ostis-systems components. The
process of integrating a platform-dependent reusable
ostis-systems component into a child system developed
using the OSTIS Technology is significantly simplified
by using a common unified formal basis for knowledge
representation and processing.

The most valuable are platform-independent reusable
ostis-systems components.

reusable ostis-systems component
⇒ subdividing*:

{{{• dynamically installed reusable
ostis-systems component
:= [reusable component, the installa-

tion of which does not require a
restart of the system]

• reusable component, the installation of
which requires a restart of the system

}}}

dynamically installed reusable ostis-systems component
⇒ decomposition*:

{{{• reusable component stored as compiled
files

• reusable knowledge base component
}}}

The typology of ostis-systems components according
to the dynamics of their installation. The process of
integrating components of different types at different
stages of the ostis-systems life cycle can be different. The
most valuable components are those that can be integrated
into a working system without stopping its functioning.
Some systems, especially control ones, cannot be stopped,
but components need to be installed and updated.

reusable ostis-systems component
⊃ typical subsystem of ostis-systems

∋ Environment for the collective
development of ostis-systems knowledge
bases

∋ Visual web-oriented editor of sc.g-texts

For storing reusable ostis-systems components, some
storage is required. Such storage can be either an ostis-
system or a third-party storage, for example, a cloud

268



service. In addition to the external files of the component,
its specification must be located in the storage.

VIII. SPECIFICATION OF REUSABLE OSTIS-SYSTEMS
COMPONENTS

Each reusable ostis-systems component must be speci-
fied within the library. The specification includes basic
knowledge about the component, which allows ensuring
the building of a complete hierarchy of components
and their dependencies, and also provides unrestricted
integration of components into child ostis-systems. Both
relations and component classes are used for component
specification.

In order for a reusable component to be accepted into
the library, it is required to specify it using a relation,
necessary for installation, that specifies a reusable ostis-
systems component. At the same time, a relation, optional
for installation, that specifies a reusable ostis-systems
component helps to better understand the essence of the
component, simplifies the search, but is not necessary for
the installation of the component in the ostis-system.

relation specifying a reusable ostis-systems
component^
:= [relation that is used in the specification of a

reusable ostis-systems component]
⇒ subdividing*:

{{{• relation, necessary for installation, that
specifies the reusable ostis-systems
component
∋ installation method*
∋ storage address*
∋ component dependencies*

• relation, optional for installation, that
specifies a reusable ostis-systems
component
∋ related component*
∋ change history*
∋ authors*
∋ note*
∋ explanation*
∋ identifier*
∋ key sc-element*
∋ purpose*

}}}

The installation method allows the user to install the
component manually and the component manager –
automatically. Two main methods of installing reusable
components are the method of installing a dynamically in-
stalled reusable ostis-systems component and the method
of installing a reusable component, when installing which
the system requires a restart. With a dynamic installation,
it is only necessary to download the component – and it
immediately works in the system.

Figure 2. The method of installation of a dynamically installed reusable
ostis-systems component

When installing a component, during the installation
of which the system requires a restart, it is necessary
to translate it into the system memory in addition to
downloading the component.

The connectives of the storage address* relation link
a reusable component stored as external files and a
file containing the URL of a reusable ostis-systems
component. Such a file can be a file containing the URL
on GitHub of a reusable ostis-systems component, a file
containing the URL on Google Drive of a reusable ostis-
systems component, a file containing the URL on Docker
Hub of a reusable ostis-systems component, and others.

The connectives of the component dependencies*
relation link a reusable component and a set of compo-
nents, without which the installed component cannot be
embedded in a child ostis-system. This components must
be successfully installed before the installation of the
dependent component.

In some cases, it may turn out that in order to use
one reusable OSTIS component, it is advisable or even
necessary to additionally use several other reusable OSTIS

269



Figure 3. The method of installing a dynamically installed reusable
component, during the installation of which the system requires a restart

components. For example, it may be advisable to use
the appropriate interface command combined with any
sc-agent of information search, which is represented
by a separate component and will allow the user to
ask a question for the specified sc-agent through the
system interface. In such cases, the related component*
relation is used to link components. The presence of such
links makes it possible to eliminate possible problems of
incomplete knowledge and skills in the child system, due
to which any of the components may not perform their
functions. The connectives of the related component*
relation link reusable ostis-systems components that it
is advisable to use in a child system together. Each
such connective can additionally be provided with a sc-
comment or sc-explanation reflecting the essence of the
specified dependency.

IX. MANAGER OF REUSABLE OSTIS-SYSTEMS
COMPONENTS

The manager of reusable ostis-systems components is
a subsystem of the ostis-system, through which interac-
tion with the library of ostis-systems components takes
place. The manager of reusable ostis-systems components
should be implemented using as few dependencies (ostis-
platform components dependencies as well as external
dependencies) as possible to provide the maximum level
of configurability of developed ostis-sistems.

manager of reusable ostis-systems components
:= frequently used sc-identifier*:

Figure 4. An example of a specification of a reusable ostis-systems
component

270



[manager of reusable components]
:= frequently used sc-identifier*:

[manager of components]
⇒ generalized decomposition*:

{{{• knowledge base of the manager of
reusable ostis-systems components

• problem solver of the manager of
reusable ostis-systems components

• interface of the manager of reusable
ostis-systems components

}}}

The knowledge base of the manager of components
contains all the knowledge that is necessary to install
a reusable component in a child ostis-system. Such
knowledge includes knowledge about the specification of
reusable components, methods of installing components,
knowledge about the ostis-systems libraries with which
interaction takes place. The problem solver of the manager
of components interacts with the ostis-systems library
and allows installing and integrating reusable components
into a child ostis-system, as well as searching, updating,
publishing, and deleting components. The interface of
the manager of reusable components provides convenient
usage of the manager of components for the user and
other systems.

The functionality of the manager of ostis-systems
components is as follows:

• Search for reusable ostis-systems components.
The set of possible search criteria corresponds to the
specification of reusable components. Such criteria
can be component classes, its authors, identifier,
fragment of a note, purpose, belonging to a subject
domain, type of component knowledge, and others.

• Installation of a reusable ostis-systems compo-
nent. The installation of a reusable component
takes place regardless of the typology, installation
method, and location of the component. A necessary
condition for the possibility of installing a reusable
component is the availability of the specification
of a reusable ostis-systems component. Before
installing a reusable component in a child system, it
is necessary to resolve all dependencies by installing
dependent components. After successful installation
of the component, an information construction is
generated in the knowledge base of the child system,
indicating the fact of installing the component into
the system using the installed components* relation.
After installing the component in the ostis-system,
contradictions may arise in the knowledge base,
which are eliminated by means of detecting and
analyzing errors and contradictions in the ostis-
system knowledge base.

• Publishing a reusable ostis-systems component
to the ostis-systems library. When a component
is published to the ostis-systems library, verification

takes place based on the component specification. It
is also possible to update the version of the published
component by the community of its developers.

• Updating an installed reusable ostis-systems com-
ponent.

• Deleting an installed reusable component. As in
the case of installation, after deleting a reusable
component from the ostis-system, the fact of deleting
the component is established in the knowledge base
of the system. This information is an important part
of the operational history of the ostis-system.

• Adding and deleting libraries tracked by the
ostis-system. The manager of components contains
information about a variety of sources for installing
components, the list of which can be supplemented
manually. By default, the manager of components
tracks the OSTIS Metasystem Library, however, it
is possible to create and add extra ostis-systems
libraries.

X. CONCLUSION

In the article, the implementation of a library of
reusable compatible components of intelligent computer
systems based on the OSTIS Technology is proposed,
which makes it possible to use a component-based
approach to the design of intelligent systems and reduce
the time and complexity of system development, as well
as increase the level of compatibility of systems using
reusable ostis-systems components.

The classification and specification of reusable ostis-
systems components are clarified, the concepts of a
components library and manager are considered.

An example for the specification of a component that
can be found in the library of compatible ostis-systems
components is given. The architecture of the ecosystem
of intelligent computer systems is considered from the
point of view of using a library of reusable components.

The results obtained will improve the design efficiency
of intelligent systems and automation tools for the
development of such systems, as well as provide an
opportunity not only for the developer but also for the
intelligent system to automatically supplement the system
with new knowledge and skills.

REFERENCES

[1] Natalia N. Skeeter, Natalia V. Ketko, Aleksey B. Simonov, Aleksey
G. Gagarin, Irina Tislenkova, “Artificial intelligence: Problems and
prospects of development,” Artificial Intelligence: Anthropogenic
Nature vs. Social Origin, 2020.

[2] Olena Yara, Anatoliy Brazheyev, Liudmyla Golovko, Liudmyla
Golovko, Viktoriia Bashkatova, “Legal regulation of the use
of artificial intelligence: Problems and development prospects,”
European Journal of Sustainable Development, 2021.

[3] Golenkov, V. V., “Methodological problems of the current state of
works in the field of artificial intelligence,” Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems], pp. 17–24, 2021.

[4] Iyengar, Ashvin, Component Design for Relational Databases, 12
2021, pp. 143–156.

271



[5] Ford, Brian and Schiano-Phan, Rosa and Vallejo, Juan, Component
Design, 11 2019, pp. 160–174.

[6] Donatis, Antonio, OOP in Component Design, 01 2006.
[7] Nazia Bibi, Tauseef Rana , Ayesha Maqbool, Tamim Alkhalifah,

Wazir Zada Khan, Ali Kashif Bashir, Yousaf Bin Zikria, “Reusable
component retrieval: A semantic search approach for low resource
languages,” ACM Transactions on Asian and Low-Resource
Language Information Processing, 2022.

[8] Bukhari, S. A. C., Krauthammer, M. & Baker, C. J. O., “An
architecture for biomedical image discovery, interoperability and
reusability based on semantic enrichment,” SWAT4LS(Citeseer,
2014), 2014.

[9] Ryndin, Nikita and Sapegin, Sergey, “Component design of
the complex software systems, based on solutions’ multivariant
synthesis,” International Journal of Engineering Trends and
Technology, vol. 69, pp. 280–286, 12 2021.

[10] L. Cafaro, R. Francese, C. Palumbo, M. Risi, and G. Tortora, “An
agile process supporting software reuse: An industrial experience,”
in Proceedings of the 33rd Annual ACM Symposium on Applied
Computing, 2018, pp. 1544–1551.

[11] Shunkevich D.V., Davydenko I.T., Koronchik D.N., Zukov
I.I., Parkalov A.V., “Support tools knowledge-based systems
component design,” Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], pp. 79–88, 2015. [Online]. Available:
http://proc.ostis.net/proc/Proceedings%20OSTIS-2015.pdf

[12] X. Qu, X. Feng, Y. Zhang, S. Wang, L. Sun, P. Hua, and Y. Wang,
“Research on component retrieval and matching methods,” in 2022
International Seminar on Computer Science and Engineering
Technology (SCSET), 2022, pp. 358–362.

[13] T. Diamantopoulos and A. L. Symeonidis, “Mining source code
for component reuse,” in Mining Software Engineering Data for
Software Reuse. Springer, 2020, pp. 133–174.

[14] Blähser, Jannik and Göller, Tim and Böhmer, Matthias, “Thine
— approach for a fault tolerant distributed packet manager based
on hypercore protocol,” in 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC), 2021, pp.
1778–1782.

[15] V. A. Buregio, E. S. Almeida, D. Lucredio, and S. L. Meira,
“Specification, design and implementation of a reuse repository,”
in 31st Annual International Computer Software and Applications
Conference (COMPSAC 2007), vol. 1, 2007, pp. 579–582.

[16] Fritzson, Peter, Modelica Library Overview, 2015, pp. 909–975.
[17] Prakash Pradhan, Sanjaya, Working with Microsoft Power Apps.

Berkeley, CA: Apress, 2022, pp. 79–131. [Online]. Available:
https://doi.org/10.1007/978-1-4842-8600-5_3

[18] Memduhoğlu, Abdulkadir and Basaraner, Melih, “Possible con-
tributions of spatial semantic methods and technologies to multi-
representation spatial database paradigm,” International Journal
of Engineering and Geosciences, vol. 3, pp. 108–118, 10 2018.

[19] M. Atzeni and M. Atzori, “Codeontology: Rdf-ization of source
code,” in International Semantic Web Conference. Springer, 2017,
pp. 20–28.

[20] B. Antunes, P. Gomes, and N. Seco, “Srs: A software reuse system
based on the semantic web,” in 3rd International Workshop on
Semantic Web Enabled Software Engineering (SWESE), 2007.

[21] V. Gribova,L. Fedorischev, P. Moskalenko, V. Timchenko, “Inter-
action of cloud services with external software and its implemen-
tation on the IACPaaS platform,” pp. 1–11, 2021.

[22] Vladimir Golenkov and Natalia Guliakina and Daniil Shunkevich,
Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
V. Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[23] (2022, September) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

Комплексная библиотека многократно
используемых семантически совместимых

компонентов интеллектуальных
компьютерных систем нового поколения

Орлов М.К.
Важнейшим этапом эволюции любой технологии является

переход к компонентному проектированию на основе посто-
янно пополняемый библиотеки многократно используемых
компонентов. В работе рассматривается подход к проекти-
рованию систем, управляемых знаниями, ориентированный
на использование совместимых многократно используемых
компонентов, что существенно сокращает трудоемкость раз-
работки таких систем.

Received 30.10.2022

272


	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\013-420. Basic.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\20_OSTIS22_ID07_Orlov_ComprLoRSCCoN_GICS.pdf


