
Non-procedural problem-solving models in
next-generation intelligent computer systems

Maksim Orlov, Anastasia Vasilevskaya
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: orlovmassimo@gmail.com, vnastyap@gmail.com

Abstract—In the article, an approach to the design
of problem solvers of intelligent systems based on non-
procedural models is considered. The developed approach
makes it possible to integrate any problem-solving models,
including the principles of logical inference, to solve
problems based on a general formal model.

Keywords—Knowledge-driven systems; logical problem-
solving models; logical graph languages; production
problem-solving models; functional problem-solving models.

I. INTRODUCTION

Currently, the usage of intelligent systems in a variety
of fields is becoming increasingly relevant. Modern
Artificial Intelligence technology is a whole family of
various private technologies focused on the developing
and maintening various types of components of intelligent
computer systems that implement a variety of models
for information representation and processing, different
problem-solving models focused on the development of
various classes of intelligent computer systems [1].

Modern intelligent computer systems consist of a
knowledge base, a problem solver, and an intelligent
interface. As the analysis of such systems shows, problem
solvers do not have the proper level of semantic com-
patibility, are not able to fully coordinate their actions
when solving complex problems and, in principle, solve
problems in conditions when the problems are insuffi-
ciently formalized and the algorithm for solving them is
unknown in advance [2]. In this article, an approach to
the implementation of non-procedural problem-solving
models in next-generation intelligent computer systems,
based on ensuring compatibility between different models,
is considered. The main attention is paid to logical
problem-solving models, as an example of a procedural
model, by analogy of which an approach to the design
of any other models is implemented.

Logic solves the problems of proving the truth of
propositions, argumentation of a proposition, the problem
of generating and refuting hypotheses. When solving
problems using logical models, it is possible to clearly
trace the process of “reasoning” of the system, to obtain
a protocol for solving the problem, which is an important

knowledge. Obtaining new logic formulas based on
existing ones is carried out by logical inference.

Frequently, in modern logical inference systems, com-
ponents such as the rule base, working memory, and
the logical inference mechanism are distinguished. These
components have a strict boundary and are sometimes
implemented in different programming languages and
using different models of knowledge representation. This
approach significantly limits the compatibility level for
the subsystems of these computer systems and the level
of compatibility of computer systems with each other as
a whole.

Another problem of the current state of systems
in which logical inference is implemented is that the
semantics of the processed information is not taken into
account. The system receives a certain set of logical rules,
inference rules, and factographic statements as input and
applies these rules on a working memory model (on a set
of facts). Considering the semantics of the processed
information allows not only to increase efficiency in
solving problems using logical models but also to increase
the level of negotiability and compatibility of computer
systems.

Likewise, no problem solvers have been developed
that are able to combine different models for solving
complex problems and ensure compatibility between them.
Compatibility must be ensured not only within the same
model, for example, compatibility of different logics, but
also between different problem-solving models. When
developing such problem solvers, it is important to notice
not only the differences between different approaches,
different logical models, but also their similarities.

The purpose of this work is not to develop a new
problem-solving method or a new logic class, as well
as to negate existing achievements in this field. The
purpose of the work is to develop a model that allows
integrating any problem-solving models and principles
of logical inference for solving problems in intelligent
systems based on a general formal model. In order to
use any new or existing model, it is necessary to bring
it to the formalism proposed in this article, which will
allow integrating and synchronizing it with compatible

161



components already available in the corresponding library.

II. ANALYSIS OF EXISTING APPROACHES TO SOLVING
THE PROBLEM

At the moment, many logical inference systems have
been implemented [3], using the well-known rules of
direct conclusion and resolution in various logic types,
however, the problems of compatibility of the systems
described above and collective problem solving using
various problem-solving models remain relevant.

Each problem-solving model is defined by a language
that provides a representation of a certain class of problem-
solving methods in the memory of a cybernetic system
and by an interpreter of these methods that defines the
operational semantics of the specified language. It is
necessary to consider the languages that can be used
to set a logical problem-solving model. Such languages
are Rule Interchange Format (RIF), Semantic Web Rule
Language (SWRL), SHACL Rules, and Notation3 Rules,
which are used in Semantic Web [4], [5]. In Figure 1, an
example of rules in the SWRL language is represented.

Figure 1. Writing rules in the SWRL language

The described languages do not provide for the possi-
bility of representing formulas in various logic types, so it
is impossible to solve the described problems with them.
Rule languages are specially built to infer conclusions.
The syntax and semantics of ontology languages and rule
languages are quite different, so the question arises how
to combine them. There are several approaches, such as
homogeneous and hybrid ones.

In a homogeneous approach, ontologies and rules are
used on the same rights, i.e. a common language is
created in which the same predicates are used both
to express ontological statements and formulate rules
(in particular, rules can be used to define classes and
features of ontology). In this case, the problem of
compatibility actually disappears, since the syntax and
the interpretations become common – they only need to
be extended to the rules, which is performed in a fairly
standard way. The disadvantage of this approach is that
combining different means in one language complicates
its implementation greatly, and a homogeneous approach
is often inapplicable, since ontologies and rule systems
can be built independently by different specialists.

In a hybrid approach, the usual predicates, which
are defined by rules (they can participate both in the
conditions of rules and in their conclusions), and the
predicates of ontologies, which are used as constraints
in the conditions of rules, are strictly distinguished. The
inference occurs through the interaction of individually
implemented (existing) inference programs for rules and
ontologies. The hybrid approach separates the builders
of ontologies and rule systems from each other but also
requires additional constraints to guarantee the solvability
of the main problems for combinations of ontologies and
rule systems (with solvable problems).

Semantic networks are convenient for representing
knowledge of any kind, including logical formulas. The
usage of semantic networks for deductive inference was re-
searched by Quillian in 1966 [6]. He formally represented
the semantics of natural language words and gave several
examples of the inference technique. The deductive
capabilities of Quillian were actually determined by the
concept of “subclass” and the “modification” relation.
The concept can be defined in terms of a more general
concept and with the help of a modifying property, which
is an “attribute – attribute value” combination.

An important technique used in semantic networks is
a hierarchy, or classification system. In accordance with
this technique, objects related to the subject domain are
classified into a number of categories or classes based on
their common properties. Using a hierarchical system in
an extensive knowledge base of an intelligent system, it
is especially convenient to use logical inference, since the
inference that is valid for general concepts will be valid for
particular concepts in relation to this general one. Despite
the local success of such work, the systems remained
static, non-extensible, and unable to be compatible.

Another important technique used in logical inference
on semantic networks is knowledge localization [7]. The
essence of localization is the possibility to identify an
area of the semantic network in which subject knowledge
are located (for example, constants, instances of classes),
suitable for usage in logical inference premises. Taking
into account the hierarchy of the knowledge base, it
becomes most convenient to allocate a universe of
reasoning, exceeding the scope of which is not advisable.
Thus, the range of values of variables contained in the
premises of logical formulas is limited, which allows
reducing significantly the cost of searching in large
knowledge bases.

Fuzzy inference systems [8], [9] are quite popular at
the moment, whose semantic compatibility was also not
considered.

III. PROPOSED APPROACH

As part of this work, it is proposed to use an OSTIS
Technology [10] as a basis, the principles of which make
it possible to implement not just logical, production,

162



functional, and other problem-solving models but also to
ensure their compatibility, to implement a problem solver
capable of combining various problem-solving models,
including various logic types, to lay the foundation for
creating interoperable computer systems.

The systems developed on the basis of the OSTIS Tech-
nology are called ostis-systems. The OSTIS Technology
is based on a universal way of semantic representation
of information in the memory of intelligent computer
systems, called an SC-code. SC-code texts are unified
semantic networks with a basic set-theoretic interpretation.
The elements of such semantic networks are called sc-
elements (sc-nodes and sc-connectors, which, in turn,
depending on orientation, can be sc-arcs or sc-edges). The
Alphabet of the SC-code consists of five main elements,
on the basis of which SC-code constructions of any
complexity are built, including more specific types of sc-
elements (for example, new concepts). The memory that
stores SC-code constructions is called semantic memory,
or sc-memory.

The main advantage of using the SC-code for formaliza-
tion and processing of logical formulas is that it provides
compatibility between different problem-solving models.
Any ostis-system has a problem solver, and there are
problems for which the algorithm for solving them is
unknown in advance and for which there is no ready-made
method. The system must think and determine which
agents can be involved in solving a particular problem.

The SC-code allows describing the relations between
concepts of any form and complexity, which makes it
a suitable option for using logical inference in next-
generation intelligent computer systems, as well as using
the hierarchy technique due to the ontological approach
underlying the ostis-systems knowledge bases.

Within the technology, several universal variants of
visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant).

Within this article, fragments of structured texts in
the SCn and SCg codes [11] will often be used, which
are simultaneously fragments of the source texts of
the knowledge base, understandable to both human and
machine. This allows making the text more structured
and formalized, while maintaining its readability.

The basis of the knowledge base within the OSTIS
Technology is a hierarchical system of subject domains
and ontologies. Based on this, in order to solve the above
problems, it is proposed to implement the following
hierarchy of integrated subject domains:

Subject domain of logical formulas, propositions, and
formal theories
⇒ private subject domain*:

• Subject domain of logical languages
• Subject domain of logical inference

Subject domain of logical languages
⇒ private subject domain*:

Subject domain of the propositional logic
language

Subject domain of the propositional logic language
⇒ private subject domain*:

Subject domain of the predicate logic language

Subject domain of logical problem-solving models
⇐ private subject domain*:

• Subject domain of logical languages
• Subject domain of logical inference

Inheritance of subject domains allows using the de-
scribed logics and their components in the description
of any logics. The basic concepts allow developers of
an intelligent system to add new logics. To implement a
specific logical problem-solving model, it is necessary to
create a subject domain that will be private in relation
to the Subject domain of logical problem-solving models
and the subject domain of some logical language, for
example, the propositional logic language, the predicate
logic language, the language of fuzzy logic, and others.

The Subject domain of logical formulas, propositions,
and formal theories defines the denotational semantics of
logical formulas, propositions, and formal theories and
contains a formal specification of concepts necessary for
the formation of logical formulas and propositions of any
logics, including traditional, fuzzy, plausible, temporal,
default logics, and any others. Logical formulas and
propositions are interpreted using the concepts described
in the Subject domain of logical problem-solving models,
which includes a model and implementation of abstract
agents necessary for solving logical problems. This
subject domain includes the specification of concepts
such as logical inference, inference rules, equivalent
transformations, and axiom schemes.

Next, we will consider in more detail the fragments of
sc-models of these subject domains and ontologies.

IV. LOGICAL GRAPH SCL LANGUAGE

Modern logic studies formal languages that serve to
express logical reasoning. A logical language is a formal
language intended to reproduce logical forms of natural
language contexts, as well as to express logical laws and
ways of correct reasoning in logical theories constructed
in a given language. Logic does not study how knowledge
was obtained – it allows representing knowledge, as
well as deducing new knowledge from existing one
(that is, deducing new formulas of the same logic from
existing logic formulas), and establishing the accuracy of
reasoning.

The SCL Language is a sublanguage of the SC-code
for writing logical statements [12]. The SCL Language is
a graph-type logical language used by ostis-systems. The

163



texts of the SCL language are homogeneous semantic
networks that are texts of the SC language. The alphabet
of the SCL language is not allocated separately, since the
alphabet of the SC-code is used, in which any statements,
phenomena, regularities, programs, and any other knowl-
edge can be described. The SCL language allows writing
the texts of the propositional logic language, predicate
logic language, and any other logical languages. The SC-
code is a metalanguage for both the SCL language and for
itself, that is, it allows describing the meaning of formulas
written in SCL. Many formal languages, unlike SC, are
not extensive enough to be a metalanguage for themselves.
The specificity of the SCL language allocation is that the
texts of this language can be processed in a special way.
Logical inference inference can be made over propositions
of the SL language.

One of the important features of SCL is its ability
to represent predicate logic language texts taking into
account the semantics of these texts (propositions). The
SCL language is naturally oriented to work in the formal
system of the predicate logic language. The SC language
allows writing any relations and correspondences in a
graph representation. The predicate value from a certain
set of sc-variables corresponds to the result of a search
operation on the template of some sc-construction (found
or not found), which includes sc-constants and/or sc-
variables with the corresponding configuration of relations
between them. An approach based on the SCL language
for the representation of formulas provides an opportunity
to write generality and existence quantifiers not explicitly
(this is not prohibited but is superfluous). The existence
quantifier is an “embedded” concept in the sense that if
some sc-element is included in some sc-structure, then the
corresponding concept exists in this sc-structure. Thus,
the existence quantifier is imposed automatically (unless
another quantifier is explicitly imposed) on those sc-
variables that are included in atomic logical formulas. The
generality quantifier is imposed by default (unless another
quantifier is explicitly imposed) on variables included in
the equivalence and implication connectives in accordance
with the denotational semantics of logical languages.

Such features simplify logical inference in the predicate
logic in the SCL language, since this eliminates the need
to bring the proposition into the Skolem normal form
due to built-in quantifiers and the need for unification
procedures conditioned by the search operation of the
sc-construction by template, in which the necessary
substitutions of variables occur.

V. EXAMPLES OF FORMALIZING STATEMENTS IN THE
SCL LANGUAGE

A proposition is understood as a certain structure
(which includes sc-constants from some subject domain
and/or sc-variables) or a logical connective that can be
interpreted as true or false within any subject domain.

proposition
⇒ subdividing*:

{{{• atomic proposition
• non-atomic proposition

}}}
⇒ subdividing*:

{{{• factographic proposition
• logical formula

}}}

logical formula
⇒ subdividing*:

{{{• atomic logical formula
• non-atomic logical formula

}}}

The truth of a proposition is set by indicating whether
the sign of this proposition belongs to a formal theory
corresponding to a given subject domain. The falsity of
a proposition is set by specifying the belonging of the
negation sign of this proposition to this formal theory.

In Figure 2, an example of a logical formula that is
true within one formal theory and false within another is
represented.

Figure 2. An example of a logical formula that is true within one
formal theory and false within another

An atomic logical formula of the SCL language is
interpreted as the set of all characters of some sc-text
(sc-structure) containing at least one variable sc-element.
Variables are free and bind subject variables that are

164



intensional objects and are associated (have a value) with
some constant element from the knowledge base. Figure
3 shows an example of an atomic logical formula that
contains information about a triangle whose sine of the
inner angle is equal to one.

Figure 3. An example of formilizing an atomic logical formula

Each non-atomic logical formula of the SCL language
is interpreted as a connective belonging to a relation
corresponding to the type of non-atomic formula (con-
junction, disjunction, negation, implication, equivalence,
existence, universality) and linking the signs of the
formulas included in the specified non-atomic formula.
An example of a non-atomic logical formula is shown
in Figure 4. This formula contains information that any
triangle is either an acute triangle, or an obtuse triangle,
or a right triangle.

Figure 4. An example of formilizing a non-atomic logical formula

A statement is a semantic neighborhood of some
logical formula, which includes the full text of this
logical formula, as well as the fact that this logical
formula belongs to some formal theory. The sign of a
logical formula, the semantic neighborhood of which
is a statement, is the main key sc-element within this
statement. The signs of the concepts of the corresponding

subject domain, which are part of any subformula of the
specified logical formula, will be the key sc-elements
within this statement.

The full text of some logical formula includes:
• the sign of this logical formula;
• signs of all its subformulas;
• elements of all logical formulas whose signs are

included in this structure;
• all pairs of belonging that connect logical formulas

whose signs are included in this structure with their
components.

In Figure 5, there is an example of a statement that
shows that the corresponding angles at the intersection
of parallel lines of the secant are equal within the formal
theory of Euclidean geometry.

Figure 5. An example of the statement

A definition is a statement, the main key sc-element
of which is a connective of equivalence that uniquely
defines some concept based on other concepts. For the

165



same concept within one formal theory, there may be
several equivalence statements* that uniquely define some
concept based on others, however, only one such statement
within this formal theory can be marked as a definition.
The remaining equivalence statements* can be interpreted
as explanations of this concept.

In Figure 6, an example of a definition is given, which
shows that a rhombus is a quadrilateral with all sides
equal within the formal theory of Euclidean geometry.

Figure 6. An example of a definition

VI. MACHINE OF THE SCL LOGICAL INFERENCE

An inference in a formal system is any sequence of
formulas, so that any formula is either an axiom of this
formal system, or a direct conclusion of any previous
formulas according to one of the inference rules. The idea
of deducibility is central to logic: in any formal axiomatic
theory, a ‘theorem’ is a formula that is deduced from
axioms. The correctness of conclusions is introduced and
verified completely formally, without any connection with
the truth of the premises included in it, i.e. exclusively
from the point of view of the reasoning structure. From
a practical point of view, the most important property
of such formal correctness of reasoning is as follows: if
we have managed to prove, using the methods of formal
logic, the accuracy of the reasoning, and we know from
experience that all the premises used are true, then we
can be sure of the truth of the conclusion [13]. The truth
of the premises used is set by the state of the knowledge
base.

Various logical approaches allow designing problem
solvers for intelligent systems in different subject domains,
taking into account their specifics. The Knowledge pro-
cessing machine for each specific system largely depends
on the purpose of this system, the set of problems
to be solved, the subject domain, and other factors.
Some operations required in one subject domain will
be redundant in another. For example, in a system that
solves problems in geometry, chemistry, and other natural
sciences, the usage of deductive inference methods will be
reasonable, since the solution of problems in such subject
domains is based only on reliable rules. In systems of
medical diagnostics, for example, a situation constantly
arises when a diagnosis can only be made with a certain
degree of confidence and there can be no absolutely
reliable answer to the question posed. In this regard,
there is a need to use different knowledge processing
machines in different systems, while the composition and
capabilities of the knowledge processing machine in a
particular system is determined not only directly by the
developer but requires consultations with experts in this
subject domain. Nevertheless, the basis for all logic types
is classical logic, and its most general methods extend to
other logics with some modifications, clarifications, and
limitations.

Let us give a brief classification of existing logical
problem-solving methods:

• Classical deductive inference. Classical deductive
inference is the most popular in the building of auto-
matic problem solvers, since it always gives a reliable
result. Deductive inference includes direct, reverse,
and logical inference (the resolution principle, the
Erbran procedure, etc.) [13], all kinds of syllogisms
[14], etc. The main problem of deductive inference
is the impossibility of its usage in a number of cases
when there is no reliable knowledge.

• Inductive inference. Inductive inference provides
an opportunity to use various assumptions in the
decision process, which makes it convenient for
usage in poorly and difficultly formalizable subject
domains, for example, in the building of medical
diagnostic systems. The principles of inductive
inference are discussed in detail in [15], [16].

• Abductive inference. In artificial intelligence, an
abductive inference is usually understood as the
inference of the best abductive explanation, i.e.
the explanation of some event that has become
unexpected for the system. Moreover, the “best”
explanation is such one that satisfies special criteria
determined depending on the problem being solved
and the formalization used. The abductive inference
is discussed in detail in [17], [18].

• Fuzzy logic. The theory of fuzzy sets and, accord-
ingly, fuzzy logic is also used in systems related to
difficultly formalizable subject domains [19], [20].

166



The theory of fuzzy logic is discussed in more detail
in [9] and other publications.

• Default logic. The default logic is used, among other
things, in order to optimize the reasoning process,
supplementing the process of reliable inference
with probabilistic assumptions in cases where the
probability of error is extremely small. The default
logic is discussed in more detail in the articles [21],
[22].

• Temporal logic. The usage of temporal logic is very
relevant for non-static subject domains in which
the truth of a statement changes over time, which
significantly affects the course of solving a problem
[23], [24]. It should be noted that the knowledge
representation language used in this work provides
all the necessary capabilities for describing such
dynamic subject domains.

A formal clarification of various information processing
models in graphodynamic associative memory is abstract
graphodynamic associative machines. The models of
information processing, in particular, include models
of parallel processing of knowledge corresponding to
different logics and strategies for solving problems [25].

The advantage of using graphodynamic associative
machines as a tool for creating next-generation intelligent
computer systems is conditioned by the following aspects:

• the associative method of access to processed infor-
mation is implemented in a fundamentally simpler
way;

• it is much easier to maintain the open character of
both the machines themselves and the formal models
implemented on them;

• they are a convenient basis for the integration of
various information processing models.

The other advantages of graphodynamic associative
machines are conditioned by the advantages of graph
texts and graph languages.

An abstract scl-machine is a logical inference ma-
chine, which belongs to the class of abstract sc-machines
[12]. The internal language of the scl-machine is the
above-mentioned SCL logical graph language, its oper-
ations correspond to the rules of logical inference. The
family of specialized abstract graphodynamic knowledge
processing machines is a formal clarification of the
operational semantics of the above-mentioned specialized
graph knowledge representation languages, each of which
corresponds to one or more abstract machines.

These abstract machines correspond to different
problem-solving models, different logics, different models
of plausible reasoning. An agent from a family of logical
inference agents can represent any inference rule that
can be applied to solve a logical problem. In addition,
agents are needed to perform equivalent transformations
of a logical formula (for example, to write an equivalence
formula as a conjunction of two disjunctions) and other

agents that help apply inference rules on a set of logic
language formulas.

Abstract scl-machine
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for applying the
inference rule

• Abstract sc-agent of equivalent
transformations of a logical formula

• Abstract sc-agent of direct logical
inference

• Abstract sc-agent of reverse logical
inference

}}}

The purpose of an Abstract sc-agent for applying the
inference rule is to apply a given inference rule with
given logical formulas. This sc-agent is activated when an
initiated action belonging to the class action of applying
the inference rule appears in the sc-memory. After the
sc-agent checks the initiation condition, the process of
applying the inference rule is performed, which consists
in checking whether there are structures in the sc-memory
that correspond to the condition for applying this rule
and generating sc-constructions in accordance with the
applied rule. The Agent of applying the inference rule is
often used in the operation of direct inference and reverse
inference agents, as well as others. An example of an
inference rule can be the Modus ponens rule shown in
Figure 7.

Figure 7. Formalization of the Modus ponens inference rule

The purpose of an Abstract sc-agent of equivalent
transformations of a logical formula is to apply certain
rules that bring the logical formula into a certain form.
This sc-agent is activated when an initiated action be-
longing to the class action of equivalent transformation
of a logical formula appears in the sc-memory. After
the sc-agent checks the initiation condition, the process

167



of converting the formula from one form to another is
performed, while no new knowledge is generated in the
sc-memory from the point of view of the subject domain
under consideration. The response of this agent is a set
of formulas that are equivalent in meaning but different
in form of representation. As such forms, for example,
conjunctive normal form or disjunctive normal form can
serve. The Agent of equivalent transformation is often
called during the operation of the agent for applying the
inference rule, since logical formulas are not always in the
form that is available for applying a particular inference
rule but can be brought to the required form.

The purpose of an Abstract sc-agent of direct logical
inference is to generate new knowledge based on some
logical statements. This sc-agent is activated when an
initiated action belonging to the class direct logical
inference action appears in sc-memory. After the sc-
agent checks the initiation condition, the process of direct
logical inference is performed, which consists of cyclic
operations of applying inference rules, generating new
knowledge in sc-memory, and checking some condition,
for example, the appearance of sc-elements from the target
sc-structure in memory [26]. The input arguments of such
an agent are the target structure, a set of formulas that are
used during the inference by the agent of applying the
inference rules, a set of inference rules, an input structure,
and an output structure. As a result of performing the
action by the agent of logical inference, an sc-structure
is formed in the sc-memory, which is a decision tree.
This tree consists of a sequence of nodes representing the
applied rules that led to the appearance of the required
knowledge in the sc-memory. Such a tree may be empty
if the required structure could not be generated during
logical inference. Figure 8 shows an example of the
specification of the agent of direct logical inference.

The purpose of an Abstract sc-agent of reverse logical
inference is to test hypotheses. Some hypotheses can be
refuted, but by extracting the reasons why the hypothesis
is refuted, it is possible to change the premise of the
hypothesis so as to create a new hypothesis that can later
become a useful theorem. This sc-agent is activated when
an initiated action belonging to the class reverse logical
inference action appears in sc-memory. After the sc-agent
checks the initiation condition, the process of reverse
logical inference is performed, which is similar to the
process of direct logical inference, except that the search
for rules is based not on the premises of formulas but on
their conclusions [26]. The response of this agent will
also be an inference tree showing which rules can be
used to prove or refute the hypothesis put forward.

Abstract sc-agent of equivalent transformations of a
logical formula
⇒ decomposition of an abstract sc-agent*:

{{{

Figure 8. The specification of the agent of direct logical inference

• Abstract sc-agent of transforming a
formula into a conjunctive normal form

• Abstract sc-agent of transforming a
formula into a disjunctive normal form

• Abstract sc-agent for applying de
Morgan’s laws

• Abstract sc-agent of equivalent
transformations of a logical formula by
definition

• Abstract sc-agent of applying the
negation properties of logical formulas

• Abstract sc-agent of applying the law of
idempotence of logical formulas

• Abstract sc-agent of applying the law of
commutativity of logical formulas

• Abstract sc-agent of applying the law of
associativity of logical formulas

• Abstract sc-agent of applying the law of
absorption of logical formulas

• Abstract sc-agent of applying the law of
contradiction of logical formulas

• Abstract sc-agent of applying the law of
double negation of logical formulas

• Abstract sc-agent of applying the law of
splitting logical formulas

}}}

168



VII. EXAMPLE OF FORMAL INFERENCE IN THE SCL
LANGUAGE

With the help of resolution rules, it is possible to
effectively prove the formulas of the propositional logic
language. Any formula is equivalent to some formula in
conjunctive normal form, and therefore it is sometimes
convenient to apply the resolution rule. Using equivalent
transformations, it is also possible to obtain formulas
suitable for using the resolution rule. Figure 9 shows the
formalization of the resolution rule.

Figure 9. Formalization of the resolution rule

If any two disjuncts C1 and C2 have a pair of formulas
A and ¬A, then a new disjunct can be formed from the
remaining parts of the original disjuncts.

Let us give an example of the inference of a formula
from a set of premises using the resolution principle [13].

If team A wins a football game, then city A’ triumphs,
and if team B wins, then city B’ will triumph. Either
only city A’ or only city B’ can win. However, if team
A wins, then city B’ does not triumph, and if team B
wins, then city A’ does not triumph. Consequently, city
B’ triumphs if and only if city A’ does not triumph. The
goal is to make sure that city B’ triumphs if and only if
city A’ does not triumph.

Proving the inference of a formula is equivalent to
proving the inconsistency of the inference of the negation
for this formula. When using the resolution rule, this is
especially convenient to use.

The formalization of logical formulas corresponding
to the example is shown in Figure 10. Each non-atomic
formula in the figure belongs to some formal theory, that
is, is considered true.

Figure 10. Formalization of rules for applying the resolution rule

Structure A is an atomic logical formula that contains
the information “team A won”, structure A’ represents
the formula denoting the triumph of city A’. Accordingly,
the same is true for structures B and B’. First of all,
it is necessary to bring the implication into conjunctive
normal form according to the formula shown in Figure
11 and the equivalence by definition.

Figure 11. Formalization of rules for applying the resolution rule

169



Let us also apply negation to the formula that needs
to be derived (equivalence). As a result, we obtain the
following formulas (Fig. 12).

Figure 12. Formalization of rules for applying the resolution rule after
conversion to conjunctive normal form

Further, applying the resolution rule for transformed
formulas, we obtain an empty disjunction, which indicates
the inconsistency of the set of formulas and proves the
equivalence formula that city B’ triumphs if and only if
city A’ does not triumph (Fig. 13 and 14).

VIII. INTEGRATION OF PRODUCTION AND
FUNCTIONAL PROBLEM-SOLVING MODELS

Frequently, all the knowledge that a human operates
with and that can be stored in the memory of an intelligent
system can be divided into declarative and procedural.
Declarative knowledge contains information about some
objects, their features, properties, characteristics, the inclu-
sion of objects among themselves in certain relationships,
situations in which objects participate, the phenomena

Figure 13. Application of the resolution rule

170



Figure 14. The result of applying the resolution principle

of reality, and its basic laws. Procedural knowledge
allows the system to learn how to use certain declarative
knowledge.

One of the ways to represent knowledge is a logical
approach. Generalized knowledge about reality can be
represented in the form of a formula of some calculus.
However, even the simplest statements in natural language
are not so easy to translate into the logic language,
preserving the entire content of the text. Logical calculus
is not suitable for displaying the totality of knowledge in
intelligent systems.

Another way to describe knowledge is to use relational-
type models. In such models, information units corre-
sponding to objects, phenomena, facts, or processes are
explicitly allocated.

The third way to describe knowledge is to use
mixed-type models in which declarative and productive
components are simultaneously present. Traditionally,
this type of model includes frames and productions

working on semantic networks. The production model is a
development of the logical model. Production systems can
be shown as transition graphs, which allows them to be
represented in a natural way on the SC-code. Production
systems often use an approach based on a “bulletin board”,
which is implemented within the principles of the OSTIS
Technology.

Production systems have the following advantages [27]:
• productions describe a variety of knowledge in sim-

ple structures with a high degree of standardization;
• production systems satisfy the modularity principle

to a high degree. Any production with software
implementation can be considered as an independent
module, the addition of which to the production
system and its withdrawal from it occurs without
additional costs;

• production systems simplify the organization of
parallel processes in which all productions included
in the scope of ready-made ones can be performed
independently of each other.

Functional problem-solving models are based on the
concept of a function as a fairly general mechanism
for representing and analyzing problem solving. In this
case, the calculation model is implemented without states.
A functional program cannot change the data it already
contains but can only generate new ones. A neural network
problem-solving model is a particular case of a functional
problem-solving model. The advantages of functional
methods are:

• high reliability due to clear structuring of data and
functions;

• great capabilities for parallel computing.
The representation of functional models is also unified

using the OSTIS Technology, and such models can be
integrated with any other models when solving complex
problems.

IX. CONCLUSION

In the article, the implementation of non-procedural
problem-solving models of intelligent systems based
on the OSTIS Technology is proposed, which makes
it possible to realize compatibility between different
problem-solving models and allow intelligent systems
to solve complex problems. The hierarchy of complex
subject domains necessary to achieve the set goals is
designed.

The operational semantics of logical languages has been
clarified in the form of a specification of the corresponding
abstract sc-agents.

An example of the formalization of logical formulas,
as well as the process of logical inference using semantic
networks, is given.

The results obtained will allow structuring existing
logics and using various approaches of non-procedural
models in solving complex problems.

171



REFERENCES

[1] Akshita Rastogi, Shivam, Rekha Jain, “Risk and challenges
in intelligent systems,” Proceedings of the Third International
Conference on Information Management and Machine Intelligence,
ICIMMI 2021, 2022.

[2] Martin Molina, “What is an intelligent system?” 2022.
[3] Peter Flach, Kacper Sokol, “Simply logical – intelligent reasoning

by example (fully interactive online edition),” 2022.
[4] J. M. Giménez-García, A. Zimmermann, and P. Maret, “Ndfluents:

An ontology for annotated statements with inference preservation,”
2017.

[5] Abdur Rakib, Abba Lawan, “The Semantic Web rule language
expressiveness extensions – a survey,” Ontology-driven CropBase
knowledge system, 2019.

[6] Apatova N., Gaponov A., Smirnova O., “The possibilities of
Artificial Intelligence in teaching higher mathematics,” 2021.

[7] Vadim Moshkin, Nadejda Yarushkina, “Modified knowledge
inference method based on fuzzy ontology and base of cases,”
Creativity in Intelligent Technologies and Data Science, 2019.

[8] Stefania Tomasiello, Witold Pedrycz, Vincenzo Loia, “Fuzzy
inference systems,” Contemporary Fuzzy Logic, A Perspective
of Fuzzy Logic with Scilab, 2022.

[9] Uehara, Kiyohiko and Hirota, Kaoru, “Fuzzy inference: Its past
and prospects,” Journal of Advanced Computational Intelligence
and Intelligent Informatics, vol. 21, pp. 13–19, 01 2017.

[10] Golenkov Vladimir and Guliakina Natalia and Shunkevich Daniil,
Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
V. Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[11] (2022, September) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

[12] Golenkov V., Korolev V., “Basic transformations of SQL language
texts for the implementation of deductive inference mechanisms,”
Minsk: ITC of NAS of Belarus, 1996.

[13] Averin A.I. and Vagin V.N., “Using parallelism in deductive infer-
ence,” Journal of Computer and Systems Sciences International,
vol. 43, pp. 603–614, 07 2004.

[14] Satya Sundar Sethy. (2021) Mediate inference (syllogism).
[15] Norton John, “A demonstration of the incompleteness of calculi

of inductive inference,” The British Journal for the Philosophy of
Science, vol. 70, pp. 1119–1144, 12 2019.

[16] Yini Zhang and Yilin Wang. (2022) Missing-edge aware knowl-
edge graph inductive inference through dual graph learning and
traversing.

[17] Abdul Rahman, Safawi and Ibrahim, Zaharudin and Paiman,
Jailani and Bakar, Amzari and Mohd Amin, Zahari, “The decision
processes of abductive inference,” Advanced Science Letters,
vol. 21, pp. 1754–1757, 06 2015.

[18] Gungov, Alexander, “The ampliative leap in diagnostics: The
advantages of abductive inference in clinical reasoning,” History
of Medicine, vol. 5, pp. 233–242, 01 2018.

[19] Geramian A. and Mehregan M.R. and Garousi Mokhtarzadeh and
N. and Hemmati M. (2017) Fuzzy inference system application
for failure analyzing in automobile industry.

[20] Son L.H. and Van Viet P. and Van Hai P. (2017) Picture inference
system: a new fuzzy inference system on picture fuzzy set.

[21] Lupea, Mihaiela, “DARR–a theorem prover for constrained and
rational default logics,” vol. 1, 01 2002.

[22] Weydert, Emil, “Defaults, logic and probability – a theoretical
perspective,” KI – Künstliche Intelligenz, v.4/01, 44–49 (2001), 11
2022.

[23] Chen, Gang and Wei, Peng and Liu, Mei, “Temporal logic
inference for fault detection of switched systems with Gaussian
process dynamics,” IEEE Transactions on Automation Science
and Engineering, vol. PP, pp. 1–16, 05 2021.

[24] Rybakov, V., “Multi-agent temporal nontransitive linear logics and
the admissibility problem,” Algebra and Logic, vol. 59, 05 2020.

[25] Golenkov V., Gulyakina N., “Grapho-dynamic association models
and facilities of parallel information handling in artificial intelli-
gence systems,” BSUIR Proseedings, 2003.

[26] Gavrilova T.A., Horoshevski V.F., Knowledge bases of intelligent
systems, 2000.

[27] Kuznetsov V. E., Computer representation of informal procedures,
1989.

Непроцедурные модели решения задач в
интеллектуальных компьютерных

системах нового поколения
Орлов М.К., Василевская А.П.

В работе рассматривается подход к проектированию реша-
телей задач интеллектуальных систем на основе непроцедур-
ных моделей. Разрабатываемый подход позволяет интегри-
ровать любые модели решения задач, в том числе принципы
логического вывода, для решения задач на основе общей
формальной модели.

Received 30.10.2022

172


	‎D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\013-420. Basic.pdf‎
	‎D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\11_OSTIS22_ID22_Orlov_Non_PP_SMiN_GICS.pdf‎


