
Hybrid problem solvers of intelligent computer
systems of a new generation

Daniil Shunkevich
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: shunkevich@bsuir.by

Abstract—In the article, the actual problems of the current
state of technologies for the development of hybrid problem
solvers are formulated, an approach to their solution based
on the OSTIS Technology is proposed. The principles of
building a problem solver as a hierarchical system of
skills based on a multi-agent approach are formulated,
the ontologies of agents and the actions performed by
them are given. The principles of synchronization of agents’
activities are formulated, as well as the ontology of the basic
programming language for implementing agent programs
and the interpreter model of such a language are developed.

Keywords—OSTIS, problem solver, multi-agent system,
problem-solving model, ontological approach

I. INTRODUCTION

Currently, the usage of intelligent systems in a variety
of fields is becoming increasingly relevant. One of the
key components of an intelligent system that provides the
ability to solve a wide range of problems is a problem
solver. Its peculiarity in comparison with other modern
software systems is the need to solve problems in con-
ditions when the necessary information is not explicitly
localized in the knowledge base of the intelligent system
and must be found in the process of solving the problem,
based on any criteria.

In other words, if in traditional systems, when solving
a problem, it is always assumed that there are some
localized source data (“given”) and some description
of the desired result (“what is required”), then in an
intelligent system, all the information currently available
in the system acts as source data when solving a large
number of problems, that is, the entire knowledge base.
In addition, if it is impossible to solve the problem in the
current state of the knowledge base, the intelligent system
should be able to understand what exactly is missing to
continue the solution process and try to get the missing
information in the external environment (for example, to
request from the user).

To date, within various fields of artificial intelligence,
a large number of different problem-solving models have
been developed, each of which allows solving problems
of a certain class. The expansion of the application fields
for intelligent systems requires them to be able to solve

so-called complex problems, the solution of each of which
requires combining several problem-solving models, while
it is not known a priori in what order and how many times
one or another model will be used. Problem solvers, in
which several problem-solving models are combined, are
called hybrid problem solvers, and intelligent systems, in
which various types of knowledge and various problem-
solving models are combined, are called hybrid intelligent
systems [1].

Improving the efficiency of the development and
maintenance of hybrid intelligent systems requires the
unification of models for the representation of various
knowledge types and knowledge processing models,
which would simplify the integration on its basis of
components corresponding to different problem-solving
models. Such models based on a unified semantic
representation of information are proposed within an
Open semantic technology for intelligent systems design
(OSTIS Technology) [2] and are described within the
corresponding OSTIS Standard [3]. In the article [2], the
analysis of modern approaches to the development of
hybrid problem solvers is carried out and it is shown that
the approach proposed within the OSTIS Technology is
currently the only example of a comprehensive approach
to the development of hybrid problem solvers, within
which the above problems are solved.

However, there are a number of problems that remain
relevant and require solutions.

II. CURRENT PROBLEMS IN THE DEVELOPMENT OF
HYBRID PROBLEM SOLVERS

The first problem is related to the lack of a suffi-
ciently strict formalized classification of problems solved
by intelligent systems, the lack of unification in the
description of problems and classes of problems, the
description of purposes, progress, and result of solving
the problem, problem-solving methods, relations between
classes of problems and problem-solving methods of this
class. The solution of this problem, on the one hand, will
allow for the possibility of deep integration of various
problem-solving models of various classes and the ability
to simplify the process of integrating new problem-solving

119



models into an intelligent system and, on the other hand,
will become a precondition for solving other problems
described below.

The second problem is that at the moment the main
attention in the field of developing hybrid problem solvers
is paid to reducing the complexity of integrating various
components of the problem solver into an intelligent
system and realizing the possibility of accumulating
reusable solvers components, but in general it is not
said how specifically the intelligent system will use
certain components in solving problems of specific classes.
Thus, the creation of a general plan for solving a
problem, i.e. the selection of problem-solving methods,
the determination of the order of their application, and
the choice of source data (arguments) for the usage of a
particular method is actually determined by the developer
at the stage of system design or its evolution during
operation. The precondition for solving this problem
is the solution of the previously considered problem
of unifiying the representation of problems of various
classes and methods for solving them. The solution of the
problem under consideration involves the development of
a set of problem-solving strategies (or problem-solving
meta-methods) that will allow the intelligent system to
independently form a plan for solving the problem, taking
into account the problem-solving methods available in
the system and, if possible, even request the missing
components for solving the problem in the appropriate
libraries. It should be noted that attempts to develop
universal high-level approaches to solving problems
were made at the dawn of the development of artificial
intelligence, in the 1950s and 60s, but were unsuccessful
and soon be abandoned. This is largely conditioned by
the lack of unified models of knowledge representation
and processing at that time, which are currently proposed
within the OSTIS Technology.

Another urgent problem, closely related to those dis-
cussed above, is that intelligent systems are often forced
to solve problems in the conditions of so-called non-
factors, that is, when the description of the problem and
possible ways to solve it are incomplete, the fuzziness and
incorrectness of existing knowledge, as well as the lack
of criteria for evaluating the optimality of the resulting
solution, etc. take place [4]. This is especially relevant
when solving behavioral problems related to changes in
the state of objects of the environment external to the
intelligent system. To solve problems in such conditions,
an intelligent system must not only have a sufficient set
of problem solver components that implement problem-
solving models in the presence of non-factors (fuzzy logic
models, machine learning models, genetic algorithms, etc.)
but also implement problem-solving strategies that would
allow making decisions and forming a plan for solving
the problem in such conditions.

Problems considered are primarily related to the process

of solving a specific problem by an intelligent system.
At the same time, it is obvious that at every moment
of time, an intelligent system is forced to solve several
problems in parallel, which can be related both to the
direct functional purpose of the system and to ensuring
the operation and evolution of the system itself. In
the second case, the problems related to updating the
information it contains about the outside world, finding
and eliminating errors in the knowledge base, optimizing
the structure of the knowledge base and the solver of
the system, finding and eliminating information garbage,
and many others are meant. At the same time, different
problems may have different priorities, which may vary
depending on the situation, even in the process of its
solution. At the same time, in a situation where it is not
known a priori which of the possible ways to solve the
problem will be the most effective, it may be advisable
to use several approaches in parallel to solve the same
problem. Thus, the problem of organizing the control
of information processes for solving problems in an
intelligent system and the interaction of information
processes that occur in parallel, taking into account the
priority of processes, the ability to monitor the current
state of information processes, generate, suspend, and
eliminate information processes is relevant. To solve this
problem, it is advisable to borrow solutions widely used in
traditional computer systems, in particular, implemented
in modern operation systems, and adapt them to the
specifics of solving problems in intelligent systems. It
is important to note that the implementation of the
information process control model, based on the general
unified information processing models proposed within
the OSTIS Technology, will make some information
processes the object of analysis of other information
processes, which, in turn, will make it possible to analyze
the progress of solving the problem directly in the process
of solving, evaluate the effectiveness of certain problem-
solving methods, collect the most successful solutions for
its further application in solution of the similar problems,
and much more.

Solving these problems will allow developing a fun-
damentally new hierarchical model of a hybrid problem
solver, which has a number of significant advantages,
which, in turn, will have to be interpreted on any
platforms. Without unifying the requirements for the
platform of interpreting intelligent systems models and a
clear separation of the platform-independent model of the
system (and, in particular, the solver) and the platform,
it is impossible to talk about the implementation of the
solver model realizing the ideas discussed above. This will
lead to the need to duplicate the same model components
for different platforms and will significantly complicate
the integration of solver components, since it will require
taking into account the features of each platform during
such integration. In addition, a clear separation of the

120



system model level and the platform level will make
it possible to independently develop various platforms
and models of intelligent systems. Thus, it is proposed
to formulate unified requirements for the platform of
interpreting semantic models of intelligent systems, as
well as to build a general model of such a platform that
meets these requirements.

On the other hand, as already mentioned, the problem
solver is a complex system focused on working with
knowledge, not with data, unlike modern software systems
in which it is initially known where exactly the necessary
data is localized and in what form they are represented. In
this regard, the usage of modern hardware and software
platforms, focused on address access to data stored in
memory, for the development of intelligent systems is
not always effective, since when developing intelligent
systems, it is actually necessary to model nonlinear
memory based on linear one. Increasing the efficiency
of problem solving by intelligent systems requires the
development of specialized platforms, including hardware
ones, focused on unified semantic models of information
representation and processing. As a basis for such
developments, it is proposed to use the suggested within
the OSTIS Technology general concepts of a semantic
computer, semantic memory, and a basic programming
language focused on processing information in such
memory, and complement them with ideas of wave
programming languages, insertion programming, and
other approaches aimed at improving the efficiency of
knowledge processing, including at the hardware level.

The development of problem solvers, including the
problems of developing hybrid problem solvers discussed
above, are currently being considered in the context of
single (independent) intelligent systems operating in some
environment (of which the user is also a part, if there
is one). At the same time, there is an obvious tendency
of modern information technologies to move from single
systems to collectives of distributed interacting computer
systems, in particular, to distributed data storage and
distributed computing. In the case of intelligent computer
systems, as the most important property of the systems
included in such collectives, interoperability serves, that
is, the ability of the system to coordinate interaction with
other similar systems in order to solve any problems. Thus,
the transition from the development of problem solvers
of individual intelligent systems to problem solvers of
interacting interoperable intelligent systems is particularly
relevant, including the development of principles for
solving problems in such distributed collectives, taking
into account the solution of all the problems outlined
above. To solve this problem, it is proposed to apply the
ideas suggested within the theory of multi-agent systems
and reinterpreted in the context of the interaction of hybrid
intelligent systems.

In addition, the most important problem in the case of a

distributed collective of intelligent systems is not just pro-
viding the ability to solve problems by such a collective
at the current time but permanently supporting semantic
compatibility and, as a consequence, the interoperability
of systems included in such a collective throughout their
entire life cycle. It is obvious that each of the systems
included in such a collective and, accordingly, its problem
solver can evolve independently of other systems, but
at the same time, interoperability between systems must
always be maintained, otherwise solving problems in
such a collective will become impossible. The solution
of this problem involves the development of methods
for permanently analyzing semantic compatibility of a
distributed collective of interacting intelligent systems,
identification and elimination of problems.

Within this article, an approach to solving some of
the listed problems based on the OSTIS Technology is
proposed.

III. PROPOSED APPROACH

As mentioned earlier, it is proposed to solve these prob-
lems within the OSTIS Technology. Let us list the basic
principles of this technology that create preconditions for
solving these problems:

• The OSTIS Technology is based on a universal
method of semantic representation (encoding) of
information in the memory of intelligent computer
systems, called an SC-code. Texts of the SC-code (sc-
texts, sc-constructions) are unified semantic networks
with a basic set-theoretic interpretation. The elements
of such semantic networks are called sc-elements (sc-
nodes and sc-connectors, which, in turn, depending
on orientation, can be sc-arcs or sc-edges). The Al-
phabet of the SC-code consists of five main elements,
on the basis of which SC-code constructions of any
complexity are built, including more specific types
of sc-elements (for example, new concepts). The
universality and uniformity of the SC-code makes it
possible to describe on its basis any knowledge types
and any problem-solving methods, which, in turn,
greatly simplifies their integration within one system.
Systems developed based on the OSTIS Technology
are called ostis-systems;

• The basis of the knowledge base developed by
the OSTIS Technology is a hierarchical system of
semantic models of subject domains and ontologies,
among which the universal Kernel of the knowledge
base semantic models and the methodology for the
development of semantic knowledge base models are
allocated, which ensure the semantic compatibility
of the knowledge bases being developed;

• The basis of information processing within the OSTIS
Technology is the SCP Language, the program texts
of which are also written in the form of SC-code
constructions;

121



• The problem solver architecture within the OSTIS
Technology is based on a multi-agent approach, in
which agents interact with each other purely by
specifying the actions they perform within a common
semantic memory (such agents are called sc-agents).
Such an approach allows ensuring the fundamental
possibility of implementing any problem-solving
methods in the form of corresponding solver com-
ponents and providing their semantic compatibility.
Other advantages of the multi-agent approach in
general are widely known and discussed in related
publications [5]–[7].

The listed principles of the OSTIS Techology are
proposed to be supplemented with some of the ideas
underlying the solution of those problems and, taking this
into account, to develop:

• A complex ontology of actions, problems, and
methods of their solution, as well as an ontology
of hybrid problem solvers, on the basis of which to
clarify the concept of the solver and its architecture.
The first version of the Global subject domain
of actions and problems and the corresponding
ontology of methods and technologies is already
represented within the OSTIS Standard, on its basis
it is proposed to develop an ontology of actions and
problems solved by ostis-systems;

• A complex of unified generalized strategies (meta-
methods) for solving problems in intelligent systems,
which allows an intelligent system to independently
form a plan for solving a problem, taking into
account the problem-solving methods available in
the system. In addition to the experience of similar
works, it is also proposed to supplement the devel-
oped strategies with some general methodological
ideas related to the theory of behaviorism and the
ideas of its application in computer science that are
gaining popularity [8]–[10], TIPS [11], as well as
the STA-methodology proposed by the school of G.
Shchedrovitsky [12];

• An ontological model for the formation of a plan
for solving a problem and managing the process of
solving problems in hybrid problem solvers under
conditions of various non-factors and the absence
of clear criteria for evaluating the optimality of
the resulting solution. To develop this model, it is
proposed to adapt the theory of situational control
proposed by D. Pospelov [13] and implement it in
the context of the semantic theory of problem solvers
developed within the OSTIS Technology;

• An ontological model for controlling information
processes for solving problems in intelligent systems
built on the basis of unified semantic models of
information representation and processing;

• An ontological model of the platform for interpreting
unified semantic models of information representa-

tion and processing (ostis-platforms);
• A comprehensive hierarchical model of a hybrid

problem solver based on a multi-agent approach
and taking into account the need to solve problems
both within single intelligent systems and within
distributed collectives of interoperable intelligent
systems;

• A complex of methods for analyzing the quality of
hybrid problem solvers and their components;

• A complex of tools to support the design of hybrid
problem solvers.

Within the OSTIS Technology, several universal variants
of visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant). Within
this article, fragments of structured texts in the SCn code
[3] will often be used, which are simultaneously fragments
of the source texts of the knowledge base, understandable
to both human and machine. This allows making the
text more structured and formalized, while maintaining
its readability. The symbol “:=” in such texts indicates
alternative (synonymous) names of the described entity,
revealing in more detail certain of its features.

As follows from the principles of the OSTIS Technology
discussed earlier, the building of ontological models of
any entities involves the development of an appropriate
subject domain and ontology (or a family of subject
domains and ontologies), within which the properties of
this entity are clarified by a formal description of the
corresponding set of concepts, including relations.

Within this work, we will consider in more detail the
fragments of:

• The Subject domain and ontology of ostis-systems
problem solvers, which clarifies the concepts of a
problem solver, a knowledge processing machine,
as well as the classification of problem solvers and
knowledge processing machines;

• The Subject domain and ontology of actions and
problems of ostis-systems, within which the classes
of actions and problems solved in ostis-systems are
specified;

• The Subject domain and ontology of sc-agents, which
clarifies the concept of an sc-agent as a component of
the ostis-system problem solver, the typology of sc-
agents and their properties, as well as the principles
for synchronizing the activities of sc-agents;

• The Subject domain and ontology of the Basic pro-
gramming language of ostis-systems, which clarifies
the syntax, denotational semantics, and operational
semantics of the SCP Language, which is the basic
for ostis-systems.

IV. OSTIS-SYSTEMS PROBLEM SOLVERS

Within the OSTIS Technology, the ostis-system problem
solver is defined as the totality of all skills possessed by

122



the ostis-system at the current time [3], [14].
In turn, the skill is interpreted as a combination of some

method and its operational semantics, that is, information
about how this method should be interpreted.

By a method we will understand the description of
how any or almost any (with explicit exceptions) action
belonging to the corresponding action class can be
performed. Since a specific action class corresponds to
some specific problem class, we can say that the method
describes a way to solve any problems belonging to a
given class. The concept of a method can be considered
as a generalization of the concept of “program”, in
connection with which, within the OSTIS Technology,
the terms “method” and “program” are synonymous [14].

As an example of a particular method, a procedural
program in a specific programming language or a set of
logical propositions that make up a formal theory of a
given subject domain (analogous to a logical program)
can be used.

A particular case of the method is the program of
the atomic component of the ostis-system problem solver
(atomic sc-agent); in this case, a collective of lower-level
agents, interpreting the corresponding program, acts as
the operational semantics of the method (in the extreme
case, these will be agents that are part of the platform
for interpreting computer system models, including the
hardware one).

Thus, we can talk about the hierarchy of methods
and methods for interpreting other methods. Taking into
account this thesis, it is possible to clarify the concept
of a problem solver as a hierarchical system of skills.

An approach to the building of problem solvers
proposed within the OSTIS Technology allows them to
be modifiable, which, in turn, allows the ostis-system, if
necessary, to easily acquire new skills, modify (improve)
existing ones, and even get rid of some skills in order
to improve system performance. Thus, it makes sense
to talk not about a rigidly fixed problem solver, which
is developed once when creating the first version of the
system and does not change further, but about a set of
skills fixed at each current moment of time but constantly
evolving.

ostis-system problem solver
⇐ family of subsets*:

skill
:= [hierarchical system of skills possessed by the

ostis-system]
⊃ hybrid ostis-system problem solver

:= [ostis-system problem solver that imple-
ments two or more problem-solving mod-
els]

⊃ combined ostis-system problem solver
:= [complete ostis-system problem solver]
:= [integrated ostis-system problem solver]

:= [ostis-system problem solver that imple-
ments all its functionality, both basic and
auxiliary]

In general, the combined ostis-system problem solver
solves problems related to:

• providing the basic functionality of the system (for
example, solving explicitly formulated problems at
the user’s request);

• ensuring the correctness and optimization of the ostis-
system itself (permanently throughout the entire life
cycle of the ostis-system);

• providing advanced training for end users and
developers of the ostis-system;

• providing automation of the design and control of
the development of the ostis-system.

By a knowledge processing machine we will understand
the set of interpreters of all skills that make up some
problem solver. Taking into account the multi-agent
approach to information processing used within the
OSTIS Technology, the knowledge processing machine is
an sc-agent (most often – a non-atomic sc-agent), which
includes simpler sc-agents that provide interpretation of
the corresponding set of methods. Thus, the knowledge
processing machine in general is a hierarchical system
of sc-agents.

Taking into account the fact that there is a hierarchy
of methods in terms of the level of interpretation (some
methods interpret others), it is also necessary to talk about
the hierarchy of knowledge processing machines.

knowledge processing machine
⊂ sc-agent

Let us consider the classification of ostis-systems
problem solvers according to various criteria.

Classification of ostis-systems problem solvers by the
type of the corresponding ostis-system:

ostis-system problem solver
∋ Problem solver of the IMS.ostis Metasystem
⊃ problem solver of the auxiliary ostis-system

⊃ problem solver of the computer system
interface

⊃ ostis-subsystem problem solver for
supporting the design of components of a
certain class
⊃ ostis-subsystem problem solver for

supporting knowledge base design
⊃ ostis-subsystem problem solver for

supporting the design of
ostis-systems problem solvers

⊃ problem solver of the control subsystem
for the design of computer systems and
their components

123



⊃ problem solver of an independent ostis-system

problem solver of the computer system interface
⇒ subdividing*:

{{{• problem solver of the user interface of a
computer system

• problem solver of the computer system
interface with other computer systems

• problem solver of the computer system
interface with the environment

}}}

ostis-subsystem problem solver for supporting
knowledge base design
⊃ problem solver for improving the quality of the

knowledge base
⊃ problem solver for knowledge base

verification
⊃ problem solver for finding and

eliminating inaccuracies in the
knowledge base

⊃ problem solver for finding and
eliminating incompleteness

⊃ problem solver for optimizing the
structure of the knowledge base

⊃ problem solver for identifying and
eliminating information garbage

ostis-subsystem problem solver for supporting the
design of ostis-systems problem solvers
⇒ subdividing*:

{{{• ostis-subsystem problem solver for
supporting the design of knowledge
processing programs

• ostis-subsystem problem solver for
supporting the design of knowledge
processing agents

}}}

Classification of ostis-systems problem solvers by the
type of interpreted problem-solving model:

ostis-system problem solver
⊃ problem solver with stored methods

:= [solver capable of solving problems of
those classes for which the corresponding
solution method is known at a given
moment]

⊃ problem solver based on neural network
models

⊃ problem solver based on genetic
algorithms

⊃ problem solver based on imperative
programs
⊃ problem solver based on

procedural programs
⊃ problem solver based on

object-oriented programs
⊃ problem solver based on declarative

programs
⊃ problem solver based on logical

programs
⊃ problem solver based on

functional programs
⊃ problem solver in conditions when the method of

solving problems of this class is not known at the
current time
:= [solver that implements problem-solving

strategies that allow generating a problem-
solving method that is not currently
known to the ostis-system]

:= [solver that uses meta-methods for solving
problems, corresponding to more general
classes of problems in relation to a given
one]

:= [problem solver that allows generating a
method that is particular in relation to
any method known to the ostis-system
and is interpreted by the corresponding
knowledge processing machine]

⊃ solver that implements the strategy of
finding ways to solve the problem in depth

⊃ solver that implements a strategy for
finding ways to solve a problem in width

⊃ solver that implements a trial-and-error
strategy

⊃ solver that implements a strategy for
splitting a problem into subproblems

⊃ solver that implements a strategy for
solving problems by analogy

⊃ solver that implements a concept of an
intelligent software package

Separately, we will highlight the classification of
knowledge processing machines, which in general can
correspond to the same fragments of the knowledge
base but together with them form different skills and,
accordingly, different problem solvers:

knowledge processing machine
⊃ logical inference machine

⊃ deductive inference machine
⊃ direct deductive inference machine
⊃ reverse deductive inference

machine
⊃ inductive inference machine
⊃ abductive inference machine
⊃ fuzzy inference machine
⊃ inference machine based on default logic
⊃ logical inference machine with

124



consideration for the time factor

Classification of ostis-systems problem solvers by the
type of problem to be solved (purposes of solving the
problem):

ostis-system problem solver
⊃ problem solver for information search

⇒ subdividing*:
{{{• problem solver for finding

information that meets the
specified criteria

• problem solver for finding
information that does not meet the
specified criteria

}}}
⊃ solver of explicitly formulated problems

:= [problem solver for which the purpose is
explicitly formulated]

⊃ problem solver for searching or
calculating the values of a given set of
quantities

⊃ problem solver for establishing the truth
of a given logical proposition within a
given formal theory

⊃ problem solver for forming a proof of a
given proposition within a given formal
theory

⊃ machine for verifying the response to the
specified problem

⊃ machine for verifying the solution of the
specified problem
⊃ machine for verifying the proof of

a given proposition within a given
formal theory

⊃ problem solver for entity classification
⊃ machine for correlating an entity with

one of a given set of classes
⊃ machine for dividing a set of entities into

classes according to a given set of
attributes

⊃ problem solver for the synthesis of information
constructions
⊃ problem solver for the synthesis of

natural language texts
⊃ problem solver for image synthesis
⊃ problem solver for signal synthesis

⊃ problem solver for speech
synthesis

⊃ problem solver for the analysis of information
constructions
⊃ problem solver for analysis of natural

language texts
⊃ problem solver for understanding

natural language texts

⊃ problem solver for verification of
natural language texts

⊃ problem solver for image analysis
⊃ problem solver for image

segmentation
⊃ problem solver for understanding

images
⊃ problem solver for signal analysis

⊃ problem solver for speech analysis
⊃ problem solver of speech

understanding

V. GENERAL PRINCIPLES OF INFORMATION
PROCESSING IN OSTIS-SYSTEMS

The proposed approach to problem solving is based
on a number of ideas related to the concept of situational
control proposed in the work of D. Pospelov [13]. To date,
attempts to implement this concept, despite its relevance
and demand, have been reduced to particular solutions
for specific classes of problems and, unfortunately, have
not been widely distributed. To a large extent, this is
conditioned by the lack of a universal unified basis
that would make it possible to create situational control
languages based on it in application to specific subject
domains and, more importantly, reuse fragments of
descriptions in such languages.

This problem can be solved using an SC-code, proposed
within the OSTIS Technology, and a family of top-
level ontologies developed on its basis. In particular,
the implementation of the ideas of situational control
is facilitated by such principles as:

• the SC-code as a basic language for describing any
information in the knowledge base and, accordingly,
for building situational control languages based on
it;

• basic set-theoretic semantics of the SC-code, which
makes it possible to formally clarify all the concepts
used in the form of a formal set of ontologies,
which allows for compatibility of the systems being
developed and the possibility of reusage of their
components;

• an agent-oriented approach to information process-
ing, involving the reaction of agents to the occurrence
of certain situations and events in the knowledge
base.

Let us consider in more detail the basic principles of
information processing underlying the proposed approach:

• The problem solver of each ostis-system is based
on a multi-agent system whose agents interact with
each other only(!) through their shared sc-memory by
specifying in this memory the actions in sc-memory
performed by them. At the same time, users of
the ostis-system are also considered as agents of
this system. In addition, sc-agents are divided into
internal, receptor, and effector. Interaction between

125



agents via shared sc-memory is reduced to the
following types of actions:

1) usage of the part of the stored knowledge base
that is available for the corresponding group of
sc-agents;

2) formation (generation) of new fragments of the
knowledge base and/or correction (editing) of any
fragments of the available part of the knowledge
base;

3) integration (immersion) of new and/or updated
fragments into the available part of the knowledge
base.

Let us emphasize that sc-agents do not communicate
with each other directly by sending messages, as is
done in most modern approaches to building multi-
agent systems. In addition, sc-agents have access to a
common knowledge base, which guarantees semantic
compatibility (mutual understanding) between agents,
including users of ostis-systems.

• The user of the ostis-system cannot directly perform
any action in sc-memory, but via the user interface
they can initiate the construction (generation, forma-
tion in sc-memory) of sc-text, which is a specification
of the action in sc-memory performed either by one
atomic sc-agent in one act, or by one atomic sc-
agent in several acts, or by a collective of sc-agents
(non-atomic sc-agent). In the specification of each
such action in sc-memory initiated by a user, this
user is indicated as the customer of this action. Thus,
the user of the ostis-system gives instructions (tasks,
commands) to sc-agents of this system to perform
various actions specified by them in sc-memory.

• Each sc-agent, performing some action in sc-memory,
have to “remember” that sc-memory, on which it
is working, is a shared resource not only for it but
also for all others sc-agents, working on the same
sc-memory, therefore, the sc-agent must comply with
a certain ethics for behaving in a collective of such
sc-agents, which should minimize the interferences
that it creates to other sc-agents.

• The activity of each agent of the ostis-system is
discrete and represents a set of elementary actions
(acts). At the same time, when performing each act,
the agent can set several types of locks on fragments
of the knowledge base. These locks allow prohibiting
other agents from changing the specified fragment
of the knowledge base or even making it “invisible”
to other agents. The locks are set by the agent itself
during the execution of the relevant act and are
removed by it at the last stage of the execution of
this act or earlier, if possible.

• If a certain sc-agent performs some action in sc-
memory, then, for the duration of this action, it can:

1) prohibit other sc-agents from changing the state
of some sc-elements stored in sc-memory – delete

them, change the type;
2) prohibit other sc-agents from adding or deleting el-

ements of some sets denoted by the corresponding
sc-nodes;

3) prohibit other sc-agents from viewing some sc-
elements, that is, these sc-elements become com-
pletely “invisible” (completely blocked) for other
sc-agents but only for the duration of performing
the proper action.

The specified locks must be completely removed
before the completion of the corresponding action.
Let us emphasize that the number of sc-elements
blocked for the duration of some action mainly
includes atomic and non-atomic connectives and
should not include sc-nodes denoting infinite classes
of any entities and, moreover, sc-nodes denoting
various concepts (key classes of various subject
domains).
Ethical (non-selfish) behavior of the sc-agent con-
cerning blocking of sc-elements (that is, restricting
access to them to other sc-agents) implies compli-
ance with the following rules:

1) there should not be more sc-elements blocked than
is necessary to solve the problem;

2) as soon as for any sc-element the need to lock
it disappears before the completion of the corre-
sponding action, it is advisable to immediately
unlock this sc-element (remove the lock).

In order for the sc-agent to be able to work with
any random sc-element, it must either make sure
that this sc-element is not included in the knowledge
base fragment that is part of the full lock or make
sure that this lock is not set by this agent.
A special group of completely blocked sc-elements
(for the duration of the action by the sc-agent) are
auxiliary sc-elements (“scaffolds”), created only for
the duration of this action. These sc-elements should
not be unblocked at the end of the action but need
to be deleted).

• If an action in sc-memory performed by the sc-
agent has completed (i.e. has become a past entity),
then the sc-agent registers the result of this action,
specifying (1) deleted sc-elements and generated sc-
elements. This is necessary if for some reason it will
be required to rollback this action, i.e. to return to
the state of the knowledge base before performing
the specified action.

Let us list some advantages of the proposed approach
to the organization of knowledge processing in ostis-
systems:

• since processing is carried out by agents that
exchange messages only through shared memory,
adding a new agent or excluding (deactivating) one
or more existing agents usually does not lead to

126



changes in other agents, since agents do not exchange
messages directly;

• agent initiation is carried out in a decentralized
manner and most often independently of each other,
so even a significant expansion of the number
of agents within one system does not lead to a
deterioration in its performance;

• agent specifications and, as will be shown below,
their programs can be written in the same language
as the processed knowledge, which significantly
reduces the list of specialized tools developed for the
design of such agents and their collectives, as well
as their analysis, verification, and optimization, and
simplifies the development of the system by using
more universal components.

VI. ACTIONS AND PROBLEMS IN OSTIS-SYSTEMS

The building problem solvers and their components
implies the need to describe the actions they perform and
the problems they solve.

A. Concept of action in sc-memory

action in sc-memory
:= [internal action of the ostis-system]
:= [action performed in sc-memory]
:= [action performed in an abstract unified semantic

memory]
:= [action performed by the ostis-system knowledge

processing machine]
:= [action performed by an agent or a collective of

agents of the ostis-system]
:= [information process on the knowledge base stored

in sc-memory]
:= [process of solving an information problem in sc-

memory]
⊂ process in sc-memory

Each action in sc-memory denotes some transformation
performed by some sc-agent (or a collective of sc-agents)
and focused on the transformation of sc-memory. The
specification of the action after its execution can be
included in the protocol for solving some problem.

The transformation of the state of the knowledge base
includes, among other things, information search, which
assumes (1) localization of the response to the request in
the knowledge base, explicit allocation of the response
structure, and (2) translation of the response into some
external language.

The set of actions in sc-memory includes signs of
actions of various kinds, the semantics of each of which
depends on the specific context, i.e. the orientation of the
action to any specific objects and the belonging of the
action to any particular class of actions.

It should be clearly distinguished:

• each specific action in sc-memory, which is some
kind of transition process that transfers sc-memory
from one state to another;

• each type of actions in sc-memory, which is a certain
class of similar actions (in one sense or another);

• sc-node denoting some specific action in sc-memory;
• sc-node denoting a structure that is a description,

specification, task, statement of the corresponding
action.

Let us consider in more detail the classification of
actions in sc-memory:

action in sc-memory
⊃ action in sc-memory initiated by a question
⊃ action of editing the ostis-system knowledge base
⊃ action of setting the ostis-system mode
⊃ action of editing a file stored in sc-memory
⊃ action of interpreting a program stored in

sc-memory
⊃ action of scp-program interpretation

action in sc-memory initiated by a question
:= [action aimed at forming an answer to the question

posed]
⊃ action. create the specified file
⊃ action. create the specified structure

⊃ action. verify the specified structure
⊃ action. determine the truth or

falsity of the indicated logical
proposition

⊃ action. determine the correctness
or incorrectness of the specified
structure

⊃ action. create a structure
describing the inaccuracies that
exist in the specified structure

⊃ action. clarify the type of the specified
sc-element
⊃ action. determine the

positivity/negativity of the
indicated sc-arc of belonging or
non-belonging

⊃ action. create a semantic neighborhood
⊃ action. create a complete semantic

neighborhood of the specified
entity

⊃ action. create a basic semantic
neighborhood of the specified
entity

⊃ action. create a particular
semantic neighborhood of the
specified entity

⊃ action. create a structure describing the
relations between the specified entities
⊃ action. create a structure

127



describing the similarities of the
specified entities

⊃ action. create a structure
describing the differences of the
specified entities

⊃ action. create a structure describing the
way to solve the specified problem

⊃ action. create a plan for generating an
answer to the specified question

⊃ action. create a protocol for performing
the specified action

⊃ action. create a justification for the
correctness of the indicated solution

⊃ action. verify the justification of the
correctness of the specified solution

⊃ action aimed at establishing the temporal
characteristics of the specified entity

⊃ action aimed at establishing the spatial
characteristics of the specified entity

action of editing the knowledge base
⊃ action. change the direction of the specified

sc-arc
⊃ action. fix errors in the specified structure
⊃ action. transform the specified structure

according to the specified rule
⊃ action. equate two specified sc-elements
⊃ action. include a set

:= [make all elements of the Si set explicitly
belonging to the Sj set, that is, generate
the corresponding sc-arcs of belonging]

⊃ action of generating sc-elements
⊃ action of generation, one of the arguments

of which is some generalized structure
⊃ action. generate a structure

isomorphic to the specified
template

⊃ action. generate an sc-element of the
specified type
⊃ action. generate an sc-connector

of the specified type
⊃ action. generate an sc-node of the

specified type
⊃ action. generate a file with the specified

contents
⊃ action. set the specified file as the primary

identifier of the specified sc-element for
the specified external language

⊃ action. update concepts
:= [action. replace non-basic concepts with

their definition through basic concepts]
:= [action. replace some set of concepts with

another set of concepts]
⊃ action. integrate the information construction

into the current state of the knowledge base

⊃ action. integrate the contents of the
specified file into the current state of the
knowledge base
⊃ action. translate the contents of

the specified file to sc-memory
⊃ action. integrate the specified structure

into the current state of the knowledge
base

⊃ action. supplement the description of the past
state of the ostis-system
⊃ action. supplement the structure

describing the history of the ostis-system
evolution

⊃ action. supplement the structure
describing the history of ostis-system
operation

⊃ action of deleting sc-elements
⊃ action. delete the specified sc-elements

⊃ action. delete sc-elements that are
part of the specified structure and
are not the key nodes of any
sc-agents

action. equate two specified sc-elements
:= [action. combine two specified sc-elements]
:= [action. paste two specified sc-elements together]
⇒ subdividing*:

{{{• action. physically equate two specified
sc-elements

• action. logically equate two specified
sc-elements

}}}

Each action. equate two specified sc-elements can
be performed as action. physically equate two specified
sc-elements or action. logically equate two specified sc-
elements. In the case of logical equation, the action itself
is saved in the agent activity protocol with its specification,
which includes a necessary indication of which elements
were generated and which were deleted. In the case of
physical equation, the action protocol is not saved.

Each action. update concepts denotes the transition
from some group of concepts used earlier to another
group of concepts that will be used instead of the first
ones and will become basic concepts. In general, action.
update concepts consists of the following steps:

• determine the concepts to be replaced based on the
substitutive ones;

• make appropriate changes to the programs of sc-
agents, the key nodes of which are updated concepts;

• replace all constructions in the knowledge base
containing replaceable concepts, in accordance with
the definitions of these concepts through the concepts
that replace them;

• if necessary, sc-elements denoting the concepts
replaced in this way can be completely deleted from

128



the current state of the knowledge base.
The first argument (included in the action sign under

attribute 1 ′) of action. update concepts is a sign for
the set of sc-nodes denoting the replaced concepts, the
second one (included in the action sign under attribute
2 ′) is a sign for the set of sc-nodes denoting the replacing
concepts. In general, either or both of these sets can be
singletons.

action. delete the specified sc-elements
⇒ subdividing*:

{{{• action. physically delete the specified
sc-elements

• action. logically delete the specified
sc-elements

}}}

Each action. delete the specified sc-elements can
be performed as action. physically delete the specified
sc-elements or action. logically delete the specified sc-
elements. In the case of logical deletion, the action itself is
saved in the agent activity protocol with its specification,
which includes a necessary indication of which elements
were deleted, i.e., in fact, the elements are excluded from
the current state of the knowledge base. In case of physical
deletion, the action protocol is not saved.

If any sc-element is deleted, the incident connectives,
including sc-connectors, are also deleted.

To perform action. integrate the specified structure
into the current state of the knowledge base, it is
necessary to paste sc-elements included in the integrated
structure together with synonymous sc-elements included
in the current state of the knowledge base, replace unused
(for example, outdated) concepts included in the integrated
structure on used ones (i.e. replace unused concepts with
their definitions through used ones), explicitly include
all elements of the integrated structure in the number of
elements of the approved part of the knowledge base, and
explicitly include all elements of the integrated structure
in the number of elements that are part of any atomic
sections of the approved fragment of the knowledge base.

B. Problems solved in sc-memory and logically atomic
actions

problem solved in sc-memory
⊂ problem
:= [specification of the action performed in sc-

memory]
:= [structure that is such a description (formulation,

setting) of the corresponding action in sc-memory,
which has sufficient completeness to perform the
specified action]

:= [semantic neighborhood of some action in sc-
memory, providing a sufficiently complete setting
of this action]

action class
⊃ action class in sc-memory

⇐ family of subsets*:
action in sc-memory

⇒ subdividing*:
{{{• class of logically atomic actions

:= [class of autonomous actions]
⊃ class of logically atomic actions

in sc-memory
• class of logically non-atomic actions

:= [class of non-autonomous actions]
}}}

Each action belonging to some specific class of
logically atomic actions has two necessary properties:

• the execution of an action does not depend on
whether the specified action is part of the decompo-
sition of a more general action. When performing
this action, the fact that this action precedes or
follows any other actions should also not be taken
into account (which is explicitly indicated using the
sequence of actions* relation);

• the specified action should be a logically integral act
of transformation, for example, in semantic memory.
Such an action is essentially a transaction, i.e. the
result of such a transformation is a new state of
the system being transformed, and the action being
performed must either be performed completely or
not at all, partial execution is not allowed.

At the same time, logical atomicity does not prohibit
decomposing the performed action into more particular
ones, each of which, in turn, will also be logically atomic.

It is proposed to divide all activities aimed at solving
any problems by the ostis-system into logically atomic
actions. This approach will allow for the modifiability of
ostis-systems problem solvers, provided that the solver
components correspond to classes of logically atomic
actions in sc-memory. Such components are called sc-
agents.

VII. CONCEPT OF AN SC-AGENT AND ABSTRACT
SC-AGENT

sc-agent
:= [the only kind of subjects performing transforma-

tions in sc-memory]
:= [subject capable of performing actions in sc-

memory, belonging to some specific class of
logically atomic actions]

The logical atomicity of the actions performed by
the sc-agent assumes that each sc-agent reacts to the
corresponding class of situations and/or events occurring
in the sc-memory and performs a certain transformation
of the sc-text located in the semantic neighborhood of the
processed situation and/or event. At the same time, each

129



sc-agent generally does not contain information about
which other sc-agents are currently present in the system
and interacts with other sc-agents solely by forming some
constructions (usually action specifications) in the shared
sc-memory. As such a message, for example, a question
addressed to other sc-agents in the system (it is not known
in advance which one specifically) or an answer to a
question posed by other sc-agents (it is not known in
advance which one specifically) can serve. Thus, each
sc-agent at any given time controls only a fragment of
the knowledge base in the context of the problem being
solved by this agent; the state of the rest of the knowledge
base is generally unpredictable for the sc-agent.

Since it is assumed that copies of the same sc-agent
or functionally equivalent sc-agents can work in different
ostis-systems, while being physically different sc-agents,
it is advisable to consider the properties and classification
of non-sc-agents but classes of functionally equivalent
sc-agents, which we will call abstract sc-agents. Under
the abstract sc-agent is understood a certain class of
functionally equivalent sc-agents, different instances (i.e.
representatives) of which can be implemented in different
ways.

Each abstract sc-agent has a corresponding specifica-
tion. The specification of each abstract sc-agent includes:

• specifying the key sc-elements of this sc-agent,
i.e. those sc-elements stored in sc-memory that are
“support points” for this sc-agent;

• a formal description of the conditions for initiating
this sc-agent, i.e. those situation in sc-memory that
initiate the activity of this sc-agent;

• a formal description of the primary initiation con-
dition for this sc-agent, i.e. such a situation in sc-
memory, which prompts the sc-agent to switch to the
active state and start checking for its full initiation
condition (for internal abstract sc-agents);

• a strict, complete, unambiguously understood de-
scription of the activity of this sc-agent, drawn up
using any understandable, generally accepted means
that do not require special study, for example, in
natural language;

• a description of the results of executing this sc-agent.
Sc-agents can be classified according to various criteria.

Since we can talk about a hierarchy of methods (methods
of interpreting other methods) and, accordingly, a hierar-
chy of skills, there is a need to talk about a hierarchy of
sc-agents providing interpretation of a particular method.
In this context, we can talk about the hierarchy of sc-
agents in two aspects:

• an abstract sc-agent (and, accordingly, an sc-agent)
can uniquely correspond to a method (sc-agent
program) describing the activity of this sc-agent.
Such agents will be called atomic abstract sc-agents;

• sometimes, it is advisable to combine abstract sc-
agents into collectives of such agents, which can be

considered as one integral abstract sc-agent, from a
logical point of view, working on the same principles
as atomic abstract sc-agents, that is, reacting to
events in sc-memory and describing its activities
within this memory. Such an abstract sc-agent will
not correspond to any specific method stored in
sc-memory, but the rest of the specification of
the abstract sc-agent (initiation condition, initial
situation description, and the result of the operation
of the sc-agent, etc.) remains the same, like in case
of the atomic abstract sc-agent. Thus, we can say
that the concept of atomicity/non-atomicity of an
abstract sc-agent indicates how the implementation
of this abstract sc-agent is refined – by specifying a
particular method (sc-agent program) or by decom-
posing the abstract sc-agent into simpler ones. It is
important to note that non-atomic abstract sc-agents
can also be part of other, more complex non-atomic
abstract sc-agents. Thus, a hierarchical system of
abstract sc-agents is formed, in general, having a
random number of levels.

• In turn, the method corresponding to the sc-agent
must be interpreted by some other sc-agent of
a lower level and most often by a collective of
such agents, each of which is assigned its own
method describing the behavior of this agent but
at a lower level. Thus, we can say that the concept
of atomicity/non-atomicity of abstract sc-agents is
applicable within one method description language.
In turn, we can talk about the hierarchy of abstract
sc-agents from the point of view of the language
level for description of the methods corresponding
to such agents. In general, such a hierarchy can
also have an unlimited number of levels, however,
it is obvious that when lowering the level of the
method description language, sooner or later we
must approach the method description language,
which will be interpreted by agents implemented
at the level of the ostis-platform, and going even
lower – to the level of the method description
language, interpreted at the hardware level. Thus,
in order to ensure the platform independence of
ostis-systems, it is advisable to allocate a method
description language that would be interpreted at
the level of the ostis-platform and be the basis
for the development of interpreters of higher-level
languages. As such a language, an SCP Language
(Semantic Code Programming) is proposed, which
is considered as an assembler for an associative
semantic computer.

The hierarchical approach to the description of knowl-
edge processing machines and, accordingly, problem
solvers has a number of important advantages, such as
ensuring the modifiability of solvers and the convenience
of their design and debugging at different levels [2], [3].

130



Let us consider the classification of abstract sc-agents
according to various criteria. Classification of abstract
sc-agents based on atomicity:

abstract sc-agent
⇒ subdividing*:

{{{• non-atomic abstract sc-agent
• atomic abstract sc-agent

}}}

A non-atomic abstract sc-agent is understood as an
abstract sc-agent, which is decomposed into a collective
of simpler abstract sc-agents, each of which in turn can
be both an atomic abstract sc-agent and non-atomic
abstract sc-agent. At the same time, in some variant of
decomposition of an abstract sc-agent*, the child non-
atomic abstract sc-agent can become an atomic abstract
sc-agent and be implemented accordingly.

An atomic abstract sc-agent is understood as an
abstract sc-agent, for which the method of its implemen-
tation is specified, i.e. there is a corresponding connective
of the sc-agent program* relation.

The SCP Language allows setting boundaries between
the logical-semantic model of the ostis-system and the
ostis-platform. In this regard, we will consider abstract
sc-agents as platform-independent ones, implemented in
the SCP Language or higher-level languages based on it,
and abstract sc-agents – as platform-dependent ones, that
are implemented at the platform level (for example, in
order to improve their performance). At the same time,
there are a number of abstract sc-agents that cannot be
implemented in principle in the SCP Language. This is
represented in the following hierarchy:

abstract sc-agent
⇒ subdividing*:

{{{• internal abstract sc-agent
• effector abstract sc-agent
• receptor abstract sc-agent

}}}
⇒ subdividing*:

{{{• abstract sc-agent that is not implemented
in the SCP Language

• abstract sc-agent that is implemented in
the SCP Language

}}}
⇒ subdividing*:

{{{• abstract sc-agent for interpreting
scp-programs

• abstract software sc-agent
• abstract sc-meta-agent

}}}
⇒ subdividing*:

{{{• platform-dependent abstract sc-agent
⊃ abstract sc-agent that is not

implemented in the SCP Language
• platform-independent abstract sc-agent

}}}

abstract sc-agent that is not implemented in the SCP
Language
:= [abstract sc-agent that cannot be implemented at

a platform-independent level]
⇒ subdividing*:

{{{• effector abstract sc-agent
• receptor abstract sc-agent
• abstract sc-agent for interpreting

scp-programs
}}}

abstract sc-agent that is implemented in the SCP
Language
:= [abstract sc-agent that can be implemented at a

platform-independent level]
⇒ subdividing*:

{{{• abstract sc-meta-agent
• abstract software sc-agent implemented in

the SCP Language
}}}

abstract software sc-agent
⇒ subdividing*:

{{{• effector abstract sc-agent
• receptor abstract sc-agent
• abstract software sc-agent implemented in

the SCP Language
}}}

atomic abstract sc-agent
⇒ subdividing*:

{{{• platform-independent abstract sc-agent
• platform-dependent abstract sc-agent

}}}

Platform-independent abstract sc-agents include
atomic abstract sc-agents implemented in the basic
programming language of the OSTIS Technology, i.e.
in the SCP Language.

When describing platform-independent abstract sc-
agents, platform independence is understood as platform
independence from the point of view of the OSTIS Tech-
nology, i.e. implementation in a specialized programming
language focused on processing semantic networks (SCP
Language), since atomic sc-agents implemented in the
specified language can be freely transferred from one
ostis-platform to another. At the same time, programming
languages that are traditionally considered platform-
independent in this case cannot be considered as such.

There are sc-agents that fundamentally cannot be
implemented at a platform-independent level, for example,
the actual sc-agents for interpreting sc-models or receptor

131



and effector sc-agents that provide interaction with the
external environment.

Platform-dependent abstract sc-agents include atomic
abstract sc-agents implemented below the level of sc-
models, i.e. not in the SCP Language but in some other
program description language.

Each internal abstract sc-agent denotes a class of sc-
agents that react to events in sc-memory and perform
transformations exclusively within the same sc-memory.

Each effector abstract sc-agent denotes a class of sc-
agents that react to events in sc-memory and perform
transformations in an environment external to this ostis-
system.

Each receptor abstract sc-agent designates a class of
sc-agents that react to events in the environment external
to this ostis-system and perform transformations in the
memory of this system.

Each abstract sc-agent that is not implemented in
the SCP Language must be implemented at the level of
the ostis-platform, including hardware one. Such abstract
sc-agents include abstract sc-agents for interpreting scp-
programs, as well as effector and receptor abstract sc-
agents.

Each abstract sc-agent implemented in the SCP
Language can be implemented in the SCP Language, that
is, at the platform-independent level, but, if necessary,
it can also be implemented at the platform level, for
example, in order to improve performance.

Abstract sc-agents for interpreting scp-programs
include abstract sc-agents that are not implemented at
the platform-independent level, providing interpretation
of scp-programs and scp-meta-programs, including the
creation of scp-processes, the actual interpretation of
scp-operators, as well as other auxiliary actions. In fact,
agents of this class ensure the operation of sc-agents
of higher levels (software sc-agents and sc-meta-agents)
implemented in the SCP Language, in particular, ensure
that these agents comply with the general principles of
synchronization.

Abstract software sc-agents includes all abstract sc-
agents that provide the basic functionality of the system,
that is, its ability to solve certain problems. Agents of
this class should work in accordance with the general
principles of synchronizing the activities of subjects in
sc-memory.

The purpose of abstract sc-meta-agents is to coor-
dinate the activities of abstract software sc-agents, in
particular, solving the problem of interlocks. Agents of
this class can be implemented in the SCP Language,
however, other principles are used to synchronize their
activities, respectively, to implement such agents, a
different level of the SCP Language is required, the
typology of which operators is completely similar to
the typology of scp-operators, however, these operators
have different operational semantics, taking into account

differences in the principles of synchronization (work-
ing with locks*). Programs of such a language will
be called scp-meta-programs, corresponding to them
processes in sc-memory – scp-meta-processes, operators
– scp-meta-operators.

decomposition of an abstract sc-agent*
∈ decomposition relation

The decomposition of an abstract sc-agent* relation
interprets non-atomic abstract sc-agents as collectives of
simpler abstract sc-agents interacting through sc-memory.

In other words, decomposition of an abstract sc-agent*
into abstract sc-agents of a lower level clarifies one of the
possible approaches to the implementation of this abstract
sc-agent by building a collective of simpler abstract sc-
agents.

sc-agent
:= [agent on sc-memory]
⊂ subject
⇒ family of subsets*:

abstract sc-agent

An sc-agent is understood as a concrete instance (from
a set-theoretic point of view, an element) of some atomic
abstract sc-agent operating in any particular intelligent
system.

Thus, each sc-agent is a subject capable of performing
some class of similar actions either only on sc-memory
or on sc-memory and the external environment (for
effectorsc-agents). Each such action is initiated either
by a state or situation in sc-memory, or by a state or
situation in the external environment (for receptor sc-
agents-sensors) corresponding to the initiation condition
of the atomic abstract sc-agent, which instance is the
specified sc-agent. In this case, an analogy can be drawn
between the principles of object-oriented programming,
considering an atomic abstract sc-agent as a class, and a
specific sc-agent as an instance, a specific implementation
of this class.

Interaction of sc-agents is carried out only through
sc-memory. As a consequence, the result of the operation
of any sc-agent is some change in the state of sc-memory,
i.e. the deletion or generation of any sc-elements.

In general, one sc-agent can explicitly transfer control
to another sc-agent if this sc-agent is known a priori.
To do this, each sc-agent in sc-memory has an sc-node
denoting it, with which it is possible to associate a specific
situation in the current state of the knowledge base that
the initiated sc-agent must process.

However, it is not always easy to determine the sc-agent
which should take control from a given sc-agent, and
therefore the situation described above occurs extremely
rarely. Moreover, sometimes the condition for initiating

132



the sc-agent is the result of the activity of an unpredictable
group of sc-agents, as well as the same construction can
be the condition for initiating an entire group of sc-agents.

At the same time, not sc-agent programs* communicate
through sc-memory but the sc-agents themselves described
by these programs.

In the process of work, the sc-agent can generate
auxiliary sc-elements for itself, which it deletes after
completing the act of its activity (these are auxiliary
structures that are used as “information scaffolds” only
during the execution of the corresponding act of activity
and are deleted after the performance of the act).

sc-agent
⊃ active sc-agent
⇒ first domain*:

• key sc-elements of the sc-agent*
• sc-agent program*
• primary initiation condition*
• initiation condition and result*

An active sc-agent is understood as an sc-agent of the
ostis-system, which reacts to events corresponding to its
initiation condition and, as a consequence, its primary
initiation condition*. The sc-agents that are not included
in the set of active sc-agents do not respond to any events
in sc-memory.

The connectives of the key sc-elements of the sc-agent*
relation link together the sc-node, denoting an abstract
sc-agent, and the sc-node, denoting the set of sc-elements,
which are key for a given abstract sc-agent, that is, given
sc-elements are explicitly mentioned within programs
implementing this abstract sc-agent.

The connectives of the sc-agent program* relation
link together the sc-node, denoting an atomic abstract
sc-agent, and the sc-node, denoting a set of programs
implementing the specified atomic abstract sc-agent. In
the case of platform-independent abstract sc-agent, each
connective of the sc-agent program* relation connects the
sc-node denoting the specified abstract sc-agent with a set
of scp-programs describing the activities of this abstract
sc-agent. This set contains one agent scp-program and a
random number (maybe none) of scp-programs that are
necessary to execute the specified agent scp-program.

In the case of the platform-dependent abstract sc-agent,
each connective of the sc-agent* program relation links
the sc-node denoting the specified abstract sc-agent with
a set of files containing the source texts of the program
in some external programming language that implements
the activity of this abstract sc-agent.

The connectives of the primary initiation condition*
relation link together the sc-node, denoting an abstract
sc-agent, and a binary oriented pair describing the
primary initiation condition of this abstract sc-agent, i.e.
such a specification of the situations in sc-memory, the

occurrence of which prompts the sc-agent to switch to
the active state and start checking for its full initiation
condition.

The first component of this oriented pair is the sign
of some class of elementary events in sc-memory*, for
example, the event of adding an sc-arc going out of a
given sc-element*.

In the general case, the second component of this
oriented pair is a random sc-element, with which the
specified type of event in sc-memory is directly associated,
i.e., for example, the sc-element, from which the generated
or deleted sc-arc or file, the contents of which have been
changed, goes out, or in which this sc-arc or the file
come.

After an event occurs in sc-memory, all active sc-agents
are activated, the primary initiation condition* of which
corresponds to the event that occurred.

The connectives of the initiation condition and result*
relation link together the sc-node, denoting an abstract
sc-agent, and a binary oriented pair linking the initiation
condition for this abstract sc-agent and the results of
executing this instance of the given sc-agent in any
particular system.

The specified oriented pair can be considered as a
logical implication connective, while the universality
quantifier is implicitly imposed on sc-variables present in
both parts of the connective and the existence quantifier
is implicitly imposed on sc-variables present either only
in the premise or only in the conclusion.

The first component of the specified oriented pair is
a logical formula describing the initiation condition for
the described abstract sc-agent, that is, a construction
whose presence in sc-memory prompts the sc-agent to
begin work on changing the state of sc-memory. This
logical formula can be both atomic and non-atomic, in
which the usage of any logical language connectives is
allowed.

The second component of the specified oriented pair
is a logical formula describing the possible results of
the execution of the described abstract sc-agent, that is,
a description of the changes in the state of sc-memory
made by it. This logical formula can be both atomic and
non-atomic, in which the usage of any logical language
connective is allowed.

description of the behavior of an sc-agent
⊂ semantic neighborhood

The description of the behavior of an sc-agent is
a semantic neighborhood describing the activity of an
sc-agent to some degree of detail, however, such a
description must be strict, complete, and unambiguously
understood. Like any other semantic neighborhood, the
description of the behavior of an sc-agent can be
translated into any understandable, generally accepted

133



means that do not require special study, for example, into
natural language.

The described abstract sc-agent is included in the
corresponding description of the behavior of an sc-agent
under the key sc-element ′ attribute.

VIII. PRINCIPLES OF SYNCHRONIZING THE
ACTIVITIES OF SC-AGENTS

A. Clarification of the typology of processes in sc-memory,
concepts of locks and locks classification

The concepts of an action in sc-memory and a process
in sc-memory (information process performed by an agent
in semantic memory) are synonymous, since all processes
occurring in sc-memory are conscious and are performed
by some sc-agents. Nevertheless, when it comes to
synchronizing the execution of any transformations in
the memory of a computer system, it is accepted in the
literature to use the terms “process” and “interaction
of processes” [15], [16], in connection with which
we will use this term when describing the principles
of synchronizing the activities of sc-agents when they
perform parallel processes in sc-memory.

process in sc-memory
⇒ subdividing*:

{{{• process in sc-memory corresponding to a
platform-dependent sc-agent

• scp-process
⇒ subdividing*:

{{{• scp-process that is not an
scp-meta-process

• scp-meta-process
}}}

}}}

process in sc-memory corresponding to a
platform-dependent sc-agent
⇒ subdividing*:

{{{• process in sc-memory that corresponds to
a platform-dependent sc-agent and is not
an action of an abstract scp-machine

• action of an abstract scp-machine
⊃ action of scp-program

interpretation
}}}

To synchronize the execution of processes in sc-
memory, it is proposed to use a locking mechanism based
on existing algorithms for synchronizing information
processes in traditional systems [15], [16]. As a possible
direction for the development of this approach, it is
possible to indicate the ideas of lock-free algorithms
that are gaining popularity [17].

The lock* relation connects the signs of actions in
sc-memory with the signs of structures (situational ones)

that contain elements that are blocked for the duration
of performing this action or for some part of this period.
Each such structure belongs to one of the lock types.

The first component of the connective of the lock*
relation is the sign of an action in sc-memory, the second
is the sign of the blocked structure.

lock*
∈ binary relation

lock type
∋ full lock
∋ lock on any change
∋ lock on deletion

The lock type set contains all possible lock classes,
i.e. structures containing sc-elements blocked by some
sc-agent for the duration of performing some action in
sc-memory.

Each structure belonging to the full lock set contains
sc-elements, viewing and modification (deletion, addition
of incident sc-connectors, deletion of the sc-elements
themselves, changing the contents in the case of a file)
which are prohibited to all sc-agents, except for the sc-
agent itself, which performs the corresponding action in
sc-memory associated with it by the lock* relation.

In order to exclude the possibility of implementing
sc-agents, which can make changes to the constructions
describing the locks of other sc-agents, all elements of
these constructions, including the sign of the structure
containing the blocked sc-elements (belonging to both
the full lock set and any other lock type) and the
connectives of the lock* relation linking this structure
and a specific action in sc-memory are added to the full
lock, corresponding to the given action in sc-memory.
Thus, each full lock corresponds to an affiliation loop
linking its sign to itself.

Each structure belonging to the lock on any change
set contains sc-elements, modification (physical deletion,
addition of incident sc-connectors, physical deletion of
sc-elements, changing the contents in the case of a file),
which is prohibited to all sc-agents, except for the sc-
agent itself, which performs the corresponding action
in sc-memory associated with it by the lock* relation.
However, viewing (reading) of these sc-elements by any
sc-agent is not prohibited.

Each structure belonging to the lock on deletion set
contains sc-elements, the deletion of which is prohibited
to all sc-agents, except for the sc-agent, which performs
an action corresponding to this structure in sc-memory,
associated with it by the lock* relation. However, it is
not prohibited to view (read) these sc-elements by any
sc-agent, adding incident sc-connectors.

B. Principles of working with locks
Let us consider the principles of working with locks:

134



Figure 1. An example of using locks

• at any given moment, only one lock of each type
can correspond to one process in sc-memory;

• at any given time, only one lock can correspond
to one process in sc-memory, set on some specific
sc-element;

• at the end of any process execution in sc-memory,
all the locks set by it are automatically deleted;

• to increase the efficiency of the system as a whole,
each process must block the minimum required set
of sc-elements at any given time, removing the lock
from each sc-element as soon as it becomes possible
(safe);

• In the case when more particular subprocesses
are explicitly allocated within the process in sc-
memory (using the temporal part*, sub-action*,
action decomposition*, etc. relations), then each such
subprocess from the point of view of synchronizing
execution is considered as an independent process,
which can correspond to all necessary locks.
– all child processes in sc-memory have access to

the locks of the maternal process in the same way
as if they were locks corresponding to each of
such child processes;

– in turn, the maternal process does not have any
privileged access to sc-elements blocked by child
processes and works with them in the same way
as any other process in sc-memory. The exception
is sc-elements denoting the child processes them-
selves, since the maternal process must be able to

control the child one, for example, suspending or
terminating their execution;

– all child processes in relation to each other work
the same way as in relation to any other processes;

– in the case when the maternal process suspends
execution (becomes a deferred action), all of its
child processes also suspend execution. In turn,
suspending one of the child processes in general
does not explicitly initiate the stopping of the
entire maternal process and, accordingly, other
child processes.

Let us consider the principles of working with full
locks:

• if the sc-element incident to some sc-connector gets
into any full lock, then this sc-connector itself is
also considered blocked by the same lock by default.
The contrary is generally not true, since part of the
sc-connectors incident to some sc-element may be
completely blocked, while this element itself will
not be blocked. This situation is typical, for example,
for sc-nodes denoting classes of concepts;

• each process in sc-memory can freely modify or
delete any sc-elements that get into the full lock
corresponding to this process.

The principles of working with full locks, on the one
hand, are the simplest, since all processes, except for
the one who set such a lock, do not have access to the
blocked sc-elements, and conflicts cannot arise. On the
other hand, the frequent usage of locks of this type can

135



lead to the case when the system will not be able to fully
use its knowledge and give incomplete or even incorrect
answers to the questions posed.

Let us consider the principles of working with locks
on any change and locks on deletion:

• only one lock of the same type can be set on the
same sc-element at one time, but different processes
can simultaneously set two different locks types on
the same element. This concerns the case when the
first process has set a lock on deletion on some sc-
element and the second process then sets a lock on
any change. In other cases, a lock conflict occurs;

• setting a lock of any type is also considered a
change, so if a lock on any change was set on some
sc-element, then another process will not be able to
set a lock of any type on the same sc-element until
the first process deletes its own;

• if a lock on deletion is set on some sc-connector, then
by default the same lock is set on sc-elements that
are incident to this sc-connector, since deleting these
elements will lead to the deletion of this connector.

process in sc-memory
:= [action in sc-memory]
⇒ subdividing*:

Classification of processes in sc-memory in terms
of synchronizing their execution
= {{{• action of searching for sc-elements

• action of generating sc-elements
• action of deleting sc-elements
• action of setting a lock of some

type on some sc-element
• action of removing the lock from

some sc-element
}}}

In some cases, in order to ensure synchronization, it
is necessary to combine several elementary actions on
sc-memory into one indivisible action (transaction in
sc-memory), for which it is guaranteed that no third-
party process will be able to read or modify the sc-
elements involved in this action, until the action completes.
At the same time, unlike a situation with a full lock,
a process, trying to access such elements, does not
continue execution as if these elements simply did
not exist in sc-memory but waits for the transaction
to complete, after which it can perform any actions
with these elements according to the general principles
of process synchronization. The problem of ensuring
transactions cannot be solved at the SC-code level and
requires the implementation of such indivisible actions
at the level of the ostis-platform.

If an action of searching for sc-elements is performed,
all sc-elements found and saved within any process get
into the corresponding lock on any change for this process.

Thus, the integrity of the fragment of the knowledge base
with which some process is working in sc-memory is
guaranteed. In this case, the search and automatic setting
of such a lock should be implemented as a transaction
in sc-memory.

This approach also allows avoiding a situation where
one process has blocked some sc-element on any change,
and the second process is trying to generate or delete
an sc-connector incident to this sc-element. In this case,
the second process will have to first find and lock the
specified sc-element on any change, which will cause a
lock conflict (interlock*).

In the case of generation of any sc-element within
a certain process, it automatically gets into a full lock
corresponding to this process. At the same time, the
generation and automatic setting of such a lock should be
implemented as a transaction in sc-memory. If necessary,
the generated elements can be deleted (i.e. their temporary
existence will not affect the activities of other processes
at all) or unblocked when information is generated that
may have some value in the future.

If any process tries to set a lock of any type on any
sc-element already blocked by some other process, then,
on the one hand, the lock cannot be set until another
process unlocks the specified sc-element; on the other
hand, in order to provide the possibility of searching
and eliminating interlocks, it is necessary to explicitly
indicate the fact that some process wants to access some
sc-element blocked by another process. In order to be able
to specify which processes are trying to block an already
blocked sc-element, it is proposed, along with the lock*
relation, to use the planned lock* relation, completely
analogous to the lock* relation.

The described mechanism also regulates the search
processes, since the searching and saving of some sc-
element involves the setting of a lock on any change. In
addition, it should be taken into account that a lock on
any change can be set on one sc-element after the lock
on deletion corresponding to another process. In this case,
there is no need to use the planned locks* relation.

The action of checking for the presence of a lock on
some sc-element and, depending on the result of the check,
the setting of the lock or the planned lock (indicating
the priority, if necessary) should be implemented as a
transaction.

planned lock*
⊂ lock*

The process to which the planned lock* is assigned
suspends execution until the already set locks are removed,
after which the planned lock* becomes a real lock*, and
the process continues execution in accordance with the
general rules.

136



lock priority*
⇒ scope of definition*:

planned lock*

In the case when several processes are planning to set
a lock on the same sc-element at once, the lock priority*
relation is used, linking the planned lock* relation pairs.
As a rule, the lock priority is determined by which of
the processes previously tried to set a lock on the given
sc-element, although in general the priority can be set or
changed depending on additional criteria.

In the case of an attempt to delete some sc-element by
some process, deletion can be carried out only if no lock
is set (and is not planned to be set) on this sc-element
by any other process.

In other cases, it is necessary to ensure that all processes
working with this sc-element are completed correctly, and
only then delete it physically.

To implement this possibility, each process can be
matched with a set of sc-elements that are deleted by this
process.

The action of checking for locks or planned locks on
the deleted sc-element and actually deleting it or adding
it to the set of deleted sc-elements for the corresponding
process should be implemented as a transaction.

deleted sc-elements*
⇒ first domain*:

process in sc-memory

Sc-elements that have got into the set of deleted sc-
elements of some process in sc-memory are available to
processes that have already set (or plan to set) locks on
these sc-elements earlier (before attempting to delete it),
and for all other processes these sc-elements are already
considered deleted. A process trying to delete an sc-
element suspends its execution until all processes, which
have blocked and plan to block this sc-element, unlock it.
In general, one sc-element can be included in the sets of
deleted elements simultaneously for several processes, in
this case, all such processes will simultaneously continue
execution after removing all locks from this sc-element. If
the deletion is attempted by one of the processes that has
already set a lock on the specified sc-element, then the
algorithm of actions remains the same – the sc-element
is added to the set of sc-elements being deleted by this
process and will be physically deleted as soon as all other
processes that have set a lock on this sc-element remove
them.

Let us consider the algorithm for removing the lock
from some sc-element:

1) if one or more planned locks* are set on this sc-
element, then the first of them by priority (or the only
one) becomes a lock*, the corresponding process
continues execution (becomes a real entity); the
connective of the execution priority relation cor-

responding to the remote connective of the planned
lock* relation is also deleted, i.e. the priority is
shifted by one position;

2) if there are no planned locks* set on this sc-element,
but it gets into the set of deleted sc-elements for
one or more processes, then the given sc-element
is physically deleted and the processes, suspended
before its deletion, continue their execution (become
real entities);

3) if the planned locks are not set on this sc-element
and it is not included in the set of deleted ones for
any process, then the lock is simply removed without
any additional changes.

transaction in sc-memory
⇒ subdividing*:

{{{• searching for some construction in
sc-memory and automatic setting a lock
on any change to the found sc-elements

• generating some sc-element and
automatic setting of a full lock on it

• checking for the presence of a lock on
some sc-element and, depending on the
result of the check, setting a lock or a
planned lock

• checking for the presence of locks or
planned locks on the deleted sc-element
and actually deleting it or adding it to
the set of deleted sc-elements for the
corresponding process

• removing the lock from a given
sc-element and, if necessary, setting the
first in priority planned lock or deleting
this sc-element if it is included in the set
of deleted sc-elements for some process

• searching for subprocesses of a process
and adding them to a set of deferred
actions in the case of adding the process
itself to this set

• searching for subprocesses of a process
and deleting them from the set of deferred
actions if the process itself is deleted
from this set

}}}

C. Principles of synchronizing sc-agents implemented at
the platform-independent level

When implementing abstract software sc-agents in the
SCP Language, compliance with all the principles of
synchronization of processes corresponding to these sc-
agents is ensured at the level of sc-agents for interpreting
scp-programs, i.e. by means of the ostis-platform. When
implementing abstract software sc-agents at the platform
level, compliance with all synchronization principles is
assigned, firstly, directly to the agent developer and,

137



secondly, to the platform developer. For example, the
platform can provide access to elements stored in sc-
memory through some programming interface that already
takes into account the principles of working with locks,
which will save the agent developer from having to take
into account all these principles manually.

In addition, a number of specific principles of operation
of abstract software sc-agents, implemented in the SCP
Language, are highlighted:

• as a result of the appearance in sc-memory of some
construction that satisfies the condition of initiating
some abstract sc-agent implemented using the SCP
Language, an scp-process is generated and initiated
in sc-memory. As a template for generation, an agent
scp-program is used, corresponding to this abstract
sc-agent.

• each such scp-process corresponding to some agent
scp-program can be associated with a set of struc-
tures describing locks of various types. Thus, syn-
chronization of interaction of parallel scp-processes
is carried out in the same way as in the case of any
other actions in sc-memory.

• despite the fact that each scp-operator is an atomic
action in sc-memory, which is a sub-action within
the entire scp-process, locks corresponding to one
operator are not introduced to avoid the lengthiness
and excess of additional system constructions created
when executing some scp-process. Instead of it, locks
that are common to the entire scp-process are used.
Thus, agents for interpreting scp-programs work
only taking into account the locks common to the
entire interpreted scp-process.

• processes describing the activity of agents for in-
terpreting scp-programs are usually not created,
therefore, their corresponding locks are not intro-
duced. Since such agents work with a unique scp-
process and their number is limited and known, then
the usage of locks for their synchronization is not
required.

• if the scp-process is suspended (is added to the set
of deferred actions), in accordance with the general
synchronization rules, all its child processes must
also be suspended. In this regard, all scp-operators,
which at this moment are real entities, become
deferred actions.

• in order to avoid undesirable changes in the body
of the scp-process, the entire construction generated
on the basis of some scp-program (the entire sc-
text describing the decomposition of the scp-process
into scp-operators) must be added to the full lock
corresponding to this scp-process.

• if necessary, the corresponding scp-operators of the
scp-operator for lock control class are used to unlock
or lock some construction by some lock type.

• after completing the execution of some scp-process,

its text is usually deleted from sc-memory and
all blocked constructions are released (signs of
structures that denoted locks are destroyed).

• as a rule, the particular action class corresponding to
a specific scp-program is not explicitly introduced,
but the more general scp-process class is used, except
in cases when the introduction of a special action
class is necessary for some other reasons.

In general, the entire locking mechanism can be
described both at the SC-code level (to increase the
level of platform independence) and, if necessary, can
be implemented at the ostis-platform level, for example,
to improve performance. To do this, a unique table,
containing a list of blocked elements with an indication
of the lock type at each time, can be assigned to each
process executed in sc-memory at the lower level.

D. Example of the operation of the locking mechanism

Let us consider an example of using the described
mechanism.

Figure 2. An example of using planned locks

In this example, Process1 works directly with the sc-
element e1,Process2 and Process3 plan to set a lock on
any change and a lock on deletion, respectively, at the
same time, Process2 tried to set its lock before Process3,
therefore, according to the direction of the connective of
the lock priority* relation, its lock will be set earlier.
Process4 and Process5 are waiting for all locks and
planned locks to be removed, after which e1 will be
deleted, and Process1 and Process2 will continue their
execution. No other planned locks can be set anymore,
since e1 got into a set of deleted sc-elements of at least
one process and, in accordance with the rules set out
above, all other processes except Process1–Process5 can
no longer access this sc-element. The executed process
belongs to the real entity set, suspended – to the deferred
action set.

After Process1 has unlocked sc-element e1, this el-
ement will be locked by Process2, and Process2 will
continue execution. Planned lock* set by Process2,
becomes a regular lock*.

138



Figure 3. An example of using planned locks (continued)

Figure 4. An example of using a lock on deletion

After Process2 has unlocked sc-element e1, this el-
ement will be locked by Process3, and Process3 will
continue execution.

Figure 5. The sc-elements to be deleted

When all processes remove the locks from sc-element
e1, it can be physically deleted, and Process4 and
Process5 will continue execution.

Depending on the specific lock types set by parallel
processes on some sc-elements and what specific actions
with these sc-elements are supposed to be performed
further within these processes, the interlock situations
are possible when each of these processes will wait for
the second process to remove the lock from the desired
sc-element, without removing the lock set by itself from
the sc-element, access to which is required by the second
process.

In the case when at least one of the locks is a full lock,
an interlock situation cannot occur, since sc-elements that
have got into the full lock of some scp-process are not
available to other scp-processes, even for reading, and,
thus, the rest of the scp-processes will work as if the
blocked sc-elements are simply missing in the current

state of sc-memory.
In cases where none of the set locks is a full lock,

interlocks may occur.
Elimination of the interlock is impossible without the

intervention of a specialized sc-meta-agent, which has
the right to ignore the locks set by other processes.

In general, the problem of a specific interlock can be
solved by performing the following steps by a specialized
sc-meta-agent:

• rollback of several operations performed by one of
the processes involved in the interlock by as many
steps back as necessary so that the second process
gets access to the necessary sc-elements and can
continue execution;

• waiting for the execution of the second process until
it completes or removes all locks from sc-elements
that the first process needs to access;

• repeated execution of canceled operations within the
first process and continuation of its execution but
taking into account the changes in memory made by
the second process.

For sc-meta-agents, all sc-elements, including those
describing locks, planned locks, etc., are completely
equivalent to each other in terms of access to them, i.e.
any sc-meta-agent has access to any sc-elements, even
those that have got into a full lock for any other process.
This is necessary so that sc-meta-agents can identify and
fix various problems, for example, the interlock problem
described above.

Thus, the problem of synchronizing the activities of
sc-meta-agents requires the introduction of additional
rules.

We will divide this problem into two more specific
ones:

• ensuring synchronization of the activities of sc-meta-
agents among themselves;

• ensuring synchronization of the activities of sc-meta-
agents and software sc-agents.

The first problem is proposed to be solved by prohibit-
ing parallel execution of sc-meta-agents. Thus, at any
given time within one ostis-system, there can be only one
process corresponding to the sc-meta-agent and being the
real entity.

The second problem is proposed to be solved by
introducing additional privileges for sc-meta agents when
accessing any sc-element. One rule is enough for this:

If a certain sc-element has become used within a
process corresponding to the sc-meta-agent (for example,
it has become an element of at least one scp-operator
included in this process), then all processes, into the locks
corresponding to which the specified sc-element gets,
become deferred actions (suspend execution). As soon
as the specified sc-element ceases to be used within the
process corresponding to the sc-meta-agent, all processes
suspended for this reason continue execution.

139



The considered limitations do not significantly dete-
riorate the performance of the ostis-system, since sc-
meta-agents are designed to solve a fairly narrow class of
problems, which, as the experience of practical developing
prototypes of various ostis-systems has shown, arise quite
rarely.

It is worth noting that there may be a situation in which
the execution of some process in sc-memory is interrupted
due to an error. In this case, there is a possibility that
the lock set by this process will not be removed until the
sc-meta-agent that has detected a similar situation does
that. However, this problem can only be partially solved
at the sc-model level, for cases when an error occurs
during the interpretation of the scp-program, is tracked
by the scp-interpreter, and a corresponding construction
is formed in memory that reports the problem to the
sc-meta-agent. Cases where an error has occurred at the
scp-interpreter or sc-storage levels should be considered
at the ostis-platform level.

IX. BASIC PROGRAMMING LANGUAGE OF
OSTIS-SYSTEMS

The allocation of the Basic programming language for
ostis-systems allows for a clear separation of the level of
methods and, accordingly, the skills of the ostis-system,
which can be fully described at the level of the knowledge
base, and lower-level skills that provide interpretation of
these higher-level skills. In other words, the allocation of
such a language allows for the platform independence of
ostis-systems, both in the case of a software implementa-
tion of the ostis-platform and in the case of an associative
semantic computer.

As a basic language for describing programs for
processing texts of the SC-code, the SCP Language is
proposed.

The SCP Language is a graph procedural programming
language designed for efficient processing of sc-texts. The
SCP Language is a parallel asynchronous programming
language.

SCP Language
:= frequently used sc-identifier*:

[scp-program]

The data representation language for texts of the SCP
Language (scp-programs) is the SC-code and, accordingly,
any variants of its external representation. The SCP
Language is built on the basis of the SC-code, as a result
of which scp-programs can be part of the processed data
for scp-programs, including in relation to themselves.
Thus, the SCP Language provides the ability to build
reconfigurable programs. However, in order to be able
to reconfigure the program directly in the process of its
interpretation, it is necessary at the level of the interpreter
of the SCP Language (Abstract scp-machine) ensure

the uniqueness of each executable copy of the source
program. Such an executable copy generated on the basis
of the scp-program will be called an scp-process. The
inclusion of the sign of some action in sc-memory in
the set of scp-processes guarantees the fact that only
the signs of elementary actions (scp-operators) will be
present in the decomposition of this action, which can
be interpreted by the implementation of the Abstract
scp-machine (interpreter of scp-programs).

The SCP Language is considered as an assembler for
an associative semantic computer [3].

Abstract scp-machine
∈ scp-machine

⇐ generalized model*:
scp-interpreter

The basic model for processing sc-texts includes the
Subject domain of the Basic programming language of
ostis-systems, that is, a description of the syntax and
denotational semantics of the SCP Language, as well
as a description of the Abstract scp-machine that is a
model of the scp-interpreter, which should be part of
the ostis-platform (although in general there can exist
platform variants that do not contain such an interpreter,
which, however, will not allow using the advantages of
the proposed basic model).

Let us consider the key features and advantages of the
Basic model for processing sc-texts:

• The texts of the SCP Language programs are written
using the same unified semantic networks as the
processed information, so we can say that the Syntax
of the SCP Language at the basic level is the same
as the Syntax of the SC-code.

• An approach to interpreting scp-programs involves
creating a unique scp-process at each call of the
scp-program.

• Several independent sc-agents can be executed
simultaneously in shared memory, while different
copies of sc-agents can be executed on different
servers, due to the distributed implementation of the
ostis-platform. Moreover, the SCP Language allows
making parallel asynchronous calls to subprograms
with subsequent synchronization and even executing
operators in parallel within a single scp-program.

• The transfer of the sc-agent from one system to
another consists in a simple transfer of a fragment
of the knowledge base, without any additional
operations depending on the interpretation platform.

• The fact that the specifications of sc-agents and
their programs can be written in the same language
as the processed knowledge significantly reduces
the list of specialized tools intended for designing
knowledge processing machines and simplifies their
development by using more universal components.

140



• The fact that a unique scp-process is created for
the interpretation of the scp-program makes it
possible to optimize the execution plan before its
implementation and even directly during execution
without the potential danger of ruining the general
universal algorithm of the entire program. Moreover,
such an approach to the design and interpretation
of programs allows talking about the possibility of
creating self-reconfigurable programs.

A. Concept of an scp-program

scp-program
⊂ program in sc-memory
⊃ agent scp-program

Each scp-program is a generalized structure describing
one of the decomposition options for actions of some
class performed in sc-memory. The sign of the sc-variable
corresponding to a specific decomposable action is a key
sc-element ′ within the scp-program. It is also explicitly
indicated that this sign belongs to the set of scp-processes.

Thus, each scp-program describes in a generalized form
the decomposition of some scp-process into interrelated
scp-operators, indicating, if any, arguments for this scp-
process.

Agent scp-programs are a special case of scp-programs
in general, however, they deserve separate consideration,
since they are used most often. Scp-programs of this class
are implementations of programs of knowledge processing
agents and have a rigidly fixed set of parameters. Each
such program has exactly two in-parameters ′. The value
of the first parameter is the sign of a binary oriented pair,
which is the second component of the connective of the
primary initiation condition* relation for an abstract sc-
agent, the set of sc-agent programs* of which includes the
considered agent scp-program, and in fact, it describes a
class of events, to which the specified sc-agent responds.

The value of the second parameter is an sc-element,
which is directly associated with the event, as a result of
which the corresponding sc-agent was initiated, i.e., for
example, generated or deleted sc-arc or sc-edge.

Let us consider the principles of implementing abstract
sc-agents implemented in the SCP Language:

• general principles of the organization of interaction
between sc-agents and users of the ostis-system
through a shared sc-memory;

• as a result of the appearance in sc-memory of some
construction that satisfies the condition of initiating
some abstract sc-agent implemented using the SCP
Language, the scp-process is generated and initiated
in sc-memory. As a template for generation, an agent
scp-program is used, specified in the set of programs
of the corresponding abstract sc-agent;

• each such scp-process corresponding to some agent
scp-program can be associated with a set of struc-

tures describing locks of various types. Thus, syn-
chronization of interaction of parallel scp-processes
is carried out in the same way as in the case of any
other actions in sc-memory;

• Within the scp-process, child scp-processes can
be created, but synchronization between them, if
necessary, is carried out by introducing additional
internal locks. Thus, each scp-process from the point
of view of processes in sc-memory is atomic and
complete act of activity of some sc-agent;

• in order to avoid undesirable changes in the body of
the scp-process itself, the entire structure generated
on the basis of some scp-program (the entire text
of the scp-process) should be added to the full lock
corresponding to this scp-process;

• all constructions generated during the execution of
the scp-process automatically get into the full lock
corresponding to this scp-process. Additionally, it
should be noted that the sign of this structure itself
and all meta-information about it are also included
in this structure;

• if necessary, it is possible to manually unlock or
lock some construction with some lock type using
the corresponding scp-operators of the scp-operator
for lock control class;

• after completing the execution of some scp-process,
its text is usually deleted from sc-memory, and
all blocked constructions are released (signs of
structures that denoted locks are destroyed).

B. Concept of an scp-process

An scp-process is understood as some action in sc-
memory that uniquely describes a specific act of executing
some scp-program for given source data. If the scp-
program describes an algorithm for solving a problem
in a general way, then the scp-process denotes a specific
action that implements this algorithm for the specified
input parameters.

In fact, the scp-process is a unique copy created on
the basis of the scp-program, in which each sc-variable,
with the exception of scp-variables ′, corresponds to the
generated sc-constant.

Belonging of some action to a set of scp-processes
guarantees the fact that only signs of elementary actions
(scp-operators) will be present in the decomposition of
this action, which can be interpreted by the implementa-
tion of an Abstract scp-machine.

C. Concept of an scp-operator

Each scp-operator represents some elementary action
in sc-memory. The arguments of the scp-operator will be
called operands. The order of the operands is specified
using the appropriate role relations (1 ′, 2 ′, 3 ′, and so
on). The operand marked with role relation 1 ′ will be
called the first operand, marked with role relation 2 ′ –
the second operand, etc. The type and meaning of each

141



operand is also specified using various subclasses of the
scp-operand ′ relation. In general, as the operand, any
sc-element can act, including the sign of any scp-program,
including the program itself containing this operator.

Each scp-operator must have one or more operands,
as well as an indication of the scp-operator (or several)
that should be executed next. The exception to this rule
is the scp-operator for program completion, which does
not contain a single operand and after which execution
no scp-operators can be executed within this program.

Each atomic type of the scp-operator is a class of scp-
operators, which is not divided into more particular ones
and, accordingly, is interpreted by the implementation of
the Abstract scp-machine.

Let us consider the upper level of the classification of
scp-operators, which is given in more detail in [3].

scp-operator
⊂ action in sc-memory
⇐ family of subsets*:

atomic type of the scp-operator
⇒ subdividing*:

{{{• scp-operator for generating constructions
• scp-operator for associative search of

constructions
• scp-operator for deleting structures
• scp-operator for checking conditions
• scp-operator for controlling the values of

operands
• scp-operator for controlling scp-processes
• scp-operator for event control
• scp-operator for processing files contents
• scp-operator for lock control

}}}

The role relation initial operator ′ specifies those
scp-operators that should be executed first within the
decomposition of the scp-process that corresponds to the
scp-program, i.e. those with which, actually, the execution
of the scp-process begins.

D. Parameters of scp-programs

parameters of the scp-program ′

⊂ action argument ′

⇒ subdividing*:
{{{• in-parameter ′

• out-parameter ′

}}}

The role relation parameter of the scp-program ′

links the sign of the scp-process with its arguments, that
corresponds to the scp-program.

Parameters of the in-parameter ′ type, although they
correspond to variables of the scp-program ′, cannot
change the value during its interpretation. The fixed value

of the variable is set when creating a unique copy of
the scp-program (scp-process) for its interpretation, and
thus the corresponding scp-variable ′ at the time of its
interpretation becomes an scp-constant ′ within each scp-
operator in which this scp-variable ′ occurred. The usage
of in-parameters can be considered by analogy with the
usage of a variant of the value transfer mechanism in
traditional programming languages, with the condition
that the value of a local variable within a child program
cannot be changed.

Parameters of the out-parameter ′ type correspond to
variables of the scp-program ′ and have all the same
corresponding properties. Most often, it is assumed that
the value of this parameter is necessary for the maternal
scp-program containing the call operator of the current
scp-program. At the same time, at the moment of the
beginning of interpretation, a node denoting a variable
(or rather, its unique copy within the process) of the
maternal process is passed directly to the child process
as a parameter. The specified variable may, if necessary,
have a value or not. After completion and during the in-
terpretation of the child process, the maternal process can
still work with the variable passed as the out-parameter ′,
viewing or changing its value if necessary. The usage of
the out-parameter can be considered by analogy with the
usage of the link transmission mechanism in traditional
programming languages.

X. MODEL FOR THE INTERPRETER OF THE BASIC
PROGRAMMING LANGUAGE OF OSTIS-SYSTEMS

The advantages of the proposed multi-agent approach to
building knowledge processing machines and, accordingly,
problem solvers can work not only at the platform-
independent level but also at lower levels. So, in particular,
the interpreter of the Basic programming language of
ostis-systems is also proposed to be built as a non-
atomic abstract sc-agent that provides interpretation of
the methods described in the SCP Language. Thus, such
an interpreter is included in the general hierarchy of
agents that build-up the knowledge processing machine
of ostis-systems and is an abstract sc-agent that is not
implemented in the SCP Language.

In general, there may be many options for implementing
such interpreters. Within the OSTIS Standard, one of them
is offered as a standard and is called an Abstract scp-
machine.

Abstract scp-machine
∈ abstract sc-agent that is not implemented in the

SCP Language
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for creating
scp-processes

• Abstract sc-agent for interpreting
scp-operators

142



• Abstract sc-agent for synchronizing the
process of interpreting scp-programs

• Abstract sc-agent for destroying
scp-processes

• Abstract sc-event for synchronizing events
in sc-memory and its implementation
⇒ decomposition of an abstract

sc-agent*:
{{{• Abstract sc-agent for

translating the generated
event specification in
sc-memory into an internal
representation

• Abstract sc-agent for
processing an event in
sc-memory that initiates an
agent scp-program

}}}
}}}

The purpose of an Abstract sc-agent for creating scp-
processes is to create scp-processes corresponding to a
given scp-program. This sc-agent is activated when an
initiated action belonging to the action of interpreting
scp-program class appears in sc-memory. After the sc-
agent checks the initiation condition, the scp-process is
created taking into account the specific parameters of the
interpretation of the scp-program, after which the initial
operator ′of the scp-process is searched and added to the
the set of real entities.

The purpose of the an Abstract sc-agent for interpreting
scp-operators is actually the interpretation of the operators
of the scp-program, that is, the execution in sc-memory
of actions described by a specific scp-operator. This
sc-agent is activated when an scp-operator belonging
to the real entities class appears in sc-memory. After
performing the action described by the scp-operator, the
scp-operator is added to the set of past entities. In the
case when the semantics of the action described by the
scp-operator suggests the possibility of branching for
the scp-program after executing this scp-operator, then
one of the subsets of the class of performed actions –
unsuccessfully performed action or successfully performed
action is used.

The purpose of an Abstract sc-agent for synchronizing
the process of interpreting scp-programs is to provide
transitions between scp-operators within a single scp-
process. This sc-agent is activated when some scp-
operator is added to the set of past entities. Next, a
transition is made along the sc-arc belonging to the
sequence of actions* relation (or more particular relations,
if the scp-operator was added to the set of successfully
performed actions or unsuccessfully performed actions).
In this case, the next scp-operator becomes a real
entity (active scp-operator) if at least one scp-operator
associated with it by incoming sc-arcs belonging to the

sequence of actions* relation (or more particular relations)
became a past entity (or, respectively, a subset of past
entities). In the case when it is necessary to wait for
the completion of all previous operators, the operator of
the conjunction of preceding operators class is used for
synchronization.

The purpose of an Abstract sc-agent for destroying
scp-processes is the destruction of the scp-process, i.e.
the deletion from sc-memory of all sc-elements that build
it up. This sc-agent is activated when an scp-process
belonging to a set of past entities appears in sc-memory.
At the same time, the destroyed scp-process does not
necessarily have to be fully formed. The need to destroy
an incomplete scp-process may arise if, when creating the
scp-process, problems arose that did not allow continuing
the creation of the scp-process and its performance.

The purpose of an Abstract sc-agent for event synchro-
nization in sc-memory and its implementation is to ensure
the operation of non-atomic sc-agents implemented in
the SCP Language.

The purpose of an Abstract sc-agent for translating
the generated event specification in sc-memory into
the internal representation is the translation of oriented
pairs describing the primary initiation condition* of some
sc-agent into the internal representation of elementary
events at the level of sc-storage, provided that this sc-
agent is implemented at a platform-independent level
(using the SCP Language). The condition for initiating
this sc-agent is the appearance in sc-memory of a new
element of the set of active sc-agents, for which the
corresponding oriented pair will be found and translated.

The purpose of an Abstract sc-agent for event pro-
cessing in sc-memory, initiating the agent scp-program
is to search for an agent scp-program, included in the
set of sc-agent programs* for each sc-agent, the primary
initiation condition of which corresponds to an event that
occurred in sc-memory, as well as the generation and
initiation of an action aimed at interpreting this program.
As a result of the operation of this sc-agent, an initiated
action appears in sc-memory, belonging to the action of
interpreting scp-program class.

XI. CONCLUSION AND DIRECTIONS FOR FURTHER
DEVELOPMENT

In the article, the current problems in the field of
developing hybrid problem solvers are formulated and
an approach to solving some particular problems that are
part of these more general problems is proposed. Thus,
the solution of the formulated general problems is still
relevant, however, the usage of the OSTIS Technology
and the principles proposed in this work for constructing
problem solvers based on it creates preconditions for their
solution.

It is possible to formulate a number of more specific
directions for the development of the approaches proposed
in the article:

143



• Integrate ideas of situational control into the pro-
posed approach more closely and fully;

• Refine the proposed locking mechanism, in particular,
to minimize the number of lock classes, to take into
account and implement the ideas of implementing
lock-free algorithms;

• Eliminate the need to introduce sc-meta-agents and
scp-meta-programs.

• Modify the SCP Language in order to be capable
of describing the receptor and effector interaction of
ostis-systems within scp-programs.

• When developing an Abstract scp-machine, to take
into account the principles of building wave program-
ming languages [18], [19] and the ideas of insertion
programming and modeling [20], [21].

ACKNOWLEDGMENT

The author would like to thank the research group of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for its help in the work and valuable
comments.

The work was carried out with the partial financial
support of the BRFFR (BRFFR-RFFR No. F21RM-139).

REFERENCES

[1] A. Kolesnikov, Gibridnye intellektual’nye sistemy: Teoriya i
tekhnologiya razrabotki [Hybrid intelligent systems: theory and
technology of development], A. M. Yashin, Ed. SPb.: Izd-vo
SPbGTU, 2001.

[2] D. Shunkevich, “Agent-oriented models, method and tools of
compatible problem solvers development for intelligent systems,”
in Open semantic technologies for intelligent systems, V. Golenkov,
Ed. BSUIR, Minsk, 2018, pp. 119–132.

[3] V. Golenkov, N. Guliakina, and D. Shunkevich, Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva i
jekspluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’juternyh sistem [Open technology of ontological design,
production and operation of semantically compatible hybrid
intelligent computer systems], V. Golenkov, Ed. Minsk: Bestprint
[Bestprint], 2021.

[4] A. Narin’jani, “Ne-faktory: kratkoe vvedenie [non-factors: a
brief introduction],” Novosti iskusstvennogo intellekta [Artificial
intelligence news], no. 2, pp. 52–63, 2004.

[5] V. Gorodetskii, V. Samoilov, and D. Trotskii, “Bazovaya ontologiya
kollektivnogo povedeniya avtonomnykh agentov i ee rasshireniya
[Basic ontology of autonomous agents collective behavior and
its extension],” Izvestiya RAN. Teoriya i sistemy upravleniya
[Proceedings of the RAS. Theory and control systems], no. 5,
pp. 102–121, 2015, (in Russian).

[6] M. Wooldridge, An Introduction to MultiAgent Systems - Second
Edition. Wiley, 2009.

[7] V. Tarasov, Ot mnogoagentnykh sistem k intellektual’nym
organizatsiyam [From multi-agent systems to intelligent
organizations]. M.: Editorial URSS, 2002, (in Russian).

[8] L. Cao, “In-depth behavior understanding and use: The
behavior informatics approach,” Information Sciences, vol.
180, no. 17, pp. 3067–3085, Sep. 2010. [Online]. Available:
https://doi.org/10.1016/j.ins.2010.03.025

[9] L. Cao, T. Joachims, C. Wang, E. Gaussier, J. Li, Y. Ou,
D. Luo, R. Zafarani, H. Liu, G. Xu, Z. Wu, G. Pasi,
Y. Zhang, X. Yang, H. Zha, E. Serra, and V. Subrahmanian,
“Behavior informatics: A new perspective,” IEEE Intelligent
Systems, vol. 29, no. 4, pp. 62–80, Jul. 2014. [Online]. Available:
https://doi.org/10.1109/mis.2014.60

[10] M. Pavel, H. B. Jimison, I. Korhonen, C. M. Gordon, and
N. Saranummi, “Behavioral informatics and computational
modeling in support of proactive health management and
care,” IEEE Transactions on Biomedical Engineering, vol. 62,
no. 12, pp. 2763–2775, Dec. 2015. [Online]. Available:
https://doi.org/10.1109/tbme.2015.2484286

[11] G. S. Al’tshuller, Najti ideju: Vvedenie v TRIZ — teoriju reshenija
izobretatel’skih zadach, 3-e izd. [Find an idea: An introduction
to TRIZ - the theory of inventive problem solving, 3rd ed.]. M.:
Al’pina Pablisher, 2010.

[12] G. P. Shhedrovickij, Shema mysledejatel’nosti – sistemno-
strukturnoe stroenie, smysl i soderzhanie [Scheme of mental
activity – system-structural structure, meaning and content]. M.:
Shk. kul’t. pol., 1995.

[13] D. Pospelov, Situacionnoe upravlenie. Teorija i praktika
[Situational management. Theory and practice]. M.: Nauka,
1986.

[14] D. Shunkevich, “Ontological approach to the development of
hybrid problem solvers for intelligent computer systems,” in Open
semantic technologies for intelligent systems, V. Golenkov, Ed.
BSUIR, Minsk, 2021, pp. 63–74.

[15] E. W. Dijkstra, Cooperating Sequential Processes. Berlin,
Heidelberg: Springer-Verlag, 2002, pp. 65–138.

[16] C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 26, no. 1, p. 100–106, jan 1983. [Online]. Available:
https://doi.org/10.1145/357980.358021

[17] B. Chatterjee, S. Peri, M. Sa, and K. Manogna, “Non-blocking
dynamic unbounded graphs with worst-case amortized bounds.”
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2022/15795/

[18] P. Sapaty, “Jazyk VOLNA-0 kak osnova navigacionnyh struktur
dlja baz znanij na osnove semanticheskih setej [WAVE-0 language
as a basis for navigational structures for knowledge bases based on
semantic networks],” Izv. AN SSSR. Tehn. kibernet. [Izv. Academy
of Sciences of the USSR. Tech. cybernet.], no. 5, pp. 198–210,
1986.

[19] D. I. Moldovan and Y.-W. Tung, “SNAP: A VLSI
architecture for artificial intelligence processing,”
Journal of Parallel and Distributed Computing, vol. 2,
no. 2, pp. 109–131, 1985. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0743731585900310

[20] A. Letichevskij, J. Kapitonova, V. Volkov, V. Vyshemirskij, and
A. Letichevskij (Jr.), “Insercionnoe programmirovanie [insertion
programming],” Kibernetika i sistemnyj analiz [Cybernetics and
systems analysis], no. 1, pp. 19–32, 2003.

[21] A. Letichevskij, “Insercionnoe modelirovanie [insertion modeling],”
Upravljajushhie sistemy i mashiny [Control systems and machines],
no. 6, pp. 3–14, 2012.

Гибридные решатели задач
интеллектуальных компьютерных систем

нового поколения
Шункевич Д.В.

В работе сформулированы актуальные проблемы текуще-
го состояния технологий разработки гибридных решателей
задач, предложен подход к их решению на основе Технологии
OSTIS. Сформулированы принципы построения решателя
задач как иерархической системы навыков, основанной на
многоагентном подходе, приведены онтологии агентов и
выполняемых ими действий. Сформулированы принципы
синхронизации деятельности агентов, а также разработана
онтология базового языка программирования для реали-
зации программ агентов и модель интерпретатора такого
языка.

Received 01 11. .20 22

144


	‎D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\013-420. Basic.pdf‎
	‎D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\09_OSTIS22_ID28_Shunkevich_HybriPSoICSoNG.pdf‎


