
Universal model of interpreting logical-semantic
models of intelligent computer systems of a new

generation
Daniil Shunkevich

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: shunkevich@bsuir.by

Abstract—In the article, an approach to solving the
problem of the platform independence of computer systems
is considered, which assumes unification of the principles
for the implementation of such systems and ensuring their
semantic compatibility based on the OSTIS Technology.
The formalized system of concepts is given, that defines the
principles of the implementation of this approach, including
the principles for the implementation of the hardware
platform for the implementation of systems built on the
basis of the OSTIS Technology – an associative semantic
computer.

Keywords—OSTIS Technology, platform independence,
ontology, associative semantic computer.

I. INTRODUCTION

In general, the development of any artificial system,
in particular, an intelligent computer system, involves the
execution of two stages:

• the design stage, that is, the building of a formal
model of the system, sufficient to understand the
principles of its configuration and perform the
subsequent stage of its implementation;

• the implementation stage, that is, the direct re-
alization of the developed model using specific
means (tools, materials, components, etc.). In the
case of computer systems, the execution of this
stage usually involves the selection of particular
programming languages, libraries, third-party tools
such as DBMS and various services, etc., as well
as the programming and debugging of the system
using the chosen means.

For each of these stages, distinct methods as well as
automation tools for the corresponding processes may
exist.

If the design stage of a computer system usually
requires the participation of highly qualified specialists
and experts in the subject domains in which automation
is carried out, then the implementation stage, on the one
hand, is usually simpler (in case of high-quality execution
of the design stage) and, on the other hand, requires
significant resources. One of the reasons for this is the

need for a computer system to work on various platforms
(devices), each of which, in general, may have its own
features and limitations that need to be taken into account
at the implementation stage. The solution to this problem
is to ensure the platform independence (or cross-platform
compatibility) of the computer systems being developed.

II. ANALYSIS OF MODERN APPROACHES TO ENSURING
THE PLATFORM INDEPENDENCE

The idea of ensuring the platform independence is
widely used in modern computer systems for a long time.
This problem is usually considered at two levels:

• the problem of enabling the work of the software
system in different operation systems;

• the problem of ensuring the compatibility of the
operation system with various hardware architectures.
To solve this problem, different builds of the opera-
tion system kernel may exist for various hardware
architectures, which is typical for Linux operation
systems. At the same time, it is essential to note
that in the vast majority of cases this entails not
fundamentally different architectures but options for
implementing the basic von Neumann architecture.

In the case when the computer system being developed
is designed at a lower level than the operation system
as such (for example, when programming controllers for
managing various devices), the problem of ensuring the
platform independence is significantly aggravated and can
most often be solved only for a set of hardware of a certain
class for which the access interface is standardized, that
is, a set of low-level information processing commands.

Thus, it can be said that much attention in the design
of modern computer systems is currently being paid to
the first of the listed levels of the platform independence,
that is, ensuring the operation of the software system
on different operation systems. This can be achieved in
different ways:

• The usage of cross-platform programming languages,
which, in turn, can be divided into “fully” inter-

285



preted languages (Python, JavaScript and languages
based on it, PHP, and others) and languages using
compilation into the platform-independent low-level
bytecode with its possible subsequent compilation
into the machine code directly during execution (Just-
in-time compilation, or JIT compilation). Languages
of the second class include, for example, Java and
C#. The implementation of this approach requires the
installation of the appropriate programming language
or bytecode on the target computer with the operation
system of the interpreter.
Despite its popularity, this option has a number of
limitations:
– on average, the performance of interpreted pro-

grams is lower than compiled ones. One of
the approaches to solving this problem is JIT
compilation;

– strictly speaking, cross-platform compatibility
with this option is provided not for all operation
systems but for a class of operation systems
and the corresponding class of devices, for ex-
ample, operation systems designed for personal
computers. For example, an application for a per-
sonal computer written in Java cannot be directly
transferred to a mobile device, because when
developing mobile applications, other principles
of user interaction with the system interface, the
absence of multiwindowing, and much more are
taken into account.

• The implementation of the system in the form of a
web application, which is operated through a web
browser and whose interface is thus implemented
on the basis of generally accepted standards of the
World Wide Web (HTML, CSS, JavaScript and
languages and libraries based on it). This option
provides the ability to work with the application
from any device that has a web browser, including a
mobile one. The disadvantages of this option include:
– as a rule, high demands on the performance of

the end device. A modern web browser is one of
the most resource-intensive applications on almost
any device;

– the problem of ensuring the platform independence
of the server part of the web application remains
behind the scenes, which should be solved in some
other way;

– despite standardization, developers often have to
take into account the specifics of particular web
browsers and test the performance of applications
for each of them;

– potentially, the same web application can be used
on any device, however, to ensure convenience
and clarity, as a rule, it is necessary to develop
separate versions of the web application adapted
to different devices, having, for example, different

screen sizes.
• Virtualization (containerization, emulation). The

listed terms are not completely synonymous but
generally denote an approach in which an isolated
local environment (virtual machine, container, emu-
lation environment) is created within the operation
system, containing all the settings necessary for the
work of an application and guaranteeing its work
on any operation systems and devices where the
corresponding virtual machine or container can be
interpreted. Accordingly, the running of such envi-
ronments requires the installation of an appropriate
interpreter or emulator on the end device.
This approach is rapidly developing and gaining
popularity at the moment, since it allows not only
solving the problem of cross-platform compatibility
but also saving the consumer from installing a
large number of dependencies and configuring the
application on the end device.
Among the popular tools implementing this ap-
proach, tools for virtualization (VirtualBox, DOSBox,
VMware Workstation), containerization (Docker),
emulation of Android applications for desktop op-
eration systems (Genymotion, Bluestacks, Anbox),
and many others can be specified.
The disadvantages of this approach include its
resource intensity and reduced performance, as
well as limited usage (as a rule, the corresponding
interpreters are developed only for the most popular
and demanded operation systems). In addition, there
is a next-level problem associated with dependence
on the selected virtualization (containerization) tool.

It is also important to note that even for interpreted
programming languages, there is a problem of application
dependence on the set of libraries and frameworks used.
So, when developing an interface of a web application,
the popular AngularJS and Reactos frameworks can be
used, while after selecting one of them, it is impossible
to quickly transfer the application to another framework.

Thus, it can be concluded that a lot of attention is paid
to the problem of ensuring the platform independence
in modern computer systems, but it has not been fully
solved. At the same time, there are a large number
of successful private solutions, which, however, have
serious limitations, primarily due to the lack of unification
of modern approaches to the development of computer
systems.

The problem of ensuring the platform independence
becomes even more urgent in the context of the develop-
ment of intelligent computer systems. This is conditioned
by the following features of such systems:

• a much more complex structure of the represented
information in comparison with traditional computer
systems and, accordingly, the variety of forms of its
representation, storage and processing of which on

286



different platforms can be organized in completely
different ways;

• high performance requirements for some classes of
systems, in particular, systems that use machine
learning, which leads to the creation of specialized
hardware architectures, such as, for example, neuro-
computers [1], [2];

• a variety of problem-solving models that are gener-
ally implemented differently in various systems;

• the relevance of the development of hybrid intel-
ligent systems [3], within which various types of
knowledge and various problem-solving models are
integrated. Due to the lack of a generally accepted
unified foundation for their integration at the moment,
such systems are created mainly with a focus on a
specific platform and can hardly be transferred to
other platforms.

Thus, we can say that the problem of ensuring the plat-
form independence for intelligent systems is largely con-
ditioned by the deficiency in the semantic compatibility
of components of such systems with each other, which,
in turn, creates obstacles even for the implementation
of approaches to ensuring the platform independence,
implemented in the development of traditional computer
systems.

III. PROPOSED APPROACH TO ENSURING THE
PLATFORM INDEPENDENCE OF INTELLIGENT

COMPUTER SYSTEMS

To solve the problem of ensuring the platform indepen-
dence of intelligent systems, as it was mentioned earlier,
it is necessary first to ensure the semantic compatibility of
the components of such systems with each other, which,
in turn, assumes:

• unifying the representation of various kinds of
information stored in the knowledge bases of such
systems;

• unifying the basic models of processing information
stored in the knowledge bases of such systems, that
is, the allocation of a universal low-level program-
ming language that allows processing the stored
information in a unified form;

• unifying the principles of implementing various
problem-solving models and, as a result, the possi-
bility of their integration within hybrid intelligent
systems;

• unifying the principles of developing computer
system interfaces, which would make it possible to
carry out within one intelligent system the interaction
with other systems and users of such systems in
different external languages, including natural ones.

These principles are implemented within the Open
Semantic Technology of Intelligent Systems Design
(OSTIS Technology) [4], which is proposed to be the
basis for solving the problem of ensuring the semantic

compatibility of components of intelligent computer
systems and ensuring the platform independence of such
systems. In particular, within the OSTIS Technology,
the following key principles from the point of view of
ensuring the platform independence are implemented:

• the OSTIS Technology is based on a universal
method of semantic representation (encoding) of
information in the memory of intelligent computer
systems, called an SC-code. Texts of the SC-code
(sc-texts, sc-constructions) are unified semantic net-
works with a basic set-theoretic interpretation. The
elements of such semantic networks are called sc-
elements (sc-nodes and sc-connectors, which, in
turn, depending on orientation, can be sc-arcs or
sc-edges). The Alphabet of the SC-code consists of
five main elements, on the basis of which SC-code
constructions of any complexity are built, including
more specific types of sc-elements (for example,
new concepts). Universality and uniformity of the
SC-code makes it possible to describe on its basis
any types of knowledge and any problem-solving
methods, which, in turn, significantly simplifies their
integration within a single system;

• the basis of the knowledge base developed by
the OSTIS Technology is a hierarchical system of
semantic models of subject domains and ontologies,
among which the universal Kernel of the knowledge
base semantic models and the methodology for the
development of semantic knowledge base models are
allocated, which ensure the semantic compatibility
of the knowledge bases being developed;

• the basis of information processing within the OSTIS
Technology is the SCP Language, the program texts
of which are also written in the form of SC-code
constructions;

• the problem solver architecture within the OSTIS
Technology is based on a multi-agent approach, in
which agents interact with each other purely by
specifying the actions they perform within a common
semantic memory (such agents are called sc-agents).
Such an approach allows ensuring the fundamental
possibility of implementing any problem-solving
methods in the form of corresponding solver com-
ponents and ensuring their semantic compatibility;

• the interface of the ostis-system is interpreted as
a specialized subsystem that is built on the same
principles as any other ostis-system (that is, it has its
own knowledge base and problem solver) and solves
problems related to the interaction of the system
with the external environment;

• all of these principles together make it possible to
ensure the semantic compatibility and simplify the
integration of both various components of computer
systems and such systems themselves.

The listed principles allow concluding that the OSTIS

287



Technology provides a fundamental possibility of imple-
menting the platform independence of computer systems
developed on its basis (ostis-systems). On the other hand,
thanks to its universality, the OSTIS Technology allows
transforming any modern computer system into the ostis-
system, which will be functionally equivalent to the
original computer system but at the same time will have
all the above features that create preconditions for solving
the problem of the platform independence.

To solve this problem at the level of the OSTIS
Technology it is proposed to use an ontological approach
involving the building of a family of ontologies, providing
clarification of concepts such as ostis-system, ostis-
platform, their structure, typology, and the requirements
imposed on them.

As for the above-mentioned problem of the dependence
of computer systems on specific frameworks, a similar
problem may arise with the further development of the
OSTIS Technology, in a situation where the corresponding
libraries will contain a sufficiently large number of
functionally equivalent components. However, thanks
to the principles underlying the OSTIS Technology, in
particular, the semantic representation of information and
semantic compatibility of components, this problem will
be much less acute, since:

• the number of functionally equivalent components
will be significantly lower than in traditional infor-
mation technologies; it is not necessary to create
syntactically different components: the differences
will be only at the semantic level;

• independently, the components will be more univer-
sal, that is, they can be used in a much larger number
of systems;

• there is an opportunity to automatically identify close
components, their similarities, differences, potential
conflicts, and dependencies of components;

• it is possible to build fairly simple (compared to
traditional technologies) procedures for the transition
from one framework to another, since all components
and frameworks have a common formal semantic
basis of a level that is higher than in traditional
technologies.

Within the OSTIS Technology, several universal variants
of visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant). Within
this article, fragments of structured texts in the SCn code
[4] will often be used, which are simultaneously fragments
of the source texts of the knowledge base, understandable
to both human and machine. This allows making the
text more structured and formalized, while maintaining
its readability. The symbol “:=” in such texts indicates
alternative (synonymous) names of the described entity,
revealing in more detail certain of its features.

IV. ARCHITECTURE AND PRINCIPLES FOR THE
OSTIS-SYSTEMS IMPLEMENTATION

Let us consider the proposed approach to organizing
the implementation of ostis-systems. One of the key
principles of the OSTIS Technology is to ensure the
platform independence of ostis-systems, that is, a strict
separation of the logical-semantic model of the cybernetic
system (sc-models of the cybernetic system) and the
interpretation platform of the sc-models of the cybernetic
system (ostis-platform). The advantages of such a strict
separation are quite obvious:

• the transfer of the ostis-system from one platform to
another (for example, a newer and more efficient or
focused on a certain class of devices) is performed
with minimum overhead costs (in the ideal case, it
generally comes down to loading the sc-model of a
cybernetic system onto the platform);

• the components of ostis-systems become universal,
that is, they can be used in any ostis-systems where
their usage is appropriate;

• the development of the platform and the development
of sc-models of systems can be carried out in parallel
and independently of each other, in general, by
separate independent teams of developers according
to their own rules and methods.

Let us consider in more detail the concept of the logical-
semantic model of a cybernetic system.

logical-semantic model of a cybernetic system
:= [formal model (formal description) of the func-

tioning of a cybernetic system, consisting of
(1) a formal model of information stored in
the memory of a cybernetic system and (2) a
formal model of a group of agents processing
the specified information]

⊃ sc-model of a cybernetic system
:= [logical-semantic model of a cybernetic

system, represented in an SC-code]
:= [logical-semantic model of an ostis-system,

which, in particular, can be a functionally
equivalent model of some cybernetic sys-
tem that is not an ostis-system]

cybernetic system
⊃ computer system

:= [artificial cybernetic system]
⊃ ostis-system

:= [computer system built using the
OSTIS Technology based on the
interpretation of the designed
logical-semantic sc-model of this
system]

288



ostis-system
⊂ subject
⇒ generalized decomposition*:

{{{• sc-model of a cybernetic system
• ostis-platform

}}}

sc-model of a cybernetic system
⇒ generalized decomposition*:

{{{• sc-memory
• sc-model of the knowledge base
• sc-model of the problem solver
• sc-model of the cybernetic system

interface
}}}

sc-memory
:= [abstract sc-memory]
:= [sc-storage]
:= [semantic memory storing SC-code constructions]
:= [storage of SC-code constructions]

The sc-memory is, on the one hand, a common
environment for storing the knowledge base and, on the
other hand, an environment for interaction of sc-agents.
At the same time, each sc-agent relies on some known
sc-elements stored in the sc-memory (key sc-elements of
this sc-agent).

In general, the sc-memory implements the following
functions:

• storage of SC-code constructions;
• storage of information constructions (files) external

to the SC-code. In general, file storage can be
implemented in a way different from storing sc-
constructions;

• access to SC-code constructions (reading, creat-
ing, deleting), implemented through the appropriate
software or hardware interface. Such an interface
is essentially a microprogramming language that
allows implementing more complex procedures for
processing stored constructions based on it, including
the operators of the SCP Language, the set of
which determines the list of commands of such a
microprogramming language. The sc-memory itself
is passive in this regard and only executes commands
initiated from the outside by any subjects.

Note that the separation of the storage and access
functions is rather conditional, since it seems impractical
to implement the function of storing constructions without
the possibility of accessing them at least at the lowest
level, because it will be impossible to use such storage.

The terms “sc-memory” and “abstract sc-memory” are
synonyms in the way that mentioning the sc-memory we
mean some abstraction for which its maximum volume
is not specified (the maximum number of sc-elements,
that can be stored in this memory simultaneously), a

particular method of storing sc-elements, means for
ensuring the storage reliability, etc. All these features are
specified at the level of the sc-memory implementation in
a hardware version or a software model based on some
other architecture.

The explicit allocation of the sc-model of the knowledge
base, sc-model of the problem solver, and sc-model of
the cybernetic system interface within the sc-model of
the cybernetic system is to a certain extent conditional,
since to ensure the platform independence, sc-models of
a cybernetic system, the problem solver, and the system
interface are described by means of the SC-code and, thus,
are also part of the knowledge base. Such an explicit
allocation of these components is conditioned by the
convenience of designing and maintaining the system.

Thus, on condition of strict separation of the sc-model
of the cybernetic system and ostis-platform, as well as
ensuring the universality of the ostis-platform, that is, the
ability to interpret any sc-model of the cybernetic system
on any variant of the ostis-platform, the implementation
stage of the ostis-system actually comes down to loading
the sc-model of a cybernetic system on the selected variant
of the ostis-platform.

It is important to note that the universality of a
particular implementation option of the ostis-platform
is obviously limited by the physical (hardware) part of
this implementation. For example, if the hardware of
the selected platform option is a conventional personal
computer, then without the addition of extra hardware
components, the system will not be able to solve problems
related to the physical movement of itself and other
objects in space, even if the software part of the system is
able to perform the necessary calculations. In other words,
any ostis-platform will always be limited in solving be-
havioral problems of any classes, no matter how powerful
physical resources it possesses. Thus, it is more correct
to talk about the universality of the ostis-platform in the
context of solving information problems, that is, the abil-
ity to interpret any sc-models of cybernetic systems
regardless of what kind of information problems these
systems solve.

Based on this, it is possible to formulate a key
requirement for the sc-model of a cybernetic system –
at none of the stages of solving any information problem
in this system the features of the platform on which the
specified sc-model will be interpreted in the future should
be taken into account. Similarly, the key requirement for
the ostis-platform is to provide an interface for accessing
(searching and converting) information stored in the sc-
memory in some universal way, independent from the
specifics of the implementation of a particular platform.
Thus, the most important problem to ensure the platform
independence of ostis-systems is a clear specification of
the requirements for each implementation of the ostis-
platform, that is, standardization of ostis-platforms. It

289



is important to note that such standardization should
not depend on the form in which the ostis-platform
is implemented and, accordingly, be suitable for the
hardware version of the implementation.

To clarify the requirements for the ostis-platform, we
introduce the concept of an sc-machine, which is an
analogue of such models as the Post Machine and the
Turing Machine [5], the von Neumann Machine [6].

sc-machine
:= [abstract sc-machine]
:= [generalization of various implementations of

ostis-platforms, for which general functional
requirements are set]

:= [generalized model describing the functioning of
any ostis-platform, regardless of the way it is
implemented]

:= [generalized model that defines the general pat-
terns of any ostis-platform, regardless of the way
it is implemented]

:= [generalized information image of the ostis-
platform]

⇐ generalized model*:
ostis-platform

⇒ generalized decomposition*:
{{{• sc-memory

⇐ generalized model*:
implementation of the sc-memory

• abstract machine of knowledge processing
⊂ abstract sc-agent

}}}
⊃ scp-machine

⇐ generalized model*:
scp-interpreter

:= [sc-machine that provides interpretation
of the ostis-systems basic programming
language]

:= [generalized model of the interpreter of
the ostis-systems basic programming lan-
guage]

:= [generalized model defining the general
principles for the interpretation of the
ostis-systems basic programming lan-
guage]

:= [generalized model of operational seman-
tics of the ostis-systems basic program-
ming language]

Potentially, we can talk about several possible function-
ally equivalent variants of the scp-machine, which will
correspond to different variants of the basic programming
language. Within the current version of the OSTIS
Technology, both the denotational semantics of the SCP
Language and its operational semantics, implemented in
the form of an abstract scp-machine, are fixed [4].

It is important to emphasize that despite the advan-
tages of the platform-independent implementation of
ostis-systems, it sometimes turns out to be advisable
to implement some components of ostis-systems (for
example, specific sc-agents or user interface components)
at the level of the ostis-platform. In the case of such an
implementation of the sc-agents programs, an analogy can
be drawn with the implementation of any subprograms at
the level of microprogramming languages for modern
computers. Most often, the reasonableness of such a
solution is conditioned by an increase in the performance
of such components and the system as a whole, since the
implementation of the component, taking into account the
features of the platform, is generally more productive. At
the same time, let us note that the latter statement is not
always true, since when implementing a component at the
level of a logical-semantic model, for example, parallel
information processing models can be implemented,
which are not always easily and clearly implemented
at the platform level.

Thus, when designing each specific ostis-system, the
developer needs to make a decision about the implemen-
tation of certain components at a platform or platform-
independent level. At the same time, it is obvious that
from the point of view of technology development and the
accumulation of project experience, the implementation
of ostis-systems components at a platform-independent
level is a higher priority.

Based on the above, we can assume the existence of
ostis-systems in which all sc-agents are implemented at
the platform level, which in this case is essentially “cut
out” for a specific ostis-system and can be considered
as an analogue of a specialized computer focused on
solving problems of only a certain limited class. Let
us call such an option for the implementation of ostis-
systems the minimum ostis-system configuration. In order
for minimum ostis-system configuration to be considered
an ostis-system at all, that is, a system that is built in
accordance with the principles of the OSTIS Technology,
it must meet the following minimum set of requirements:

• the usage of the SC-code as a basic language for
encoding information in the knowledge base and,
accordingly, the presence of memory storing SC-code
constructions;

• the presence of the knowledge base defining the
denotational semantics of the concepts used by the
system;

• the presence of at least one internal sc-agent per-
forming knowledge processing in the memory of
the ostis-system. This sc-agent can be implemented
at the platform level, accordingly, the knowledge
base of such a system may not contain procedural
knowledge (methods).

Such a variant of minimum ostis-system configuration
has only an internal sc-agent and, accordingly, has no

290



ability to communicate with the external world (we can
say that such an ostis-system does not have “sense or-
gans”). In order for the system to be able to communicate
with the external world, it is necessary to add at least
one receptor sc-agent and at least one effector sc-agent
to the minimum ostis-system configuration.

It is important to note that, as can be seen from the
description of the minimum ostis-system configuration, in
general, the ostis-system does not have to be an intelligent
system by default. Usage of the OSTIS Technology for the
development of computer systems does not automatically
make them intelligent – it allows ensuring the possibility
of subsequent unlimited intellectualization of such sys-
tems with minimum overhead costs, provided that all the
principles of the OSTIS Technology are satisfied during
their development.

V. CLARIFICATION OF THE OSTIS-PLATFORM CONCEPT

ostis-platform
:= [platform for interpreting sc-models of computer

systems]
:= [interpreter of sc-models of cybernetic systems]
:= [interpreter of unified logical-semantic models of

computer systems]
:= [family of platforms for interpreting sc-models of

computer systems]
:= [platform for implementing sc-models of computer

systems]
:= [embedded empty ostis-system]
:= [sc-machine implementation]
⊂ embedded ostis-system
⊂ platform-dependent reusable component of

ostis-systems

The implementation of the ostis-platform (interpreter of
sc-models of cybernetic systems) can have a large number
of variants – both software and hardware implemented.
If necessary, any components of problem solvers or
knowledge bases can be included in the ostis-platform in
advance at the platform-dependent level, for example,
in order to simplify the creation of the first version
of an applied ostis-system. The implementation of the
ostis-platform can be carried out on the basis of an
undefined set of existing technologies, including the
hardware implementation of any of its parts. From the
point of view of the component approach, any ostis-
platform is a platform-dependent reusable component
of ostis-systems.

ostis-platform
⇒ subdividing*:

{{{• basic ostis-platform
:= [basic interpreter of logical-

semantic models of ostis-systems]

:= [minimum universal ostis-platform
that provides interpretation of the
sc-model of any ostis-system and
includes an interpreter of the ostis-
systems basic programming lan-
guage (SCP Language)]

:= [universal interpreter of sc-models
of ostis-systems]

:= [universal basic ostis-system that
provides an imitation of any
ostis-system by interpreting the
sc-model of the imitated ostis-
system]

• extended ostis-platform
:= [ostis-platform containing addi-

tional components implemented at
the platform level]

:= [basic ostis-platform and many
components implemented at the
platform level]

• specialized ostis-platform
:= [ostis-platform that does not con-

tain an implementation of the SCP
language interpreter]

:= [non-universal ostis-platform]
}}}

The concept of a basic ostis-platform is key from the
point of view of ensuring the platform independence of
ostis-systems. The universality of the basic ostis-platform
implies the possibility of interpreting any sc-model of a
cybernetic system based on it. This is accomplished by
the presence of means within the OSTIS Technology, that
allow describing the knowledge base, problem solver,
and cybernetic system interface at the level of the
sc-model, as well as by the availability of a Basic
universal programming language for ostis-systems (SCP
Language). In this case, the SCP Language acts as a
basic low-level standard (assembler) for processing SC-
code constructions, guaranteeing completeness from the
point of view of processing, that is, providing the ability
to perform any transformation of any fragment of the
SC-code on condition that the syntactic correctness of
this fragment is maintained. It should be noted that in
general there may be several such functionally equivalent
assemblers (and, as a consequence, corresponding scp-
machines), but to ensure compatibility within the OSTIS
Technology one of these options is selected as a standard
and described in the corresponding section of the OSTIS
Standard [4].

Thus, the main and only requirement imposed on all
basic ostis-platforms to ensure their universality is the
need to provide interpretation of the SCP Language
standardized within the OSTIS Technology. It is im-
portant to note that all basic ostis-platforms must be
functionally equivalent, since they interpret the same

291



standard of the SCP Language.
Each basic ostis-platform contains:

• implementation of the means for storing SC-code
constructions (sc-memory), including the implemen-
tation of file memory;

• implementation of tools for processing SC-code
constructions – an scp-interpreter;

• implementation of a basic set of receptor sc-agents
and effector sc-agents, providing the minimum
necessary information exchange between the ostis-
system and the external environment. The specific
list of such agents requires clarification, however,
we can say that in general they can be implemented
as part of the scp-interpreter (in this case, they will
correspond to certain classes of scp-operators) or
separately from it as part of the platform;

• implementation of a set of sc-agents that provide
the basic functions of the ostis-system, related to
ensuring its operation, which in principle cannot be
implemented at a platform-independent level. Such
functions include, for example, starting the system,
loading the knowledge base into the system memory,
starting the scp-interpreter, etc.

More formally, the model of the basic ostis-platform
can be written as follows:

basic ostis-platform
⇒ generalized decomposition*:

{{{• sc-memory implementation
⇒ generalized part*:

implementation of the sc-machine
file memory

• scp-interpreter
• basic subsystem for interaction of the

ostis-system with the external environment
• subsystem for ensuring the operation of

the ostis-system
}}}

An extended ostis-platform is a basic ostis-platform
supplemented with any set of components (at least one)
implemented at the platform level, provided that all the
features of the basic ostis-platform are maintained. Thus,
an extended ostis-platform is essentially a basic ostis-
platform adapted to more efficiently solve problems of
certain classes within a specific class of ostis-systems. A
component implemented at the platform level becomes
part of this platform and thus transforms the basic ostis-
platform into the extended ostis-platform.

Introduction of the concept of the extended ostis-
platform allows formulating a number of additional
principles for the implementation of ostis-systems:

• there may be an undefined number of ostis-systems,
each of which will have its own unique extended

ostis-platform, but they will all be based on the same
variant of the basic ostis-platform;

• for each variant of the basic ostis-platform, there
may be its own library of reusable ostis-platform
components compatible with this variant of the basic
ostis-platform and that allows composing various
variants of the extended ostis-platform based on the
basic ostis-platform.

A specialized ostis-platform is a bounded implemen-
tation of the ostis-platform that does not contain an
scp-interpreter. Thus, all sc-agents, within the ostis-
system based on the specialized ostis-platform, must be
implemented at the platform-dependent level. Such a
specialized ostis-platform is an analogue of a specialized
computer implemented for a specific computer system.
Thus, in general, each ostis-system implemented on the
specialized ostis-platform will have its unique specialized
ostis-platform.

The specialized ostis-platform can be obtained from the
basic ostis-platform by excluding the implementation of
the scp-interpreter from it and implementing all necessary
sc-agents at the platform level (or borrowing all or part
of the agents from a library of reusable ostis-platform
components, that corresponds to the given variant of the
basic ostis-platform).

specialized ostis-platform
⇒ generalized decomposition*:

{{{• sc-memory implementation
⇒ generalized part*:

implementation of the sc-machine
file memory

• basic subsystem for interaction of the
ostis-system with the external environment

• subsystem for ensuring the operation of
the ostis-system

• specialized platform-dependent knowledge
processing machine
:= [sc-agent, as a rule, a non-atomic

one, providing the performance
of all the functions of some spe-
cialized ostis-platform related to
knowledge processing]

⊂ platform-dependent sc-agent
}}}

The concept of the minimum ostis-system configuration
introduced earlier can be clarified taking into account the
concept of the specialized ostis-platform.

minimum ostis-system configuration
⇒ generalized decomposition*:

{{{• sc-model of the knowledge base
• specialized ostis-platform

}}}

292



The usage of specialized ostis-platforms may be rea-
sonable at the initial stage of the development of the
OSTIS Technology, as well as in order to improve the
performance of particular ostis-systems that are most
highly loaded, however, the active development of such
specialized ostis-platforms and their components from
the point of view of the OSTIS Technology is impractical,
since:

• if any component is designed with a focus on a
specific platform, then there are no guarantees that
it can be reused in other ostis-platform implemen-
tations options (at least, components developed for
the ostis-platform software implementation will not
be able to be used within the associative semantic
computer);

• the availability of a large number of platform-
dependent components requires the development and
maintenance of a separate library infrastructure for
storing and reusing such components. The greater
the number of platform-dependent components and
the more variants of ostis-platforms exist, the more
complex and lengthy such an infrastructure will be.
At a minimum, it will be necessary to monitor the
compatibility of components with different versions
of various ostis-platforms implementation options;

• changes in the specialized ostis-platform, for exam-
ple, related to the transition to a newer and more
efficient version of the basic ostis-platform, on the
basis of which this specialized ostis-platform is built,
in general, may lead to the need in making changes
to components that depend on this ostis-platform
implementation option. The more such platform-
dependent components exist, the more potential
changes may be required and, accordingly, the
more difficult the evolution of the platform will
be, provided that the operability of the ostis-systems
in which it is used is preserved.

The above theses are also true for extended ostis-
platforms, however, in the case of extended ostis-platform,
problems associated with the transition to a newer
version of the platform and changes in the corresponding
components can always be solved by temporarily replac-
ing platform-dependent components with their platform-
independent versions with a corresponding decreased
performance but maintaining the functional integrity of
the system.

ostis-platform
⇒ subdividing*:

{{{• single-user ostis-platform
:= [option for implementing a plat-

form for interpreting sc-models
of computer systems, designed
for the case when only one user

(owner) interacts with a particular
ostis-system]

• multi-user ostis-platform
:= [option for implementing the plat-

form for interpreting sc-models of
computer systems, designed for
the case when different users can
interact with a particular ostis-
system at the same time or at
different times, generally having
different rights, areas of respon-
sibility, level of experience and
having their own confidential part
of the information stored in the
knowledge base]

}}}

With a single-user platform implementation, it turns out
to be impossible to implement some important principles
of the OSTIS Technology, for example, the collective
coordinated development of the knowledge base of the
system during its operation. At the same time, various
third-party tools can be used, for example, for developing
a knowledge base at the level of source texts.

ostis-platform
⇒ subdividing*:

{{{• software version of the ostis-platform
:= [platform for interpreting sc-

models of ostis-systems,
implemented as a software
system based on traditional
computer architecture]

:= [software platform for interpreting
sc-models of ostis-systems]

:= [software interpreter of sc-models
of ostis-systems]

• associative semantic computer
:= [hardware platform for interpreting

sc-models of ostis-systems]
:= [hardware implemented basic in-

terpreter of sc-models of ostis-
systems]

}}}

It is important to note that in any ostis-platform
implementation option, both software and hardware are
always present. So, any software version of the ostis-
platform assumes its subsequent interpretation on some
hardware basis, for example, on a personal computer
with a traditional architecture. At the same time, the
development of the ostis-platform in the form of an
associative semantic computer involves the development
of a set of micro-programs implementing basic operations
of searching and converting sc-constructions stored in the
sc-memory.

293



Thus, the separation of the set of possible ostis-platform
implementations into software and hardware variants
rather reflects the variant of the hardware architecture
on which one or another variant of the platform imple-
mentation is ultimately oriented – either the traditional
von Neumann architecture or the specialized architecture
of the associative semantic computer with structurally
reconfigurable (graphodynamic) memory. In fact, the
software version of the ostis-platform is a model (virtual
machine) of the associative semantic computer, built on
the basis of the traditional von Neumann architecture, and
the SCP Language acts as an assembler for the associative
semantic computer and can also be interpreted both within
the hardware implementation of such a computer and
within its software model.

The appropriateness of developing ostis-platform soft-
ware options at the moment is conditioned by the
obvious prevalence of the von Neumann architecture
and, accordingly, the need to implement ostis-systems
on modern computers of various types. At the same
time, it is obvious that the development of specialized
associative semantic computers will significantly increase
the efficiency of ostis-systems, and a clear separation of
the sc-model of a cybernetic system and its interpretation
platform will allow the translation of already working
ostis-systems from traditional architectures on associative
semantic computers with minimum overhead costs.

Each specific ostis-system uniquely corresponds to a
particular ostis-platform, which can relate to a different
set of classes of ostis-platforms. At the same time, it is
obvious that at the stage of platform development, some
variant of the ostis-platform is designed and implemented,
which is then replicated into different ostis-systems.
Subsequently, changes can be made to this variant of
the ostis-platform in each ostis-system, but in general, in
a large number of ostis-systems, fully equivalent ostis-
platforms can be used. Thus, it is advisable to talk about
typical ostis-platforms, which:

• are the object of development for developers of ostis-
platforms;

• are a reusable component of ostis-systems and are
specified within the appropriate libraries;

• are a sample for replication (copying) when creating
new ostis-systems.

VI. ASSOCIATIVE SEMANTIC COMPUTERS FOR
OSTIS-SYSTEMS

The usage of modern hardware and software platforms
focused on address access to data stored in memory for the
development of ostis-systems is not always efficient, since
when developing intelligent systems, it is actually neces-
sary to model nonlinear memory based on the linear one.
Improving the efficiency of problem solving by intelligent
systems requires the development of specialized platforms,
including hardware ones, focused on unified semantic

models of information representation and processing.
Thus, the main purpose of creating associative semantic
computers is to increase the performance of ostis-systems.

Let us consider in more detail the features for the
logical organization of the traditional architecture of
computer systems, which significantly complicate the
effective implementation of ostis-systems based on it:

• low level of memory access, i.e. complexity and
lengthiness of performing the procedure of associa-
tive search for the necessary knowledge fragment;

• linear memory organization and an extremely sim-
ple view of constructive objects directly stored in
memory. This leads to the fact that in intelligent
systems built on the basis of modern computers,
the manipulation of knowledge is carried out with
great difficulty. Firstly, it is necessary to operate
not with the structures themselves but with their
lengthy linear representations (lists, adjacency matri-
ces, incidence matrices); secondly, the linearization
of complex structures destroys the locality of their
transformations;

• the information representation in the memory of
modern computers has a level that is very far from
the semantic one, which makes the processing of
knowledge rather lengthy, requiring consideration
of a large number of details concerning not the
meaning of the processed information but the way
it is represented in memory;

• in modern computers, there is a low level of
hardware-implemented operations on non-numeric
data and there is no hardware support for logical
operations on knowledge fragments with a complex
structure, which makes manipulating such fragments
complicated.

The listed features, in fact, are not eliminated either in
the approaches to build non-traditional high-performance
computers (for example, computers designed for training
and interpretation of artificial neural networks [1], [2])
currently being developed, because, basically, all these
approaches (even if they deviate far enough from the basic
principles of the organization of computing machines,
proposed by von Neumann) implicitly preserve the point
of view of the computer as a large arithmometer and
thereby preserve its orientation to numerical tasks.

There are a number of articles [7]–[14] and patents [15]–
[17] aimed at developing hardware architectures designed
to process information represented in more complex forms
than in traditional architectures, but they have not gained
widespread distribution and application, due, firstly, to the
particular solutions offered and, secondly, due to the lack
of a common universal and unified coding language for
any information, in the role of which, within the OSTIS
Technology, the SC-code acts.

The SC-code, which is the formal basis of the OSTIS
Technology was originally developed as a language for

294



encoding information in memory of associative semantic
computers, so it originally laid down such principles as
universality (the ability to represent knowledge of any
kind) and unification (uniformity) of representation, as
well as minimization of the Alphabet of the SC-code,
which, in turn, makes it easier to create a hardware
platform that allows storing and processing texts of the
SC-code.

associative semantic computer
:= [hardware implemented interpreter of semantic

models (sc-models) of computer systems]
:= [semantic associative computer controlled by

knowledge]
:= [computer with a nonlinear structurally config-

urable (graphodynamic) associative memory, the
processing of information in which is reduced not
to a change in the state of memory elements but to
a change in the configuration of the connections
between them]

:= [sc-computer]
:= [scp-computer]
:= [new generation universal computer specially

designed for the implementation of semantically
compatible hybrid intelligent computer systems]

:= [new generation universal computer focused on
hardware interpretation of logical-semantic mod-
els of intelligent computer systems]

:= [new generation universal computer focused on
hardware interpretation of ostis-systems]

:= [ostis-computer]
:= [computer for the implementation of ostis-

systems]
:= [computer controlled by the knowledge repre-

sented in the SC-code]
:= [computer focused on SC-code text processing]

Let us consider the principles underlying the imple-
mentation of associative semantic computers:

• nonlinear memory – each elementary fragment of
a text stored in memory can be incident to an
unlimited number of other elementary fragments
of this text. Thus, memory cells, unlike ordinary
memory, are connected not by fixed conditional
connections that specify a fixed sequence (order)
of cells in memory but by actually (physically)
conducted connections of undefined configuration.
These connections correspond to arcs, edges, hyper-
edges of the graph (sc-text) recorded in memory;

• structurally tunable (reconfigurable) memory – the
procedure of processing information stored in mem-
ory is reduced not only to changing the state of
elements but also to reconfiguring the connections
between them. That is, during the processing of
information in structurally-tunable memory, the

changes concern not only and not even so much
the states of memory cells, as in ordinary memory,
as the configuration of the connections between these
cells. I.e., in structurally-tunable memory, during the
processing of information, not only the labels on
the vertices of the graph recorded in memory are
redistributed, but the structure of this graph itself is
also changing;

• as an internal way of encoding knowledge stored in
the memory of the associative semantic computer,
a universal (!) method of nonlinear (graph-like)
semantic representation of knowledge – SC-code
– is used;

• information processing is carried out by a group of
agents working on shared memory. Each of them re-
acts to a corresponding situation or event in memory
(a computer controlled by stored knowledge);

• there are software-implemented agents whose behav-
ior is described by agent-oriented programs stored in
memory, which are interpreted by the corresponding
groups of agents;

• there are basic agents that cannot be software
implemented (in particular, these are agents of
interpretation of agent programs, basic receptor
agents-sensors, basic effector agents);

• all agents work on shared memory at the same time.
Moreover, if several conditions of its usage arise
for an agent at some point in time in different
parts of memory, different information processes
corresponding to the specified agent in different parts
of memory can be performed simultaneously;

• in order for the agents’ information processes run-
ning in parallel in shared memory not to “interfere”
with each other, the current state is recorded and
constantly updated in memory for each information
process. That is, each information process informs
others about its intentions and wishes, which other
information processes should not interfere with. The
implementation of this approach can be carried out,
for example, on the basis of the mechanism of
locking elements of semantic memory [4];

• the processor and memory of the associative se-
mantic computer are deeply integrated and form
a single processor-memory. The processor of the
associative semantic computer is evenly “distributed”
over its memory so that the processor elements
are simultaneously computer memory elements.
That is, each cell is supplemented by a functional
(processor) element, and the tunable connections
between the cells become switched communication
channels between the functional elements. At the
same time, each functional element has its own
special internal register memory, reflecting aspects of
the current state of performing elementary operations
of the internal language, that are important for this

295



functional element.
Information processing in the associative semantic
computer is reduced to reconfiguration of communi-
cation channels between processor elements, there-
fore the memory of such a computer is nothing but
a switchboard (!) of these communication channels.
Thus, the current state of the configuration of these
communication channels is the current state of the
information being processed. This principle provides
a significant acceleration of information processing
by eliminating the stages of transferring information
from memory to the processor and back, but it is paid
for at the cost of a large redundancy of functional
(processor) means evenly distributed over memory.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

The work was carried out with the partial financial
support of the BRFFR (BRFFR-RFFR No. F21RM-139).

REFERENCES

[1] L. G. Komarcova and A. V. Maksimov, Neurocomputers: A
Textbook for Universities. - 2nd ed., revised and enlarged, ser.
Informatics at the Technical University. Moscow: Bauman
Moscow State Technical University, 2004, (In Russ).

[2] (2021, Jun) USB Accelerator | Coral. [Online]. Available:
https://coral.ai/products/accelerator/

[3] A. Kolesnikov, Gibridnye intellektual’nye sistemy: Teoriya i
tekhnologiya razrabotki [Hybrid intelligent systems: theory and
technology of development], A. M. Yashin, Ed. SPb.: SPbGTU,
2001.

[4] V. Golenkov, N. Guliakina, and D. Shunkevich, Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva i
jekspluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’juternyh sistem [Open technology of ontological design,
production and operation of semantically compatible hybrid
intelligent computer systems], V. Golenkov, Ed. Minsk: Bestprint
[Bestprint], 2021.

[5] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
automata theory, languages, and computation, 2nd ed. Upper
Saddle River, NJ: Pearson, Nov. 2000.

[6] M. Godfrey and D. Hendry, “The computer as von
Neumann planned it,” IEEE Annals of the History of Computing,
vol. 15, no. 1, pp. 11–21, 1993. [Online]. Available:
https://doi.org/10.1109/85.194088

[7] H.-N. Tran and E. Cambria, “A survey of graph processing
on graphics processing units,” The Journal of Supercomputing,
vol. 74, no. 5, pp. 2086–2115, Jan. 2018. [Online]. Available:
https://doi.org/10.1007/s11227-017-2225-1

[8] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S.
Hua, “Graph processing on GPUs,” ACM Computing Surveys,
vol. 50, no. 6, pp. 1–35, Nov. 2018. [Online]. Available:
https://doi.org/10.1145/3128571

[9] Y. Lü, H. Guo, L. Huang, Q. Yu, L. Shen, N. Xiao, and
Z. Wang, “GraphPEG,” ACM Transactions on Architecture and
Code Optimization, vol. 18, no. 3, pp. 1–24, Sep. 2021. [Online].
Available: https://doi.org/10.1145/3450440

[10] I. V. Afanasyev, V. V. Voevodin, K. Komatsu, and H. Kobayashi,
“VGL: a high-performance graph processing framework for the
NEC SX-aurora TSUBASA vector architecture,” The Journal
of Supercomputing, vol. 77, no. 8, pp. 8694–8715, Jan. 2021.
[Online]. Available: https://doi.org/10.1007/s11227-020-03564-9

[11] J. Zhang, S. Khoram, and J. J. Li, “Boosting the Performance of
FPGA-based Graph Processor using Hybrid Memory Cube: A Case
for Breadth First Search,” Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
2017.

[12] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “GraphLily: Acceler-
ating Graph Linear Algebra on HBM-Equipped FPGAs,” 2021
IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pp. 1–9, 2021.

[13] L. Minati, V. Movsisyan, M. Mccormick, K. Gyozalyan, T. Pa-
pazyan, H. Makaryan, S. Aldrigo, T. Harutyunyan, H. T. Ghal-
taghchyan, C. Mccormick, and M. L. Fandrich, “iFLEX: A
Fully Open-Source, High-Density Field-Programmable Gate Array
(FPGA)-Based Hardware Co-Processor for Vector Similarity
Searching,” IEEE Access, vol. 7, pp. 112 269–112 283, 2019.

[14] W. S. Song, V. Gleyzer, A. Lomakin, and J. Kepner,
“Novel graph processor architecture, prototype system, and
results,” in 2016 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, Sep. 2016. [Online]. Available:
https://doi.org/10.1109/hpec.2016.7761635

[15] S. Somsubhra, “Reconfigurable semantic processor,” Oct 2006.
[16] J. D. Allen, J. Philip, and L. Butler, “Parallel machine architecture

for production rule systems,” Jun 1989.
[17] M. Moussa, A. Savich, and S. Areibi, “Architecture, system and

method for artificial neural network implementation,” Jun 2013.

Универсальная модель интерпретации
логико-семантических моделей

интеллектуальных компьютерных систем
нового поколения
Шункевич Д.В.

В работе рассматривается подход к решению пробле-
мы платформенной независимости компьютерных систем,
предполагающий унификацию принципов реализации таких
систем и обеспечения их семантической совместимости на
основе Технологии OSTIS. Приводится формализованная
система понятий, определяющая принципы реализации дан-
ного подхода, включая прицнипы реализации аппаратной
платформы для реализации систем, построенных на основе
Технологии OSTIS, – ассоциативного семантического ком-
пьютера.

Received 30.10.2022

296


	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\013-420. Basic.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\23_OSTIS22_ID24_Shunkevich_UniveMoIL_SMoICSoNG.pdf


