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Abstract—The article is dedicated to the problem of test
question generation and user answer verification in the intelligent
tutoring systems. The approach of using knowledge base to
automatically generate various types of test questions in the
intelligent tutoring systems developed using OSTIS Technology
and the approach of realizing automatic verification of user
answers based on various semantic structures of described
knowledge are introduced in detail in this article.
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I. INTRODUCTION

As an activity of the progress and development of human so-
ciety, education has made a unique contribution to the progress
of human civilization, especially with the development of
science and technology, education is playing an increasingly
important role in modern society. In recent years, with the
development of modern information technology such as arti-
ficial intelligence, computer researchers have begun to apply
artificial intelligence technology to the field of education. The
application of artificial intelligence technology in the field
of education can not only improve the learning efficiency of
learners, but also an important means to ensure the fairness
of education. Among them, the most representative product
combining artificial intelligence technology and education is
the intelligent tutoring systems (ITS) [5].

Compared with the traditional multimedia training system
(MTS), ITS has the following characteristics:

• able to conduct free man-machine dialogue;
• providing personalized learning strategies;
• automatic solution of test questions;
• automatic generation of test questions;
• automatic verification of user answers;
• etc.

Among them, automatic generation of test questions and
automatic verification of user answers are the most basic and
important functions of ITS. It allows automation of the entire
process from test question generation, exam paper generation
to automatic verification of user answers and scoring of exam
papers. This can not only greatly improve the efficiency
of testing the user’s knowledge level, but also reduce their

learning cost, while eliminating human factors to ensure the
fairness and justice of the testing process as much as possible.

Although some approaches and systems for automatic gen-
eration of test questions and automatic verification of user
answers have been proposed and developed by some scientific
research teams in recent years with the development of related
technologies such as semantic web and natural language
processing (NLP), these approaches and systems have many
shortcomings, for example:

• only simple objective questions can be generated;
• most of the existing answer verification approaches and

systems only support the verification of user answers to
objective questions;

• some existing approaches to verifying user answers to
subjective questions are based on keyword matching and
probability statistics and do not consider the semantic
similarity between answers;

• partially semantic-based verification approaches to user
answers to subjective questions can only calculate the
similarity between answers with simple semantic struc-
tures;

• components developed using existing approaches to test
question generation and user answer verification can
only be used in the corresponding systems and are not
compatible with each other;

• automated implementation of the entire process from test
question generation to user answer verification is not
supported [1], [2], [6].

Objective questions refer to a type of question that has a
unique standard answer. In this article, objective questions in-
clude: multiple-choice questions, fill in the blank questions and
judgment questions. Objective questions differ from subjective
questions, which have more than one potential correct answer
and sometimes have room for a justified opinion. Subjective
questions in this article include: definition explanation ques-
tions, proof questions and problem-solving task [8].

For the above reasons, an approach to automatic generation
of test questions and automatic verification of user answers
in ITS developed using OSTIS Technology (Open Seman-
tic Technology for Intelligent Systems) is proposed in this
article, and the implementation process of the approach is
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described in detail in this article, that is, the development
of a universal subsystem for automatic generation of test
questions and automatic verification of user answers. The basic
principle of automatic generation of test questions in this
article is to first summarize a series of test question generation
strategies based on the structural characteristics of the ostis-
system (system built using OSTIS Technology) knowledge
base and the knowledge representation structure therein, and
then use these test question generation strategies to extract
corresponding semantic fragments from the knowledge base
and generate semantic models corresponding to test questions
[1], [4]. The basic principle of test question answer verification
is to first calculate the similarity between the semantic graph of
the standard answer and the semantic graph of the user answer,
and then realize the automatic verification of the user answer
based on the calculated similarity and the evaluation strategy
of the corresponding test question. A semantic graph is a net-
work that represents semantic relationships between concepts.
In the ostis-systems, the semantic graph is constructed using
SC-code (as a basis for knowledge representation within the
OSTIS Technology, a unified coding language for information
of any kind based on semantic networks is used, named SC-
code) [4], [6]. It should be emphasized that the semantic
graph corresponding to the test question and its corresponding
natural language description are converted to each other using
the natural language interface [7]. The approach proposed in
this article needs to solve the following tasks:

• automatic generation of a number of test questions from
the knowledge base and storage in the corresponding
sections of the subsystem knowledge base;

• design and build subsystem knowledge bases for storing
generated test questions;

• according to the needs of users, the corresponding types
of test questions are extracted and composed of exam
papers;

• calculating the similarity between the semantic graphs of
the answers to the objective questions;

• calculating the similarity between the semantic graphs of
the answers to the definition explanation questions;

• calculating the similarity between the semantic graphs
of the answers to the proof questions and the problem-
solving task;

• automatic verification of test question answers and au-
tomatic scoring of exam papers based on the calculated
similarity and the evaluation strategy of the corresponding
test questions.

It should be emphasized here that in the previous articles, we
have introduced the implementation process of the correspond-
ing approaches by module (automatic test question generation
module and user answer automatic verification module). For
example, in the literature [6] we detail the approach to
automatically generate various types of test questions from the
knowledge base of the ostis-systems, and in the literature [8]
we detail the approach to automatically verify user answers
in the ostis-systems (including verification of user answers

to subjective questions and verification of user answers to
objective questions). Therefore, this article focuses on the
automation of the entire process from test question generation
to user answer verification, and the development of a universal
subsystem for automatic generation of test questions and
automatic verification of user answer. The approach proposed
in this article does not rely on any natural language, but
in order to explain how the proposed approach works, the
semantic fragments and illustrations selected in this article are
presented in English. Among them, the discrete mathematics
ostis-system and the euclidean geometry ostis-system will be
used as demonstration systems for the subsystem developed
using the proposed approach.

II. EXISTING APPROACHES AND PROBLEMS

A. Automatic generation of test questions

Approach to automatic generation of test questions mainly
studies how to use electronic documents, text corpus and
knowledge bases to automatically generate test questions
quickly and flexibly. Among them, the knowledge base stores
highly structured knowledge that has been filtered, and with
the development of semantic networks, using the knowledge
base to automatically generate test questions has become the
most important research direction in the field of automatic
generation of test questions [5], [9], [13]. Some of the research
results are listed below:

• an approach to using classes, instances, attributes and
relationships between them in the OWL ontology for gen-
erating multiple-choice questions is presented in the liter-
ature [12]. The W3C Web Ontology Language (OWL) is
a Semantic Web language designed to represent knowl-
edge about things, groups of things, and relations between
things. Ontology is a type of knowledge, each of which
is a specification of the corresponding subject domain,
focused on describing the properties and relations of
concepts that are part of the specified subject domain;

• an approach to automatically generate objective questions
using an ontology created by Protégé [11] is presented in
the literature [10].

These approaches mainly have the following problems:
• the approach of using electronic documents to automat-

ically generate test questions requires a large number of
sentence templates;

• the creation of text corpus requires a lot of human
resources to collect and process various knowledge;

• existing approaches can only be applied in the corre-
sponding systems and are not compatible;

• existing approaches only allow to generate simple objec-
tive questions.

B. Automatic verification of user answers

Automatic verification of user answers is divided into ver-
ification of answers to objective questions and verification
of answers to subjective questions. The basic principle of
verification of answers to objective questions is relatively
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simple, i.e., it is enough to determine whether the string
of the standard answer and the string of the user’s answer
match. The answers to subjective questions are usually not
unique, so the basic principle of verification of answers to
subjective questions is to calculate the similarity between
standard answers and user answers, and then to implement
automatic verification of user answers based on the calculated
similarity and the evaluation strategy of the corresponding test
questions. The more similar the standard answer and the user
answer are, the higher the similarity between them [14], [16],
[17]. Verification of answers to subjective questions is divided
into the following categories according to the approach used
to calculate similarity:

• Based on keyword phrases
This type of approach first allows to split the sentences
into keyword phrases and then calculate the similarity
between them according to the matching relationship
of keyword phrases between sentences. Representative
approaches include:

– N-gram similarity
– Jaccard similarity

• Based on vector space model (VSM)
The basic principle of VSM is to use traditional machine
learning algorithms to first convert sentences into vector
representations, and then use the distance calculation for-
mula between vectors to calculate the similarity between
them [15]. Representative approaches include:

– TF-IDF
– Word2vec
– Doc2Vec

• Based on deep learning
This type of approach allows the use of neural network
models to calculate the similarity between sentences [18].
Representative neural network models include:

– Tree-LSTM
– Transformer
– BERT

• Based on semantic graph
The basic principle of calculating the similarity between
answers (i.e., sentence or short text) using this type of
approach is to first convert the answers into a semantic
graph representation using natural language processing
tools (such as syntactic dependency trees and natural
language interfaces), and then calculate the similarity
between the semantic graphs (i.e., similarity between
answers). In ITS knowledge is stored in the form of
semantic graphs, so this type of approach provides the
possibility to compute the similarity between any two
semantic graphs in ITS. The main advantage of this
type of approach is computing the similarity between
answers based on semantics. One of the most representa-
tive approaches is SPICE (Semantic Propositional Image
Caption Evaluation) [19].

These approaches mainly have the following problems:

• the keyword phrase-based approach does not take into
account the order between words in a sentence;

• the VSM-based approach leads to the generation of
high-dimensional sparse matrices, which increases the
complexity of the algorithm;

• semantic graph-based approaches supporting only the
description of simple semantic structures;

• these approaches cannot determine whether the sentences
are logically equivalent to each other;

• these approaches are dependent on the corresponding
natural language.

Therefore based on the existing approaches to automatically
generate test questions using knowledge bases, approaches
to calculate the similarity between answers using semantic
graphs, and OSTIS Technology, an approach to automatically
generate test questions and automatically verify user answers
using semantics is proposed in this article.

III. PROPOSED APPROACH

The main task of this article is to detail an approach to
automatic generation of test questions and automatic verifi-
cation of user answers in the ostis-systems and to develop
a universal subsystem based on this approach. Where the
universality of the subsystem means that the subsystem can
be easily transplanted between different ostis-systems. The
proposed approach can be divided into two parts according
to the functions to be implemented, i.e., automatic generation
of test questions and automatic verification of user answers
[8]. Therefore, we will introduce the implementation process
of these two parts separately.

A. Automatic generation of test questions

The basic principle of automatic generation of various types
of test questions (including objective questions and subjective
questions) in the ostis-systems is to first extract the corre-
sponding semantic fragments from the knowledge base using a
series of test question generation strategies summarized based
on the knowledge representation approach and the knowledge
description structure in the framework of OSTIS Technology,
then add some test question description information to the
extracted semantic fragments, and finally store the seman-
tic fragments describing the complete test questions in the
corresponding section of the universal subsystem [1]. When
exam papers needs to be generated, the subsystem allows to
extract some corresponding test questions from the subsystem
knowledge base according to the parameters input by the user
and combine them into exam papers. The test questions and
exam papers in the form of semantic graphs are converted
into natural language descriptions using a natural language
interface. Since in the literature [6] we have detailed some of
the strategies used for automatic generation of test questions in
the ostis-systems, we next select only some of the test question
generation strategies for introduction.

• Test question generation strategy based on class
This type of test question generation strategy is used
to automatically generate objective questions based on
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various relations between classes. It is further divided
into:

– Based on ”inclusion*” relation
The inclusion relation is one of the most frequently
used relations in the knowledge base of the ostis-
systems, which is satisfied between many classes
(including subclasses), so that the inclusion relation
between classes can be used to generate objective
questions. The set theory expression form of inclu-
sion relation between classes is as follows: Si ⊆
C(i ≥ 1), (S-subclass, i-subclass number, C-parent
class). The following shows a semantic fragment in
the knowledge base that satisfies the inclusion rela-
tion in SCn-code (one of SC-code external display
languages) [1], [4]:

binary tree
⇐ inclusion*:

directed tree
⇒ inclusion*:

• binary sorting tree
• brother tree
• decision tree

Consider the example of a multiple-choice question
generated using this semantic fragment according to
the strategy of inclusion relations, which has the
natural language form shown below:
<<Binary tree does not include ( )?>>
A. directed tree B. brother tree
C. decision tree D. binary sorting tree
Similarly, other types of objective questions can be
generated using this strategy;

– Based on ”subdividing*” relation
The result of set subdivision is to get pairs of
disjoint sets, and the union of these disjoint sets
is the original set. The subdividing relation is also
an important relation in the knowledge base, so
that semantic fragments in the knowledge base that
satisfy this relation can be used to generate objective
questions;

– Based on ”strict inclusion*” relation
Strict inclusion relation is a special form of inclusion
relation (Si ⊂ C(i ≥ 1)). Using strict inclusion
relation to automatically generate objective questions
is similar to using inclusion relation.

Other strategies used to generate objective questions include:
• Test question generation strategy based on elements;
• Test question generation strategy based on identifiers;
• Test question generation strategy based on axioms;
• Test question generation strategy based on relation at-

tributes;
• Test question generation strategy based on image exam-

ples.
The process of generating subjective questions using sub-

jective question generation strategy is as follows:

• searching the knowledge base for semantic fragments
describing the definition, proof or solution of the question
using logic rules (i.e. templates constructed using SC-
code);

• storing the found semantic fragments in the correspond-
ing section of the knowledge base of the subsystem;

• using manual approaches or automatic approaches (such
as natural language interfaces) to describe the definition,
proof process or solution process of the corresponding
test question according to the knowledge representation
rules (i.e. standard answers to subjective questions).
Among them, standard answers to subjective questions
are represented using SCg-code (SCg-code is a graphical
version for the external visual representation of SC-code)
or SCL-code (a special sub-language of the SC language
intended for formalizing logical formulas) [1], [4].

Using these test question generation strategies described
above allows various types of test questions to be generated
automatically from the knowledge base. These automatically
generated test questions are stored in the knowledge base of
the subsystem according to their type and the corresponding
test question generation strategy, this type of storage allows
to quickly and dynamically generate exam papers according
to the needs of user needs. In the next section we will
describe in detail the construction of the knowledge base of
the subsystem and the way in which test questions are stored
in it. The proposed approach to generating test questions has
the following advantages:

• OSTIS Technology supports uniform knowledge repre-
sentation approaches and knowledge description struc-
tures, so the proposed approach to generating test ques-
tions can be used in different ostis-systems;

• the generated test questions are described using SC-code,
so they do not rely on any natural language;

• using the proposed test question generation approach, not
only objective questions but also subjective questions can
be generated.

B. Automatic verification of user answers

In the ostis-systems, test questions are stored in the knowl-
edge base in the form of semantic graphs, so the most
critical step of user answer verification is to calculate the
similarity between the semantic graph of standard answer and
the semantic graph of user answer, and when the similarity
is obtained and combined with the evaluation strategy of the
corresponding test questions, the correctness and completeness
of user answers can be verified [2], [8].

User answer verification is classified according to the type
of test questions: 1. verification of answers to objective
questions; 2. verification of answers to subjective questions.
Although the most critical step of answer verification is all
about calculating the similarity between the semantic graphs of
answers, the knowledge types (factual knowledge and logical
knowledge) and and knowledge structures used to describe
different types of test questions are not the same, so the
approach to calculate the similarity between the semantic
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graphs of answers to different types of test questions are
different. Factual knowledge refers to knowledge that does not
contain variable types, and this type of knowledge expresses
facts. Logical knowledge usually contains variables, and there
are logical relations between knowledge. In the ostis-systems
SCL-code is used to represent logical knowledge. In this article
objective questions, proof questions and problem-solving task
are described using factual knowledge, and definition inter-
pretation questions are described using factual knowledge and
logical knowledge together.

C. Verification of answers to objective question

The semantic graphs used to describe objective types of test
questions and their answers in the knowledge base have the
same semantic structure, so the similarity between answers to
such types of test questions can be calculated using the same
approach. Since the user answers in the natural language to
the objective questions are already aligned with the existing
knowledge in the knowledge base when they are converted to
semantic graphs using the natural language interface, that is,
the elements representing the same semantics in the knowledge
base have the same main identifier (identifier is a file that can
be used to denote (name) an entity in the framework of external
language) [7]. Therefore, it is not necessary to consider the
differences between concepts at the natural language level
when calculating the similarity between semantic graphs of
answers to objective questions, that is, the similarity between
answers is calculated based on the semantic structure. The
basic principle for calculating the similarity between semantic
graphs of answers to objective questions is shown below:

• the semantic graph of standard answers (s) and the
semantic graph of user answers (u) are decomposed into
substructures according to the rules of representation of
factual knowledge;

• using formulas (1), (2), and (3) to calculate the precision
Psc, recall Rsc and similarity Fsc between semantic
graphs.

Psc(u, s) =
|Tsc(u)⊗ Tsc(s)|

|Tsc(u)|
(1)

Rsc(u, s) =
|Tsc(u)⊗ Tsc(s)|

|Tsc(s)|
(2)

Fsc(u, s) =
2 · Psc(u, s) ·Rsc(u, s)

Psc(u, s) +Rsc(u, s)
(3)

The main calculation parameters in the formulas include:
• Tsc(u) — all substructures after the decomposition of the

user answers u;
• Tsc(s) — all substructures after the decomposition of the

standard answers s;
• ⊗ — binary matching operator, which represents the

number of matching substructures in the set of two
substructures.

Once the similarity of the answers is obtained, the correct-
ness and completeness of the user answers to the objective

questions can be verified by combining them with the evalua-
tion strategy of the objective questions. The evaluation strategy
of the objective questions is shown below:

• if there is only one correct option for the current test
question, only if the standard answer and the user answer
match exactly, the user answer is considered correct and
the user gets the maximum score (Maxscore);

• if the current question has multiple correct options
(multiple-choice question with multiple correct options
and partially fill in the blank questions):

– as long as the user answer contains an incorrect
option, the user answer is considered incorrect and
the user score is 0;

– if all the options in the user answer are correct, but
the number of correct options is less than the number
of correct options in the standard answer, the user
answer is considered correct but incomplete. At this
time, the user answer score is Rsc ∗Maxscore;

– if all the options in the standard answer match
exactly with all the options in the user answer, the
user answer is exactly correct, and the user score is
Maxscore.

Fig. 1 shows an example of verification of user answer to
subjective question in SCg-code.

Figure 1. An example of verification of user answer to subjective question.

D. Verification of answers to subjective questions

The most critical step of verification of answers to subjective
questions is also the calculation of similarity between semantic
graphs of answers, but the knowledge types and knowledge
structures used to describe different types of subjective ques-
tions and their answers are not the same in the ostis-systems.
Thus the approach to calculating the similarity between the
semantic graphs of the answers to the subjective questions
is further divided into: 1. the approach to calculating the
similarity between answers to definition explanation questions;
2. the approach to calculating the similarity between answers
to proof questions and problem-solving task.

Calculating the similarity between answers to definition
explanation questions

The answers to the definition explanation questions in the
ostis-systems are described in the form of logical formulas
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using factual knowledge and logical knowledge (SCL-code).
Logic formulas are powerful tools for formal knowledge rep-
resentation in the framework of OSTIS Technology, which are
expanded based on the first-order predicate logic formulas and
inherits all the operational properties of first-order predicate
logic formulas [4]. It is to be emphasized that when calculating
the similarity between the answers to the definition explanation
questions, the factual knowledge in the semantic graph of the
user answers has been aligned with the existing knowledge in
the knowledge base (using natural language interfaces) [7]. In
order to calculate the similarity between the semantic graphs
of the answers to the definition explanation questions the
following tasks need to be solved:

• automatic selection of potential equivalent standard an-
swer;

• establishing the mapping relationship of potential equiv-
alent variable sc-node pairs between the semantic graphs
of the answers;

• calculating the similarity between semantic graphs;
• if the similarity between semantic graphs is not equal to 1,

they also need to be converted to the prenex normal form
(PNF) representation separately, and then the similarity
between them is calculated again [23].

Because some definition explanation questions sometimes
have multiple standard answers, but the logical formulas
used to represent them formally are not logical equivalents
(described according to different conceptual systems). For
example, the definition of equivalence relation: 1. in math-
ematics, an equivalence relation is a binary relation that is
reflexive, symmetric and transitive; 2. for any binary relation-
ship, if it is a tolerant relationship and is transitive, then it
is an equivalence relation. The logical equivalence between
semantic graphs in the ostis-systems is divided into two types:
1. logical equivalence between semantic graphs described
based on logical formulas; 2. logical equivalence between
semantic graphs based on different conceptual systems. This
type of equivalence is further classified according to the type
of knowledge:

• logical equivalence between semantic graphs based on
factual knowledge;

• logical equivalence between semantic graphs based on
logical knowledge (for example, the definition of equiv-
alence relation).

Therefore, when calculating the similarity between answers,
it is necessary to filter a standard answer that best matches
the user answer from multiple possible standard answers in
advance. Therefore an approach to filter a standard answer
that best matches the user answer according to the predicate
similarity between answers is proposed in this article. This
working principle of this approach is shown below:

• finding all the predicates in each answer (non-repeating);
• calculating the predicate similarity between the user an-

swer and each standard answer using formulas (1), (2)
and (3);

• the standard answer that is most similar (maximum simi-
larity) to the user answer is selected as the final standard
answer.

Since the semantic graphs used to describe the answers
to the definition explanation questions are constructed based
on logical formulas, the variables sc-nodes (equivalent to the
bound variables in the predicate logic formula) are included
in the semantic graphs. In order to calculate the similarity
between semantic graphs, the most critical step is to establish
the mapping relationship of potential equivalent variable sc-
node pairs between semantic graphs. Therefore, based on the
existing ontology mapping methods and mapping systems (for
example, ASMOW, RiMOM, etc.) an approach to establish
the mapping relationship of potential equivalent variable sc-
node pairs between semantic graphs according to semantic
structures (various sc-constructions) are proposed in this article
[20], [21], [22].

In the ostis-systems, the sc-construction composed of sc-
tuple, relation sc-node, role relation sc-node and sc-connector
is used to describe logical connectives (such as negation (¬)
and implication (→), etc.) and quantifiers (universal quantifier
(∀) and existential quantifier (∃)), atomic logic formula (var-
ious sc-constructions) or multiple atomic logic formulas that
satisfy conjunctive relation are contained in the sc-structure
and connected with the corresponding sc-tuple, and these
sc-elements together constitute the semantic graph used to
represent the user answer [1], [22]. All sc-tuples and sc-
connectors form a tree, which completely describes the logical
sequence between connectives and quantifiers in the logical
formula. Because the sc-structure containing the atomic logical
formula is connected to the corresponding sc-tuple, as long as
the position of each sc-tuple and sc-structure in the semantic
graph is determined, the position of each variable sc-node
in the semantic graph can be determined. An approach to
numbering each sc-tuple and sc-structure in the semantic graph
according to a depth-first search strategy (DFS) is proposed
in this article. The working process of this approach is shown
below:

• starting from the root of the tree structure composed of
sc-tuples, each sc-tuple node in the tree is numbered in
turn according to the DFS strategy and the priority of
the current sc-node (for example, the sc-node priority of
the ”if’ ” condition is higher than the sc-node of ”else’
” conclusion) (the numbering sequence starts from 0);

• according to the numbering sequence of sc-tuple, each sc-
tuple in the tree is traversed from small to large, and the
sc-structure connected to the current sc-tuple is numbered
while traversing (the numbering sequence starts from 1).

For a detailed procedure for numbering sc-tuples and sc-
structures, please refer to the literature [8]. In answer verifi-
cation, if the standard answer and the user answer are exactly
equal, it means that the atomic logic formulas with the same
semantics between the answers have the same position in
the semantic graph (That is, the numbering sequence of sc-
structure is the same). Therefore, in this article, the mapping
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relationship of potential equivalent variable sc-node pairs will
be established based on the matching relationship of the
sc-constructions in the same position between the answers.
The establishment of mapping relationship of the potential
equivalent variable sc-node pairs between answers mainly
includes the following steps:

1) according to the numbering sequence of the sc-structure
in the semantic graph, each time a sc-structure pair with
the same number is found from the standard answer and
the user answer;

2) according to the priority order (from high to low) of the
various types of sc-constructions used to describe the
atomic logic formula, it is determined in turn whether
the current sc-structure pair contains this type of sc-
construction at the same time. If the current sc-structure
pair contains this type of sc-construction at the same
time, then, according to the matching relationship of
each sc-element between the current sc-construction in
the standard answer and the current sc-construction
in the user answer, the mapping relationship of the
potential equivalent variable sc-node pairs between the
current sc-construction pair is established;

3) repeat step 1 — step 2 until all mapping relationships
between semantic graphs are established [8].

Fig. 2 shows an example of establishing the mapping
relationship between semantic graphs in SCg-code.

In Fig. 2, the definition of the inclusion relation is described
(∀A∀B((A ⊆ B) ⇐⇒ (∀a(a ∈ A→ a ∈ B))).

When the mapping relationship between the potential equiv-
alent variable sc-node pairs between the semantic graphs is
established, the similarity between the answers can be calcu-
lated. The process of calculating the similarity between the
semantic graphs of the answers to the definition explanation
questions is shown below:

• decomposing the semantic graph of standard answer and
the semantic graph of user answer into substructures
according to the rules of representation of factual knowl-
edge and logical knowledge;

• numbering the sc-tuples and sc-structures in the semantic
graphs of the answers, respectively, and establishing the
mapping relationship of potential equivalent variable sc-
node pairs between the semantic graphs;

• using formulas (1), (2) and (3) to calculate the precision
Psc, recall Rsc and similarity Fsc between semantic
graphs.

Since the semantic graphs of answers to definition expla-
nation questions are described based on logical formulas,
if the similarity between semantic graphs is not equal 1
(Fsc < 1), it is also necessary to determine whether their
logical formulas are logically equivalent. There is such a
theorem in predicate logic: any predicate logic formula has
a PNF that is equivalent to it. Because the logical formulas
in the framework of OSTIS Technology are extended based
on predicate logical formulas, it also has such a property.
Therefore we can consider converting semantic graphs based

on logical formula descriptions to PNF descriptions, and then
determine whether logical equivalence is satisfied between
them [23], [24]. However, the PNF of the logic formula is not
unique, and the reasons why the PNF is not unique include:

• the used order of different logical equivalence formulas
(conversion rules). For example, converting (∀xF (x) ∧
¬∃xG(x)) to PNF:

– ∀xF (x) ∧ ¬∃xG(x)
⇔ ∀xF (x) ∧ ∀x¬G(x)
⇔ ∀x(F (x) ∧ ¬G(x)), (equivalence rule)

– ∀xF (x) ∧ ¬∃xG(x)
⇔ ∀xF (x) ∧ ∀y¬G(y), (renaming rule)
⇔ ∀x∀y(F (x) ∧ ¬G(y)), (rule of expansion of
quantifier scope)

• the order of the quantifiers in PNF;
• etc.
Therefore, based on the approach to convert predicate logic

formulas into PNF and some characteristics of logic formulas
in ostis-systems, an approach to convert logic formulas into
unique (deterministic) PNF according to strict restriction rules
is proposed in this article. The strict restrictions mainly include
the following:

• in order to solve the problem that PNF are not unique due
to the order in which the logical equivalence formulas are
used, we specify that the renaming rule is preferred when
converting logical formulas to PNF;

• in order to solve the problem that the PNF is not unique
due to the order of the quantifiers, an approach to move all
quantifiers to the forefront of the logical formula strictly
according to the priority of the quantifiers is proposed
in this article. The movement process of quantifiers is
shown below:

– if no quantifiers exist at the front of the logical
formula, all existential quantifiers are moved to the
front of the logical formula in preference;

– if the last quantifier at the forefront of the logi-
cal formula is a universal quantifier, the universal
quantifiers in the logical formula will be moved
preferentially to the front of the formula;

– if the last quantifier at the forefront of the logical
formula is a existential quantifier, the existential
quantifiers in the logical formula will be moved
preferentially to the front of the formula.

• the logical formula used to represent the answer to the
definition explanation question can usually be expressed
in the following form: (Q1x1Q2x2...Qnxn(A ↔ B)),
where Qi(i = 1, ...n) is a quantifier [8], [25]. A is used to
describe the definition of a concept at a holistic level, and
it does not contain any quantifiers. B is used to explain
the semantic connotation of a definition at the detail level,
and it is usually a logical formula containing quantifiers
(also known as a logical sub-formula). Therefore, based
on the characteristics of the logical formula and in order
to simplify the knowledge processing, it is only necessary
to convert the logical formula B to PNF;
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Figure 2. An example of establishing the mapping relationship between semantic graphs.

• to simplify the knowledge processing, only the implica-
tion connective need to be eliminated when converting
logic formulas to PNF;

• multiple atomic logic formulas connected using the same
conjunctive connective are preferentially merged into one
whole (i.e. they are merged into the same sc-structure).

The process of converting the semantic graphs of answers
to definition explanation questions into PNF descriptions ac-
cording to strict restriction rules is shown below:

• if there are multiple sc-structures in the semantic graph
connected by the same conjunctive connective, the sc-
constructions contained in them are merged into the same
sc-structure;

• eliminating all the implication connectives in the semantic
graphs;

• moving all negative connectives in the semantic graphs
to the front of the corresponding sc-structure;

• using renaming rules so that all bound variables in the
semantic graphs are not the same;

• moving all quantifiers to the front of the logical formula;
• merging again the sc-structures in the semantic graphs

that can be merged.
Fig. 3 shows an example of converting a semantic graph into
PNF representation in SCg-code (∀A∀B((A ⊆ B) ↔ ∀a(a ∈
A → a ∈ B)) ⇔ ∀A∀B((A ⊆ B) ↔ ∀a(¬(a ∈ A) ∨ (a ∈
B)))).

It should be emphasized that if the calculated similarity
between the semantic graphs of PNF representation is not
1 (Fsc < 1), the similarity between the semantic graphs

Figure 3. An example of converting a semantic graph into PNF representation.

calculated for the first time is used as the final answer
similarity. When the similarity between the answers is ob-
tained and then combined with the evaluation strategy of the
subjective questions, the correctness and completeness of the
user answers can be verified [8].

Calculating the similarity between answers to proof
questions and problem-solving task

Both proof questions and problem-solving task in mathe-
matics follow a common task-solving process:
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1) the set (Ω) of conditions consisting of some known
conditions;

2) deriving an intermediate conclusion using some of the
known conditions in Ω and adding it to Ω. Each element
in Ω can be regarded as a solving step;

3) repeat step 2) until the final result is obtained [26], [27].

This task-solving process is abstracted as a directed graph,
whose structure is in most cases an inverted tree (in special
cases the directed graph will contain cycle), and is called a
reasoning tree (i. e. the reasoning tree of the standard answer)
[26]. Fig. 4 shows an example of a reasoning tree.

Figure 4. An example of a reasoning tree.

The user answer to the proof question or problem-solving
task is a linear structure consisting of some solving steps (i.e.
known conditions, intermediate conditions or conclusions),
each of which satisfies a strict derivation relationship and
logical relationship if the user answer is completely correct.
The automatic verification process of user answers to this
type of test questions is the same as the traditional manual
answer verification process, i.e., verifying whether the current
solving step of the user answer is a valid conclusion of the
partial solving step preceding that step. This means whether
the solving step in the user answer corresponding to the parent
node in the reasoning tree always is located after the solving
steps in the user answer corresponding to the child nodes.

The semantic graphs of user answers to proof questions and
problem-solving task in the ostis-systems are linear structures
consisting of some semantic sub-graphs for describing the
solving steps and some semantic fragments for describing the
logical order and transformation processes between the seman-
tic sub-graphs [1], [4]. The construction process and semantic
specification of semantic graphs of user answers to proof
questions and problem-solving tasks are described in detail
in the literature [3]. The semantic graph of standard answers
to this type of test questions is an reasoning tree consisting
of a number of search templates (which can be abstracted
as the nodes in the tree). Each search template is constructed
strictly according to the solving steps of the corresponding test
question (i.e., according to the known conditions, intermediate
conditions and conclusions in Ω). The search template in the
ostis-systems is used to search in the knowledge base for all

semantic fragments corresponding to it, and it is constructed
based on the SCL-code. The following takes a real problem-
solving task as an example to introduce the constructing of
the semantic graph of its standard answer (reasoning tree).
Description of the problem-solving task: <<Two equal circles
externally tangent to other and a third circle the radius of
which is 4. The segment that connects the tangent points of
the two equal circles to the third circle is 6. Find the radii of
equal circles>>. Fig. 5 shows the explanatory picture of the
task.

Figure 5. Explanatory pictures for problem-solving task.

Description of user answer in natural language:
1) ∵ KP = 2 ∗R
2) ∵ KO = 4 +R
3) ∴ ∆AOB ∽ ∆KOP
4) ∴ KA = R = 12

Fig. 6 shows an example of the semantic graph of the
standard answer in SCg-code.

The user answers in natural language are converted into
semantic graphs using natural language interfaces. Therefore,
when calculating the similarity between the semantic graphs
of the answers, it is not necessary to consider the differences
of the concepts at the natural language level [7]. Fig. 7 shows
an example of the semantic specification of a segment in the
knowledge base in SCg-code.

From the above example, it can be seen that Segment AB
and Segment BA are represented by the same sc-node, they
are just two identifiers of the sc-node.

Therefore based on the previously introduced principles of
automatic verification of user answers to proof questions and
problem-solving task and the semantic models of answers
in the ostis-systems, an approach to calculate the similarity
between the semantic graphs of answers to proof questions
and problem-solving task according to the reasoning tree
of standard answer (semantic graph of standard answer) is
proposed in this article. The calculation process of similarity
between semantic graphs is shown below:
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Figure 6. An example of the semantic graph of the standard answer.

Figure 7. An example of the semantic specification of a segment.

1) numbering each semantic sub-graph (solving step) in the
semantic graph of user answers (the numbering order
started from 1);

2) each node in the reasoning tree (the search template) is
traversed in turn according to the DFS strategy. At the
same time, the corresponding semantic sub-graph that
is included in the semantic graph of the user answer
are searched in the knowledge base using the search
template currently being traversed. If such a semantic
sub-graph exists, then determine whether the searched
semantic sub-graph number is smaller than the semantic
sub-graph number corresponding to the search template
of the current search template parent node (except for the
root node of the reasoning tree), and if so, the searched
semantic sub-graph is considered correct;

3) repeat step 2) until all search templates in the reasoning
tree have been traversed and the number of correct
semantic sub-graphs is counted at the same time;

4) using formulas (1), (2) and (3) to calculate the precision

Psc, recall Rsc and similarity Fsc between answers.
Parameters in the formula are redefined:

• |Tsc(u)| — the number of all semantic sub-graphs
in the semantic graph of the user answer u;

• |Tsc(s)| — the number of all search templates in
the reasoning tree s;

• |Tsc(u)⊗Tsc(s)| — the number of correct semantic
sub-graphs.

Once the similarity between the answers to the proof ques-
tions and the problem-solving task is obtained, the correctness
and completeness of the user answers can be verified combined
with the evaluation strategy for the subjective questions.

The evaluation strategy for the subjective questions is shown
below:

• if the similarity between the answers is equal to 1 (Fsc =
1), the user’s answer is completely correct and the user
gets the maximum score (Maxscore);

• if the similarity between the answers is less than 1 (Fsc <
1) and the precision is equal to 1 (Psc = 1), the user
answer is correct but incomplete and the user score is
Rsc ∗Maxscore;

• if the similarity between the answers is greater than 0 and
less than 1, and the precision is less than 1 (0 < Fsc < 1
and Psc < 1), then the user answer is partially correct
and the user score is Fsc ∗Maxscore;

• if the similarity between the answers is equal to 0 (Fsc =
0), the user answer is wrong and the user score is 0 [8].

The proposed approach to automatic verification of user
answers has the following advantages:
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• verifying the correctness and completeness of user an-
swers based on semantics;

• the correctness and completeness of user answers to
any type of test question can be verified and logical
equivalence between answers can be determined;

• allowing the calculation of the similarity between any two
semantic graphs in the knowledge base;

• the proposed approach can be used in different ostis-
systems.

IV. KNOWLEDGE BASE OF THE SUBSYSTEM

The knowledge base of subsystem is mainly used to store
automatically generated test questions of various types, and
it also allows to automatically extract a series of test ques-
tions and form exam papers according to user requirements.
Therefore, in order to improve the efficiency of accessing
the knowledge base of the subsystem and the efficiency of
extracting the test questions, an approach to construct the
knowledge base of the subsystem according to the type of
test questions and the generation strategy of the test questions
is proposed in this article.

The basis of the knowledge base of any ostis-system (more
precisely, the sc-model of the knowledge base) is a hierarchical
system of subject domains and their corresponding ontologies
[1], [3], [4]. Let’s consider the hierarchy of the knowledge
base of subsystem in SCn-code:

Section. Subject domain of test questions
⇐ section decomposition*:
{
• Section. Subject domain of subjective questions
⇐ section decomposition*:
{
• Section. Subject domain of definition explanation

question
• Section. Subject domain of proof question
• Section. Subject domain of problem-solving task
}

• Section. Subject domain of objective questions
⇐ section decomposition*:
{
• Section. Subject domain of multiple-choice question
• Section. Subject domain of fill in the blank question
• Section. Subject domain of judgment question
}

}

Next, taking the subject domain of the objective questions
as an example, let us consider its structural specification in
SCn-code:

Subject domain of objective questions
∈ subject domain
∋ maximum class of explored objects’:

objective question

∋ not maximum class of explored objects’:
• multiple-choice question
• fill in the blank question
• judgment question

In this article objective types of test questions are decom-
posed into more specific types according to their character-
istics and corresponding test question generation strategies.
Next, taking the multiple-choice question as an example let
us consider its semantic specification in SCn-code:

multiple-choice question
∈ maximum class of explored objects’:

Subject domain of multiple-choice question
⇐ subdividing*:
{
• multiple-choice question based on relation attributes
• multiple-choice question based on axioms
• multiple-choice question based on image examples
• multiple-choice question based on identifiers
• multiple-choice question based on elements
⇐ subdividing*:
{
• multiple-choice question based on role relation
• multiple-choice questions based on binary relation
}

• multiple-choice question based on classes
⇐ subdividing*:
{
• multiple-choice question based on subdividing

relation
• multiple-choice question based on inclusion

relation
• multiple-choice question based on strict inclusion

relation
}

}
⇐ subdividing*:
{
• multiple-choice question with multiple answer options
• multiple-choice question with a single answer option
}

⇐ subdividing*:
{
• choice the incorrect options
• choice the correct options
}

V. PROBLEM SOLVER

The problem solver of any ostis-system (more precisely, the
sc-model of the ostis-system problem solver) is a hierarchical
system of knowledge processing agents in semantic memory
(sc-agents) that interact only by specifying the actions they
perform in the specified memory [1].

Therefore, in order to implement the corresponding tasks,
the problem solver for the automatic generation of test ques-
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tions and automatic verification of user answers is developed
in this article, and its hierarchy is shown as follows in SCn-
code:

Problem solver for the automatic generation of test
questions and automatic verification of user answers
⇐ decomposition of an abstract sc-agent*:
{
• Sc-agent for automatic generation of test questions
⇐ decomposition of an abstract sc-agent*:
{
• Sc-agent for quick generation of test questions and

exam papers
• Sc-agent for generating single type of test questions
• Sc-agent for generating a single exam paper
}

• Sc-agent for automatic verification of user answers
⇐ decomposition of an abstract sc-agent*:
{
• Sc-agent for automatic scoring of exam papers
• Sc-agent for calculating similarity between

answers to objective questions
• Sc-agent for calculating the similarity between

answers to definition explanation questions
• Sc-agent for converting a logical formula into PNF
• Sc-agent for calculating the similarity between the

answers to proof questions and problem-solving
task

}
}

The main function of the sc-agent for quick generation of
test questions and exam papers is to automate the whole pro-
cess from test question generation to exam paper generation by
initiating the corresponding sc-agents (sc-agent for generating
single type of test questions and sc-agent for generating a
single exam paper). The main function of the sc-agent for
generating single type of test questions is to automatically
generate a series of test questions from the knowledge base
using logical rules built on the basis of SC-code [4]. The
logical rules for generating test questions are constructed
strictly in accordance with the strategies for generating test
questions described earlier. Fig. 8 shows an example of a logic
rule for generating multiple-choice question constructed based
on a strategy of inclusion relation.

The main function of the sc-agent for automatic scoring of
exam papers is to implement automatic verification of user
answers to various types of test questions and automatic scor-
ing of exam papers by initiating sc-agents for calculating the
similarity between user answers and sc-agents for converting
a logical formula into PNF.

VI. CONCLUSION AND FURTHER WORK

A semantic-based approach to automatic generation of test
questions and automatic verification of user answers in the

ostis-systems is proposed in this article. And based on the pro-
posed approach a universal subsystem for automatic generation
of test questions and automatic verification of user answers is
developed. The developed subsystem supports automating the
entire process from test question generation, to the scoring of
exam papers.

The basic principle of automatic generation of test questions
is the automatic generation of objective and subjective ques-
tions from the knowledge base using some rules constructed
based on the structural features of the knowledge base of the
ostis-systems. The basic principle of automatic verification
of user answers is to first calculate the similarity between
the semantic graphs of answers, and then combine it with
the evaluation strategy of the corresponding test question to
achieve automatic verification of user answers (including the
logical equivalence judgment between answers). The proposed
approach to calculate the similarity between answers also
supports the calculation of the similarity between any two
semantic graphs in the knowledge base, so the approach can
be used in other tasks in the future as well (such as ontology
mapping, knowledge fusion, etc.).

The effectiveness of the developed subsystem will be eval-
uated in future work.
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ОСНОВАННЫЙ НА СЕМАНТИКЕ ПОДХОД К
АВТОМАТИЧЕСКОЙ ГЕНЕРАЦИИ ТЕСТОВЫХ
ВОПРОСОВ И АВТОМАТИЧЕСКОЙ ПРОВЕРКЕ

ОТВЕТОВ ПОЛЬЗОВАТЕЛЕЙ В
ИНТЕЛЛЕКТУАЛЬНЫХ ОБУЧАЮЩИХ

СИСТЕМАХ
Ли Вэньцзу

Данная статья посвящена проблеме генерации тестовых вопро-
сов и проверки ответов пользователей в интеллектуальных обу-
чающих системах. В данной статье подробно представлен подход
к автоматической генерации различных типов тестовых вопросов
на основе базы знаний в интеллектуальных обучающих системах,
разработанных с использованием Технологии OSTIS, и подход к
реализации автоматической проверки ответов пользователей на
основе различных семантических структур описанных знаний.

Keywords—генерация тестовых вопросов, проверка ответов
пользователей, Технология OSTIS, интеллектуальные обучающие
системы, онтология, база знаний, семантическая структура

Как деятельность прогресса и развития человеческого обще-
ства, образование внесло уникальный вклад в прогресс человече-
ской цивилизации, особенно с развитием науки и техники, обра-
зование играет все более важную роль в современном обществе.
В последние годы, с развитием современных информационных
технологий, таких как искусственный интеллект, компьютерные
исследователи начали работать над применением технологии
искусственного интеллекта в сфере образования. Применение
технологии искусственного интеллекта в сфере образованияможет
не только повысить эффективность обучения учащихся, но и
стать важным средством обеспечения справедливости образова-
ния. Среди них наиболее представительным продуктом, объединя-
ющим технологии искусственного интеллекта и образования, яв-
ляются интеллектуальные обучающие системы (ИОС). Особенно
после вспышки COVID-19 в 2020 году была подчеркнута важность
и актуальность разработки ИОС. По сравнению с традиционной
мультимедийной обучающей системой (MОС), ИОС имеет следу-
ющие характеристики:

• способен вести свободный человеко-машинный диалог;
• предоставление персонализированной педагогической услу-

ги;
• автоматическое решение тестовых вопросов;
• автоматическая генерация тестовых вопросов;
• автоматическая проверка ответов пользователей;
• и т.д.
Среди них автоматическая генерация тестовых вопросов и

автоматическая проверка ответов пользователей являются самыми
основными и важными функциями ИОС. Она позволяет автомати-
зировать весь процесс от генерации тестовых вопросов, форми-
рования экзаменационных билетов до автоматической проверки
ответов пользователей и оценки экзаменационных билетов. Это
может не только значительно повысить эффективность тести-
рования уровня знаний пользователей, но и снизить стоимость
их обучения, при этом исключая человеческий фактор, чтобы
максимально обеспечить справедливость процесса тестирования.
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