
Family of external languages of next-generation
computer systems, close to the language of the
internal semantic representation of knowledge

Alexandra Zhmyrko
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: aleksashazh@gmail.com

Abstract—In the article, the concepts of external and
internal languages of next-generation intelligent computer
systems are considered. External languages of knowledge
representation within the OSTIS Technology are described,
namely SCg-code, SCs-code, SCn-code. For each of the
external languages, its syntax and denotational semantics
are considered in detail.

Keywords—next-generation intelligent computer system,
external language, internal language, OSTIS, SC-code, SCg-
code, SCs-code, SCn-code

I. INTRODUCTION

At the current stage of information technologies devel-
opment, the problem of ensuring semantic interoperability
of computer systems and their components is the most
important and significant. To solve this problem it is
necessary to move from traditional computer systems and
modern intelligent computer systems to computer systems
based on the semantic representation of information (next-
generation intelligent computer systems).

Such systems have a high level of learnability, i.e. the
ability to rapidly acquire new and improve already im-
mersed knowledge and skills, while having no limitations
on the type of knowledge and skills gained, improved,
and shared. The components of such systems have a
high degree of compatibility, which virtually eliminates
the duplication of engineering solutions and makes it
possible to significantly accelerate the development of
computer systems based on the semantic representation
of information through a constantly expanding library of
reusable and compatible components.

Next-generation intelligent computer systems require an
internal language to represent information in a meaningful
way. By internal language is meant the language used
by a system to represent the information stored in its
memory [1].

For operation of next-generation intelligent computer
systems, except for a method of abstract internal rep-
resentation of knowledge bases, methods of external
representation of abstract texts convenient for users and
used at registration of initial texts of knowledge bases

of the specified intelligent computer systems and initial
texts of fragments of these bases, as well as used for
display of various fragments of knowledge bases on user
request, are required [2].

All basic external formal languages are variants for
the external representation of the texts of the internal
language of the system. Such languages are universal and
therefore semantically equivalent.

For any language, syntactic rules (rules for construct-
ing information constructions of such a language) and
semantic rules (denotational semantics – rules for relating
to those entities and configurations of entities that are
described (reflected) by the specified sign constructions)
must be specified.

A next-generation intelligent system must be able to
visualise certain information in different ways. Each
visualisation option requires the design and development
of visualisation languages and tools to translate these lan-
guages from the system internal representation language
into an external language. At the moment, the lack of a
universal mechanism for describing external languages,
translators for them, and their “seamless” integration into
the system remains problematic.

In the article, a family of external languages of next-
generation intelligent computer systems close to the
language of internal knowledge representation on the
example of ostis-systems is considered. For each of the
external languages, its syntax, denotational semantics,
and hierarchical family of semantically equivalent sub-
languages are described in detail.

II. STATE OF ART

Knowledge representation languages are frequently
difficult to understand, particularly for those who is not
trained in formal logic. They are in common used to
describe domains ranging from biology to finance. These
languages are typically used by both computer scientists
and domain experts [3].

It is often said that a picture is worth a thousand
words. That is true of sketches, diagrams, and graphs

65

used in various fields of knowledge. Conceptual maps are
widely used in education to represent and clarify complex
relations between concepts. Flowcharts serve as graphical
representations of procedural knowledge or algorithms.
Decision trees are another form of representation used in
various fields, particularly in decision-making or expert
systems.

All these representation methods are useful at an
informal level, as thinking aids and tools for the commu-
nication of ideas, but they have limitations. One is the
imprecise meaning of the links in the model. Non-typed
arrows can mean many things, sometimes within the same
graph. Another problem is the ambiguity around the type
of entities. Objects, actions on objects, and propositions
of properties about them are all mixed-up, which make
graph interpretation a fuzzy and risky business.

Another difficulty is to combine more than one rep-
resentation in the same model. For example, concepts
used in procedural flowcharts as entry, intermediate, or
terminal objects could be given a more precise meaning by
developing them in conceptual maps as sub-models of the
procedure. The same is true of procedures represented in
conceptual models that could be developed as procedural
sub-models described by flowcharts, combined or not with
decision trees. In software engineering, many graphic
representation formalisms have been or are used such
as EntityRelationship models [4], Conceptual Graphs
[5], Object modelling technique (OMT) [6], KADS [7],
or the Unified Modeling Language (UML) [8]. These
representation systems have been built for the analysis
and architectural design of complex information systems.
The most recent ones require the usage of up to eight
different kinds of model so the connections between
them become rapidly hard to follow without considerable
expertise.

Graphic representation system should be both simple
enough to be used by educational specialists who are not
computer scientists in general, be general and powerful
enough to represent the components of computer-based
educational environments and their relations.

Graphic. The benefits of graphical cognitive mod-
elling have been eloquently summarized by Ausubel [9],
Dansereau [10], and Jonassen [11]. Graphs illustrate
relations among components of complex phenomena.
They uncover the complexity of actor interactions. They
facilitate the communication about the reality studied.
They favour the global comprehension of studied phe-
nomena. They help grasp the structure of related ideas by
minimizing the usage of ambiguous natural language texts.
As an example, entity-relation graphs reduce ambiguity
compared to a natural language description but some
remain on the interpretation of the terms written on the
connections or nodes. Ambiguity can be reduced further
by the usage of standardized typed objects and typed
connections.

User-friendliness. Not all graphic modeling languages
are user-friendly. A good counter-example is UML. The
large number models and symbols require considerable
expertise for the interpretation and construction of the
model of a system. Furthermore, each type of model
captures a different viewpoint on the information, and it
is impossible to mix them in the same graph to provide
a global view of a subject domain. The representation
system must be easy to use without technical or scientific
mastery after a short period of initiation. Dansereau
and Holley [12] have studied experimentally the usage
of different sets of graphic symbols by learners. Their
results show that typed connections are preferred by the
majority of learner, as long as there are neither too few
nor too many types of connections and they are clearly
differentiated with well-defined meanings.

General. Generality means that the representation
language should have the capacity to represent, with a rel-
atively small number of objects and connection categories,
knowledge in very different subject domains, at various
levels of granularity and precision. It should be possible
to represent simple models such as a multiplication table,
up to complex models such as multi-actor workflows, rule-
based systems, methods, and theories. It should also be
possible to offer equivalent representations to commonly
used graphs such as conceptual maps, semantic networks,
flowcharts, decision trees, or cause/effect diagrams.

Formalizable. The graphic language should be upward
compatible from informal graphs, up to semiformal and
totally unambiguous formal models. At the informal
level, an integrated representation framework facilitates
thought organization and communication between humans
about the knowledge as the graphic representation model
evolves. Here, the process is more important than the
result. At the other hand, the graphic language offers more
constrained elements to produced totally unambiguous
descriptions that can be exported to set of symbols, such
as an XML file, that can be processed by computer agents.
Here, the model is more important than the process.

Declarative. Graphic language can be procedural or
declarative. Procedural graphic languages have been built
in the past, extending flowcharts to promote graphi-
cal programming that produces code directly. However,
declarative language is, firstly, easier for a human to
declare the components of their knowledge than to
describe also the way it should be processed. In expert
systems, for example, the execution instructions are
not wired in the program but externalized and made
visible in a knowledge base on which a general inference
engine proceeds. Secondly, the same model can be
used for many different applications not necessarily
the one for which the processing has been planned in
a procedural program. This is done by querying the
model using an inference engine, in a Prolog-like manner.
Thirdly, the processing knowledge itself can be given

66

declaratively, so that higher order metaknowledge can
be also singled-out. This idea is similar to structural
analysis [13] and is exactly the way we should see
the relation between generic skills and specific domain
knowledge in a competency, as meta-knowledge given
declaratively, applied to domain knowledge. For example,
rules for diagnosing a component-based system applied
to models describing a car, a software, or a learning
environment provide a good way to represent generic
skills and competencies.

Standardized. Standardization is an important property
to enlarge knowledge communication and use between
humans and/or software agents. At the informal level,
each model constructed by a human must be interpretable
by another human.

Computable. Computability is a step beyond standard-
ization. The graphic model can not only receive a non-
ambiguous formal representation that can be processed
by computer agents, but this formal representation is com-
plete (all conclusions are guaranteed to be computable)
and decidable (all computations will finish in finite time)
[14].

Thus, knowledge representation languages in next-
generation intelligent computer systems must comply
with the above properties.

III. PROPOSED APPROACH

To solve the problem of integrating new external
languages of knowledge representation into the system,
it is proposed to describe external languages on the basis
of ontologies. As already mentioned, each language is
defined by its syntax and denotational semantics, which
can be written in an ontological way, which will allow
universalising and docking these languages with each
other, creating tools for visualising and understanding the
languages, making them more universal.

The OSTIS Technology, a next-generation technology
for intelligent computer system design, is proposed as a
tool to implement the specified approach.

The advantages of the OSTIS Technology:
• at the heart of the OSTIS Technology, there is

an SC-code, which allows any information to be
represented in a unified (same) way, making the
proposed approach universal and suitable for any
class of intelligent system;

• the OSTIS Technology and the SC-code in particular
can be easily integrated with any modern technology,
allowing the proposed approach to be applied to
a large number of already developed intelligent
systems;

• the SC-code allows storing and describing in the
knowledge base of the ostis-system any external
(foreign) information in relation to the SC-code
in the form of internal ostis-system files. Thus,
the knowledge base of the training subsystem can

contain explicitly fragments of already existing
documentation for the system, represented in any
form;

• the OSTIS Technology has already developed mod-
els for ostis-system knowledge bases, ostis-system
problem solvers, and ostis-system user interfaces,
assuming their complete description in the system
knowledge base. Thus, for ostis-systems, the pro-
posed approach to training end-users and developers
is much easier to implement and provides additional
benefits;

• one of the main principles of the OSTIS Technology
is to ensure the flexibility (modifiability) of the
systems developed on its basis. Thus, the usage of
the OSTIS Technology will enable the evolution of
the intelligent learning subsystem itself [2].

The systems developed on the basis of the OSTIS
Technology are called ostis-systems. The universality of
the SC-code is ensured by the fact that the elements of
the SC-code texts can be signs of described entities of any
kind, including connection signs between the described
entities and/or their signs. Accordingly, the texts of the SC-
code are graph structures of an extended form, in which
the characters of the described connections can connect
not only the vertices (nodes) of the graph structure but
also the characters of other connections.

The SC-code is an abstract language, i.e. a language
for which the way, in which the characters (syntactically
elementary fragments) that make up the texts of this
language are represented, is not specified but only the
alphabet of these characters, i.e. the family of character
classes considered syntactically equivalent to each other,
is specified.

Each abstract language can be assigned a whole family
of real languages providing isomorphic real representation
of texts of the specified abstract language by specifying
ways of representation (representation, coding) of symbols
included in these texts, as well as by specifying rules for
establishing syntactic equivalence of these symbols. Ob-
viously, in all other respects, the syntax and denotational
semantics of the mentioned real languages completely
coincides with the syntax and denotational semantics of
the corresponding abstract language.

Every intelligent system operates with a knowledge
base in an internal language, and the dialog takes place
as an exchange of messages between the user and the
system. For such a dialog to take place, a fragment of
the knowledge base must be displayed into an external
form. Such a form can be either universal or specialized.

Within the OSTIS Technology, three universal external
knowledge representation languages are proposed:

• the SCg-code – one possible way of visually rep-
resenting SC-texts. The basic principle behind the
SCg-code is that each sc-element is matched with
an sc.g-element (graphical representation);

67

• the SCs-code – string (linear) representation of the
SC-code, designed to represent sc-graphs (texts of
SC-code) as sequences of characters;

• the SCn-code – string non-linear variant for repre-
sentation of the SC-code. The SCn-code is intended
to represent sc-graphs as formatted sequences of
characters according to predefined rules, within
which basic hypermedia such as graphical images
can be used, as well as means of navigation between
parts of sc.n-texts [15].

Each of these languages meets the requirements for
universal languages of knowledge representation and
allows the user to choose the most convenient variant of
visual representation of any subject domain. In addition,
each of these languages has the unique property of being
able to be described in the same language, being able to
be translated from one to the other. Thus, it is proposed
to use SCg-code, SCs-code, and SCn-code as knowledge
representation languages, whose syntax and denotational
semantics will be considered within this article.

IV. INTERNAL LANGUAGE OF THE ostis-system – AN
SC-CODE

SCg-code, SCs-code, and SCn-code are sub-languages
of the SC-code, which define the syntactic, semantic, and
functional principles of memory organisation in next-
generation computers focused on the implementation of
next-generation intelligent computer systems.

The SC-code texts (sc-texts) are unified semantic
networks with a basic set-theoretic interpretation. The
elements of such semantic networks are called sc-elements
(sc-nodes and sc-connectors, which in turn can be sc-arcs
or sc-rules, depending on their orientation). The Alphabet
of the SC-code consists of five basic elements, on the
basis of which SC-code constructions of any complexity
are built, including the introduction of more specific types
of sc-elements (e.g. new concepts). A detailed description
of the SC-code can be found in the standard [16].

The signs (designations) of all entities described in
sc-texts (SC-code texts) are represented as syntactically
elementary (atomic) fragments of sc-texts and therefore
have no internal structure, not consisting of simpler text
fragments, such as names (terms), which represent signs
of described entities in familiar languages and consist of
letters.

Names (terms), natural language texts, and other
information constructions which are not sc-texts can be
included in sc-text but only as files described (specified)
by sc-texts. Thus, a knowledge base of an intelligent
computer system based on the SC-code can include names
(terms) denoting some describable entities and represented
by corresponding files.

Each sc-element will be called an internal designator of
some entity, and the name of this entity represented by the
corresponding file will be called an external identifier (ex-
ternal designator) of this entity. Each named (identifiable)

sc-element is connected by an arc of membership to the
“to be an external identifier*” relation with a node whose
content is an identifier file (in particular, a name) denoting
the same entity as the above sc-element. The external
identifier can be a name (term) but also a hieroglyph,
a pictogram, a spoken name, a gesture. It should be
emphasized that external identifiers of described entities
in an intelligent computer system based on the SC-code
are used only:

• to analyse information coming into this system
from various sources and to input (understand and
immerse) this information into the knowledge base;

• to synthesise different messages addressed to differ-
ent subjects (including users).

V. IDENTIFICATION OF SC-ELEMENTS

External sc-element identifiers (or, for short, sc-
identifiers) are necessary for the ostis-system to exchange
information with other ostis-systems or with its users. In
order to represent its knowledge base, to solve various
problems related to analysis of the current state and
evolution of its knowledge base, problems related to
analysis of the current state (current situations) of the
environment, making appropriate decisions (purposes),
and organising appropriate actions to implement the
decisions made (to achieve the purposes), the ostis- system
does not need any external identifiers (in particular names)
corresponding to sc-elements.

However, in order to understand messages received
from other subjects (which for the ostis-system means
to construct the sc-text semantically equivalent to the
received message) and to analyze messages transmitted to
other subjects (which for the ostis-system means synthe-
sizing an external text that is semantically equivalent to a
given sc-text and meeting some additional requirements,
such as an emotional one). The ostis-system needs to know
how characters that are synonymous with sc-elements
which are or could be stored in the knowledge base of
the ostis-system are represented in the message being
received or transmitted.

The external identifiers of sc-elements are most often
the names (terms) of the corresponding (denoted) entities,
represented by single words or phrases in various natural
languages, however, hieroglyphs, conventions, pictograms
can also be used.

In general, an sc-element can correspond to several
synonymous names in different natural languages. More-
over, an sc-element can correspond to several synonymous
names in the same natural language. In this case, one of
these names is declared as the main external identifier
for the corresponding sc-element and the corresponding
natural language. The main requirement for such external
identifiers is that there are no synonyms as well as
homonyms within the set of basic external identifiers
of sc-elements for each natural language.

68

Each external sc-element identifier used by the ostis-
system can be described (represented) in its memory as an
internal ostis-system file, i.e. as an electronic image of all
possible occurrences of this external identifier in all possi-
ble external texts of the corresponding external language.
In some cases, an explicit representation in memory is not
required, e.g. in the case of non-translatable sc-identifiers.

Next, let us consider the external universal languages
of knowledge representation.

VI. SCG-CODE. ALPHABET OF THE SCG-CODE AND
DENOTATIONAL SEMANTICS

An SCg-code is a way of visualising sc-texts (SC-code
information constructions) as drawings of these abstract
structures. We emphasize that an abstract graph structure
and its drawing (graphical representation) are not the
same thing even if they are isomorphic to each other.

We consider the SCg-code as an combination of the
SCg-code Core, which provides an isomorphic graphical
representation of any sc-text and several extensions to this
core that provide increased compactness and “readability”
of SCg-code (sc.g-texts) texts.

The main purpose of the SCg-code is to have a clear
syntactic graphic representation of sc.g-elements, allowing
the classes of sc.g-elements to be easily identified and
distinguished, such as:

• sc.g-constants (signs of constant entities) and sc.g-
variables (images of variables whose values are the
corresponding sc-elements);

• sc.g-variables whose values are sc-constants and
sc.g-variables whose values are sc-variables;

• signs of permanent (stable) entities and signs of
temporal (unstable, temporary existing, situational)
entities;

• sc.g-connectors (binary characters) and sc.g-elements
that are not sc.g-connectors;

• non-oriented sc.g connectors (sc.g edges) and ori-
ented (sc.g arcs);

• sc.g-arcs of membership and sc.g-arcs that are not
such;

• sc.g-arc of positive membership, negative member-
ship, and fuzzy membership.

Figure 1 is the element list for the Alphabet of the
SCg-code.

This list is created in the form of sc.g-text and is
a representation for examples of all put types of sc.g-
elements (one example of each type). At the same time,
the specified examples of sc.g-elements are divided into
five groups (SCg-text. Alphabet of the SCg-code). The
first group (top row) includes sc.g-element for which the
constancy and consistency of the entities they denote
requires further specification. The remaining four groups
of sc.g-elements are similar to each other and include,
respectively:

• signs of constant permanent entities;

• signs of constant temporal entities;
• images of sc-variables whose values or whose

value values (in case the values of the variables
are variables) are the signs of constant permanent
entities;

• images of sc-variables whose values or whose value
values (in case the values of the variables are
variables) are the signs of constant temporal entities.

A special point of the SCg-code is the representation
of sc-elements, which are designations of the membership
pair* by explicitly using this semantically distinguishable
class of sc-elements. This sc.g-element is used when
we need to represent an sc-arc that is known to be a
designation of the membership pair*, but it is not known
whether it is constant or variable, permanent or temporal,
positive, negative, or fuzzy.

In addition to the sc.g-elements listed in Figure 1, the
Alphabet of the SCg-code also includes the following
sc.g-elements:

• external sc-element identifiers that are identical
(attributed) to the corresponding sc.g-elements;

• sc.g-contours, each of which is a sign of some sc-text
(a structure consisting of sc-elements). Each such
sc-text can be:
– either a constant permanent structure;
– a constant temporal structure (situation);
– or a variable structure whose values are permanent

structures of an isomorphic configuration;
– or a variable structure whose values are temporal

structures (situations) of an isomorphic configura-
tion.

• enlarged sc.g-frames that are image limiters for the
various files stored in the ostis-system memory;

• sc.g-buses, which are designations of the same
entities as their incident sc.g-elements.

Let us note also that, in addition to all the above
elements of the Alphabet of the SCg-code, each of
which has quite specific denotational semantics, a number
of “smaller” syntactic objects need to be introduced to
formalise the SCg-code syntax, e.g:

• incidence points of sc.g-connectors with sc.g-nodes,
with other sc.g-connectors, with sc.g-contours, with
sc.g-frames;

• sc.g-bus incidence points;
• salient points of linear sc.g-elements (sc.g-

connectors, sc.g-contours, sc.g-frames, sc.g-buses).
Within the SCg-code, the SCg-code Core and its

extensions are allocated. The Alphabet of SCg-code Core
is an alphabet of sc.g-elements graphically represented
by sc-elements. The Alphabet of the SCg-code Core is
mutually unambiguous with the Alphabet of the SC-code.

The denotational semantics of the SCg-code Core
correspond to the denotational semantics of the SC-code.
This is demonstrated in Figure 2.

69

Figure 1. Elements of the Alphabet of the SCg-code

70

Figure 2. Denotational semantics of the SCg-code Core

The Alphabet of the SCg-code Core is represented by
the following elements:

• an sc.g-node of a common type – an sc.g-element
which is a graphical representation of the sc-node
of a common type. All sc-nodes, which are not file
signs, in the text (construction) of the SCg-code
Core, are represented as small black circles of the
same diameter, which we denote by ’d’ and the exact
value of which depends on the scale of sc.g-text;

• an sc.g-edge of a common type – an sc.g-element,
which is a graphical representation of the sc-edge
of a common type. Each sc-edge in the SCg-code
Core is represented as a wide line with alternating
solid-filled and non-filled fragments that have no
self-intersections and an overall weight of about 0.7
d;

• an sc.g-arc of a common type – an sc.g-element,
which is a graphical representation of the sc-arc of a
common type. Each sc-arc in the SCg-code Core is
represented as a wide line with alternating solid-filled
and non-filled fragments, with no self-intersections,
having an overall weight of about 0.7 d and having
an arrow at one end of this line;

• a basic sc.g-arc – an sc.g-element, which is a
graphical representation of the basic sc-arc. Each un-
derlying sc-arc in the SCg-code Core is represented
as an arbitrary shaped line without self-intersections,
having a weight of 0.4 d and an arrow at one of its
ends;

• an internal ostis-file – an sc-node, which is the sign
of the internal ostis-system file;

• an sc.g-node with contents – an sc.g-node, which
is the sign of the internal ostis-system file, an sc.g-
frame;

• an sc.g-frame is always a rectangle, the maximum
size of which is not limited, but the minimum size
is fixed and corresponds to the sc.g-frame, inside
which the file it designated is not displayed. Each
sc-node in the sc-text that has contents is represented
as an arbitrarily sized rectangle with a line weight
of 0.6 d in the SCg-code Core. Inside this rectangle,
it is possible to see the file indicated by the depicted
sc-node. If there is no need to represent the file

itself in the text, the sc-node denoting such a file is
represented in sc.g-text as a rectangle with sides 2d
vertically and 4d horizontally.

It is difficult to believe at once that such a simple
alphabet can be used to build a convenient and versatile
graph language. Besides, we should not be alarmed by
simplicity of the alphabet because mankind has a great
experience of coding, storing in memory, and transfer-
ring through communication channels the most various
information resources using the alphabet consisting of
only two classes of elements – ones and zeros. We are
talking about a fundamentally different (graphical) way
of encoding information in computer systems, but we try
to reduce this encoding to a simple enough alphabet at
least in order not to artificially complicate the problem of
creating next-generation computers based on information
encoding method. Extensions of the SCg-code Core will
be considered as directions of transition from the SCg-
code Core texts to more compact texts. However, since it
leads to complication of the Syntax of the SCg-code and,
first of all, to expansion of the Alphabet of the SCg-code,
it is necessary to make such extensions reasonably taking
into account frequency of occurrence within knowledge
bases of ostis-systems of corresponding fragments.

VII. SCS-CODE. ALPHABET OF THE SCS-CODE AND
DENOTATIONAL SEMANTICS

An SCs-code is a language of linear knowledge repre-
sentation of ostis-systems. A set of linear texts (sc.s-texts),
each consisting of sentences (sc.s-sentences) separated
from each other by a double semicolon (separator of sc.s-
sentences). In this case, the sc.s-sentence is a sequence
of sc-identifiers which are the names of the described
entities and are separated from each other by different
sc.s-separators and sc.s-delimiters.

The Alphabet of the SCs-code is based on modern
commonly used character sets, which simplifies the
development of tools for working with sc.s-texts using
modern technologies.

The sc.s-texts, as well as the texts of any other
languages which are variants of the external representation
of the SC-code texts, can include various files, including
natural language files or even files containing other sc.s-
texts. In general, such files can use a variety of characters,

71

so we will assume that these characters are not included
in the Alphabet of the SCs-code.

The alphabet of symbols used in sc.s-separators
consists of: space, semicolon, colon, round marker, and
equality sign.

The alphabet of symbols used in sc.s-separators dis-
playing the incidence relation of sc-elements consists of:
“<”, “>”, “|”, “-”.

The basic alphabet of characters used in sc.s-connectors
consists of: “∼”, underscore sign, equality sign, colon,
‘<”, “>”, “|”, “-”, “/”.

The extended alphabet of symbols used in sc.s-
connectors consists of “∈”, “∋”, “⊆”, “⊇”, “⊂”, “⊃”,
“≤”, “≥”, “⇐”, “⇒”, “←”, “→”, “⇔”.

Both in the Basic and the Extended Alphabets of sc.s-
connectors, the following common features to characterize
the type of sc-connector being represented are used:

• an underscore as an image feature of the sc-
connectors variables (one underscore for sc-
connectors that are primary sc-variables, two un-
derscores for sc-connectors that are secondary sc-
variables (sc-meta-variables));

• a vertical line “|” as an image feature of negative
sc-arcs of membership;

• slash “/” as an image feature of fuzzy sc-arcs of
membership;

• tilde “∼” as an image sign of temporal sc-arcs of
membership.

To simplify the process of developing knowledge
base source texts using the SCs-code and creating corre-
sponding tools, two character alphabets are introduced.
The basic alphabet of characters used in sc.s-connectors
includes only the characters included in the portable
character set and available on a standard modern keyboard.
Thus, to develop the source code of knowledge bases
using only the Basic alphabet of symbols used in
sc.s-connector, a normal text editor is sufficient. The
extended alphabet of characters used in sc.s-connectors
also includes additional characters that make sc.s-texts
(and sc.n-texts) more readable and clear. To visualize and
develop sc.s-texts using the extended alphabet, specialized
tools are required.

The alphabet of symbols used in sc.s-delimiters consists
of: “(”, “)”, “*”.

The alphabet of symbols used in ambiguous sc.s-images
of sc-nodes consists of: “{”, “}”, “-”, “!”, “ [”, “] .

Important elements of the SCs-code are the sc.s-
separator and the sc.s-delimiter.

An sc.s-separator is a separator used in sc.s-texts. The
sc.s-separator splits into:

• an sc.s-separator used to structure sc.s-sentences.
– it separates the sc-identifier of a binary relation

and the second component of one of its connec-
tives, in case the specified binary relation and its

connective are connected by a constant sc-arc of
membership. It is represented as a colon.

– Separates the sc-identifier of a binary relation and
the second component of one of its connectives,
in case the specified binary relation and its
connective are connected by a variable sc-arc of
membership. It is represented as a double colon.

• sc.s-separator of sc.s-sentences is represented as a
double semicolon.

sc.s-delimiter is represented as: (![(∗]!∪![∗)]!)
The parentheses with an asterisk limit attached sc.s-

sentences, which, in turn, may have other attached sc.s-
sentences in their structure.

There is also an sc.s-connector. The typology of sc.s-
connectors is fully consistent with that of sc.g-connectors
and even more so with sc-connectors, since it takes into
account the well-established tradition of representing
the connectives of a number of specific relations. The
following sc.s-connectors are distinguished:

• an oriented sc.s-connector,
• a non-oriented sc.s-connector;
• an sc.s-connector, corresponding to the sc.g-arc of

membership,
• an sc.s-connector corresponding to a sc.g-connector

that is not an sc.g-arc.

The set of sc-elements has a binary oriented sc-element
incidence relation, as well as a subset of this relation – the
incidence relation of incoming sc-arcs, each pair of which
relates the sc-arc to the sc-element it is a part of. In the
SC-code, sc-connectors can connect not only an sc-node
with sc-nodes but also an sc-node with an sc-connector
and even an sc-connector with an sc-connector. In the
latter case, specifying the incidence of sc-connectors, it
is necessary to specify which of them is connecting and
which is connectable. Therefore, the incidence relation
specified on the set of sc-elements is oriented. The first
component of the pair of this relation is the connecting sc-
connector and the second component is the connecting sc-
element. Obviously, the connecting sc-element is always
an sc-connector and the sc-node can only be connectable.

The sc.s-separator displaying the incidence relation of
sc-elements is divided into:

• incidence sign of the “right” sc-connector – the in-
cidence sign of the sc-connector whose sc-identifier
is on the right, represented as “⊢”;

• incidence sign of the “left” sc-connector – the
incidence sign of the sc-identifier whose sc-identifier
is on the left, represented as “⊣”;

• incidence sign of the incoming sc-arc on the right is
the incidence sign of the sc-arc, whose sc-identifier
is on the right, represented as “| <”;

• incidence sign of the incoming sc-arc on the left is
the incidence sign of the sc-arc, whose sc-identifier
is on the left, represented as “> |”.

72

Specified sc.s-separators are similar to sc.s-sentences
in terms of their syntactic structure, but in terms of their
denotational semantics, unlike sc.s-connectors, they are
not representations of corresponding sc-connectors.

In Figure 3, an image of sc.s-connectors of the Basic
and Extended alphabet corresponding to sc.g-connectors,
which are sc.g-arc of membership, is shown.

The equality sign is the sc.s-separator of two sc-
identifiers which identify (name) the same entity and,
therefore, are sc-identifiers* (external unique images)
of the same sc-element. Most often, one of these two
sc-identifiers is a simple sc-identifier and the other is
an sc-expression. Rarely, both of these sc-identifiers are
sc-expressions. And quite rarely, they are both simple
sc-identifiers. The latter indicates that both of these sc-
identifiers are basic sc-identifiers* of the same sc-element.
An example:

SC-code = sc.s-text;;
Here, the first sc-identifier is a proper name and the

second is a common noun.
When translating sc.s-text into the SC-code, the equality

sign may at some stage be matched with an sc-edge which
belongs to the synonymy* relation of the sc-elements
identified by the sc-identifiers connected by the equality
sign. However, in the next step, the specified sc-edge is
removed, and the sc-elements connected by it are patched
together. Thus, the sc-edge belonging to the synonymy*
relation of sc-elements has not only denotational but also
operational semantics.

An equality sign with inclusion is an image of an sc-
arc belonging to an immersion* relation connecting two
sc-nodes denoting sc-texts, the first of which is immersing
and the second (in which specified sc-arc comes) is
immersed, introduced into the first sc-text. The sc-arc
belonging to the immersion* relation is interpreted as a
command to immerse one sc-text into the composition
of another. When this command is executed, (1) all
sc-elements of the immersing sc-text become elements
belonging to the immersing sc-text, (2) all synonymous
sc-elements that happen to be part of the immersing sc-
text are patched together, (3) the sc-node denoting the
immersing sc-text, as well as the specification of this sc-
text (including the list of all its sc-elements), is immersed
in the history of the knowledge base evolution together
with the specification of the event of immersion of the
considered sc-text into the knowledge base.

In Figure 4, the Alphabet of sc.s-connectors correspond-
ing to sc.g-connectors that are not sc.arcs of membership
is shown.

The minimum semantically coherent fragment of sc.s-
text is the sc.s-sentence; an sc.s-sentence, (1) consisting of
either two sc-identifiers connected by an sc.s-connector
or three sc-identifiers separated by sc. separators rep-
resenting an incidence relation of sc-elements and (2)
ending with a double semicolon.

It is easy to notice that simple sc.s-sentences are
essentially the same as RDF triplets, except that a simple
sc.s-sentence can be “unfolded” using sc.s-sentence
conversion* without changing its meaning, while an RDF-
triplet cannot ensure that. This is one of the reasons
why, unlike RDF triplets, in simple sc.s-sentences, sc.s-
connectors and sc.s-separators displaying the sc-element
incidence relation cannot be omitted, since they also show
the direction of the relation they display between the sc.s-
elements.

The operations defined on the set of sc.s-sentences can
be divided into three groups:

• a group of conversion operations of sc.s-sentences
consisting of a single operation;

• a group of combination operations of sc.s-sentence;
• a group of decomposition operations of sc.s-

sentences and, in particular, decomposition oper-
ations of sc.s-sentences.

The list of operations defined on the set of sc.s-
sentences is as follows:

• Conversion operation of the sc.s-sentence*. Every
sc.s-sentence (including the simple sc.s-sentence) can
be transformed into a semantically equivalent sc.s-
sentence by a conversion (’reversal’) of the chain of
sc.s-sentence components. Thus, for example, when
converting (“unfolding”) a simple sc.s-sentence
– its first sc-identifier (the first component of this

sc.s-sentence) becomes the third component of the
converted sc.s-sentence;

– its second sc-identifier (the third component of
the original sc.s-sentence) becomes the first com-
ponent of the “converted” one;

– the second component of the original sc.s-sentence
(sc.s-connector or sc.s-separator, representing the
sc-element incidence relation connecting the above
components) remains the second component of the
converted sc.s-sentence, but it changes direction
(“ ∋ ” is replaced by “ ∈ ” and vice versa, “
⊃ ” by “ ⊂ ” and vice versa, “ ⇒ ” by “ ⇐ ”
and vice versa, etc.). We can talk not only about
the conversion of sc.s-sentence but also about the
conversion of sc.s-connector, the conversion of
sc.s-separator displaying the incidence relation of
sc.s-elements.

• The attachment operation of the sc. s-sentence* is
the operation of attaching two sc.s-sentence when
the last component of the first sentence matches the
first component of the second one*. As a result of
performing this operation:
– the first component of the second sc.s-sentence is

deleted;
– the rest of the second sentence is surrounded by

the sc.s-delimiter of attached sentences “ (* ” and
“ *) ”. The separator of sc.s-sentences “ ;; ” also

73

Figure 3. An image of sc.s-connectors of the Basic and Extended alphabet corresponding to sc.g-connectors, which are sc.g-arc of membership

74

Figure 4. The Alphabet of sc.s-connectors corresponding to sc.g-connectors that are not sc.arcs of membership

falls inside the specified delimiter;
– the resulting construction is placed between the

last component of the first sentence and the sc.s-
sentence separator that ended the first sentence;

– the second sentence thus becomes an attached
sc.s-sentence.

Similarly, any attached sc. s-sentence can be “docked”
with other attached sc.s-sentences, in general, the
level of such nesting is not limited.

• The merge operation of sc.s-sentences* is the opera-
tion of attaching a simple sc.s-sentence to an sc.s-
sentence where the last sc.s-connector is the same
as the sc.s-connector of the simple sc.s-sentence
and the sc-identifier preceding that sc.s-connector
is the same as the first sc-identifier of the simple
sc.s-sentence
This operation causes the matching of sc.s-identifiers
and sc.s-connector of the linked sc.s-sentences to be
“patched” together, and the last sc.s-identifiers of the
linked sc.s-sentence become the last components of

the merged sc.s-sentence, separated by semicolons.
In the same way, any number of simple sc.s-sentence
can be attached.

• The decomposition operation* of sc.s-sentences into
simple sc.s-sentences
Every sc.s-sentence can be decomposed into a set of
simple sc.s-sentences, i.e. represented as a sequence
of simple sc.s-sentences.

• The decomposition operation of sc.s-sentences into
simple sc.s-sentences with the sc.s-separator repre-
senting the incidence relation of the sc-elements*
Each sc.s-sentence (including a simple sc.s-sentence
with an sc.s-connector) can be represented as a
semantically equivalent sequence of simple sc.s-
sentences with sc.s-separator displaying the in-
cidence relation of sc-elements. This operation
uniquely generates a set of simple sc.s-sentences
of the specified kind.

Obviously, the combination operations of sc.s-sentences
and the decomposition operations of sc.s-sentences are

75

inverse operations to each other.
From the semantic point of view, the sc.s-sentence is

a description of some route in the corresponding sc-text,
which is a graph structure of a special kind and whose
structure is described (displayed) with sc.s-sentences. The
specified route is “traversed” by sc-connectors and sc-
element incidence relations, if the route passes through
incident sc-connectors. The description of the specified
route may additionally specify the sets (most often
relations) to which the sc-connectors included in the
described route belong. In addition, the specified route
may have branches at the beginning and/or at the end,
where any sc-element is equally incidental to several sc-
connectors of the same type, connecting the specified sc-
element to some other sc-elements. Thus, each specified
branching consists of an unlimited number of branches,
each of which consists of one sc-connector and one sc-
element connected by it.

A sequence of sc.s-sentences separated by double dots
forms the sc.s-text. Accordingly, the sc.s-sentence is the
minimum sc.s-text.

The meaning of the sc.s-text (as well as the sc.s-text
included in the structure) does not depend on the order
of sc.s-sentences in these sc-texts. That is, rearranging
sc.s-sentences within such sc.s-texts does not change the
meaning of these sc.s-texts (i.e. leads to semantically
equivalent sc.s-texts), but greatly affects the human
perception (the “readability”) of these texts.

Similar to SCg-code, the SCs-code has a sublanguage –
the SCs-code Core, which uses a minimal set of syntactic
tools but has a semantic power equivalent to the power
of SCs-code as a whole.

In the SCs-code Core:
• only simple sc-identifiers are used, including sc-

identifiers of external ostis-files (sc-expressions are
not used);

• only sc.s-separators are used, displaying the inci-
dence relation of sc-elements, and sc.s-connectors
displaying a constant permanent positive pair of
membership (“ ∈ ” and “ ∋ ” in the Extended
Alphabet and “ → or ” and “ ← ” in the Basic
Alphabet). Other sc.s-connector are not used;

• sc.s-modifiers and, consequently, colons, which are
a sign of completion of sc.s-modifiers, are not used;

• only simple sc.s-sentences, which, as follows from
the above properties of the SCs-code Core, either
consist of two simple sc-identifiers connected by a
sc.s-connector representing a constant permanent
positive pair of membership or three simple sc-
identifiers separated by sc.s-separators representing
an incendence relation of sc-elements are used.

It follows from the above properties of the SCs-code
Core that in order to represent any sc-text by means of
the SCs-code Core it is necessary for all sc-elements of
this sc-text (except constant permanent positive pairs of

membership) to build simple sc-identifiers corresponding
to them, i.e. it is necessary to name all the specified sc-
elements. In turn, the type of each used sc-element (except
the constant permanent positive pairs of membership)
is specified explicitly by indicating the membership of
these elements to the corresponding sc-element classes,
including the classes included in the SC-code Core.

As it is possible to notice from the above description,
the SCs-code Core corresponds to the SCg-code Core,
except that the SCg-code Core does not need to name
all represented sc-elements, and also in the SCg-code,
there are graphic images for sc-elements that belong to
the corresponding classes of the SC-code Core, and this
membership need not to be explicitly specified.

Obviously, it is inconvenient and inefficient to use the
SCs-code Core for writing large fragments of knowledge
bases in practice. Nevertheless, from a practical point of
view, the SCs-code Core can be used, for example, to
exchange information with third-party graph representa-
tion tools designed to represent information in the form
of triplets (e.g., RDF storages). Syntactic extensions to
the SCs-code Core are needed to enable wider practical
usage with next purposes:

• to minimize the number of identifiable (named) sc-
elements by using sc-expressions and eliminating
the need to identify (name) all sc-elements;

• reducing text by minimizing the number of rep-
etitions of the same sc-identifier by linking sc.s-
sentences;

• to increase the visibility, “readability” of the sc.s-
texts.

Next, let us consider the structured knowledge repre-
sentation language of ostis-systems – an SCn-code.

VIII. SCN-CODE. ALPHABET OF THE SCN-CODE AND
DENOTATIONAL SEMANTICS

An SCn-code is a language for the structured external
representation of the SC-code texts, which is a syntactic
extension of the SCs-code, aimed at increasing the clarity
and compactness of the SCs-code texts.

The SCn-code allows switching from linear texts of the
SCs-code to formatted and actually two-dimensional texts
in which there appears a decomposition of the original
linear text of the SCs-code into lines placed “vertically”.
In this case, the beginning of all lines of text is fixed
and defined by a known and limited set of rules, which
makes it possible to use this when formatting sc.n-text
(text belonging to the SCn-code).

An SCn-code is a language of two-dimensional texts.
Accordingly, each text of such a language is defined by:

• a set of characters included in it;
• a “horizontal” character order (sequence) relation;
• a “vertical” character order (sequence) relation.
A character that is part of a two-dimensional text can

generally have four “adjacent” characters:

76

• a character to its left within the same line;
• a character to its right within the same line;
• a character located strictly above it in the previous

line;
• a character located strictly below it in the next line

of text.
Due to the fact that sc.n-texts can include both sc.s-

texts and sc.g-texts (delimited by the sc.n-contour), the
SCn-code can be considered an integrator of different
external knowledge representation languages. This makes
it possible to compensate the disadvantages of one of the
proposed options for external representation of sc-texts
(SCg-code, SCs-code, SCn-code) with the advantages
of other options when visualizing and developing the
knowledge base of the ostis-system.

In this case, there is a transition from linearity of sc.s-
texts to two-dimensionality of sc.n-texts.

An important feature of the SCn-code is the “two-
dimensional” nature of its texts. This is manifested in
that for each SCn-code fragment of text, the value of the
indentation from the left edge of the line is essential.

In the SCn-code text, unlike the SCs-code text, the
important thing for each text fragment is not only how this
fragment is connected to other fragments “horizontally”
(which fragment is to the left or to the right of the
same line) but also how it is related to other fragments
“vertically” (which fragment is higher on the previous line
and which is lower on the next line), which fragment is
below on the next line).

So, for example, if in the text of the SCn-code
some sc-identifier(external sc-element identifier) is placed
immediately after the vertical tab line and a certain
sc.s-connector is placed exactly below it, it means that
the specified sc-element is incident to the sc-connector
represented by the specified sc.s-connector.

In order to provide the exact setting (formulation) of the
rules of two-dimensional incidence elements (elementary
fragments) of sc.n-texts, the concept of sc.n-text page is
introduced, the concept of a line of sc.n-text, and also
a special markup is used, which is vertical tab lines,
the distance between which is approximately equal to
the maximum length of the sc.s-connector (usually this
distance equals the width of 4-5 characters).

The sc.n-text (text of the SCn-code) is a sequence of
sentences of the SCn-code, each of which is not part of
any other sentence in the sequence.

If the sc.n-text is part of some other file that is
paginated, such as the publication of some part of a
knowledge base, then the sc.n-page is only the part of
the page that shows the sc.n-text, while the page of the
specified file may be larger due to, for example, white
fields on the edges of the page needed for subsequent
printing.

The maximum number of characters in sc.n-text lines
for each sc.n-text is fixed and is determined by the specific

sc.n-text placement option. At the same time, depending
on the indentation within a particular sc.n-text sentence,
a line of sc.n-text may not start from the left edge of the
sc.n-text (but always from some of the vertical markup
lines) and have an arbitrary length limited by the right
border of the sc.n-page.

A markup line is used to make sc.n-texts easier to read.
The 1st markup line borders the left edge of the sc.n-page,
the 2nd markup line is located approximately between the
5th and 6th characters of the line, and so on. The distance
between the markup lines may vary depending on the
font size but always remains the same within a single
sc.n-text. The total number of markup lines is limited
by the maximum possible width of the sc.n-page in the
particular ostis-system file containing that sc.n-text.

The Alphabet of the SCn-code is the same as the
Alphabet of the SCs-code. All components of sc.s-texts
are also used in sc.n-texts:

• sc-identifiers;
• sc.s-identifiers;
• modifiers of sc.s-connectors with the corresponding

delimiters (colons);
• separators used in sc-expressions denoting sc-

multiples given by enumeration of elements with cor-
responding separators (semicolon or round marker);

• round markers in enumerations of sc-element identi-
fiers linked by the same-type sc-connectors with the
same-type modifiers to a given sc-element;

• sentence separators (double semicolons) (omitted
when converting sc.s-sentences to sc.n-sentences);

• delimiters of attached sc.s-sentences (omitted when
converting sc.s-sentences to sc.n-sentences).

However, unlike sc.s-texts in sc.n-texts:

• new kinds of sc-expressions (namely, sc-expressions
that have a two-dimensional character) are added;

• a new kind of sentence separators – a blank line –
is added;

• the placement of sentences, taking into account
the two-dimensional nature of this placement, is
changed.

New types of sc-expressions are added to the SCn-code
compared to the SCs-code:

• an sc-expression, which is a two-dimensional sc.n-
text delimited by an sc.n-contour or an sc.n-frame.
Each sc.n-contour is represented conventionally as
an opening curly bracket and a closing curly bracket
located strictly below it through several lines. Inside
these brackets (starting from the vertical markup line
where the brackets are located to the right page edge),
sc.n-text is placed. The resulting sc.n-frame is an
image of the structure resulting from the translation
of the specified sc.n-text into the SC-code. Each sc.n-
frame is represented in the same way, only instead
of curly braces it uses square brackets or square

77

brackets with an exclamation mark (in the case of a
sample file);

• an sc-expression, which is a two-dimensional sc.g-
text delimited by an sc.n-contour or an sc.n-frame;

• an sc-expression, which is a two-dimensional graph-
ical representation of an information construct en-
coded in some ostis-system file, delimited by the
sc.n-frame. Such an information construction can be
a table, a picture, a photograph, a diagram, a graph,
and more.

It is easy to notice that an sc.n-contour is essentially the
two-dimensional equivalent of the sc-expression structure,
and an sc.n-frame is the two-dimensional equivalent of
the sc-expression of the inner file of the ostis-system or
sc-expression denoting the pattern file of the ostis-system.

From a formal point of view, an sc.n-frame is always
a single line of sc.n-text. This means that the sc.n-frame
cannot be syntactically divided into parts within the sc.n-
text in which it is used and cannot be inserted inside it, for
example, with attached sc.n-sentences or any other text
(unless the sc.n-frame contains sc.n-text, but in this case
specified sc.n-text will still be considered as a complete
external file and not as a fragment of the surrounding
sc.n-text).

The sc.n-sentences uses a delimiter that is a represen-
tation of the structure, which is called an sc.n-contour.

The concept of the sc.n-sentence is a natural gener-
alization of the concept of the sc.s-sentence. Moreover,
similarly for sc.s-sentences, the concept of concepts are
introduced:

• of a simple sc.n-sentence;
• of a complex sc.n-sentence;
• of an sc.n-sentence containing attached sc.n-

sentence;
• of an sc.n-sentence that does not contain any attached

sc.n-sentence;
• of an attached sc.n-sentence;
• of unattached sc.n-sentence.
If each unattached sc.s-sentence is either the first

sentence of the sc.s-text or begins after the sc.s-sentence
separator (double semicolon), then each unattached sc.n-
sentence starts at the beginning of a new line.

If each attached sc.s-sentence starts either after the
opening delimiter (opening bracket with an asterisk) or
after the separator of the
textitsc.s-sentence, then each attached sc.n-sentence starts
on a new line under the sc-identifier that ends that sc.n-
sentence (and accordingly, sc.s-sentence, respectively) in
which this attached sc.n-sentence is embedded.

The first sc-identifier that is part of the sc.n-sentence
before the sc.s-connector is highlighted in bold italics.

In sc.n-sentences, the double semicolon is not used as a
sign of completion of these sentences and therefore is not
used as a separator for sc.n-sentences. Such a separator
is an empty line.

The two-dimensionality of the SCn-code gives more
possibilities (degrees of freedom) for a clear and compact
layout of the sc.n-sentences.

When the sc.n-sentence is drawn up, all the sc.n-
sentences attached to it are clearly tabulated and attached
to the original “vertical” one. The vertical tabulation line
specifies the left border of the original (maximum) sc.n-
sentence or the left border of the sc.n-sentence attached
vertically.

The left border of the sc.n-sentence specifies the start
of the first sc.n-sentence that is part of this sc.n-sentence
and the start of the sc.s-connector that is incident to the
specified sc.s-identifier and is placed strictly below this
sc-identifier. The distance between the vertical tab lines
is fixed and approximately equal to the maximum length
of the sc.s-connector.

In contrast to sc.s-texts, in sc.n-texts, an sc.s-connector
can be incident to the preceding sc-identifier (either simple
one or an sc-expression) not only “horizontally” but also
“vertically”. To do this, the sc.s-connector is placed strictly
below the sc-identifier that precedes it.

Also “vertical” sc-identifier can be incident to not
one but several sc.s-connectors, which are consecutively
“vertically” placed under the specified sc-identifier. This
allows within one sc.n-sentence representing an arbitrary
number of “branches” from each sc-identifier, i.e. an
arbitrary number of sc.s-connectors incident to that sc-
identifier.

Each sc-identifier, including the sc-expression delimited
by curly or square brackets, must be placed immediately to
the right of the vertical marking line if an sc.s-connector
is placed below it.

Each sc.s-connector is highlighted in bold, non-cursive
font and, if it is below an incident sc-identifier, is placed
strictly between the two vertical marking lines, nestled
to the left of these two marking lines.

Since in relation to the SCn-code, the SCs-code is
the syntactic core of the language*, the SCn-code can be
considered as the result of integrating several extensions of
the SCs-code based on the syntactic transformation rules
of sc.s-texts and sc.n-texts, oriented towards making better
usage of those possibilities of visibility and compactness
of sc.n-texts which are opened by the transition from
linearity of sc.s-texts to two-dimensional sc.g-texts.

The list of operations defined on the set of sc.n-
sentences is as follows:

• Transformation operation of sc.s-sentence to the sc.n-
sentence*
Every sc.s-sentence written linearly (“horizontally”)
can be transformed into the corresponding two-
dimensional sc.n-sentence. Let us list the basic rules
for transforming sc.s-sentences into sc.n-sentences
– The sc.s-connector can be placed on the next line

below the preceding sc-identifier, starting from

78

the same character of the next line as the specified
sc-identifier;

– If the sc-identifier is moved to the next line,
it is continued on the next line with the same
indentation from the beginning of the line as the
specified sc-identifier starts;

– A semicolon-delimited listing of sc-identifiers can
be carried out not “line by line” but “column by
column” by placing each following sc-identifier
strictly below the preceding one. In this case, the
semicolon separator can be replaced by a circle
marker placed in front of each sc-identifier to be
enumerated;

– a closing curly or square bracket may be placed
strictly below the corresponding opening bracket;

– The sc-identifier in the sc.n-sentence can be
connected to other sc-identifiers via several dif-
ferent sc.s-connectors. In this case, each of these
sc.s-connector is placed strictly below the pre-
ceding one but only after the recording of the
entire, generally branched, chain of sc.s-connector
and sc-identifier that starts with the preceding
sc.s-connector is completed. In the SCs-code,
there is no analogue to such sentences with the
unrestricted possibility of describing “branched”
connections of sc-identifiers. Consequently, if
in sc.s-text, the sc-identifier can be incident to
no more than two sc.s-connectors (to its left
and right), then in sc.n-text, sc-identifier can
additionally be incident to an unlimited number
(not necessarily identical) of sc.s-connectors that
are placed “vertically” strictly below it.

• Attachment operation of the sc.n-sentence*
Some sc.n-sentence can be attached to another
sc.n-sentence if this other sc.n-sentence has an sc-
identifier (but not an sc.s-modifier) that begins the
first (attachable) sc.n-sentence. Joining in is done as
follows:

• The initial sc-identifier of the attached sentence is
omitted;

• The remainder of the sc.n-sentence, starting from
the sc.s-connector, is written under the same sc.s-
identifier but forming part of the sc.n-sentence to
which this sc.n-sentence is attached. All indents in
the attached sc.n-sentence are shifted accordingly.
An arbitrary number of any number of branches can
be formed in this way.

In essence, the semantics of the sc.n-sentence is the set
of routes in sc-text, possibly intersecting and originating
from a given sc-element.

IX. EXAMPLE OF THE TEXT REPRESENTED IN THE
SCG-CODE, SCS-CODE, AND SCN-CODE

Let us consider the fragment of the sc.g-text shown
in Figure 5. This fragment represents a class of material

Figure 5. A fragment of the sc.g-text

Figure 6. A fragment of the sc.s-text

objects including: Earth, Moon, Sun, Mars. The material
object “Moon” has two main identifiers, in Russian and
English. “Earth” and “Mars” are related to “Sun” by a
“revolve around*” relation. “Moon” is related to “Earth”
using the “satellite*” relation.

Any sc.g-text can easily be represented by the sc.s-text.
Accordingly, the fragment of sc.g-text described above is
represented in sc.s-text in Figure 6:

In Figure 7, a fragment of the above text in the SCn
code is shown.

X. CONCLUSION

In this article, the concepts of internal and external
languages of a next-generation intelligent computer sys-
tem, the family of external languages of ostis-systems are
considered. The syntax and denotational semantics of the
SCg-code, SCs-code, SCn-code are clarified.

Examples of information constructions described with
the SCg-code, SCs-code, SCn-code are given.

The results obtained will improve the future devel-
opment of next-generation intelligent computer systems,
as well as the compatibility and interoperability of the
components of such systems.

79

Figure 7. A fragment of the sc.n-text

REFERENCES

[1] V. Martynov, Universal Semantic Code (Grammar. Dictionary.
Texts). Minsk: Nauka i tekhnika [Science and technics], 1977.

[2] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
G. V.V., Ed. Minsk: Bestprint, 2021.

[3] P. Warren, P. Mulholland, T. Collins, and E. Motta, “Improving
comprehension of knowledge representation languages: a case
study with description logics,” International Journal of Human-
Computer Studies, vol. 122, 09 2018.

[4] P. P.-S. Chen, “The entity-relationship model—toward
a unified view of data,” ACM Trans. Database Syst.,
vol. 1, no. 1, p. 9–36, mar 1976. [Online]. Available:
https://doi.org/10.1145/320434.320440

[5] J. Sowa, Conceptual Structures: Information Processing in Mind
and Machine The Systems Programming Series, 01 1984.

[6] J. E. Rumbaugh, M. R. Blaha, W. J. Premerlani, F. Eddy, and
W. E. Lorenson, “Object-oriented modelling and design,” 1991.

[7] G. Schreiber, B. J. Wielinga, and J. Breuker, “Kads : a principled
approach to knowledge-based system development,” 1993.

[8] G. Booch, J. Rumbaugh, and I. Jacobson, “Unified modeling
language user guide, the (2nd edition) (addison-wesley object
technology series),” J. Database Manag., vol. 10, 01 1999.

[9] D. Ausubel, “Educational psychology: A cognitive view,” 01 1968.
[10] D. F. Dansereau, “The development of a learning strategies

curriculum,” 1978.
[11] D. H. Jonassen, K. L. Beissner, and M. Yacci, “Structural

knowledge: Techniques for representing, conveying, and acquiring
structural knowledge,” 1993.

[12] D. F. Dansereau and C. D. Holley, “Development and evaluation
of a text mapping strategy,” Advances in psychology, vol. 8, pp.
536–554, 1982.

[13] J. M. Scandura, “Structural learning theory: Current status
and new perspectives,” Instructional Science, vol. 29,
no. 4, pp. 311–336, Jul 2001. [Online]. Available:
https://doi.org/10.1023/A:1011995825726

[14] G. Paquette, “Building graphical knowledge representation
languages-from informal to interoperable executable models,” 01
2006.

[15] A. Boriskin, M. Sadouski, D. Koronchik, I. Zhukau, and A. Khu-
sainov, “Ontology-based design of intelligent systems user in-
terface,” Otkrytye semanticheskie tekhnologii proektirovaniya in-
tellektual’nykh system [Open semantic technologies for intelligent
systems], pp. 95–106, 2017.

[16] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
G. V.V., Ed. Minsk: Bestprint, 2021.

Семейство внешних языков
интеллектуальных компьютерных систем

нового поколения, близких языку
внутреннего смыслового представления

знаний
Жмырко А.В.

В работе рассматриваются понятия внешних и внутрен-
них языков интеллектуальных компьютерных систем нового
поколения. Описываются внешние языки представления зна-
ний в рамках Технологии OSTIS, а именно SCg-код, SCs-код,
SCn-код. Для каждого из внешних языков уточнены и деталь-
но рассмотрены синтаксис и денотационная семантика.

Received 10.09.2022

80

	‎D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\013-420. Basic.pdf‎
	‎D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\04_OSTIS22_ID08_Zhmyrko_FamiloELoN_GCSCtLoISRoK.pdf‎

