
Semantic theory of programs in next-generation
intelligent computer systems

Nikita Zotov
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: nikita.zotov.belarus@gmail.com

Abstract—Despite the active development and usage of
programming languages, currently, there is no general
theory of programs on the basis of which it would be
possible to design and develop applied systems. In this
article, the unified ontology of programming languages
and representation of programs in different programming
languages is proposed. The work demonstrates the features
of the representation of programs and key points of the
process of their interpretation.

Keywords—knowledge representation language, program-
ming language, method representation language, software
computer system, ontological approach, denotational and
operational semantics of a language, procedural program-
ming language, non-procedural programming language,
ostis-systems language

I. INTRODUCTION

For a long period of development of computer systems
(c.s.), hardware restrictions on solving various problems
have been practically removed. The remaining restrictions
are assigned to the share of the software. First of all, these
limitations are related to the current problems of software
development:

• hardware complexity outstrips mankind’s ability to
build software c.s. using the potential capabilities of
hardware;

• skills and technologies of software development
lag behind the requirements for developing pro-
grams of next-generation software development;

• the ability to use existing programs is threatened by
the poor quality of their development.

The key to solving these problems is a deep under-
standing and competent usage of existing programming
languages as the main tool for the mass creation of next-
generation software c.s.

This article focuses on achieving the following results:
• (1) set out the classical foundations, reflecting

the accumulated world experience in the field of
programming languages;

• (2) systematize the main results in this area and
represent them in the form of a unified semantic
theory of programs.

In this article, the problems of the current state in the
field of programs and programming languages that can

and should be used to develop next-generation intelligent
c.s. are described in detail. It is dedicated to the basic
concepts of the theory of programming languages, gives
an overview of the areas for applying programming
languages that are quite in demand by modern human
society, describes in detail the forms and contents of
criteria for evaluating the effectiveness of languages,
considers ways of representing and interpreting programs
of various programming languages.

II. CURRENT STATE ISSUES

In the modern era of information technologies develop-
ment, there are a huge number of programming languages,
each of which has its own important purpose in the field
of software system design. Each language demonstrates
not only its specifics but also has its own advantages and
disadvantages. The variety of programming languages [1],
[2] and solutions created on them is so great that it is very
easy to get lost in a sea of information about all aspects of
the application and design of programming languages. In
addition, the main problem is not the number of existing
solutions in the field of programming languages but the
number of forms (!) in which specific programming
languages are represented. So, declarative knowledge, i.e.
knowledge that is, for example, a specification of some
program, and procedural knowledge, i.e. knowledge that
is programs belonging to some programming language,
are represented in completely different ways, methods,
and means.

In connection with the above, the following key
problems in the field of programming languages can
be distinguished:

1) Since the number of programming languages grows
with the increase in the need for them [3], the
need for describing these programming languages
for further usage and design of applied systems
also grows. This, in turn, requires a high level of
quality in the specification of a particular language:
both a description of the syntax and semantics of
the constructions of this language, as well as a
description of the means and methods for renovating
tools that provide interpretation or translation of this

145



language. That is, with an increase in the number
of programming languages, not only the variety of
forms of knowledge representation (programming
languages) grows but also the number of software
systems based on various forms of knowledge
representation [4].

2) A wide variety of forms of knowledge representation,
as mentioned above, provides a wide range of
possibilities for designing software c.s. on each
of them. It turns out that in order to integrate
several software systems implemented in different
programming languages, it is necessary to make sure
that the systems can communicate with each other in
each of the languages in which they are implemented
[5], [6]. Thus, the striving to use existing software
components is hampered by the implementation of
the components themselves [7], since in order to
combine these components it is necessary to change
their program code [8], [9]. The presence of a variety
of forms makes it difficult to implement compatible
interoperable c.s. [10].

3) As the complexity of the program code grows, the
number of humans able to understand its meaning
decreases. Modern developers create software c.s.
without taking into account its full life cycle [11].
Systems must be constantly updated and improved
with the development of the technologies on which
it is based [12]. This should be ensured by good
documentation of implementing the components of
these systems – this reduces not only the need to
raise new resources and personnel but also helps to
reduce the reengineering of software c.s. [13], [9].

4) Full automation of designing software c.s. is impos-
sible, since the modern languages in which they are
designed do not have the property of reflexivity –
systems cannot cognize and understand themselves
[14], [15], [16] and develop almost completely on
their own. Thus, the existing intelligent c.s. are
not intelligent as such, since they do not have the
properties they require [17].

5) The key to easy and deep mastering of a specific
language as the main professional tool of a pro-
grammer is understanding the general principles of
building and using programming languages [18],
[19], described by their general theory. Until today,
a general theory of programming languages still does
not exist, which makes it difficult to develop, verify,
and use new and existing programming languages.
Without a general theory of programming languages,
everyone can develop fundamentally general methods
and tools in the way they want but not the way is
required [10] - it is necessary to agree on terms
and concepts and multiply the results by creating
next-generation interoperable computer systems [20].

6) Achieving the maximum of services and means at

a minimum of costs is possible only through a
deep understanding of the principles of building
programming languages due to the simplicity of
means and methods of knowledge representation.
The complex should be reduced to the simple and
explained in simple terms, without creating an
additional illusion of importance [8], [12], [21].

All these problems are related and are problems of
the current state of development directions in the field of
Artificial intelligence [19], [22].

So, to solve these problems, it is necessary to create
comfortable conditions for the implementation of com-
puter systems that are semantically compatible and inter-
operable with each other. In the context of programming
languages, a general theory of designing programs for
next-generation intelligent c.s. is required, which:

1) allows integrating existing solutions in the field of
designing programs for computer systems without
much effort and costs [23];

2) will combine knowledge representation forms of
declarative and procedural types;

3) will have a wide range of tools not only for describ-
ing the syntax and semantics of existing program-
ming languages but also for designing new ana-
logues;

4) will be understandable not only to human but also
to machine [4];

5) denotes the principles by which next-generation pro-
gramming languages should be designed.

The design of such general theories, strictly speaking,
must be approached with a high degree of importance.
Designed c.s. should always be able to use the properties
that they are drawn. In order for this theory to be used as
a certain system of knowledge about how to design and
use programming languages and programs in software
c.s. and how to interpret their programs, it is necessary
for this theory to be described by means and methods by
which these software c.s. are designed. We are talking
about the fact that the ontological approach [24], [4], [23],
[25], [26] is a fundamentally important approach to the
design of a general theory of programs.

To implement these ideas, it is necessary to study
and integrate the experience gained in the field of
programming languages. Therefore, the results of other
researches in the field of designing the general theory of
programming languages and programs will be considered
below.

III. EXISTING ONTOLOGIES OF PROGRAMMING
LANGUAGES

For the most part, the ideas proposed in scientific
papers on the study of programming languages are
certainly in demand and useful for designing software
c.s. Thus, the idea that programming languages and
programs implemented on them should be organized into

146



a common taxonomy of concepts is fundamental, since it
provides the highest quality environment for the design
and implementation of c.s. The general theory of programs
is needed not only to describe terms and concepts as some
kind of specification used to design software c.s. (that
is also important) but also in order to determine the
quality of programming languages and programs on such
issues as: "Is this language a programming language",
"Is this knowledge a program", "How efficient is this
program", "What is the degree of intelligence of this
software system", etc. These ideas are proposed and
discussed in the works of Raymond Turner [18], [27].

Until today, there are a large number of analogues
for ontologies of programming languages and programs.
The examples can be found in [28], [29]. It is also
worth noting the developed ontologies of programs
[14], [18], [30], [31], [32], [33], in which, strictly and
unambiguously, the system of concepts is defined in
formal languages – languages of logic and languages for
describing the grammars of formal languages. However,
none of them is such a result that could be used in the
design of software c.s. without significant problems. The
developed ontologies concentrate only a brief description
of interconnected concepts, but the general picture of
how these ontologies can be used in specific problems is
almost unseen.

Today, there are completely opposite judgments about
the purpose of programs and programming languages
[34], which contradict the formal foundations of Artificial
Intelligence [35]. There are more and more works related
to the rethinking of information processing [36]. Software
c.s. should not only be understandable to a human but
should understand themselves, their capabilities, inten-
tions, actions, and purposes, and understand cybernetic
systems that are similar to them. Only in this way
humanity and the results of its activities in the form
of some specific systems will be able to work together,
complementing each other and multiplying their results
[10].

Based on the represented works, it can be concluded
that:

• the general theory of programs and programming
languages, which could be involved in solving
any applied problem, as well as representing and
implementing computer system design tools, has not
been developed yet;

• unification of the representation of the means for
description and implementation according to these
descriptions as the main argument for operating the
semantic knowledge representation, for complete
mutual understanding between computer systems is
not considered at all;

• programs and combinations of these programs in
the form of program c.s. are implemented in most
cases on an individual basis and are poorly docu-

mented, which complicates their usage, integration
with other programs and software c.s., testing, and
improvement.

The key to solving all these problems is the general
technology for designing next-generation computer sys-
tems, on the basis of which it is possible to build a general
theory of programs (programming discipline) [37], which
will be considered further.

IV. SUGGESTED SOLUTION

Despite the vast variety of classical technologies used
by mankind, there is no general solution that allows
solving the problem in a complex. Therefore, at the
moment, the described problems can be solved only
with the help of a general and universal solution – the
OSTIS Technology. The OSTIS Technology is based
on a unified version of information encoding based on
semantic networks with a basic set-theoretic interpretation,
called an SC-code. The language of semantic knowledge
representation is based on two formalisms of discrete
mathematics: set theory – defines the semantics of the
language – and graph theory – defines the syntax of the
language [38], [39]. Any types and models of knowledge
can be described using the SC-code [40].

For the convenience of knowledge representation, there
are three external knowledge representation languages
based on the SC-code: SCg-code, with the help of which
knowledge is displayed in the form of graph structures
understandable to the average user, SCs-code, in which
knowledge is represented in the form of linear text, SCn-
code for displaying sc-constructions as hypertext. This
representation is close to natural, understandable to the
average user [40].

The OSTIS Technology is suitable for solving the listed
problem, since:

1) The Standard of the OSTIS Technology [40] already
implements the basic tools necessary for the design
and development of interoperable c.s., which are
based on the semantic knowledge representation.
This eliminates not only the need to create top-level
ontologies, which should be used in the general
theory of programs as the basis for describing the
concepts of this theory, but also helps to design
solutions consistent with other ontologies. As a result,
a common coherent world picture is formed, which
is (1) consistent, that is, agreed, (2) unambiguously
interpreted, (3) universal, and, (4) most importantly,
understandable to everyone.

2) The OSTIS Technology is designed by a single uni-
fied knowledge representation language called an SC-
code. The meaning of programs and programming
languages is understandable and unambiguous if and
only if this meaning is described in one common
language understandable to any cybernetic system.
The meaning lies not in the syntax of the signs, but

147



in the configuration of the connections between them
(!) [40], [41], [42].

3) The SC-code is syntactically minimal. The minimum
number of signs is used to describe objects and
connections between them. At the same time, the
diversity of these connections is reduced to the
diversity of sign constructions. All this is provided
by representing information in the form of graph
structures [43], [44], [45].

4) The SC-code is not just convenient for describing and
designing some complex objects – it can be used to
design and implement any knowledge representation
languages, including programs, computer systems,
and, in general, the real world.

5) Ontological [46], [26] and component [47] ap-
proaches to the design of any complex objects
ensure the fulfillment of the main principles by
which modern systems should be designed. What
is implemented and can be used, must be reused
everywhere [48], [49].

Thus, the solution to all described problems is the
general theory of programs, interpreted as an ontology
of the general system, implemented through the OSTIS
Technology.

V. GENERAL DESCRIPTION OF DESIGNED SUBJECT
DOMAINS AND ONTOLOGIES

The result of this work is a Subject domain and
ontology of methods (Subject domain and ontology of
programs), which can be used to set methods (programs),
their syntax, denotational and operational semantics. The
Subject domain and ontology of methods is a private
subject domain in relation to the Subject domain and
ontology of information constructions and languages. This
means that it inherits all the properties of the concepts
and relations studied in it.

Subject domain and ontology of information
constructions and languages
⇒ private subject domain*:

• Subject domain and ontology of
languages
⇒ private subject domain*:

• Subject domain and
ontology of natural
languages

• Subject domain and
ontology of formal
languages

Subject domain and ontology of formal languages
⇒ private subject domain*:

• Subject domain and ontology of
knowledge representation languages

⇒ private subject domain*:
• Subject domain and

ontology of methods

Subject domain and ontology of methods
⇒ private subject domain*:

• Subject domain and ontology of methods
of ostis-systems
⇒ private subject domain*:

• Subject domain and
ontology of procedural
methods of ostis-systems

∋ maximum studied object class ′:
• method

∋ non-maximum studied object class ′:
• method representation language
• method class
• meta-method
• process
• variable
• constant
• operator
• method quality

∋ explored relation ′:
• submethod*
• subprocess*
• method syntax*
• parameter’
• start operator’
• denotational semantics of the method*
• operational semantics of the method*
• method of the specified method

representation language*

VI. CONCEPT OF A METHOD (PROGRAM)

Each theory must be conceptually consistent. De-
spite the fact that there are different interpretations
for the concept of a programming language in the
literature, there should be a universal one. To do this,
instead of programming languages, we will further
talk about method representation languages and instead
of programs of these programming languages – about
methods as sign constructions of method representation
languages (m.r.l.). This decision is justified by the fact
that usually the language acts as a tool for some kind
of knowledge of a certain type, and the term of the
programming language is degenerate, since it is worth
talking not about languages in which something can be
programmed but about languages in which knowledge of a
certain type can be represented, in this case – knowledge
of a procedural kind. The terms of the programming
language and the program themselves will be considered
as non-basic identifiers for the concepts of the methods
and method representation language, respectively.

148



Formally, a method is a specification for solving a
problem of some class [40], [50]. The specification of each
class of problems includes a description of the "binding"
of the method to the initial data of a particular problem
solved with the help of this method.

method
:= [program]
:= [description of how any or almost any action

belonging to the corresponding action class can
be performed]

:= [method for solving the corresponding class of
problems that provides a solution to any or most
problems of the specified class]

:= [generalized specification for solving problems of
the corresponding class]

:= [program for solving problems of the correspond-
ing class, which can be either procedural or
declarative (non-procedural)]

:= [knowledge of how to solve problems of the
corresponding class]

⊂ knowledge
∈ knowledge type
:= [way]
⊃ problem-solving model

VII. CONCEPT OF A METHOD CLASS. GENERAL
CLASSIFICATION OF METHODS

Sometimes, it may be appropriate to allocate a certain
subset of methods (for example, a set of methods with
which a certain problem is solved), then in this case for
these methods it is possible to describe the requirements
that they must fulfill. Such sets of methods are method
classes of some m.r.l., which are associated with a
particular problem-solving model. Methods can be either
procedural or non-procedural [18].

method class
⇐ family of subclasses*:

method
:= [set of methods for which the representation

(specification) of these methods can be unified]
:= [set of various problem-solving methods that

have a common language for representing these
methods]

:= [set of methods for which the representation
language of these methods is set]

∋ procedural problem-solving method
⊃ algorithmic problem-solving method

∋ non-procedural problem-solving method
⊃ logical problem-solving method
⊃ production problem-solving method
⊃ functional problem-solving method

⊃ artificial neural network

⊃ genetic “algorithm”
:= [set of methods, which is associated with a

particular problem-solving model]

Since each method corresponds to a generalized for-
mulation of the problems solved using this method, each
method class must correspond not only to a certain m.r.l.
belonging to the specified method class but also to a spe-
cific language for representing generalized formulations
of problems for different classes of problems, solved by
methods belonging to the specified method class.

For procedural and non-procedural methods, although
it is possible to set input and output parameters, the
general denotational semantics of their logical elements
cannot be set: for procedural methods, these are operators,
for non-procedural methods – mathematical objects of
the subject domain.

VIII. CONCEPT OF METHOD REPRESENTATION
LANGUAGE (PROGRAMMING LANGUAGE)

Each specific method class corresponds one-to-one
to the m.r.l. belonging to this (specified) method class.
Thus, the specification of each method class is reduced
to the specification of the corresponding m.r.l., that is,
to the description of its syntactic, denotational, and
operational semantics. Examples of m.r.l. are all pro-
gramming languages that basically belong to the subclass
of m.r.l., but now the need to create effective formal m.r.l.
for performing actions in the external environment of
cybernetic systems is becoming increasingly important.
Without this, complex automation [51], in particular, in
the industrial sector, is impossible.

By method representation language we mean a formal
language, (1) the sign constructions of which are the
corresponding methods for which there are general build-
ing rules and (2) general rules for correlating with those
entities and relations between them that are described by
these methods.

With the help of m.r.l., messages (methods) for the
computer are generated. These messages must be un-
derstandable (semantically correct and consistent) to the
computer [52].

method representation language
:= [programming language]
⊂ knowledge representation language

⊂ formal language
:= [computer language]
:= [formal language, (1) the symbolic constructions

of which are the corresponding methods for
which there are general building rules and (2)
general rules for correlating with those entities
and relations between them that are described by
these methods]

:=

149



[mean of communication between a human (user)
and a computer (performer)]

:= [tool for producing software services]

A method belongs to a method representation language
if it is a syntactically correct, syntactically consistent,
semantically correct, and semantically consistent method
of the specified m.r.l. (!).

relation set in multiple method representation
languages^
:= [relation whose scope of definition includes many

different method representation languages]
∋ method of the specified method representation

language*
∋ syntactically correct method for the specified

method representation language*
:= [method that does not contain syntax errors

for the specified method representation
language*]

⊂ syntactically correct sign construction for
the specified language*

∋ syntactically consistent method for the specified
method representation language*
⊂ syntactically consistent sign construction

for the specified language*
∋ semantically correct method for the specified

method representation language*
:= [method that does not contain semantic

errors for the specified method represen-
tation language*]

⊂ semantically correct sign construction for
the specified language*

∋ semantically consistent method for the specified
method representation language*
⊂ semantically consistent sign construction

for the specified language*
:= [method of the specified method represen-

tation language that contains sufficient
information to determine its truth*]

method of the specified method representation
language*
:= [method belonging to the specified programming

language*]
⊂ text of the specified language*
⇒ second domain*:

method
⇐ combination*:

{{{• {{{}}}
⇐ combination*:

{{{• syntactically correct
method for the specified
method representation
language*

• syntactically consistent
method for the specified
method representation
language*

}}}
• {{{}}}

⇐ combination*:
{{{• semantically correct

method for the specified
method representation
language*

• syntactically consistent
method for the specified
method representation
language*

}}}
}}}

IX. GENERAL CLASSIFICATION OF METHOD
REPRESENTATION LANGUAGES

In the modern information society, method repre-
sentation languages (m.r.l.) are distinguished by their
paradigms: procedural, functional, logical, object-oriented
m.r.l., etc. The solution of the problem by the computer
is made in the form of a sequence of operators: in the
methods of functional m.r.l. – indication of other methods;
in logical m.r.l., operators are used; and in object-oriented
ones – objects.

method representation language
⊃ general-purpose method representation language

:= [general-purpose programming language]
⊃ subject-oriented method representation language

:= [subject-oriented programming language]
⇒ subdividing*:

method representation language paradigm^
= {{{• procedural method representation

language
• non-procedural method

representation language
}}}

Procedural method representation languages set com-
putations as a sequence of operators (commands). They
are focused on computers with von Neumann architecture.
Basic concepts of procedural m.r.l. closely related to
computer components:

• variables of various types that model computer
memory cells;

• assignment operators that model data transfers be-
tween memory areas;

• repetitions of actions in the form of iteration, which
simulate the storage of information in adjacent
memory cells;

• and more.

150



procedural method representation language
:= [imperative method representation language]
⊃ structural method representation language

∋ example ′:
• Fortran
• C
• Pascal

⊃ object-oriented method representation language
∋ example ′:

• Smalltalk
• Java
• HTML

⊃ aspect-oriented method representation
language

⊃ script method representation language
:= [patch method representation language]

Non-procedural method representation languages, in
contrast to procedural languages, set computations as a
sequence of interconnected objects. Basic concepts of
non-procedural m.r.l. usually are not related to computer
components.

non-procedural method representation language
:= [declarative method representation language]
⊃ logical method representation language

∋ example ′:
• Prolog

⊃ production method representation language
⊃ functional method representation language

:= [applicative method representation lan-
guage]

∋ example ′:
• LISP

X. REPRESENTATION OF THE SYNTAX AND
SEMANTICS OF VARIOUS METHODS

The syntax and semantics of a method represent its
specification. The semantics of a method can be viewed
from two perspectives: as a set of interrelated knowledge,
which is determined by the denotational semantics of
this method, and as knowledge that can be interpreted by
another method, which is determined by the operational
semantics of this method.

method specification*
⇒ subdividing*:

{{{• method syntax*
• denotational semantics of the method*

:= [generalized formulation of the
class of problems solved using this
method*]

⇔ semantically close sign*:

generalized formulation of the
problems of the corresponding
method class*

• operational semantics of the method*
:= [list of generalized agents provid-

ing method interpretation*]
:= [family of methods for interpreting

this method*]
:= [formal description of the specified

method interpreter*]
}}}

A. Representing the syntax of the problem-solving method

Any method consists of atomic information construc-
tions that set the order of actions in the knowledge
base, with the help of which it is required to move
from the initial state to the target one, thus solving
some specific problem. So, for example, in a procedural
method, any such operator represents some mathematical
function. Expressions and operators are used to compose
these functions into larger fragments. In turn, linear
sequences of operators and conditional branches can
also be represented by functions composed of functions
inherent in particular components of these constructions.
A cycle is easily described by a recursive function
composed of the components included in its body.

The method syntax* defines the set of its allowed
constructions. The appearance of method elements is
specified using a certain syntax. It describes such lexical
details as the location of keywords and punctuation marks.
Grammars are used to specify a particular syntax.

The syntax of m.r.l. in ostis-systems can be formally
described in various ways. So, for example, it is possible
to use the Backus-Naur meta-language to describe the
syntax of some methods of a particular m.r.l. Other equally
well-known forms of method representation are context-
free grammars, extended Backus-Naur form, syntactic
graphs [1], [53], [54].

However, it is much more logical and advisable to
describe the syntax of other languages in the universal
knowledge representation language – the SC-code. This
approach will allow ostis-systems to independently under-
stand, analyze, and generate texts of these languages on
the basis of principles common to any form of external
information representation, including non-linear ones [45].
Thus, languages written in the SC-code have the same
syntax as the SC-code.

B. Representing the denotational semantics of the method

The semantics of a method explains the meaning of the
syntactic constructions of a method. The most common
methods for describing the semantics of programming
languages are: denotational, operational, axiomatic, al-
gebraic ones [55], [56]. Based on the principles of the
OSTIS Technology, by the semantics of a method we

151



mean the combination of the denotational and operational
semantics of the method.

The description of how to "bind" a method to some
class of problems includes:

• a set of variables that are included both in the method
and in the generalized formulation of the problems
of the corresponding class and whose values are the
corresponding elements of the initial data of each
specific problem being solved;

• part of the generalized formulation of problems of
the class to which the method under consideration
corresponds, which are a description of the condi-
tions for applying this method;

• a description of the method initiation condition and
its result;

• a description of initial and target situations in sc-
memory.

"Binding" a method to a specific problem solved with
the help of this method is carried out by searching for
such a fragment in the knowledge base, that satisfies
the conditions for applying the specified method. One
of the results of such a search is the setting of a
correspondence between the above variables of the method
used and the values of these variables within a specific
problem being solved. Another option for setting the
correspondence under consideration is an explicit call
of the corresponding method (program) with an explicit
transfer of the corresponding parameters. However, this
is not always possible, since when executing the process
of solving a specific problem based on the declarative
specification for performing this action, it is not possible
to identify:

• when it is necessary to initiate a call (usage) of the
required method;

• which specific method to use;
• which parameters, corresponding to the particular

problem being initiated, must be passed in order to
“bind” the method used to this problem.

A process is understood as some action in sc-memory
that unambiguously describes a specific act of executing
a certain method for given initial data [37]. If a method
describes an algorithm for solving a problem in general
terms, then a process denotes a specific action that
implements this algorithm for given input parameters.
In fact, the process is a unique copy created on the basis
of a method in which each sc-variable corresponds to a
generated sc-constant.

relation defined on a set (process)^
:= [relation whose scope of definition includes many

possible processes]
∋ parameter’
⇒ subdividing*:

{{{• in-parameter’

• out-parameter’
}}}

∋ in-parameter’
∋ out-parameter’
∋ initial information construction’
∋ subprocess*

The process of “binding” a problem-solving method
to a specific problem solved using this method can also
be represented as a process consisting of the following
phases:

• building a copy of the used method;
• pasting the main (key) variables of the method used

together with the main parameters of a specific
problem being solved.

As a result, on the basis of the considered method used
as a sample (template), a specification of the process for
solving a specific problem is built. The description of the
process of “binding” the solution method to a specific
problem, as well as the description of the elements of
the method, is the denotational semantics of this method.

denotational semantics of the method
∋ general formulation of the class of problems*

:= [text formulation of the set of problems
solved by this method]

⊂ explanation*
∋ primary initiation condition*
∋ initiation condition and result*

⇐ Cartesian product*:
⟨⟨⟨• method class
• implication*

⟩⟩⟩
∋ condition of initial and target situations*

⇐ Cartesian product*:
⟨⟨⟨• method class
• implication*

⟩⟩⟩

An example of the part of the specification that
describes the denotational semantics of the Method for
finding the double sum of two numbers is demonstrated
in Figure 1.

The general formulation of the class of problems*
relation is a class of sc-connectives between an sc-
connective, denoting a set of methods, and an ostis-system
file, which is an explanation of which classes of problems
can be solved using a given set of methods. In some rare
cases, the presence of such an sc-connective may not be
in the specification of a method, since there is no need
to specify which classes of problems can be solved using
this method.

The connectives of the primary initiation condition*
relation connect the sc-connective, denoting a set of
methods, and the binary oriented pair, describing the
primary condition for initiating a given method, i.e. such a

152



Figure 1. The specification of a method for solving the problem of
calculating the double sum of two numbers

specification of the situation in sc-memory, the occurrence
of which prompts the meta-method-executor to transfer
the given set of methods into the active state and begin
checking for their full initiation condition.

The first component of this oriented pair is the sign
of some class of elementary events in sc-memory*, for
example, the event of adding an sc-arc going out of a
given sc-element*.

In the general case, the second component of this
oriented pair is a random sc-element, with which the
specified type of event in sc-memory is directly associated,
i.e., for example, the sc-element, from which the generated
or deleted sc-arc or file, the contents of which have been
changed, goes out, or in which this sc-arc or the file

come.
The connectives of the initiation condition and result*

relation link together the sc-connective, denoting the
set of methods, and a binary oriented pair, linking the
initiation condition for this set of methods and the results
of executing this set of methods in any particular system.
The specified oriented pair can be considered as a logical
implication connective, while the universality quantifier
is implicitly imposed on sc-variables present in both parts
of the connective and the existence quantifier is implicitly
imposed on sc-variables present either only in the premise
or only in the conclusion.

The first component of the specified oriented pair
is a logical formula that describes the condition for
initiating the described method, that is, the construction,
the presence of which in sc-memory calls a lot of methods
to start working on changing the state in sc-memory. This
logical formula can be both atomic and non-atomic, which
allows using any connectives of the logical language.

The second component of the specified oriented pair
is a logical formula that describes the possible results
of performing the described set of methods, that is, a
description of the changes in the state of sc-memory
made by it. This logical formula can be both atomic and
non-atomic, which allows using any connectives of the
logical language.

The connectives of the condition of initial and target
situation* relation connect an sc-connective, denoting a
set of methods, and a binary oriented pair, connecting
the initial and target situations in sc-memory, that is,
in short, the situation before applying the method and
the desired situation after applying the method. The
specified oriented pair can also be considered as a logical
implication connective, while on the sc-variables present
in both parts of the connective the universal quantifier
is implicitly imposed, and on the sc-variables present
either only in the premise or only in the conclusion the
existential quantifier is implicitly imposed. For the first
and second components of the specified oriented pair,
the same restrictions and properties are imposed as for
the components of the oriented pair, which is the second
component of the initiation condition and result* relation.

It should be noted that the connectives of the initiation
condition and result* relation and the condition of the
initial and target situation* relation can be represented
differently. Sometimes, it may not be necessary to create
and check the second condition of the method, which
checks for the presence of the initial situation in sc-
memory and checks for reaching the target situation in
sc-memory as a result of applying the method. If so, then
the condition of the initial and target situation* can be
specified in the logical formulas that are components in
the second component of the connective of the initiation
condition and result* relation.

Programs, depending on the way of their representation

153



in languages, will differ. This can be verified by compar-
ing examples of procedural (Fig. 2) and logical (Fig. 3)
methods for solving the same problem.

Figure 2. An example of a procedural method for solving the problem
of calculating the double sum of two numbers

With the help of the SC-code, it is also possible to
represent those languages that are not written in it. The
problem will be in the fact that the form and meaning
of the language and its methods will be separated, that
is, they will be represented in different ways. In this
case, the SC-code is a powerful tool for integrating the
specifications of various languages of external knowledge
representation. However, it should be noted that there is
no need to represent different forms of methods belonging
to different method representation languages within the
OSTIS Technology. This is explained by the following

Figure 3. An example of a logical method for solving the problem of
calculating the double sum of two numbers

facts:
1) The SC-code is a fairly universal language for

representing any kind of knowledge. This means
that different forms of the algorithm for solving
the same problem can be minimized. In the SC-
code, the foundation is a formal theory, which
provides a universal representation of various types
of declarative and procedural knowledge. Thus,
logical methods can be represented as procedural
programs, in which as operands of operators not
only logical formulas and inference rules will serve
but also other methods that provide interpretation of
these logical formulas using inference rules. Thus,
the SC-code can be called not only a language of
unified knowledge representation but also a language
in which different classes of problems can be solved
in the same way.

2) Various types of knowledge in ostis-systems, de-
signed according to the principles of the OSTIS
Technology, are deeply integrated with each other.
This provides not only simplicity for creating these
systems based on existing languages that can be
described in the SC-code but also great opportunities
for creating basic programming languages for next-
generation computer systems, such as, for example,
the basic language for representing SCP procedural
methods, the basic language for representing pro-
duction methods, etc. Modern method representation
languages are created to simplify the description of

154



some algorithm for fast and high-quality solution of
a certain class of problem [57]. In turn, the proposed
methods and models make it possible to design an
m.r.l. for next-generation computer systems with the
help of basic knowledge representation languages
in such a way that the very form of knowledge
representation does not change. Methods of different
m.r.l. must have one universal form of representation,
i.e. the same syntax, but may allow the denotational
and operational semantics of their methods to be
described and represented in different ways using
the same syntax.

3) Designing new m.r.l. should be reduced to their
full description in the minimum family of SC-code
languages: the SC-code itself, SCP, and SCL. We are
talking about designing a new method representation
language: it is enough to develop a (non-atomic)
meta-method in SCP and SCL languages, which
will interpret the methods of the languages being
designed and also describe the denotational seman-
tics of these methods. Meta-method for interpreting
m.r.l. methods can be called an interpreter of these
languages, that is, some abstract sc-machine on
which it is possible to execute methods of a certain
language for representing these methods.

C. Representing the operational semantics of the method

A complete method specification*, in addition to the
denotational semantics of this method*, must include
the operational semantics of this method*, that is, a
formal description of the interpreter of the given method.
Operational semantics of the m.r.l. describes the execution
of a method written in a given language by means of
a virtual computer. A virtual computer is defined as an
abstract automaton. The internal states of this automaton
model the states of the computational process when the
method is executed. The automaton translates the source
text of the method into a set of formally defined operations.
This set defines the transitions of the automaton from
the initial state to the sequence of intermediate states
by changing the values of the method variables. The
automaton completes its work by passing to some final
state. Thus, here we are talking about a fairly direct
abstraction of the possible usage of m.r.l. Operational
semantics describes the meaning of a method by executing
its operators on a simple automaton. The changes that
occur in the state of the machine, when a given operator
is executed, determine the meaning of that operator.

The operational semantics of a specific method is
reduced to the description of a meta-method that interprets
it, verifies, etc.

meta-method
⊂ method
:=

[method whose parameter values are other meth-
ods]

operational semantics of the method
∋ interpretation meta-method*

⇐ Cartesian product*:
⟨⟨⟨• method class
• method

⟩⟩⟩
∋ meta-method for verification and quality

assessment*
⇐ Cartesian product*:

⟨⟨⟨• method class
• method

⟩⟩⟩

The interpretation meta-method* relation is a class of
sc-connectives between an sc-connective, denoting a set
of methods, and an sc-node, denoting a method that is
capable of interpreting a given set of methods. The meta-
method of verification and quality assessment* is a class
of sc-connectives between an sc-connective, denoting a
set of methods, and an sc-node, denoting a method that
is capable of verifying and evaluating the quality of a
given set of methods.

Within the OSTIS Technology, there can be a wide
variety of such meta-methods. Each of them can consist of
many atomic and non-atomic submethods. These can be
both meta-methods that interpret the methods of certain
m.r.l. and meta-methods that verify and analyze the quality
of these methods. In addition, meta-methods can perform
operations on other meta-methods.

meta-method for methods interpreting base method
representation languages
⇒ inclusion*:

• meta-method for methods interpreting the
SCP procedural method representation
language

• meta-method for methods interpreting the
SCL logical method representation
language

• meta-method for methods interpreting the
production method representation
language

• meta-method for methods interpreting the
functional method representation
language

• meta-method for methods interpreting the
neural network representation language

• meta-method for methods interpreting the
representation language of genetic
algorithms

155



meta-method for verifying and evaluating the quality
of methods in basic method representation languages
⇒ inclusion*:

• meta-method for verifying and evaluating
the quality of methods in the SCP
procedural methods representation
language

• meta-method for verifying and evaluating
the quality of methods in the
representation language of logical SCL
methods

• meta-method for verifying and evaluating
the quality of methods in the
representation language of production
methods

• meta-method for verifying and evaluating
the quality of methods in the
representation language of functional
methods

• meta-method for verifying and evaluating
the quality of neural network
representation language methods

• meta-method for verifying and evaluating
the quality of methods for the
representation language of genetic
algorithms

The concepts of syntax, denotational and operational
semantics of method representation languages are reduced
to the concepts of syntax, denotational and operational
semantics of any language in general.

XI. REPRESENTATION OF THE SYNTAX AND
SEMANTICS OF METHOD REPRESENTATION

LANGUAGES

It is clear that in order to use the m.r.l., each language
construction should be described separately, as well as
its usage in aggregate with other constructions. There
are many different constructions in a language, the exact
definition of which is necessary both for the programmer
using the language and for the developer of the compiler
for that language. This knowledge allows the programmer
to predict the calculations performed by the method
operators. The constructions descriptions are necessary
for the developer to create a correct implementation of
the compiler.

A description of a formal model of a method repre-
sentation language can be given by its specification. The
specification contains a description of the syntax and
semantics of the m.r.l.

method representation language specification*
⊃ relation posed on a set (method representation

language)*
⇒ subdividing*:

{{{• syntax of the method representation
language*
⊂ language syntax*
:= [be a theory of well-formed in-

formation constructions belonging
to a given method representation
language]

• denotational semantics of the method
representation language*
⊂ language denotational semantics*
:= [generalized formulation of the

classes of problems solved using
this method representation lan-
guage*]

• operational semantics of the method
representation language*
⊂ language operational semantics*
:= [list of generalized agents that pro-

vide interpretation of methods of
a given method representation lan-
guage*]

:= [family of methods for interpreting
texts in a given method represen-
tation language*]

:= [formal description of the inter-
preter of the specified method
representation language*]

}}}

The syntax of m.r.l.* is a binary oriented relation,
each pair of which associates a sign of some language
with a description of syntactically allocated classes from
fragments of constructions of a given m.r.l. with a
description of relations defined on these classes and
with conjunction of quantifier propositions, which are
the syntactic rules of the given language, that is, the rules
that all syntactically correct (well-built) constructions of
the specified m.r.l. must satisfy. In the general case, the
syntax of the m.r.l.* relation is no different from the
language syntax* relation, but still there is a refinement,
since m.r.l. are languages in general, and the syntax of the
m.r.l. inherits all syntax properties of any languages. The
syntax of the m.r.l* combines the syntaxes of all methods
belonging to a given method representation language.

Denotational semantics of m.r.l.* means a binary
oriented relation, each pair of which associates a sign of
some language with the sign of some ontology, which
can be used to describe the methods of this language,
and operational semantics of m.r.l* is a description of
the meta-method for interpreting the methods of this
language.

In the context of this work, specific types of denota-
tional and operational semantics will not be considered
further.

156



XII. HELP-SYSTEM FOR DESIGN AND METHOD
DEVELOPMENT SUPPORT

The current state of the art in software design and
development suggests that developers are more eager to
automate the development of methods in specific method
representation languages than to provide training tools
for their design, including the design of new method
representation languages. This leads to the following
problems:

1) While the number of developers who understand the
code of a complex software system is decreasing,
the requirements for that system are growing faster
and faster. Often, developers of complex software
systems themselves are not able to explain the logic
of these systems. For this reason, it is necessary to
create tools that will automate the documentation of
software systems [52].

2) To train new developers in the skills of working
with software systems and their development, it is
necessary to attract the resources of development
experts who understand the principles of operation
of these software systems. The problem is solved by
developing a help system that will not only teach
the user how to design problem solving methods
and software systems based on these methods, but
also point out gaps in related disciplines necessary
to achieve high-quality results of all their activities.

3) In engineering, developers often design and develop
solutions that have already been created by other
specialists. Thus, functionally equivalent methods of
solving problems are obtained, and even software
systems that solve similar problems. The key to solv-
ing this problem is to design a semantically powerful
library of reusable problem solving methods.

Thus, the semantic theory of programs alone is not
enough. In addition to it, for a permanent and unhindered
design and development of methods of a different class,
it is necessary to develop:

1) an intelligent help system for supporting the design
and development of methods, mentioned in [58],
which will not only help the developer verify the
method being developed, but also suggest ways to
develop it;

2) a semantically powerful library of reusable com-
ponents [47] for quickly finding existing problem
solving methods and applying them to other more
complex problems [46].

The potential help system should be part of a common
development tool for next-generation intelligent computer
systems - ostis-platform [59] - and may consist of the
following components:

• the intelligent help-system on the semantic theory
of programs;

• the intelligent help system on the library of reusable
problem solving methods,

• the intelligent help-system for a set of tools for
designing methods for solving problems,

• the intelligent help-system on the methodology of
teaching the design of various methods for solving
problems.

Each component contains knowledge from the relevant
area of design and development theory of problem solving
methods. In accordance with open semantic technology,
each component must include:

• reference subsystem,
• subsystem for monitoring and analyzing the activities

of the developer of methods for solving problems,
• learning management subsystem.
Each of the subsystems interacts with other subsystems

and can also function autonomously.
The reference subsystem is an expert consultant in

the field of semantic program theory who can answer
any question from a novice or experienced user. Each
of these systems can become individual assistants in the
training of new specialists - a personal ostis-assistant. The
functions of the reference subsystem include:

• search for information at the request of the user,
including freely-designed ones;

• displaying the information found, taking into account
the user’s skill level;

• analysis of program texts and making suggestions
to improve their effectiveness;

• generation of program texts on request to the user;
• self-initiation in case of difficulties for the user or

the student.
Thus, the development of such components according

to the principles of the OSTIS Technology will confirm
the general semantic theory of programs.

XIII. QUALITY (EFFICIENCY) CRITERIA OF METHODS

The method representation language can be defined by a
set of indicators that characterize its individual properties.
The problem arises of introducing a measure to assess the
degree of suitability of the m.r.l. to the performance of the
functions assigned to it – method quality [6], [56], [60].
The quality criteria of methods are given on the basis of
particular indicators of the efficiency of these methods
(quality indicators). The method of connection between
particular indicators determines the type of efficiency
criterion.

method quality
⇒ prerequisite property*:

• ease of reading and understanding the
method

• ease of creating the method
• method cost
• total volume of problems solved using

this method class

157



• variety of types of problems solved using
this method class

• method reliability

Ease of reading and understanding the method should
make it easy to highlight the basic concepts of each part
of the method without referring to its specification.

ease of reading and understanding the method
⇒ prerequisite property*:

• m.r.l. syntax simplicity
• orthogonality of m.r.l. information

structures
• structured flow of control in a method

The method representation language should provide a
simple set of informational constructions that can be used
as basic elements when creating methods. The syntax of
the language has a strong impact on simplicity: it must
transparently reflect semantics of constructions, exclude
ambiguity and non-uniqueness of interpretation.

Orthogonality means that any possible combination of
different information constructions will be meaningful,
with no unexpected behavior resulting from the interaction
of the constructions or context of usage.

The order of control transfers between method opera-
tors, i.e. the flow of control, should be human readable
and understandable.

Ease of creating the method reflects the convenience of
the language for representing that method in a particular
subject domain.

ease of creating the method
⇒ prerequisite property*:

• m.r.l. syntax simplicity
• m.r.l. natural syntax
• orthogonality of m.r.l. information

structures
• completeness and accuracy of m.r.l.

specification
• consistency and integrity of m.r.l.

specification

The syntax of the method should facilitate an easy
and transparent display of the algorithmic structures of
the subject domain in it. The syntax of m.r.l. should
be not only simple, but also natural, and support the
orthogonality of language informational constructions.

Ease of representation of a new method is ensured by
complete and precise, consistent and integral specification
of the appropriate language. That is, it is required to have
a sufficient number of information constructions in this
language in order to represent a particular method. At the
same time, the language specification must be consistent
and integral in order to represent consistent methods.

Cost of the m.r.l. method is made up of several
components.

method cost
⇒ prerequisite property*:

• cost of method applying
• cost of method interpretation
• cost of method creating, testing, and using
• cost of method maintenance

Cost of method applying largely depends on the
structure of the m.r.l. A language that requires numerous
syntactic type checks during method application will
prevent the program from running quickly.

Cost of method interpretation depends on the capabil-
ities of the interpretation meta-method used. The more
perfect the optimization methods are, the more expensive
will be the interpretation costs. The amount of the cost
of creating, testing, and using the method depends on the
used meta-method of verification and evaluation of the
quality of this method.

Numerous studies show that a significant part of the
cost of the method used is not the cost of its develop-
ment but the cost of its maintenance [11]. Associating
method maintenance with other method characteristics,
the dependence on readability, since maintenance usually
occurs by the next generation of developers, should first
of all be highlighted.

The total volume of problems and the variety of types
of problems solved with the help of this method class
are no less important characteristics, which show the
degree of universality of the corresponding m.r.l. The
more problems can be solved on m.r.l., the more universal
it is.

Reliability of m.r.l. methods should be ensured by a
minimum of errors during the operation of a particular
method.

All of these criteria can be applied to the method
representation languages themselves.

XIV. DIRECTIONS OF DEVELOPMENT

This article is the beginning of the semantic theory of
programs for next-generation c.s. The logical development
of this work will be:

• refinement and addition of concepts of the Subject
domain and ontology of methods to achieve the
completeness of the theory;

• description of private subject domains of the Subject
domain and ontology of methods for specific types of
methods, as well as clarification of the denotational
and operational semantics of the specification of
these methods;

• description of possible ways of implementing meta-
methods for interpreting methods of various m.r.l;

• implementation of tools to support the design and
development of various methods for solving the

158



problem and the development of their respective
specifications;

• formalization of mathematical models for calculating
method efficiency estimates.

XV. CONCLUSION

The main conclusion of this work is that it is necessary
not to replenish knowledge about which programming
languages already exist and to reveal possible areas
of their application, but to develop fundamentally new
programming languages with which it was possible to
create next-generation intelligent computer systems with
high level of intelligence, semantic compatibility and
interoperability with similar computer systems, unification
of knowledge representation and processing, platform
independence from tools for their implementation, and
so on.

Such systems should be developed according to the
principles of the OSTIS Technology, and their main
development languages will be graph languages for
representing methods that are sublanguages in relation to
the basic procedural programming language SCP.

In this article, the problems of ensuring the design
of software systems are considered. A comparative
analysis of existing solutions in the field of unifying
the representation of programming languages has been
carried out. The work defines the solution of the problem
in the form of designing and developing a universal theory
of programming languages according to the principles
underlying the OSTIS Technology. This article is also a
specification of how software systems should be specified
and designed.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

REFERENCES

[1] Sebesta, R. W, Concepts of Programming Languages. 10th ed.
— Pearson/Addison-Wesley, 2012.

[2] Tourlakis, George, Computability. Springer Nature, 2022.
[3] A. Iliadis, “The tower of babel problem: making data make sense

with basic formal ontology,” Online Information Review, vol. 43,
no. 6, pp. 1021–1045, 2019.

[4] C. M. Zapata Jaramillo, G. L. Giraldo, and G. A. Urrego Giraldo,
“Ontologies in software engineering: approaching two great
knowledge areas,” Revista Ingenierías Universidad de Medellín,
vol. 9, no. 16, pp. 91–99, 2010.

[5] Golenkov, V., Guliakina, N., Davydenko, I., Eremeev, A., “Meth-
ods and tools for ensuring compatibility of computer systems,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2019, pp. 25–52.

[6] Robert Martin, Clean code. Creation, analysis and refactoring,
2021.

[7] Ryndin, Nikita and Sapegin, Sergey, “Component design of
the complex software systems, based on solutions’ multivariant
synthesis,” International Journal of Engineering Trends and
Technology, vol. 69, pp. 280–286, 12 2021.

[8] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of
software readability,” in Proceedings of the 8th working conference
on mining software repositories, 2011, pp. 73–82.

[9] S. Scalabrino, M. Linares-Vasquez, D. Poshyvanyk, and R. Oliveto,
“Improving code readability models with textual features,” in 2016
IEEE 24th International Conference on Program Comprehension
(ICPC). IEEE, 2016, pp. 1–10.

[10] Gulyakina N. A., Golenkov V. V., “Graphic-dynamic models of
parallel knowledge processing: principles of construction, imple-
mentation and design,” in Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], Golenkov V. V., Ed. BSUIR, Minsk,
2012, pp. 23–52.

[11] Brooks F., Mythical man-month, or How software systems are
created. SPb.: Symbol-Plus, 2021.

[12] G. Sellitto, E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia,
F. Palomba, and F. Ferrucci, “Toward understanding the impact
of refactoring on program comprehension,” in 29th International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2022, pp. 1–12.

[13] M. Di Penta, G. Bavota, and F. Zampetti, “On the relationship
between refactoring actions and bugs: a differentiated replication,”
in Proceedings of the 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 556–567.

[14] R. Turner, “Programming languages as technical artifacts,” Phi-
losophy & technology, vol. 27, no. 3, pp. 377–397, 2014.

[15] R. d. Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson,
M. Litoiu, B. Schmerl, D. Weyns, L. Baresi, N. Bencomo
et al., “Software engineering for self-adaptive systems: Research
challenges in the provision of assurances,” Software Engineering
for Self-Adaptive Systems III. Assurances, pp. 3–30, 2017.

[16] R. Turner, “Computational artifacts,” in Computational artifacts.
Springer, 2018, pp. 25–29.

[17] Golenkov, V. V., “Methodological problems of the current state of
works in the field of artificial intelligence,” Open Semantic Tech-
nologies for Intelligent Systems = Open Semantic Technologies for
Intelligent Systems (OSTIS-2021): collection of scientific papers /
Belarusian State University of Informatics and Radioelectronics,
pp. 17–24, 2021.

[18] R. Turner and A. H. Eden, Towards a programming language
ontology. na, 2007.

[19] C. Olteanu, “Programming, mathematical reasoning and sense-
making,” International Journal of Mathematical Education in
Science and Technology, vol. 53, no. 8, pp. 2046–2064, 2022.

[20] F. W. Neiva, J. M. N. David, R. Braga, and F. Campos, “Towards
pragmatic interoperability to support collaboration: A systematic
review and mapping of the literature,” Information and Software
Technology, vol. 72, pp. 137–150, 2016.

[21] O. Chaparro, G. Bavota, A. Marcus, and M. Di Penta, “On the
impact of refactoring operations on code quality metrics,” in 2014
IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 456–460.

[22] N. N. Skeeter, N. V. Ketko, A. B. Simonov, A. G. Gagarin, and
I. A. Tislenkova, “Artificial intelligence: Problems and prospects
of development,” in 13th International Scientific and Practical
Conference-Artificial Intelligence Anthropogenic nature Vs. Social
Origin. Springer, 2020, pp. 306–318.

[23] Golenkov V.V., Gulyakina N.A., Davydenko I.T., Shunkevich D. V.,
Eremeev A.P., “Ontological design of hybrid semantically compat-
ible intelligent systems based on the semantic representation of
knowledge,” in Ontologiya proyektirovaniya, Golenkov V.V., Ed.
Russian Federation, Samara: Samara National Research University
named after Academician S.P. Korolev, 2019, pp. 132–148.

[24] T. S. Dillon, E. Chang, and P. Wongthongtham, “Ontology-based
software engineering-software engineering 2.0,” in 19th Australian
Conference on Software Engineering (ASWEC 2008). IEEE, 2008,
pp. 13–23.

159



[25] D. C. Sales, L. B. Becker, and C. Koliver, “The systems
architecture ontology (sao): an ontology-based design method
for cyber–physical systems,” Applied Computing and Informatics,
2022.

[26] S. Elnagar, V. Yoon, and M. A. Thomas, “An automatic ontology
generation framework with an organizational perspective,” arXiv
preprint arXiv:2201.05910, 2022.

[27] A. H. Eden and R. Turner, “Problems in the ontology of computer
programs,” Applied Ontology, vol. 2, no. 1, pp. 13–36, 2007.

[28] P. Lando, A. Lapujade, G. Kassel, and F. Fürst, “Towards a general
ontology of computer programs,” in International Conference on
Software and Data Technologies, vol. 2. SCITEPRESS, 2007,
pp. 163–170.

[29] ——, “An ontological investigation in the field of computer
programs,” in Software and Data Technologies. Springer, 2007,
pp. 371–383.

[30] M. J. Jacobs, “A software development project ontology,” Master’s
thesis, University of Twente, 2022.

[31] E. Tin, V. Akman, and M. Ersan, “Towards situation-oriented
programming languages,” ACM Sigplan Notices, vol. 30, no. 1,
pp. 27–36, 1995.

[32] H. Schiitze, “The prosit language v0. 4,” Manuscript, Center
for the Study of Language and Information, Stanford University,
Stanford, CA, 1991.

[33] A. Black, “An approach to computational situation semantics,”
Ph.D. dissertation, PhD thesis, Department of Artificial Intelli-
gence, University of Edinburgh . . . , 1993.

[34] W. J. Rapaport, “Syntax, semantics, and computer programs,”
Philosophy & Technology, vol. 33, no. 2, pp. 309–321, 2020.

[35] J. Grimmelmann, “Programming languages and law: A research
agenda,” arXiv preprint arXiv:2206.14879, 2022.

[36] Tetlow, Philip and Garg, Dinesh and Chase, Leigh and Mattingley-
Scott, Mark and Bronn, Nicholas and Naidoo, Kugendran and
Reinert, Emil, “Towards a semantic information theory (introduc-
ing quantum corollas),” 2022.

[37] Dijkstra E., Programming Discipline. M.: Mir, 1978.
[38] Reinhard Diestel, Graph Theory. Hamburg, Germany: Universität

Hamburg, 2017.
[39] Kuznecov, O. P., Diskretnaya matematika dlya inzhenera: Ucheb-

nik dlya vuzov [Discrete Mathematics for an Engineer: A Textbook
for High Schools]. Moscow: Lan’, 2009.

[40] Golenkov, V. V., Gulyakina, N. A., Shunkevich, D. V., Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
Golenkov V.V., Ed. Minsk: Bestprint, 2021.

[41] X. Zhong, E. Cambria, and A. Hussain, “Does semantics aid
syntax? an empirical study on named entity recognition and
classification,” Neural Computing and Applications, vol. 34, no. 11,
pp. 8373–8384, 2022.

[42] T.-D. Bradley, J. Terilla, and Y. Vlassopoulos, “An enriched
category theory of language: from syntax to semantics,” La
Matematica, pp. 1–30, 2022.

[43] F. Zhou, Y. Li, X. Zhang, Q. Wu, X. Lei, and R. Q. Hu, “Cognitive
semantic communication systems driven by knowledge graph,”
arXiv preprint arXiv:2202.11958, 2022.

[44] Kasyanov, V. N., Evstigneev, V. A., “Graphs in programming:
processing, visualization and application,” BHV–St. Petersburg, p.
1104, 2003.

[45] Petrov, C. V., “Graphic grammars and automata (overview),”
Automation and telemechanics, pp. 116–136, 1978.

[46] N. Sales and J. Efson, “An explainable semantic parser for end-user
development,” Ph.D. dissertation, Universität Passau, 2022.

[47] Ford, Brian and Schiano-Phan, Rosa and Vallejo, Juan, Component
Design, 11 2019, pp. 160–174.

[48] V. Kabilan, “Ontology for information systems (o4is) design
methodology,” 2007.

[49] Y. I. Molorodov, “Development of information system based on
ontological design patterns,” in CEUR Workshop Proceedings,
2019, pp. 26–30.

[50] Tuzov, V. A., “On the formalization of the task concept,” M:
Science, pp. 73–83, 1986.

[51] Pospelov, D. A., “Situational management. theory and practice,”
M: Science, p. 288, 2021.

[52] K. Lu, Q. Zhou, R. Li, Z. Zhao, X. Chen, J. Wu, and H. Zhang,
“Rethinking modern communication from semantic coding to
semantic communication,” IEEE Wireless Communications, 2022.

[53] Scott, M. L., Programming Language Pragmatics. Morgan
Kaufmann publications, 2006.

[54] Scott, D., Lattice Theory, Data Types and Formal Semantics,
Formal Semantics of Programming Languages. Prentice-Hall,
Englewood Cliffs, NJ, 1972.

[55] R. Lil, H. Zhu, and R. Banach, “Denotational and algebraic
semantics for cyber-physical systems,” in 2022 26th Interna-
tional Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, 2022, pp. 123–132.

[56] Orlov, S.A., “Theory and practice of programming languages,” St.
Petersburg: Peter, 2013.

[57] Ben-Ari M., Programming languages. Practical Benchmarking.
M.: Mir, 2000.

[58] Gulyakina N.A., Pivovarchik O.V., Lazurkin D.A., “Languages and
programming technology focused on the processing of semantic
networks,” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for intelli-
gent systems]. BSUIR, Minsk, 2012, pp. 222–228.

[59] D. Shunkevich, D. Koronchik, “Ontological approach to the
development of a software model of a semantic computer based
on the traditional computer architecture,” in Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems]. BSUIR, Minsk,
2021, pp. 75–92.

[60] Donald Knuth, The art of programming. Volume 1. Basic Algo-
rithms, 2019.

Семантическая теория программ в
интеллектуальных компьютерных

системах нового поколения
Зотов Н.В.

Несмотря на активное развитие и использование язы-
ков программирования, общей теории программ, на основе
которой можно было бы проектировать и разрабатывать
прикладные системы, на данный момент не существует.
В данной работе предлагается единая онтология языков
программирования и представления программ на разных
языках программирования. Работа показывает особенности
представления программ и ключевые моменты процесса их
интерпретации.

Received 28.10.2022

160


	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\013-420. Basic.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\10_OSTIS22_ID15_Zotov_SemanToPiN_GICS.pdf


