
Software platform for next-generation intelligent
computer systems

Nikita Zotov
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: nikita.zotov.belarus@gmail.com

Abstract—This paper describes the methodology of design-
ing semantically compatible computer systems and ensuring
their independence from the implementation of platforms
for designing such systems. The article demonstrates the
significance of designing and implementing next-generation
platforms, and also proposes the solution to the problem in
the form of designing and developing universal interpreters
of logical-semantic models of systems according to the
principles of the OSTIS Technology. This article is also
a formal specification of the first software implementation
of the ostis-platform.

Keywords—computer aided design (CAD), ontological
design, automation tools for the design and development of
computer systems, graph database, graph knowledge base,
database management system (DBMS), knowledge base
management system, universal interpreter, graph storage,
ostis-platform

I. INTRODUCTION

The main result of research in the field of design and
development of computer systems (c.s.) is not so much
the existing c.s., but the development of technologies
and tools based on the principles of these technologies
that allow to quickly and in large quantities generate a
wide variety of c.s. [1] that have great practical value.
Right now, there are a wide variety of solutions in
the field of automated design and development of c.s.,
which allow solving problems of a fairly serious level of
complexity [2]. However, none of these systems are able
to provide platform independence, and hence the semantic
compatibility and interoperability of the created computer
systems. The urgency of the problem is explained by the
need to create next-generation computer systems capable
of solving problems of any kind quickly and adequately
[3]. To achieve this, it is necessary to design the Standard
of design and developing of c.s. and implement such tools
according to this standard [4], [5], [6].

II. PROBLEMS OF THE CURRENT STATE OF COMPUTER
SYSTEMS AND PLATFORMS FOR THEIR

IMPLEMENTATION

Modern computer systems, as well as automation tools
for the design and development of such systems, have a
number of significant disadvantages:

1) Computer systems to a great extent remain dependent
on the implementation of specific platforms on which
they are designed, which, in turn, leads to significant
costs for integrating the methods and tools for system
design in case of transition to new platforms.

2) The design and development of the implementation
of a particular system is carried out using different
methods and models for designing software c.s. Thus,
the description of the target state of the system and
the description of the current implementation may
not correspond to each other, and the integration of
such solutions is difficult to achieve. This problem
is well described when designing a platform for
practical applications [7].

3) Specification of software systems is relegated to the
background, and sometimes it is not done at all by the
development project of a specific c.s. Consequently,
the costs of maintaining the process of permanent
re-engineering of such systems increase [8].

4) When developing modern systems, there is no
understanding of the need to develop and describe
the design methods for these systems, including de-
scriptions of the implementation process, directions
of use, etc. For this reason, developers of modern
software c.s. do not use already existing accumulated
experience but re-invent the same or similar solutions
[8], [9].

5) There are no unified universal tools for the develop-
ment [10] and re-engineering of other systems that
allow not only to automate their design, but also to
minimize the development process itself by way of
unifying the representation models of these systems
and having a semantically powerful complex library
of reusable components.

6) Even highly specialized software c.s. must have
a good level of intelligence and a good level of
trainability to solve more complex problems. Next-
generation software c.s., unlike modern c.s., must
operate on the meaning of what they know and
process: they must understand each other [11]. [12],
find common ground and form teams to solve
problems of any class [13], [14].

297



7) Modern computers are poorly adapted for effec-
tive implementation of even existing models of
knowledge representation and models for solving
problems that are hard to formalize, which requires
the development of fundamentally new platforms
and computers that ensure the unification of the
representation of this knowledge (!) [15], [16].

Typically, systems of this kind are designed and
developed to solve narrow applied problems. As a result,
systems with the problems described above are created.
So, most of the described problems, unfortunately, were
not solved when creating CADs described in the following
papers [17], [18], [19], [20], [21], [22].

When designing next-generation c.s., first of all, it is
necessary to take into account the shortcomings of modern
c.s. This means that the design of next-generation c.s.
should be reduced to solving the problems that exist in
modern c.s. Thus, the following possible solutions can
be identified:

1) Implementation of next-generation c.s. should not
be inferior to the implementation of modern c.s.
Such a task is reduced to the choice of means
for storing, representing and processing data in
these systems. But still, when speaking of next-
generation c.s., it is necessary to lean towards a
higher form of data – knowledge [14]. They must be
unified in their representation, semantically integral,
connected, unambiguous, etc. Thus, next-generation
c.s. should be organized in such a way that the form
of representation of different types of knowledge is
the same (!). And this, in turn, means that the design
and development tools for other systems should be
organized in such a way that these systems can be
easily integrated with each other, striving to increase
their degree of convergence [6].

2) Since modern c.s. are platform-dependent, which in
turn complicates the development of such systems,
it is necessary to create such tools that allow you to
create c.s. independently (!) of the implementation
of these tools. At the same time, this should be
done in such a way that the process of designing,
developing, documenting and using such systems is
carried out using the same tools and methods [6],
[23], which are part of these tools, and in such a way
that the quality of such systems is determined by the
degree of their deep integration with each other. This
can be solved with the help of general ontologies
for the development of such systems, that is, with
the help of an ontological [24] and component [25]
approaches (!) not only to their design, but also to
their implementation.

Specific solutions will be discussed and described
below. This work develops the ideas and solves the
problems described in the previous work [26].

III. APPROACHES TO DESIGNING AUTOMATION
SYSTEMS USED IN C.S. DESIGN AND IMPLEMENTATION

Implementation of data storages used in the vast
majority of c.s. is based on the relational data model.
Examples of such systems for processing unstructured and
semi-structured data are the SMILA platform (SeMantic
Information Logistic Architecture), Teradata Aster Dis-
covery Platform, which implement relational, columnar
and hybrid models for storing records in a database with
a massively parallel MPP architecture [27], CYC platform
[28], Semantic Web tools [29].

However, information systems are currently undergoing
intensive intellectualization. First of all, this is due to
an increase in the level of complexity of the tasks being
solved. The intellectualization of information systems, like
any technology for developing software systems, requires
taking into account weakly formalized, possibly not
completely defined, fuzzy, temporal, spatially distributed
information and, as a result, obtaining structured, semi-
structured and unstructured data [30]. The increase in the
number of intellectual tasks of processing large amounts
of data in all spheres of human activity leads to the
need to create universal means of storing, presenting and
processing multistructured information.

The presence of such tasks stimulates the transition
from conventional databases to graph counterparts. This
is explained not so much by the efficiency of memory
organization and data processing in graph databases, but
by the importance of representing the configurations
of relationships (i.e., meaning) between them [31]. A
detailed explanation of the principles of organizing graph
data in databases can be found in the work of the authors
of the popular Neo4j graph DBMS [32].

For a general understanding of the whole problem
associated with the representation and processing of
data and knowledge, we will consider several modern
implementations of graph data models in the form of
software products. Any of the databases described below
is designed for convenient storage and access to data
presented in the form of super-large graphs. According
to the organization of memory and the process of data
processing, graph databases can be classified into the
following types:

1) databases with local storage and processing of graphs
(Neo4j, HyperGraphDB, AllegroGraph);

2) databases with distributed data storage and process-
ing (Horton, InfiniteGraph);

3) databases in "key-value" format (Trinity, Cloud-
Graph, RedisGraph, VertexDB);

4) document-oriented databases (OrientDB);
5) add-ons for SQL-oriented databases (Filament, G-

store);
6) graph databases with MapReduce model (Pregel,

Apache Giraph, GraphLab).

298



A detailed description of each of the presented
databases can be found in the works devoted to comparing
relational and graph databases [33], [34], [35], [36].

The motivation for moving from conventional graph
databases is due to the advantages of organizing a memory
model and processing in them:

1) Data processing performance improves by one or
more orders of magnitude when data is represented as
graph structures, which is explained by the properties
of the graph itself. Unlike relational databases,
where query performance degrades as the dataset
grows with increasing query intensity, graph database
performance tends to remain relatively constant even
as the dataset grows. This is due to the fact that data
processing is localized in some part of the graph.
As a result, the execution time of each request is
only proportional to the size of the part of the graph
traversed to satisfy this request, and not to the size
of the entire graph [37].

2) Graph structures have tremendous expressive power.
Graph databases offer an extremely flexible data
model and way of representing [38], [39]. Graph
structures are additive, which provides the flexibility
to add new data relationships, new nodes, and new
subgraphs to an existing structure without violating
its integrity and connectivity.

As mentioned earlier, next-generation c.s., by virtue
of their properties, must operate not just with data, but
with knowledge. In order to understand the meaning of
knowledge, it is necessary to present this knowledge
in an understandable form for everyone: both for a
person and for a machine. Speaking about the unification
of the representation of all types of knowledge, it is
important to use graph databases not just as a means
for storing structured data, but for storing semantically
holistic and interconnected knowledge [40]. In the context
of designing next-generation c.s., we will talk about
knowledge bases designed according to the principles
of graph databases.

It should also be noted that the emphasis in this work
is on the development of c.s. support for the design of
other c.s., and for the development of complex tools to
support the automatic design of next-generation intelligent
computer systems, which are knowledge-driven. Such
tools can be compared with knowledge base management
systems [41], [42], [43], [44].

IV. SUGGESTED SOLUTION

Despite the vast variety of classical technologies used
by mankind, there is no general solution that allows
solving the problem in a complex manner. At the moment,
the described problems can only be solved with the help of
a general and universal solution – the OSTIS Technology.
The OSTIS Technology is based on a unified version
of information encoding based on semantic networks

with a basic set-theoretic interpretation, called SC-code.
The language of semantic representation of knowledge
is based on two formalisms of discrete mathematics: set
theory – determines the semantics of the language – and
graph theory – determines the syntax of the language.
Any types and models of knowledge can be described
using SC-code [6].

The platform for interpreting the semantic models of
ostis-systems will simply be called the ostis-platform,
which denotes the interpreter of the logical-semantic
models of ostis-systems. The logical-semantic model (sc-
model) of the osits-system is a formal model (formal
description) of the functioning of this osits -system,
consisting of (1) a formal model of information stored in
the memory of the osits-system and (2) a formal model
of a team of agents that process the specified information.
The sc-model of the ostis-system includes the sc-memory,
the sc-model of the knowledge base, the sc-model of the
problem solver, and the sc-model of the interface. Each
ostis-system designed using the OSTIS Technology must
include a platform for interpreting the semantic models
of ostis-systems (in a particular case, sc-memory) and a
logical-semantic model of the ostis-system, represented
using SC-code (sc-model of the ostis-system) [6], [23].

For the convenience of knowledge representation, there
are three external knowledge representation languages
based on the SC-code:

1) SCg-code with which knowledge is displayed in
the form of graph structures understandable to the
average user;

2) SCs-code in which knowledge is represented as a
linear text;

3) SCn-code for displaying sc-constructions as hyper-
text. This representation is close to natural, under-
standable to the average user [6].

No other classical technology used by the engineers
of the modern information society has a clearly defined,
strict, formal conceptual system that could be used to
solve various types of problems, not to mention the means
necessary to solve the tasks set in the direction of increas-
ing efficiency, interoperability, semantic compatibility of
systems developed on the basis of these technologies. The
OSTIS technology provides all the necessary capabilities
and tools for developing next-generation ostis-platforms
that provide efficient and high-quality interpretation
of logical-semantic models of semantically compatible
interoperable ostis-systems [6], [12].

The ostis-platform also means a family of software-
based semantic associative computer emulators [6].

Platforms for developing other c.s. (not necessarily
intelligent) should provide:

• determinism and uniqueness of interpretation of sys-
tems built on the basis of such ostis-platforms,

• availability of common language tools for formal
description of designed components at different

299



levels of detail [45], [46],
• clear separation of the process of developing for-

mal descriptions of components and the process
of their implementation according to given formal
descriptions [47], [48],

• creation and use of powerful and
accessible libraries of formal descriptions of
reusable ostis-platforms components,

• quality and a high level of applicability of
reusable ostis-platform components.

The need for such properties in implemented ostis-
platforms is justified by their purpose. Computer com-
plexes that allow the development of other c.s. must
be implemented and described in such a way that
any intelligent computer system implemented on it is
compatible with another similar system, so that the
future interpretation of its logical-semantic model remains
correct, unambiguous and independent of the means and
solutions by which the ostis-platform is implemented.
From this point of view, the implemented ostis-platform
is only a means of mass creation of other systems and can
be easily replaced by its functionally equivalent analogue
that meets all the requirements for platforms [23].

In general, next-generation platforms should provide
platform independence (!) of the logical-semantic models
of ostis-systems implemented and interpreted on them.
Different options for implementing the ostis-platform
should not affect the process and result of designing
ostis-systems, that is, the process and result of building
logical-semantic models of the developed ostis-systems.
That is, the designed ostis-systems should not depend
on the specific platform for their interpretation. Thus,
the platform independence of systems from specific
ostis-platforms means the functional completeness of
these platforms for creating systems, the simplicity and
flexibility of expanding their functionality and the range
of tasks to be solved, and, ultimately, the level of high
intelligence of computer systems implemented on them.

The implementations of the ostis-platform designed
using the OSTIS Technology Implementations should be
based on the following fundamental principles:

• All texts represented in SC-code are graph construc-
tions. Therefore, the task of developing a Software
implementation of the ostis-platform is reduced
to developing means for storing and processing
such graph structures. In other words, the fu-
ture platform should provide functionally complete
and unambiguous interpretation of stored graph con-
structions.

• Designing a platform for interpreting sc-models of
computer systems, including its components, must
be clearly specified and formulated in terms of
models, methods and tools for describing complex
systems offered by the OSTIS Technology. It is
the ontological approach to the design, operation

and re-engineering of such a subclass of computer
systems that will make it possible to effectively and
universally develop other ostis-systems for various
purposes [49], [50].

One of the ways to test, develop, and, in some cases,
introduce new models and technologies, regardless of the
availability of appropriate hardware, is the development
of software models of this hardware that would be
functionally equivalent to the hardware itself, but at
the same time interpreted on the basis of traditional
hardware architecture (in this paper, we will consider
the von Neumann architecture as the dominant traditional
architecture now). Obviously, the performance of such
software models in the general case will be lower than
the hardware solutions themselves, but in most cases it
turns out to be sufficient to develop the corresponding
technology in parallel with the development of hardware
and to gradually transfer existing systems from a software
model to hardware.

The popularity and development of graph databases
leads to the fact that, at first glance, it seems expedient
and effective to implement the Software implementation
of the ostis-platform based on one of these tools. However,
there are a number of reasons why this is not possible.
These include the following:

• To ensure the efficiency of storage and processing of
information structures of a certain type (in this case,
SC-code structures, sc-constructions), the specificity
of these structures should be taken into account. In
particular, the experiments described in [51] showed
a significant increase in the efficiency of their own
solution compared to those existing at that time.

• Unlike classical graph constructions, where an arc or
an edge can only be incident to a graph vertex (this
is also true for rdf-graphs), in SC-code, it is quite
typical that an sc-connector is incident to another sc-
connector or even two sc-connectors. In this regard,
the existing means of storing graph constructions
do not allow explicit storage of sc-constructions (sc-
graphs). This problem can also be solved by passing
from an undirected graph to a digraph [52].

• Information processing within the framework of
the OSTIS Technology is based on a multi-agent
approach [53], within which agents for processing
information stored in sc-memory (sc-agents) respond
to events occurring in sc-memory and exchange
information by specifying the actions they perform
in sc-memory [54]. In this regard, one of the most
important tasks is the implementation within the
Software implementation of the ostis-platform of
the possibility of subscribing to events occurring in
Implementation the sc-memory, which at the moment
is practically not supported within modern tools for
storing and processing graphs structures.

• SC-code also allows describing external information

300



structures of any kind (images, text files, audio
and video files, etc.), which are formally treated
as the contents of sc-elements, which are signs of
external files of ostis-systems. Thus, the Software
implementation of the ostis-platform component
should be a file memory implementation that allows
storing the indicated constructions in any generally
accepted formats. The implementation of such a
component within the framework of modern means
of storing and processing graph structures is also
not always possible.

Due to the combination of the above reasons, it was
decided to implement the Software implementation of
the ostis-platform "from scratch", taking into account the
peculiarities of storing and processing information within
the framework of the OSTIS Technology.

V. CURRENT SOFTWARE IMPLEMENTATION OF THE
OSTIS-PLATFORM

The current Software implementation of the ostis-
platform is web-oriented, so from this point of view,
each ostis-system is a website accessible online through
a regular browser. This implementation option has an
obvious advantage – access to the system is possible from
anywhere in the world where the Internet is available,
and no specialized software is required to work with the
system. On the other hand, this implementation option
provides the possibility of several users operating the
system in parallel. The implementation is cross-platform
and can be built from source on various operating systems.
At the same time, the interaction between the client and
server parts is organized in such a way that web-interface
can be easily replaced with a desktop or mobile interface,
both universal and specialized.

Software implementation of the ostis-platform
∈ specialized ostis-platform
∈ web-based implementation of the ostis-platform

:= [implementation of the platform for inter-
preting sc-models of computer systems
that involves the interaction users with
the system via the Internet]

∈ multi-user ostis-platform implementation
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ software system decomposition*:

{{{• Implementation of the sc-memory
• Implementation of the interpreter of user

interface sc-models
• Implementation of a basic set of

platform-specific sc-agents and their
common components

}}}
⇒ component dependencies*:

{{{• Implementation of the sc-memory

• Implementation of the interpreter of user
interface sc-models

}}}

The core of the platform is Implementation of the sc-
memory, which can simultaneously interact with both
Implementation of the interpreter of user interface sc-
models, and with any third-party applications using the
appropriate networking languages (network protocols).
From the point of view of the overall architecture
Implementation of the interpreter of user interface sc-
models acts as one of many possible external components
that interact with Implementation of the sc-memory over
the network. It is worth noting that the current version of
the ostis-platform implementation is specialized, that is,
it does not include the implementation of the SCP base
language interpreter.

VI. GENERAL DESCRIPTION OF IMPLEMENTATION OF
THE SC-MEMORY

Within the framework of the current Implementation
of the sc-memory, sc-storage is understood as a program
model component that stores sc-constructions and ac-
cesses them through the program interface. In general, sc-
storage can be implemented in different ways. In addition
to sc-storage itself, Implementation of the sc-memory also
includes Implementation of the file storage, designed to
store the contents of internal files of ostis-systems.

Implementation of the sc-memory
:= [Implementation of the sc-machine]
⇐ software model*:

sc-memory
∈ software model of the sc-memory based on linear

memory
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ software system decomposition*:

{{{• Implementation of the sc-storage
• Implementation of the file storage
• Implementation of the subsystem of

interaction with external environment
using networking languages

• Implementation of auxiliary tools for
working with sc-memory

}}}
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

• C++ Standard Library for Methods and
Data Structures

• Implementation of sc-storage
• File storage implementation

}}}

301



It should be noted that when switching from Implemen-
tation of the sc-memory to its hardware implementation, it
would be advisable to implement the file memory of the
ostis-system based on traditional linear memory (at least
at the first stages of semantic computer development).
The current version of Implementation of the sc-memory
is open and available at [55].

Within this Implementation of the sc-storage, sc-
memory is modeled as a set of segments, each of which is
a fixed-size ordered sequence of sc-storage elements, each
of which corresponds to specific sc-element. Currently,
each segment consists of 216 − 1 = 65535 sc-storage
elements. Each segment consists of a set of data structures
describing specific sc-elements (sc-storage elements).
Regardless of the type of sc-element being described, each
sc-storage element has a fixed size (currently 36 bytes),
which ensures convenient storage. Thus, the maximum
size of the knowledge base in the current sc-memory
software model can reach 180 GB (excluding the contents
of internal files of the ostis-system stored on the external
file system).

VII. IMPLEMENTATION OF THE SC-STORAGE

A. Selected solution and its rationale

Implementation of the sc-storage must meet the fol-
lowing requirements:

• high performance – minimizing the time spent on
adding, deleting and accessing stored information;

• minimal memory and disk space for storing sc-texts;
• scalability – the ability to easily add computing

power as the load increases.

The sc-storage consists of sc-segments of elements that
correspond to some sc-elements of the abstract SC-code.
Each segment of the sc-storage has a number relative to
the sc-storage itself, and each element of some sc-storage
sc-segment has a number relative to that sc-segment.

Allocation of sc-storage segments makes it possible,
on the one hand, to simplify address access to sc-storage
elements, and on the other hand, to realize the possibility
of unloading a part of sc-memory from RAM to the file
system if necessary. In the second case, the sc-storage
segment becomes the minimum (atomic) paged part of
the sc-memory. The segment unloading mechanism is
implemented in accordance with the existing principles of
virtual memory organization in modern operating systems.

The maximum possible number of segments is limited
by the settings of the software implementation of the
sc-storage (currently the number of sc-segments is 216 −
1 = 65535 by default, but in the general case it may
be different). Thus, technically, the maximum number
of stored sc-elements in the current implementation is
about 4.3 × 109 sc-elements. By default, all segments
are physically located in RAM, if there is not enough
memory, then a mechanism is provided for unloading

some of the sc-segments to the hard disk (virtual memory
mechanism).

The current version of the Implementation of the sc-
memory assumes the possibility of saving the memory
state (imprint) to the hard disk and subsequent loading
from the previously saved state. This feature is necessary
to restart the system in case of possible failures, as well
as when working with the source code of the knowledge
base, when the assembly from the source code is reduced
to the formation of a snapshot of the memory state, which
is then placed in the Implementation of the sc-memory.

B. General description of the current implementation of
sc-storage

Implementation of the sc-storage
∈ implementation of sc-storage based on linear

memory
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇐ software model*:

sc-storage
⇐ subset family*:

sc-storage segment
:= [sc-storage page]
⇐ subset family*:

sc-storage element
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

• C++ Standard Library of Methods and
Data Structures

}}}
⇒ used method representation language*:

• C
• C++

⇒ internal language*:
• SCin-code

Each sc-storage element in the current implementation
can be uniquely specified by its address (sc-address),
which consists of the sc-segment number and the sc-
storage element number within the sc-segment. Thus,
the sc-address serves as the unique coordinates of an
sc-storage element within the framework of the Imple-
mentation of the sc-storage.

For each sc-address, it is possible to assign one-to-
one correspondence to some hash obtained as a result
of applying a special hash function on this sc-address.
The hash is a non-negative integer and is the result of
converting the number of the sc-storage segment si, in
which the sc-element is located, and the number of this
sc-element of the sc-storage ei within this sc-segment si.
The sc-storage framework uses a single hash function to
get the hash of the sc-address of the sc-element and is
specified as f(si, ei) = si << 16∨ ei∧ 0xffff , where

302



the operation << is the operation logical bit shift left
of the left argument by the number of units specified by
the right argument, relative to of this operation, the ∨
operation is a logical OR operation, the ∧ operation is a
logical AND operation, the number 0xffff is the number
65535, represented in hexadecimal form and denoting
the maximum number of sc-elements in one sc-storage
segment.

sc-address
:= [address of the sc-storage element corresponding

to the given sc-element within the current imple-
mentation of the sc-storage as part of software
model of sc-memory]

∈ 32-bit integer

The sc-address is not taken into account in any way
when processing the knowledge base at the semantic
level and is only necessary to provide access to the
corresponding data structure stored in linear memory
at the Implementation of the sc-storage level. In general,
sc-address of the sc-storage element corresponding to
the given sc-element may change, for example, when
rebuilding the knowledge base from source texts and then
restarting the system. At the same time, the sc-address
of the sc-storage element corresponding to the given sc-
element cannot change directly during the system opera-
tion in the current implementation. For simplicity, we will
say "sc-address of the sc-element", meaning sc-address
of the sc-storage element that uniquely corresponds to
the given sc-element.

The specification of such complex software objects
must be represented in some kind of knowledge rep-
resentation language, in this case SC-code. From the
point of view of SC-code itself, the language that should
describe the Software implementation of the ostis-platform
is a sublanguage of SC-code, that is, it inherits all the
properties of the syntax and denotational semantics of SC-
code, and a metalanguage for describing the representation
of the SC-code constructions in the memory of a software
emulator of a semantic associative computer. Such a
model for presenting the specification of a c.s., which
is a platform for the creation, use and development of
other c.s., certainly provides strong advantages over other
options for presenting c.s. specifications:

1) The language, the texts of which the system stores
and processes, and the language of the specification
of how the system represents the texts of the
first language in the memory of itself, are subsets
of the same language. This simplifies not only
the understanding of a developer who develops a
complex software system, due to the fact that the
form of representation of the language processed by
this system and the language of its specification is
unified, but also allows you to open new functionality

for this system in knowing itself. Thus, this approach
makes it possible to fully realize the properties of
an intelligent system, for example, reflexivity.

2) It is impossible to design and implement intelligent
c.s. on a computer system that is not itself intelligent.
Presenting the specification of a system in this
form makes it possible to increase the level of its
intelligence.

3) Since the form of representation of the language
describing the system is unified with the language it
processes, there is no need to create additional tools
for verification and analysis of the system operation.

C. The concept of SCin-code

We will call such a language the language of the
internal representation of SC-code, or, briefly, SCin-code
(Semantic Code interior). Sc-storage of SC-code texts
can be considered as a subset of scin text.

SCin-code
:= [Semantic Code interior]
:= [Language of the internal semantic representation

of the SC-code inside the memory of the ostis-
system]

:= [meta-language for describing the representation
of the SC-code inside the memory of the ostis-
system]

⇒ frequently used non-primary sc-element external
identifier*:
[scin-text]
∈ common noun

∈ abstract language
∈ metalanguage
⊂ SC-code
⊃ sc-storage

SCin-code syntax is given by: (1) SCin-code alphabet,
(2) one-to-one correspondence sc-addresses*.

D. SCin-code alphabet

SCin-code alphabet^
:= [syntactic type of sc-storage element]
:= [Set of types of sc-storage elements]
⇐ alphabet*:

SCin-code
= {{{• sc-storage element corresponding to

sc-node
• sc-storage element corresponding to

sc-arc
• sc-storage element with null sc-address

∈ singleton
}}}

SCin-code alphabet^ consists of three syntactically
distinguished types of sc-storage elements: an sc-storage

303



element corresponding to a general sc-node, an sc-
storage element corresponding to a general sc-arc, and
an sc-storage element, having a null sc-address. Such
an alphabet not only allows you to set in memory the
minimum set of objects with which you can perform
computational operations, but, if necessary, is convenient
for expansion. So, for example, the given alphabet of
the language can be extended by adding to it sc-storage
element, corresponding to the internal file of ostis-system
or sc-storage element, corresponding to sc-edge.

sc-storage element corresponding to sc-element
∈ sc-element
:= [sc-storage element]
:= [sc-storage cell]
:= [sc-element image within sc-storage]
:= [data structure, each instance of which within sc-

storage corresponds to one sc-element]
⇒ subdividing*:

SCin-code alphabet^

The relation sc-address* is defined as a one-to-one
correspondence, the first component of each ordered pair
of which is some element of the sc-storage corresponding
to some sc-element, and the second component is the
sc-address of this element of the sc-storage.

sc-address*
∈ one-to-one correspondence
⇒ first domain*:

sc-storage element correspoinding sc-element
⇒ second domain*:

16-bit integer

E. Syntax and syntactic rules of SCin-code

Within Implementation of sc-storage there must be a set
of syntactic and semantic classes of sc-storage elements
that:

1) define the element type at the platform level and
does not have a corresponding sc-arc of membership
(more precisely, a base sc-arc) explicitly stored
in sc-memory (its presence is implied, but it is
not explicitly stored, since it will lead to infinite
increasing the number of sc-elements to be stored
in sc-memory);

2) can be represented as parameters of the correspond-
ing elements of the sc-storage, that is, a set of such
elements, each of which has a "label" expressed by
some numerical value;

3) can specify the type of elements of the sc-storage
with the level of detail that is necessary so that, for
example, when performing a search operation using
such element classes, it is easy to determine the class
of a particular element.

For this purpose, the basic syntactic classification of
its elements is allocated in the SCin-code. In order
to represent and store any constructions of the SC-
code, it is enough to have only two base classes of
sc-storage elements, while the remaining classes of sc-
storage elements can be added in the extended version
of the SCin-code and thereby implement the necessary
logic at the level of sc-memory Implementation .

S y n t a c t i c c l a s s i f i c a t i o n o f S C i n - c o d e
e l e m e n t s
⊃=⊃=⊃=
{{{

sc-storage element corresponding to sc-element
⇒ subdividing*:

{{{• sc-storage element corresponding to
sc-node

• sc-storage element corresponding to
sc-arc

}}}
}}}

It should be noted that all classes of sc-storage elements
that are part of the syntactic classification of SCin-code
elements are syntactically distinguished classes of SCin-
code elements.

Although the sc-addresses* relation makes it possible
to completely describe the links between the elements of
the sc-storage of the ostis-system, but for the specification
of the representation of SC-code constructions inside the
memory of the ostis-system, only one sc-address* relation
is not always enough to indicate completely exactly
and clearly the relationships between the elements of
the sc-storage corresponding to the sc-elements of these
constructions. Therefore, in practice, when describing the
representation of SC-code structures inside the memory
of the ostis-system, it is necessary to use more particular
relations of this basic relation, for example, such as sc-
address of the sc-storage element corresponding to the
outgoing sc-arc from the given sc-element *, sc-address of
the sc-storage element corresponding to the incoming sc-
arc in the given sc-element*, sc-address of the sc-storage
element corresponding to the incident sc-element of the
sc-arc*.

sc-address*
⇒ subdivinding*:

{{{• sc-address of the sc-storage element
corresponding to the outgoing sc-arc from
the given sc-element*

• sc-address of the sc-storage element
corresponding to the incoming sc-arc in
the given sc-element*

• sc-address of the sc-storage element

304



corresponding to the incident sc-element
of the sc-arc*

}}}

The sc-address of the sc-storage element corresponding
to the outgoing sc-arc from the given sc-element* is
defined as a binary oriented relation, the first component
of each oriented pair of which is some element of the
sc-storage corresponding to some sc-element from which
the given sc-arc comes out, and the second component is
the sc-address of this outgoing sc-arc. Particular types of
this relation are the relation sc-address of the sc-storage
element corresponding to the initial outgoing sc-arc from
the given sc-element*, the relation sc-address of the sc-
storage element corresponding to the next outgoing sc-arc
from of the given sc-element* and the relation sc-address
of the sc-storage element corresponding to the previous
outgoing sc-arc from the given sc-element*.

sc-address of the sc-storage element corresponding to
the outgoing sc-arc from the given sc-element*
⇒ subdividing*:

{{{• sc-address of the sc-storage element
corresponding to the initial outgoing
sc-arc from the given sc-element*

• sc-address of the sc-storage element
corresponding to the next outgoing sc-arc
from the given sc-element*

• sc-address of the sc-storage element
corresponding to the previous outgoing
sc-arc from the given sc-element*

}}}

The relation sc-address of the sc-storage element
corresponding to the incoming sc-arc in the given sc-
element* is defined as a binary oriented relation, the first
component of each oriented pair of which is some element
of the sc-storage corresponding to some sc-element, in
which this sc-arc enters, and the second component is
the sc-address of this incoming sc-arc. Particular types of
this relation are the relation sc-address of the sc-storage
element corresponding to the initial incoming sc-arc in
the given sc-element*, the relation sc-address of the sc-
storage element corresponding to the next incoming sc-
arc in the given sc-element* and the relation sc-address
of the sc-storage element corresponding to the previous
incoming sc-arc in the given sc-element*.

sc-address of the sc-storage element corresponding to
the incoming sc-arc in the given sc-element*
⇒ subdividing*:

{{{• sc-address of the sc-storage element
corresponding to the initial incoming
sc-arc in the given sc-element*

• sc-address of the sc-storage element

corresponding to the next incoming sc-arc
in the given sc-element*

• sc-address of the sc-storage element
corresponding to the previous incoming
sc-arc in the given sc-element*

}}}

The relation sc-address of the sc-storage element
corresponding to the incident sc-element of the sc-arc* is
defined as a binary oriented relation, the first component
of each oriented pair of which is some element of the
sc-storage corresponding to some sc-element, which is
sc- arc, and the second component is the sc-address
of some sc-element incident to it. Particular types of
this relation are the relation sc-address of the sc-storage
element corresponding to the initial sc-element of the sc-
arc* and the relation sc-address of the sc-storage element
corresponding to the final sc-element of the sc-arc* .

sc-address of the sc-repository element corresponding
to the incident sc-element of the sc-arc*
⇒ subdividing*:

{{{• sc-address of the sc-storage element
corresponding to the initial sc-element of
the sc-arc*

• sc-address of the sc-storage element
corresponding to the final sc-element of
the sc-arc*

}}}

The following restrictions are imposed on the syntactic
constructions of the SCin code:

• Each sc-storage element corresponding to an sc-
element, has a one-to-one relation to its sc-address.

• For each sc-storage element corresponding to the
sc-node, there is one and only one relation pair sc-
addresses of the sc-storage element corresponding to
the initial outgoing sc-arc from the given sc-element*
and one and only one relation pair sc-addresses
of the sc-store element corresponding to the initial
incoming sc-arc in the given sc-element*.

• For each sc-storage element corresponding to the
outgoing sc-arc from the given sc-element (sc-storage
element corresponding to the incoming sc-arc to the
given sc-element), there is at most one relation pair
sc-addresses of the sc-storage element corresponding
to the next outgoing sc-arc from the given sc-
element* (sc-addresses of the sc-storage element
corresponding to the next incoming sc-arc in the
given sc-element*) and at most one relation pair sc-
addresses of the sc-storage element corresponding
to the previous outgoing sc-arc from the given sc-
element* (sc-addresses of the sc-storage element
corresponding to the previous incoming sc-arc to
the given sc-element*).

• For each sc-storage element corresponding to the

305



sc-arc that is the second component of each pair
of the sc-address relation of the sc-store element
corresponding to the initial outgoing sc-arc from the
given sc-element* (sc-addresses of the sc-storage
element corresponding to the initial incoming sc-arc
in the given sc-element*) there is only one pair sc-
addresses of the sc-storage element corresponding
to the next outgoing sc-arc from the given sc-
element* (sc-addresses of the sc-storage element
corresponding to the next incoming sc-arc in the
given sc-element*).

F. Denotational semantics of SCin-code

According to the above, for each class of sc-elements of
the SC-code, there must be a program model of the class
of sc-store elements that satisfies all the listed require-
ments. Therefore, it is important that SCin-code Alphabet
is initially complete in order to immerse not only sc-
constructions SC-code Core, but also its extended version.
For this, semantic classes of sc-storage elements have
been developed, the specification of which is represented
as Semantic classification of SCin-code elements.

S e m a n t i c c l a s s i f i c a t i o n o f S C i n - c o d e
e l e m e n t s
⊃=⊃=⊃=
{{{

sc-storage element corresponding to sc-element
⇒ subdividing*:

Typology of sc-storage elements based on
constantness^
= {{{• sc-storage element corresponding

to sc-constant
• sc-storage element corresponding

to sc-variable
• sc-storage element corresponding

to sc-meta-variable
}}}

⇒ subdividing*:
Typology of sc-storage elements based on
permanency^
= {{{• sc-storage element corresponding

to permanent sc-element
• sc-storage element corresponding

to temporary sc-element
}}}

⇒ subdividing*:
Typology of sc-storage elements based on
accessibility^
:= [sc-storage element access level class]
= {{{• sc-storage element corresponding

to sc-element on which read
access is allowed

• sc-storage element corresponding
to sc-element on which write
access is allowed

}}}
⇒ include*:

sc-storage element corresponding to internal
ostis-system file

sc-storage element corresponding to generic sc-node
⇒ subdividing*:

Structural typology of sc-storage elements
corresponding to sc-nodes^
= {{{• sc-storage element corresponding

to sc-node denoting a non-binary
sc-link

• sc-storage element corresponding
to sc-class

• sc-storage element corresponding
to sc-node denoting a class of
classes

• sc-storage element corresponding
to sc-structure

• sc-storage element corresponding
to sc-node denoting the role
relation

• sc-storage element corresponding
to sc-node denoting a non-role
relation

• sc-storage element corresponding
to sc-node denoting the primary
entity

}}}
⇒ subdividing*:

Structural typology of sc-storage elements
corresponding to sc-arcs^
= {{{• sc-storage element corresponding

to sc-arc of membership
• sc-storage element corresponding

to generic sc-arc
}}}

⇒ subdividing*:
Typology of sc-storage elements corresponding to
sc-arcs of membership, according to the type of
denoted membership^
= {{{• sc-storage element corresponding

to sc-arc of positive membership
• sc-storage element corresponding

to sc-arc of fuzzy membership
• sc-storage element corresponding

to sc-arc of negative membership
}}}

}}}

All semantically and syntactically distinguished classes
of sc-storage elements, as well as all possible subclasses
of these classes, are instances (elements) of the class.

306



At the moment, sc-edges are stored in the same way
as sc-arcs, that is, they have a start and end sc-element,
the difference is only in the sc-storage element syntactic
type. This leads to a number of inconveniences during
processing, but sc-edges are currently used quite rarely.

G. SCin-code specification

The specification of a SCin-code is the union of the
specification of its elements. For each element, links
between elements and their properties, restrictions are
imposed in the form of syntactic rules described above.

sc-storage element corresponding to sc-element
∈ sc-storage element syntactic type
⇒ specification*:

{{{}}}
⊃ relation narrowing by the first domain

(sign specification*, sc-storage element
corresponding to sc-node)*

⊃ relation narrowing by the first domain
(sign specification*, sc-storage element
corresponding to sc-arc)*

sc-storage element corresponding to sc-node
⇒ specification*:

{{{• class of sc-storage element corresponding
to sc-node

• sc-storage element access level class
• sc-address*
• sc-address of the first sc-arc outgoing

from the given sc-element*
• sc-address of the first sc-arc incoming in

the given sc-element*
}}}

sc-storage element corresponding to sc-arc
⇒ specification*:

{{{• class of sc-storage element corresponding
to sc-arc

• sc-storage element access level class
• sc-address*
• sc-address of the sc-storage element

corresponding to the initial sc-element of
the sc-arc*

• sc-address of the sc-storage element
corresponding to the final sc-element of
the sc-arc*

• sc-address of the sc-storage element
corresponding to the initial outgoing
sc-arc from the given sc-element*

• sc-address of the sc-storage element
corresponding to the initial incoming
sc-arc in the given sc-element*

• sc-address of the sc-storage element
corresponding to the next outgoing sc-arc
from the given sc-element*

• sc-address of the sc-storage element
corresponding to the next incoming sc-arc
in the given sc-element*

• sc-address of the sc-storage element
corresponding to the previous outgoing
sc-arc from the given sc-element*

• sc-address of the sc-storage element
corresponding to the previous incoming
sc-arc in the given sc-element*

}}}

H. General algorithm for embedding the SC-code con-
struction into the memory of an ostis-system

Loading an sc-construction into the memory of the
ostis-system means translating each sc-element of this
sc-construction and the incidence relations between these
sc-elements into the memory of the ostis-system, i.e.
translating the syntactic structure of the sc-construction
into the corresponding representation inside the memory
of the ostis-system. In the general case, the algorithm for
loading any arbitrary sc-construction into the memory of
the ostis-system consists of the following steps:

1) Selection of sc-nodes and internal files of the sc-
construction and saving to the corresponding memory
cells of the ostis-system;

2) Select all free sc-connectors (i.e. sc-connectors
whose start and end sc-element is not another sc-
connector), store all sc-connectors in the correspond-
ing ostis-system memory cells and establish links
between the initial and final sc-elements of these
sc-connectors;

3) Return to step 2 if there are unloaded sc-connectors;
4) Loading the contents of all internal files of the ostis-

system into its file storage.

I. Example of the specification of the representation of the
SC-code construction in the memory of the ostis-system

The figure 1 shows an example of the specification of
the representation of an sc-construction in the memory of
an ostis-system implemented on the basis of the designed
ostis-platform. Here, each sc-element of the given sc-
construction is assigned an sc-element denoting the
storage element. For each sc-element denoting a storage
element of some sc-element of a given sc-construction, its
own denotational semantics is described: links between
sc-storage elements and syntactic and semantic classes
of elements.

J. Advantages and disadvantages of SCin-code

This model of representation in memory of a system
of syntactic and semantic classes of sc-elements in the
form of syntactic and semantic classes of elements of

307



Figure 1. Example of the specification of the representation of the SC-code construction in the memory of the ostis-system

storage sc-elements that correspond to the first ones has
a number of advantages:

• Syntactic and semantic classes of sc-storage elements
can be combined with each other to obtain more
specific classes. From the point of view of software
implementation, such a combination is expressed
by the operation of bit-wise addition of the values
of the corresponding numerical expressions classes
of elements of the sc-storage (here, in the speci-
fication on the SC-code, this can be done using
the intersection of the corresponding classes). For
example, bit-wise addition of numeric expressions of
sc-storage element classes corresponding to sc-node
and sc-constant results in a new sc-storage element
class – sc-storage element corresponding to constant
sc-node.

• Numeric expressions of some classes may match.
This is done to reduce the size of the sc-storage
element by reducing the maximum size of the
numeric expression of the class of these elements.
There is no conflict in this case, since such classes

cannot be combined, for example sc-storage element
corresponding to the sc-node of the role relation
and sc-storage element corresponding to the fuzzy
membership sc-arc.

• It is important to note that each of the selected
classes of elements (except for classes obtained
by combining other classes) uniquely corresponds
to the ordinal number of a bit in linear memory,
which can be seen by looking at the corresponding
numerical expressions of these classes. This means
that classes of elements are not included in each other
(although this is not the case in the specification),
for example, specifying membership in the class
of sc-store elements corresponding to an sc-arc of
positive membership does not automatically indicate
the membership of elements of the sc-storage
corresponding to the sc-arc of membership. At the
implementation level, this makes label combination
and comparison operations more efficient.

However, an increase in their number, although it
improves the performance of the platform by simplifying

308



some operations for checking the class of an sc-storage
element, it leads to an increase in the number of situations
in which it is necessary to take into account the explicit
and implicit representation of sc-arcs, which, in turn, com-
plicates the development of the platform and development
of program code for processing stored sc-construction.
This model does not allow sufficient representation of
the syntactic and semantic classes of sc-elements, since
it has the following important disadvantages:

• At the moment, the number of syntactic classes of
sc-storage elements is large enough, which leads
to a fairly large number of situations in which
it is necessary to take into account the explicit
and implicit storage of sc-arcs belonging to the
corresponding classes. On the other hand, changing
the set of classes of elements for any purpose in
the current implementation is a rather laborious task
(in terms of the amount of changes in the program
code of the platform and sc-agents implemented at
the platform level), and expanding the set of classes
without increasing the volume sc-storage element
in bytes turns out to be completely impossible. The
solution to this problem is to minimize the number
of classes as much as possible, for example, to the
number of classes corresponding to the SC-code
alphabet. In this case, the membership of sc-elements
to any other classes will be recorded explicitly, and
the number of situations in which it will be necessary
to take into account the implicit storage of sc-arcs
will be minimal.

• Some class from the current set of syntactic and
semantic classes of sc-elements are rarely used (for
example, sc-store element corresponding to a generic
sc-edge or sc-store element corresponding to sc-arc
of negative membership), in turn, in sc-memory there
can be classes that have quite a lot of elements
(for example, binary relation* or number). This
fact does not allow us to fully use the efficiency
of having classes. The solution to this problem is
the rejection of a previously known set of classes
and the transition to a dynamic set of classes (while
their number can remain fixed). In this case, a set of
classes expressed as numeric values will be formed
based on some criteria, for example, the number of
elements of this class or the frequency of calls to it.

• base sc-arcs denoting that sc-elements belong to
some known limited set of classes in memory are
presented implicitly. This fact must be taken into
account in a number of cases, for example, when
checking whether an sc-element belongs to a certain
class, when searching for all outgoing sc-arcs from
a given sc-element, etc. If necessary, some of these
implicitly stored sc-arcs can be represented explicitly,
for example, in the case when such an sc-arc must be
included in some set, that is, another sc-arc must be

drawn into it. In this case, it becomes necessary to
synchronize changes associated with a given sc-arc
(for example, its deletion) in its explicit and implicit
representation. The current Implementation of sc-
storage does not implement this mechanism. This
problem is solved by one of the previous options
for solving the problems of this model.

In the current Implementation of sc-storage access-level
classes are used to provide the ability to restrict the access
of some processes in sc-memory to certain elements stored
in sc-memory. Each sc-store element belongs to one of
two classes: the class of sc-store elements corresponding
to sc-elements on which the read right is allowed and the
class of sc-store elements corresponding to sc-elements
on which the right is allowed records. Each of which is
expressed as a number from 0 to 255.

Thus, the null value of the numeric expressions of the
class sc-storage elements corresponding to sc-elements
on which read access is allowed and the class sc-
storage elements corresponding to sc-elements on which
write access is allowed means that any process can get
unrestricted access to this sc-storage element.

Each element of the sc-storage corresponding to some
sc-element is described by its syntactic type (label), and,
regardless of the type, the sc-address of the first sc-arc
entering the given sc-element and the first sc-arc leaving
the given sc-element is indicated (may be empty if there
are no such sc-arcs). The remaining bytes, depending
on the type of the corresponding sc-element (sc-node
or sc-arc), can be used to store the specification of the
sc-arc. Also, sc-address of the first sc-arc outgoing from
the given sc-element* and sc-address of the first sc-arc
entering the given sc-element* may generally be absent
(be null, "empty"), but the size of the sc-element in bytes
will remain the same.

From the point of view of software implementation, the
data structure for storing the sc-node and sc-arc remains
the same, but the list of fields (components) changes in
it. In addition, as you can see, each sc-storage element
(including sc-storage element corresponding to sc-arc)
does not store a list of sc-addresses of associated sc-
elements, but stores sc-addresses of one outgoing and
one incoming arc, each of which in turn stores the sc-
addresses of the next and previous arcs in the list of
outgoing and incoming sc-arcs for the corresponding
elements. All of the above allows you to:

• make the size of such a structure fixed (currently 36
bytes) and independent of the syntactic type of the
stored sc-element;

• provide the ability to work with sc-elements without
regard to their syntactic type in cases where it is
necessary (for example, when implementing search
queries like “Which sc-elements are elements of this
set”, “Which sc-elements are directly related with
the given sc-element”, etc.);

309



• provide the ability to access sc-storage element in
constant time;

• provide the ability to place the sc-storage element
in the processor cache, which in turn speeds up the
processing of sc-constructions;

VIII. IMPLEMENTATION OF THE OSTIS-SYSTEM FILE
STORAGE

A. Selected solution and its rationale

Often, the expressiveness of SC-code graph structures
is not enough to represent and store linear sequences
of texts, pictures, sound, video, and so on. Although
SC-code is a universal tool for representing any kind
of knowledge, there is not always a need to immerse
something in the graph-dynamic memory of the ostis-
system, at least in the early stages of development of the
ostis-platform. This can also be explained by the fact that
information constructions that do not belong to the SC-
code are quite complex in syntax and volume. To solve
such problems, an additional element is introduced at the
SC-code Alphabet^ level – the internal file of the ostis-
system. With the help of ostis-system files, it is possible
to represent, store, process and visualize information
structures that do not belong to the SC-code using the
SC-code.

Therefore, when implementing sc-memory, it is neces-
sary to take into account the need to store information
structures that do not belong to SC-code using SC-code.
Such solution is the Implementation of the file storage of
the ostis-system.

During the entire period of Software implementation of
the ostis-platform development, there have been quite a
few attempts to implement a fully functional and fast file
storage based on popular databases. However, all these
solutions did not take into account potential problems
in the implementation of the search and navigation
subsystem Software implementation of the ostis-platform.
Now the file storage is implemented by its own means,
as data structures for storing information structures that
do not belong to the SC-code, prefix B-trees [56] and
linear lists are used.

The choice is justified by the fact that:
• prefix structures are fairly easy to understand and

minimal in their syntax;
• with the help of prefix structures, it is quite conve-

nient to store and process key-value relations;
• accessing a value by key occurs in the worst case

for the length of that key [57], [58];
• due to the fact that the prefixes stick together, there

is a strong gain in memory usage.
To store the contents of internal files of ostis-systems,

files are used that are explicitly stored on the file system,
which is accessed by means of the operating system on
which Software implementation of the ostis-platform is
running.

Implementation of the ostis-system file storage
∈ file storage implementation based on prefix tree
⇐ software model*:

ostis-system file storage
∈ atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

}}}
⇒ used method representation language*:

• C
⇒ internal language*:

• SCfin-code

As in the case with the sc-storage, it is necessary
to describe the language for representing information
structures that do not belong to the SC-code inside the
file storage of the ostis-system.

B. The concept of the SCfin-code

We will call such a language the language of internal
representation of information constructions that do not
belong to the SC-code, or, briefly, SCfin-code (Semantic
Code file interior). The file storage of texts that do not
belong to the SC-code can be considered as a subset of
the scfin-text.

SCfin-code
:= [Semantic Code file interior]
:= [Language of the internal semantic representation

of information constructions that do not belong
to the SC-code inside the memory of the ostis-
system]

:= [meta-language for describing the representation
of the information constructions that do not
belong to the SC-code inside the memory of
the ostis-system]

⇒ frequently used non-primary sc-element external
identifier*:
[scfin-text]
∈ common noun

∈ abstract language
∈ metalanguage
⊂ SC-code
⊃ ostis-system file storage

The SCfin-code syntax is given by: (1) the SCfin code
alphabet, (2) the sequence in linear text* order relation.

C. SCfin-code alphabet

SCfin-code alphabet^
:= [syntactic type of ostis-system file storage ele-

ment]
:= [Set of types of ostis-system file storage elements]

310



⇐ alphabet*:
SCfin-code

= {{{• element of ostis-system file storage
corresponding to a substring of linear
language text

}}}

SCfin-code alphabet^ consists of one syntactically
distinguished type of file storage elements – element
of ostis-system file storage corresponding to a substring
of linear language text.

element of ostis-system file storage corresponding to a
substring of linear language text
∈ sc-element
:= [ostis-system file storage element]
:= [ostis-system file storage cell]
:= [image of information construction substring that

do not belong to the SC-code within the ostis-
system file storage]

The relation sequences in a linear text* is defined as
a binary oriented order relation, the components of each
ordered pair of which are elements of the ostis-system
file storage corresponding to some substrings of the linear
text, as a result of which, as a result of their concatenation,
a substring belonging to the same linear text is formed.

D. SCfin-code syntax

The SCfin-code syntax is quite simple, since the
information constructions on it are specified using the
SCfin-code alphabet, whose cardinality is 1, and the single
incidence relation sequence in a linear text*. Hierarchies
of syntactic elements are not distinguished as such, as
this is not necessary.

E. Denotational semantics of SCfin-code

At the implementation level, it is important to single
out the semantic classes eelements of the ostis-system file
storage, corresponding to a substring of the text of the
linear language, which denote some prefix or postfix part
of the entire information construction.

S e m a n t i c c l a s s i f i c a t i o n o f S C f i n - c o d e
e l e m e n t s
⊃=⊃=⊃=
{{{

element of ostis-system file storage corresponding to a
substring of linear language text
⇒ subdividing*:

Typology of elements by substring location in
linear text
= {{{• element of the ostis-system file

storage corresponding to the

prefix substring of the linear
language text

• element of the ostis-system file
storage corresponding to the
postfix substring of the linear
language text

}}}
}}}

F. Example of the specification of the representation of
information constructions that doesn’t belong to the SC-
code in the memory of the ostis-system

In the SCfin-code, it is enough to simply set the
information constructions of any linear texts. However,
from the point of view of the implemented sc-memory
model, there is a need to specify not so much the form
of information structures that do not belong to the SC-
code inside the file storage of the ostis-system, but rather
the links between these external information structures,
the files of the ostis-system, which are signs of the SC-
code. At the same time, at the sc-memory level, both
the method for obtaining ostis-system files that contain
a given external information structure and the methods
for obtaining external information structures from given
ostis-system files must be implemented at the sc-memory
level.

Figure 2 shows the representation of information
constructions that do not belong to the SC-code and
the correspondence between ostis-system files and in-
formation constructions. Using the relation set of sc-
addresses of ostis-system files by their content prefixes*,
a binary oriented pair is specified, the first component
of which is a prefix structure, the elements of which
are substrings of external information constructions, and
the second component is the set of corresponding sc-
addresses ostis-system files. And using the relation set
of postfixes of the contents of ostis-system files by their
sc-addresses*, a binary oriented pair is specified, the first
component of which is a prefix structure, the elements
of which are substrings of the sc-addresses of ostis-
system files presented in string form, and the second
component is the set of corresponding postfixes of external
information structures of the prefix structure, which is
the first component of each pair of the relation set of sc-
addresses of ostis-system files by their content prefixes*.

G. Advantages and disadvantages of SCfin-code

The used Implementation of the ostis-system file storage
fully justifies itself when interacting with the system. Due
to the use of prefix structures, the asymptotic complexities
of the method for obtaining a set of external information
constructions from given ostis-system files and the method
for obtaining a set of ostis-system files from given external
information constructions are linear, since it depends on
the length of a given string and the structure of the prefix
tree.

311



Figure 2. An example of a specification for the representation of information structures that do not belong to the SC-code in the memory of the
ostis-system

312



• Information constructions that do not belong to the
SC-code are still completely stored in RAM of the
computer device on which the platform is deployed.
This problem can be solved if only the first characters
of substrings of information structures are stored in
RAM, and the remaining parts of these substrings
are stored at the file system level.

• At the moment, the information retrieval subsystem
is not fully implemented. Implementation of the
ostis-system file storage allows quickly solving
the problem of searching for external information
constructions by their prefix substrings, but does not
allow quickly solving the problem of searching for
information constructions by any substring, even for
which some sample-template is specified.

The described problems will be solved within a future
version of the Software version of the ostis-platform.

IX. GENERAL DESCRIPTION OF METHODS FOR
IMPLEMENTATION OF THE SC-MEMORY

The SCin-code and the SCfin-code are sufficient to
represent the texts of the SC-code within the memory of
the ostis-system. To translate some SC-code text into the
ostis-system memory, it is necessary to use sc-memory
methods (programs, procedures), which are elements of
Implementation of the sc-memory.

sc-memory method
⊂ method
⊂ Implementation of the sc-memory
∋ Method of creating an sc-storage element

corresponding to the sc-node with a given type
∋ Method of creating an sc-storage element

corresponding to the sc-arc with a given type
∋ Method of creating an sc-storage element

corresponding to the ostis-system file with a
given type

∋ Method of setting the information construction of
the linear language in accordance with the given
sc-storage element corresponding to the
ostis-system file

So, using the Method of creating an sc-storage element
corresponding to the sc-node with a given type, the
Method of creating an sc-storage element corresponding
to the sc-arc with a given type, and the Method of creating
an sc-storage element corresponding to the ostis-system
file with a given type, it is possible to create all program
elements of the SCin-code alphabet^ corresponding to
sc-elements of the SC-code alphabet^, and using the
Method of setting the information construction of the
linear language in accordance with the given sc-storage
element corresponding to the ostis-system file to indicate
the connections between the sc-storage elements corre-
sponding to the files of the ostis-system and external

information structures represented in the ostis-storage file
systems as linear text.

There are other methods in Implementation of the sc-
memory, but they will not be covered in this article.

X. IMPLEMENTATION OF THE SUBSYSTEM OF
NETWORK INTERACTION WITH IMPLEMENTATION OF

SC-MEMORY

A. Selected solution and its rationale

The interaction of the sc-memory software model with
external resources can be carried out through a specialized
programming interface (API), however, this option is
inconvenient in most cases, since:

• it is only supported for a very limited set of
programming languages (C, C++);

• it requires that the client application accessing the
sc-memory software model actually forms a single
whole with it, thus eliminating the possibility of
building a distributed collective of ostis-systems;

• as a consequence of the previous paragraph, the
possibility of parallel work with sc-memory of
several client applications is excluded.

In order to provide the possibility of remote access to
sc-memory without taking into account the programming
languages with which a particular client application is
implemented, it was decided to implement the possibility
of accessing sc-memory using a universal language that
does not depend on the means of implementing one or
another component or system.

Among the effective protocols used in the implemen-
tation of client-server systems, it is worth noting the
application layer protocols of the TCP/IP stack – HTTP
and WebSocket protocols [59], [60]. It is advisable to use
the WebSocket protocol due to the following reasons:

• WebSocket is useful in web-based systems where
data sent by the server is represented or stored on
the client side. In WebSocket, data is constantly
transferred over the same open connection, so
WebSocket communication is faster than HTTP
communication [61], [62]. This is very important in
terms of designing the OSTIS Ecosystem, which can
consist of tens of thousands of different ostis-systems
kinds.

• Since ostis-systems are based on the idea of agent-
oriented knowledge processing (asynchronous pro-
cessing) and the memory of such systems must be
both distributed and shared, it is necessary that each
of them (in particular, an independent ostis-system)
be able to communicate with other ostis-systems.
Moreover, such communication can and should take
place on the conditions of initiating events in the
memory of these systems. This implies an unambigu-
ous conclusion that the HTTP protocol cannot be
used in advanced next-generation intelligent systems

313



due to the unidirectional nature of the connection it
creates.

A string language based on the JSON language [63],
[64] – SC-JSON-code – was developed as a system
communication language. Such choice is explained by
the flexibility of setting relation between the objects it
describes.

B. Implementation of the subsystem for interaction with
sc-memory based on the JSON language

Generally speaking, the subsystem of interaction with
the external environment can be implemented in different
ways. So, for example, before the implementation of the
current subsystem, there was previously its analogue in
the Python programming language, which used the HTTP
protocol and a binary representation of commands and
responses. Therefore, there can be a wide variety of such
subsystems, that can build various Implementations of the
subsystem of interaction with the external environment
using network languages.

This Implementation of the sc-memory interaction sub-
system based on the JSON language allows ostis-systems
to interact with systems from the external environment
based on the generally accepted JSON data transfer
transport format and provides an API for accessing the
sc-memory of the sc-model interpretation platform.

Implementation of the subsystem of interaction with
the external environment using network languages
⇒ software system decomposition*:

{{{• Implementation of the subsystem of
interaction with the external environment
using network languages based on the
JSON language

}}}

Implementation of the sc-memory interaction
subsystem based on the JSON language
:= [Subsystem for interaction with sc-memory based

on the JSON format]
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
∈ client-server system
⇒ used method representation language*:

• C
• C++
• Python
• TypeScript
• C#
• Java

⇒ used language*:
• SC-JSON-code

⇒ software system decomposition*:
{{{

• Websocket- and JSON-based server
system providing network access to
sc-memory

{{{}}}
= {{{• Implementation of the client

system in the Python programming
language

• Implementation of the client
system in the TypeScript
programming language

• Implementation of the client
system in the C# programming
language

• Implementation of the client
system in the Java programming
language

}}}
}}}

Interaction with sc-memory is provided by transferring
information in the SC-JSON-code and is conducted, on
the one hand, between the server, which is part of the
ostis-system, written in the same implementation language
of this ostis-system and having access to its sc-memory,
and, on the other hand, a set of clients who are aware of
the presence of a server within the network of their usage.
Using the subsystem for interaction with sc-memory based
on the JSON language, it is possible to interact with the
ostis-system on the same set of possible operations as in
the case if the interaction took place directly, in the same
implementation language of the platform for interpreting
sc-models of computer systems. In this case, the result
of the work differs only in the speed of information
processing.

C. Concept of the SC-JSON-code

As mentioned earlier, subsystems within the imple-
mented software version of a specialized platform com-
municate using the external knowledge representation
language – an SC-JSON-code. This language is string, i.e.
linear, and easy to reverse, since there are a large number
of facilities for processing its JSON superlanguage.

SC-JSON-code
:= [Semantic JSON-code]
:= [Semantic JavaScript Object Notation code]
:= [Language of external semantic representation of

knowledge based on the JSON language]
⇒ frequently used non-primary external identifier of

an sc-element*:
[sc-json-text]
∈ common noun

∈ abstract language
∈ linear language
⊂ JSON

314



D. Syntax and syntactic rules of the SC-JSON-code

The SC-JSON-code syntax is specified by: the (1) SC-
JSON-code alphabet and the (2) SC-JSON-code grammar.
In the alphabet of the SC-JSON-code, the basic syntactic
classification of its elements is distinguished.

S y n t a c t i c c l a s s i f i c a t i o n o f
S C - J S O N - c o d e e l e m e n t s
⊃=⊃=⊃=
{{{

S C - J S O N - c o d e
⇐ subset family*:

sc-json-sentence
⊂ json-list of json-pairs
⇐ subset family*:

sc-json-pair*
⇐ Cartesian product*:

⟨⟨⟨• sc-json-string
• sc-json-object

⟩⟩⟩
⇒ subdividing*:

{{{• SC-JSON-code command
• SC-JSON-code command response

}}}

sc-json-object
⇒ subdividing*:

{{{• sc-json-list
• sc-json-pair
• sc-json-literal

⇒ subdividing*:
{{{• sc-json-string
• sc-json-number

}}}
}}}

}}}

The SC-JSON-code alphabet^ is a set of all possible
characters in the SC-JSON-code. Since the SC-JSON-
code is a linear string knowledge representation language,
its alphabet includes the combination of the alphabets of
all languages, the texts in which can represent external
identifiers and/or the contents of ostis-system files, the
set of all digits, and the set of all other special char-
acters. Alphabet sequences can form sc-json-keywords,
sc-json-pairs, sc-json-sentences from sc-json-pairs, and
sc-json-texts from sc-json-sentences. At the same time,
constructions on the SC-JSON-code are built according
to the following syntactic rules:

• Each SC-JSON-code grammar rule describes the
correct order of sc-json objects in an sc-json-sentence
according to the SC-JSON-code syntax. The set of
SC-JSON-code grammar rules describes the order
of sc-json-sentences in sc-json-text that is correct

in terms of the SC-JSON-code syntax. Each sc-json-
sentence is an sc-json-list of sc-json-pairs, which
represents a command or response to that command.

• Each command (command response) in the SC-JSON-
code consists of a header that includes sc-json-pairs
describing the command itself (command response)
and a message that is different for each class of
commands (command responses). The command
(command response) message in the SC-JSON-code
is usually a list of sc-json-objects, which may not
be limited in size.

• Each sc-json-pair consists of two elements: a key-
word and some other sc-json-object associated with
that keyword. The set of keywords in sc-json-pairs
is determined by a specific class of commands
(command response) in the SC-JSON-code. The sc-
json pair starts with an open brace "{" and ends
with a close brace "}". The keyword and the sc-json
object associated with it are separated by a colon
character ":".

• Sc-json strings written in sc-json texts begin and end
with the double-quoted character “.

• Sc-json-lists that do not consist of sc-json-pairs begin
with an opening square bracket "[" and end with a
close square bracket "]". Sc-json-objects in sc-json-
lists are separated by commas ",".

E. Syntax and grammar of the SC-JSON-code. SC-JSON
command and response examples

The grammar of the SC-JSON-code is the set of all
possible rules used in building commands and responses
to them in the SC-JSON code. Each SC-JSON-code
command has a unique SC-JSON-code grammar rule.
The SC-JSON grammar rules allow correctly representing
commands in the SC-JSON-code. Each SC-JSON-code
grammar rule is represented as a rule in the ANTLR
Grammar Description Language and its natural language
interpretation.

SC-JSON grammar
∋ key sc-element ′:

Rule that specifies the syntax of SC-JSON-code
commands
⇐ syntax rule*:

SC-JSON-code command
∋ key sc-element ′:

Rule that specifies the syntax of SC-JSON-code
command responses
⇐ syntax rule*:

SC-JSON-code command response
∋ Rule that specifies the syntax of the command for

creating sc-elements
⇐ syntax rule*:

command for creating sc-elements

315



∋ Rule that specifies the syntax of response to the
command for creating sc-elements
⇐ syntax rule*:

response to the command for creating
sc-elements

The rule that specifies the syntax of the SC-JSON-code
command means the following 3. The SC-JSON-code
command class includes the command for creating sc-
elements, command for getting corresponding types of
sc-elements, command for deleting sc-elements, command
for processing key sc-elements, command for processing
contents of ostis-system files, command for searching
for sc-constructions isomorphic to a given sc-template,
command for generating an sc-constructions isomorphic
to a given sc-template, and command processing sc-event.
The SC-JSON-code command includes the command ID,
type, and message.

Figure 3. Description of the Rule that specifies the syntax of the
SC-JSON-code command

The rule specifying the syntax of the SC-JSON-code
command response describes the syntax of command
responses described by the previous rule. The SC-JSON-
code command response class includes the command
response for creating sc-elements, command response for
getting the corresponding types of sc-elements, command
response for deleting sc-elements, command response
for processing key sc-elements, command response for
processing contents of ostis-system files, command re-
sponse for searching for sc-constructions isomorphic to
the given sc-template, command response for generating
an sc-construction isomorphic to the given sc-template,
and command response for sc-event processing.

The command for creating sc-elements message con-
tains a list of descriptions of the sc-elements to be created.
Such sc-elements can be an sc-node, an sc-arc, an sc-
edge, or an ostis-system file. The sc-element type is

Figure 4. Description of the Rule that specifies the syntax of the
SC-JSON-code command response

specified in pair with the "el" keyword: for an sc-node,
the sc-json-type of element is represented as a "node",
for an sc-arc and an sc-edge – an "edge", for ostis-system
file – a "link". Type labels of sc-elements are specified in
their corresponding descriptions in the command message,
paired with the "type" keyword. If the sc-element being
created is an ostis-system file, then the contents of this
ostis-system file are additionally specified in pair with
the "content" keyword; if the sc-element being created
is an sc-arc or an sc-edge, then the descriptions of the
sc-elements they go out and the sc-elements they come in
are specified. Descriptions of such sc-elements consist of
two pairs: the first pair indicates the method of association
with the sc-element and is represented as "addr", or "idtf",
or "ref" paired with the "type" keyword, the second pair
represents what is associated with this sc-element: its
hash, system identifier, or number in the array of created
sc-elements – paired with the "value" 5 keyword.

The command response for creating sc-elements mes-
sage is a list of hashes of created sc-elements correspond-
ing to the command for creating sc-elements descriptions
with status 1, in case of successful processing of the 6
command.

The SC-JSON-code command set is easily extensible
due to the flexibility and functionality of the JSON
language. The set of the command responses in the SC-
JSON-code is also easily extensible, along with the SC-
JSON-code commands extension.

command for creating sc-elements
:= [create elements command]
⊂ SC-JSON-code command

316



Figure 5. Description of the Rule that specifies the syntax of the
command for creating sc-elements

Figure 6. Description of the Rule that specifies the syntax of the
command response for creating sc-elements

⇒ example*:
Example of the command for creating
sc-elements

⇒ command class*:
command response for creating sc-elements

The Websocket- and JSON-based server system pro-
viding network access to sc-memory will interpret the
Example of command for creating sc-elements 7 as
“Process command for creating sc-elements: an sc-node
of type 1 (of an unspecified type), an ostis-system file of
type 2 (of an unspecified type), and contents in the form
of a floating point number 45.4, and an sc-arc of type
32 (of a constant type) between the sc-element located at
the zero position in the array of created sc-elements, and
an sc-element in the first position in the same array”.

It should be noted that at the sc-memory interface level,
the command is interpreted quickly due to the fact that
templates for creating constructions isomorphic to them
are not used. Also, the contents of the message of the
command for creating sc-elements can be empty.

command response for creating sc-elements
:= [create elements command response]
⊂ SC-JSON-code command response
⇒ example*:

Example of the command response for creating
sc-elements

An example of the command response for creating
sc-elements is an example of a response to the previous
command if this command was interpreted and executed
successfully 8.

The formal text of the Example of the command
response for create sc-elements is equivalent to the natural
language text “Created sc-elements with hashes 323,
534, and 342, respectively. The command was processed
successfully”.

A detailed description of the syntax of commands and
responses to these commands, as well as their examples,
can be found in the OSTIS Standard [6].

317



Figure 7. An example of the command for creating sc-elements

Figure 8. An example of the command response for creating sc-elements

F. Description of Implementation of The server system
based on Websocket and JSON, providing network access
to sc-memory

The Server system based on Websocket and JSON,
providing network access to sc-memory is an interpreter
of commands and responses of the SC-JSON-code for pro-
gramm representation of sc-constructions in sc-memory
using the Library of software components for processing
json texts (JSON for Modern C++) and the Library of
cross-platform software components for implementing
server applications based on Websocket (WebSocket++),
and is also provided with comprehensive test coverage

through the Google Tests and Google Benchmark Tests
software frameworks. The Library of software components
for processing json-texts (JSON for Modern C++) has a
rich, convenient, and high-speed functionality necessary
for the implementation of such components of ostis-
systems, and the Library of cross-platform software
components for the implementation of server applications
based on Websocket (WebSocket++) allows elegantly
designing server systems without using redundant de-
pendencies and solutions. The software component is
configured with the help of the Software component for
ostis-systems software components configuration, as well
as CMake and Bash scripts.

Implementation of the Server system based on
Websocket and JSON, providing network access to
sc-memory
:= [Implementation of the Websocket-based system

that provides parallel-asynchronous multi-client
access to sc-memory of the sc-model interpreta-
tion platform using the SC-JSON-code]

:= [sc-json-server]
⇒ frequently used non-primary external identifier of

the sc-element*:
[sc-server]

∈ atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ used method representation language*:

• C
• C++

⇒ used language*:
• SC-JSON-code

⇒ component dependencies*:
{{{• Library of software components for

processing json-texts JSON for Modern
C++

• Library of cross-platform software
components for implementing server
applications based on Websocket
WebSocket++

• Software component for ostis-systems
software components configuration

• Implementation of the sc-memory
}}}

It is worth noting that the current Implementation of the
Server system based on Websocket and JSON, providing
network access to sc-memory is not the first of its kind and
replaces its previous implementation written in Python.
The reason for this replacement is as follows:

• Previous Implementation of the server system based
on Websocket and JSON, providing access to sc-
memory using SC-JSON-code commands, imple-
mented in the Python programming language, de-
pends on the Boost Python library provided by

318



the C++ Language Development and Collaboration
Community, as well as Python. The fact is that such
a solution requires the support of the mechanism
for interpreting the Python program code into the
C++ language, which is redundant and unreasonable,
since most of the Software implementation of the
ostis-platform program code is implemented in the C
and C++ languages. The new implementation of the
described software system allows getting rid of the
usage of capacious and resource-intensive libraries
(for example, boost-python-lib, llvm) and the Python
language.

• When implementing distributed subsystems, the
speed of knowledge processing plays an important
role, that is, the ability to quickly and urgently
respond to user requests. The quality of access
to sc-memory through the implemented Subsystem
for interacting with sc-memory based on the JSON
language should be commensurate with the quality
of access to sc-memory using a specialized API,
implemented in the same programming language as
the system itself. The new implementation makes it
possible to increase the processing speed of requests
by the JSON-based sc-memory interaction subsystem,
including knowledge processing, by at least 1.5 times
compared to the previous implementation of this
subsystem.

Implementation of the Server system based on Web-
socket and JSON, providing network access to sc-memory
possesses the following common properties:

• From the point of view of its model, the server
subsystem has the same specialized programming
interface as the Implementation of the sc-memory,
however, interaction with it using such an interface
is carried out via the network. This makes it possible
for client systems implemented in different program-
ming languages to interact with the same shared
memory.

• This subsystem can be considered as an interpreter of
an external knowledge representation language (SC-
JSON-code), which can be used by ostis-systems
implemented on the basis of a specialized ostis-
platform. Each command and response to a command
of this language corresponds to a handler (potentially
an agent at all), which is part of this interpreter.
The SC-JSON-code language of external knowledge
representation itself is independent of the platform
implementation and is used only as a language of
external knowledge representation, however, it can be
used when implementing other tools and interpreters
of sc-models of ostis-systems.

• The implemented software component provides
multi-user asynchronous access to sc-memory. While
testing the sc-server, it turned out that its implemen-
tation allows processing requests from at least 1000

client systems. Due to the need to provide parallel
access to sc-memory, synchronization blocks were
added at the implementation level of the software
component. For example, in the implementation,
it is possible to notice a queue of commands for
processing by the system – regardless of the number
of client systems and how many commands were
sent for processing, all commands can queue up. This
solution allows temporarily bypassing the problems
of interaction of synchronization blocks at the sc-
memory level when processing different types of
commands over it (search, generative, destructive,
etc.). However, the server system cannot be shut
down as long as the command queue has any pending
commands. Also, the server system continues to work
if the list of client system identifiers still has non-
disconnected ones. The need for these functions of
the server subsystem is determined by the need to
support the atomicity of requests processed by the
system.

• In the process of testing the subsystem, an estimate of
its speed of processing commands and responses was
obtained. During load testing, a test client system
was used, written in C++ and not possessing the
functionality of processing texts of the SC-JSON-
code. As a result of testing, it was found that
when sending 1000 different commands – commands
for creating sc-elements, commands for processing
the contents of ostis-system files, and commands
for deleting sc-elements – the time spent on their
processing did not exceed 0.2 seconds. At the same
time, in some cases, processing 1000 commands for
creating sc-elements took no more than 0.14 seconds,
commands for deleting sc-elements – no more than
0.07 seconds, commands for processing the contents
of ostis-system files – no more than 0.27 seconds,
commands search for sc-constructions isomorphic
to a given sc-template – no more than 0.45 seconds.

The Server system based on Websocket and JSON,
providing network access to sc-memory describes the
necessary and sufficient programming interface for inter-
acting with sc-memory. In the general case, it describes
the functionality of not only the Server system based on
Websocket and JSON, providing network access to the
sc-memory but also the client systems interacting with it,
since these client systems often include a specialized
programming interface similar to the server system
interface but implemented in a different programming
language.

XI. IMPLEMENTATION OF THE INTERPRETER OF USER
INTERFACE SC-MODELS

A. Concept of the interpreter of user interface sc-models

In most cases, user interface development in modern
systems takes up most of the time spent on developing

319



the entire system. However, the effectiveness of using a
software system depends on the developed user interface
[65].

Along with the Implementation of the sc-memory, an
important part of the Software implementation of the
ostis-platform is the Implementation of the interpreter
of user interface sc-models, which provides basic tools
for viewing and editing the knowledge base by the user,
tools for navigation through the knowledge base (asking
questions to the knowledge base) and can be supplemented
with new components depending on the problems solved
by each specific ostis-system.

Implementation of the interpreter of user interface
sc-models
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ used method presentation language*:

• JavaScript
• TypeScript
• Python
• HTML
• CSS

⇒ component dependencies*:
{{{• Library of standard interface components

in the JavaScript programming language
• Library for implementing server

applications in the Python programming
language, named Tornado

• Implementation of the client system in the
TypeScript programming language

• Implementation of the client system in the
Python programming language

}}}

An important principle of the Implementation of the in-
terpreter of user interface sc-models is the simplicity and
uniformity of connecting any user interface components
(editors, visualizers, switches, menu commands, etc.).
To do this, the Sandbox software layer is implemented,
within which low-level operations of interaction with
the server part are implemented and which provides a
more convenient programming interface for component
developers. The current version of the Implementation of
the interpreter of user interface sc-models is open and
available at [66].

B. Main components of the interpreter of user interface
sc-models

Implementation of the interpreter of user interface
sc-models
⇒ software system decomposition*:

{{{• User interface command menu bar
• Component for switching the language of

identification of displayed sc-elements

• Component for switching the external
language of knowledge visualization

• Search field of sc-elements by identifier
• Panel for displaying the user dialog with

the ostis-system
• Knowledge visualization and editing

panel
⇒ software system decomposition*:

{{{• Visualizer of sc.n-texts
• Visualizer and editor of

sc.g-texts
}}}

}}}

The Component for switching the language of iden-
tification of displayed sc-elements is an image of the
set of natural languages available in the system. User
interaction with this component switches the user interface
to a mode of communication with a specific user with
the help of basic sc-identifiers belonging to this natural
language (Fig. 9). This means that when displaying sc-
identifiers of sc-elements in any language, for example,
SCg-code or SCn-code, basic sc-identifiers belonging to
the given natural language will be used. This applies
both to sc-elements displayed within the Knowledge
visualization and editing panel and any other sc-elements,
for example, command classes and even natural languages
themselves, displayed within the Component for switching
the language of identification of displayed sc-elements of
the ostis-meta-system.

Figure 9. The Component for switching the language of identification
of displayed sc-elements of the ostis-meta-system

The Component for switching the external language of
knowledge visualization is used to switch the knowledge
visualization language in the current window displayed
on the Knowledge visualization and editing panel. In the
current implementation, SCg-code and SCn-code (Fig. 10,
as well as any other languages included in the external
SC-code visualization languages set, are supported by
default as such languages.

Figure 10. The Component for switching the external language of
knowledge visualization of the ostis-meta-system

The Search field for sc-elements by identifier allows
searching for sc-identifiers containing the substring en-

320



tered in this field (case sensitive). As a result of the search,
a list of sc-identifiers containing the specified substring
is displayed (Fig. 11), when interacting with them, the
question “What is this?” is automatically set, the argument
of which is either for the sc-element itself, which has the
given sc-identifier (if the specified sc-identifier is the main
or system identifier, and thus the specified sc-element
can be uniquely determined), or for the internal file of
the ostis-system that is the sc-identifier (in case when the
given sc-identifier is not the main one).

Figure 11. The Component for switching the external language of
knowledge visualization of the ostis-meta-system

The Panel for displaying the user dialog with the ostis-
system displays a time-ordered list of sc-elements (Fig.
12) that are signs of actions initiated by the user within the
dialog with the ostis-system by interacting with images of
the corresponding command classes (that is, if the action
was initiated in another way, for example, by explicitly
initiating it by creating an arc of membership to the action
initiated set in the sc.g editor, then it will not be displayed
on this panel). When the user interacts with any of the
depicted action signs, the Knowledge visualization and
editing panel displays a window containing the result of
this action in the visualization language, in which it was
displayed when the user viewed it in the last (previous)
once. Thus, in the current implementation, this panel can
work only if the action initiated by the user assumes the
result of this action explicitly represented in memory. In
turn, it follows from this that at present this panel, as
well as the whole Implementation of the interpreter of
user interface sc-models, allows working with the system
only in the “question-answer” dialog mode.

The Knowledge visualization and editing panel displays
windows containing sc-text, represented in some language
from the set of external SC-code visualization languages
and, as a rule, the result of some action initiated by the

Figure 12. The Panel for displaying the user dialog with the ostis-meta-
system

user. If the corresponding visualizer supports the ability
to edit texts of the corresponding natural language, then
it is also an editor at the same time. If necessary, the
user interface of each specific ostis-system can be supple-
mented with visualizers and editors of various external
languages, which in the current version of Implementation
of the interpreter of user interface sc-models will also
be located on the Knowledge visualization and editing
panel. By default, two visualization and editing panels
are available: the Visualizer of sc.n-texts (Fig. 13) and
the Visualizer and editor of sc.g-texts (Fig. 14).

The User interface commands menu bar contains
images of command classes (both atomic and non-atomic)
currently available in the knowledge base and included
in the main user interface decomposition (meaning the
complete decomposition, which in may include several
levels of non-atomic instruction classes in general) (Fig.
15). Interaction with the image of a non-atomic instruction
class initiates a command for the image of instruction
classes included in the decomposition of this non-atomic
instruction class. Interaction with the image of an atomic
command class initiates the generation of a command of
this class with previously selected arguments based on
the corresponding generalized command class statement
(command class template).

The semantic models of the described user interface
components are represented in more detail in [67].

C. Advantages and disadvantages represented in the
current version of Implementation of the interpreter of
user interface sc-models

The current implementation of the sc-interface model
interpreter has a large number of shortcomings, namely:

• The idea of platform independence of the user inter-
face (building the sc-model of the user interface) is
not fully implemented. Fully describing the sc-model
of the user interface (including the exact placement,
size, design of components, their behavior, etc.) is
currently likely to be difficult due to performance
limitations, but it is quite possible to implement the
ability to ask questions to all interface components,
change them location, etc., however, these features
cannot be implemented in the current version of the
platform implementation.

321



Figure 13. The Visualizer of sc.n-texts of the ostis-meta-system

Figure 14. The Visualizer and editor of sc.g-texts of the ostis-meta-system

322



Figure 15. The User interface commands menu bar of the ostis-meta-system

• In addition, part of the interface actually works
directly with sc-memory using WebSocket tech-
nology and part through an interlayer based on
the tornado library for the Python programming
language, which leads to additional dependencies
on third-party libraries. Recently, the development
of the current Software implementation of the ostis-
platform has largely solved this problem, but there
are still components implemented in Python.

• Some of the components (for example, the search
field by identifier) are implemented by third-party
tools and have almost nothing to do with sc-memory.
This hinders the development of the platform.

• The current Implementation of the sc-model inter-
preter for user interfaces is focused only on dialog
with the user (in the style of a user question – a
system answer). Obviously, necessary situations are
not supported, such as executing a command that
does not expect a response; the occurrence of an
error or lack of response; the need for the system
to ask a question to the user, etc.

• Restricted user interaction with the system without
the usage of special controls. For example, it is
possible to ask the system a question by drawing
it in the SCg-code, but the user will not see the
answer, although it will be generated in memory by
the corresponding agent. Most of the technologies
used in the implementation of the platform are now
outdated, which hinders the development of the
platform.

• There is no inheritance mechanism implemented
when adding new external languages. For example,
adding a new language, even one that is very close
to the SCg-code, requires physically copying the
component code and making the appropriate changes,
which results in two unrelated components that begin
to develop independently of each other.

• Low level of documenting the current Implementa-
tion of the interpreter of user interfaces sc-models.
Represented current specification only describes the
key points of the Implementation of user interfaces
sc-models but does not cover them.

Based on the shortcomings described, the following
requirements are imposed on future implementation:

• Unify the principles of interaction of all interface
components with the Implementation of the sc-
memory, regardless of what type the component
belongs to. For example, a list of menu commands
should be formed through the same mechanism as
a response to a user request, an editing command
generated by the user, a command for adding a
new fragment to the knowledge base, etc. It is
necessary to improve the ways of using the interface
for convenient and comfortable usage [68].

• Unify the principles of user interaction with the
system, regardless of the mode of interaction and the
external language. For example, it should be possible
to ask questions and execute other commands directly
through the SCg/SCn interface. At the same time, it
is necessary to take into account the principles of
editing the knowledge base so that the user cannot,
under the guise of asking a question, enter new
information into the agreed part of the knowledge
base.

• Unify the principles of handling events that occur
during user interaction with interface components
– the behavior of buttons and other interactive
components should not be set statically by third-
party tools but implemented as an agent, which,
nevertheless, can be implemented in an arbitrary
way (not necessarily on platform-independent level).
Any action performed by the user, at the logical level,
must be interpreted and processed as the initiation
of the agent.

• Provide the ability to execute commands (in par-
ticular, ask questions) with an arbitrary number of
arguments, including without arguments.

• Make it possible to display the answer to a question
in parts if the answer is very large and takes a long
time to display.

• Each displayed interface component should be inter-
preted as an image of some sc-node described in the
knowledge base. Thus, the user should be able to
ask arbitrary questions to any interface components.

• Simplify and document the mechanism for adding
new components as much as possible.

• Provide the ability to add new components based on
existing ones without creating independent copies.

323



For example, it should be possible to create a
component for a language that extends the SCg
language with new primitives, redefine the principles
for placing sc-texts, etc.

• Minimize dependency on third-party libraries.
• Minimize the usage of the HTTP protocol (bootstrap

of the common interface structure), ensure the
possibility of equal two-way interaction between
the server and client parts.

Obviously, the implementation of most of the above re-
quirements is associated not only with the implementation
of the platform itself but also requires the development of
the theory of logical-semantic models of user interfaces
and the refinement of the general principles for organizing
user interfaces of ostis-systems within it. However, the
fundamental possibility of implementing such models
should be taken into account in the Implementation of
the ostis-platform.

XII. PLANS FOR THE DEVELOPMENT OF THE Software
implementation of the ostis-platform

In the further development of the Software implementa-
tion of the ostis-platform, it will be important and correct
to:

• maximally detail the specification of the components
of the designed ostis-platform, including the lan-
guages used for external and internal knowledge
representation, and clearly stratify the hierarchy
of classes and relations used in describing the
components of the ostis-platforms;

• eliminate and take into account the shortcomings
in the implementation of new components in the
designed ostis-platform, indicate possible options
for their implementation;

• reduce the dependency of the ostis-platform compo-
nents to a minimum, that is, if possible, implement
them in the SCP language (for example, an inter-
preter of user interface sc-models);

• evaluate the quality of the designed system and its
components as a whole.

In the direction of improving the quality and efficiency
of the Software implementation of the ostis-platform
components, the following problems will be solved first:

• The implemented sc-memory model is not intended
for its usage in a multi-user mode, especially when
there are more than 4 subjects of interaction with
it. This, in turn, hinders the implementation of all
the principles of the OSTIS Technology. All this is
explained by the failure of the implementation of
blocking mechanisms at the level of the memory
itself. The sc-memory model will be revised and
improved in such a way as to reduce the usage of
blocking mechanisms and minimize the number of
mutually exclusive situations for processes in sc-
memory.

• Using the current Software implementation of the
ostis-platform is quite difficult and resource-intensive.
This is primarily due to the lack of the possibility
for collectively developing knowledge bases. This is
affected by the lack of the necessary interface com-
ponents for easy editing and viewing the knowledge
base. For example, the current scg-editor is quite
primitive and inconvenient to use, and the tools for
creating methods (programs) are not implemented
at all.

XIII. CONCLUSION

The current implementation of the ostis-platform is
a universal tool for designing next-generation computer
systems. It acts as a software emulator of a semantic
associative computer (!), focused on the semantic repre-
sentation and processing of information of any kind. The
ostis-platform acts as a program memory for any next-
generation software c.s., implemented according to the
principles of the OSTIS Technology, in which a logical-
semantic model (knowledge) can be placed, regardless
of its type and contents. Thus, on the basis of the ostis-
platform, the sc-model of the OSTIS Metasystem is im-
plemented [69], which acts as a software implementation
of the OSTIS Standard [6].

Using the ostis-platform, it is possible to solve any
information problems of human activity. In this sense
of the word, the implemented ostis-platform is a design
automation system not only for other systems but also
for solving information problems of any kind in general.

In this article, the problems of ensuring the design
of platforms for the design and development of other
systems are considered. A comparative analysis of existing
solutions in the field of design automation of c.s. and jus-
tified the chosen decision in detail. The work determines
the solution of the problem in the form of designing
and developing universal interpreters of logical-semantic
models of systems according to the principles underlying
the OSTIS Technology, named an ostis-platform. This
article is also a formal specification of the first Software
implementation of the ostis-platform.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

REFERENCES

[1] A. Iliadis, “The tower of babel problem: making data make sense
with basic formal ontology,” Online Information Review, vol. 43,
no. 6, pp. 1021–1045, 2019.

[2] S. C. J. Lim, Y. Liu, Y. Chen et al., “Ontology in design
engineering: status and challenges,” 2015.

324



[3] I. Ahmed, G. Jeon, and F. Piccialli, “From artificial intelligence to
explainable artificial intelligence in industry 4.0: a survey on what,
how, and where,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 8, pp. 5031–5042, 2022.

[4] Jeff Waters and Brenda J. Powers and Marion G. Ceruti, “Global
interoperability using semantics, standards, science and technology
(gis3t),” Computer Standards & Interfaces, vol. 31, no. 6, pp.
1158–1166, 2009.

[5] V. Golenkov, N. Guliakina, V. Golovko, and V. Krasnoproshin,
“On the current state and challenges of artificial intelligence,”
in International Conference on Open Semantic Technologies for
Intelligent Systems. Springer, 2022, pp. 1–18.

[6] Golenkov Vladimir and Guliakina Natalia and Shunkevich Daniil,
Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
V. Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[7] Sokolov A.P., Golubev A.O., “Computer-aided design system
for composite materials. part 3. graph-oriented methodology for
developing user-system interaction tools,” Izvestiya SPbGETU
LETI, pp. 43–57, 2021.

[8] T. S. Dillon, E. Chang, and P. Wongthongtham, “Ontology-based
software engineering-software engineering 2.0,” in 19th Australian
Conference on Software Engineering (ASWEC 2008). IEEE, 2008,
pp. 13–23.

[9] Dillon, Tharam and wu, Chen and Chang, Elizabeth, “Gridspace:
Semantic grid services on the web-evolution towards a softgrid,”
in 3rd International Conference on Semantics, Knowledge, and
Grid, SKG 2007, 11 2007, pp. 7–13.

[10] V. Kabilan, “Ontology for information systems (04is) design
methodology: conceptualizing, designing and representing domain
ontologies,” Ph.D. dissertation, KTH, 2007.

[11] A. M. Ouksel and A. Sheth, “Semantic interoperability in global
information systems,” ACM Sigmod Record, vol. 28, no. 1, pp.
5–12, 1999.

[12] F. W. Neiva, J. M. N. David, R. Braga, and F. Campos, “Towards
pragmatic interoperability to support collaboration: A systematic
review and mapping of the literature,” Information and Software
Technology, vol. 72, pp. 137–150, 2016.

[13] K. Lu, Q. Zhou, R. Li, Z. Zhao, X. Chen, J. Wu, and H. Zhang,
“Rethinking modern communication from semantic coding to
semantic communication,” IEEE Wireless Communications, 2022.

[14] F. Zhou, Y. Li, X. Zhang, Q. Wu, X. Lei, and R. Q. Hu, “Cognitive
semantic communication systems driven by knowledge graph,”
arXiv preprint arXiv:2202.11958, 2022.

[15] P. Hagoort, G. Baggio, and R. M. Willems, “Semantic unification,”
in The cognitive neurosciences, 4th ed. MIT press, 2009, pp.
819–836.

[16] J. H. Siekmann, “Universal unification,” in International Confer-
ence on Automated Deduction. Springer, 1984, pp. 1–42.

[17] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd,
“Cyc: toward programs with common sense,” Communications of
the ACM, vol. 33, no. 8, pp. 30–49, 1990.

[18] S. L. Reed, D. B. Lenat et al., “Mapping ontologies into cyc,” in
AAAI 2002 Conference workshop on ontologies for the semantic
Web, 2002, pp. 1–6.

[19] Zbigniew Gomolkaa and Boguslaw Twaroga and Ewa Zeslawskaa
and Ewa Dudek-Dyduchb, “Knowledge base component of
intelligent almm system based on the ontology approach,” Expert
Systems with Applications, vol. 199, p. 116975, 2022.

[20] V. V. Gribova, A. S. Kleschev, F. M. Moskalenko, V. A. Timchenko,
L. A. Fedorishchev, E. A. Shalfeeva, “Iacpaas cloud platform for
developing shells of intelligent services: state and development
prospects,” Programmnyye produkty i sistemy, 2018.

[21] Filippov A. A., Moshkin V. S., Shalaev D. O., Yarushkina N. G.,
“Unified ontological data mining platform,” System Analysis and
Applied Informatics, pp. 77–82, 2016.

[22] Yu. A. Zagorulko, “Semantic technology for the development
of intelligent systems, focused on domain experts,” Ontologiya
proyektirovaniya, pp. 30–44, 2015.

[23] Gulyakina N. A., Golenkov V. V., “Graphic-dynamic models of
parallel knowledge processing: principles of construction, imple-
mentation and design,” in Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-

gies for intelligent systems], G. V.V., Ed. BSUIR, Minsk, 2012,
pp. 23–52.

[24] C. W. Holsapple and K. D. Joshi, “A collaborative approach to
ontology design,” Communications of the ACM, vol. 45, no. 2, pp.
42–47, 2002.

[25] Ford, Brian and Schiano-Phan, Rosa and Vallejo, Juan, Component
Design, 11 2019, pp. 160–174.

[26] D. Shunkevich, D. Koronchik, “Ontological approach to the
development of a software model of a semantic computer based
on the traditional computer architecture,” in Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems]. BSUIR, Minsk,
2021, pp. 75–92.

[27] C. Ballinger, “The teradata scalability story,” Technical report,
Teradata Corporation, 2009.

[28] “Cyc platform,” 2022. [Online]. Available:
https://cyc.com/platform/

[29] R. Gurunath and D. Samanta, “A novel approach for semantic
web application in online education based on steganography,”
International Journal of Web-Based Learning and Teaching
Technologies (IJWLTT), vol. 17, no. 4, pp. 1–13, 2022.

[30] Rudikova L. V., Zhavnerko E. V., “About data modeling of subject-
domains of a practice-oriented orientation for a universal system
for storing and processing data,” System Analysis and Applied
Informatics, pp. 4–11, 2017.

[31] J. Bai, L. Cao, S. Mosbach, J. Akroyd, A. A. Lapkin, and
M. Kraft, “From platform to knowledge graph: evolution of
laboratory automation,” JACS Au, vol. 2, no. 2, pp. 292–309,
2022.

[32] Ian Robinson, Jim Webber and Emil Eifrem, Graph databases.
O’Reilly Media, Inc., 2015.

[33] Abramsky Mikhail Mikhailovich, Timerkhanov Timur Ildarovich,
“Comparative analysis of the use of relational and graph databases
in the development of digital educational systems,” in Vestnik
NGU. Russian Federation, Novosibirsk, Vestnik NSU, 2018, pp.
5–11.

[34] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: a
data provenance perspective,” in Proceedings of the 48th annual
Southeast regional conference, 2010, pp. 1–6.

[35] Klimanskaya E.V., “Modern platforms for intelligent information
processing: Graph databases,” Nauka vchera, segodnya, zavtra,
pp. 9–16, 2014.

[36] C. Chen et al., “Multi-perspective evaluation of relational and
graph databases,” 2022.

[37] Amir Hosein Khasahmadi and Kaveh Hassani and Parsa Moradi
and Leo Lee and Quaid Morris, “Memory-based graph networks,”
in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=r1laNeBYPB

[38] O. P. Kuznecov, Diskretnaya matematika dlya inzhenera: Uchebnik
dlya vuzov [Discrete Mathematics for an Engineer: A Textbook
for High Schools]. Moscow: Lan’, 2009.

[39] Reinhard Diestel, Graph Theory. Hamburg, Germany: Universität
Hamburg, 2017.

[40] C. A. Sen, S. Parkkonen, Yu. A. Zobni, “Application of graph
databases to form knowledge bases of complex systems,” in
Problemy formirovaniya yedinogo prostranstva ekonomicheskogo i
sotsial’nogo razvitiya stran SNG (SNG-2017). Tyumen: Tyumen
Industrial University, 2017, pp. 165–172.

[41] A.N.Naumov, A.M.Vendrov, V.K.Ivanov, Database and knowledge
management systems. M.: Finance and statistics, 1991.

[42] T. A. Gavrilova, V. F. Khoroshevsky, Knowledge bases of
intelligent systems. SPb: Peter, 2000.

[43] A. A. Bashlykov, “Knowledge management systems,” in Avtoma-
tizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti,
2010, pp. 33–39.

[44] ——, “Methodology for building knowledge base management
systems for intelligent systems,” in Programmnyye produkty i
sistemy, 2013, pp. 131–137.

[45] V. Golenkov and N. Guliakina and I. Davydenko and A. Eremeev,
“Methods and tools for ensuring compatibility of computer systems,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-

325



tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2019, pp. 25–52.

[46] Golenkov V.V., Gulyakina N.A., Davydenko I.T., Shunkevich D.V.,
Eremeev A.P., “Ontological design of hybrid semantically compat-
ible intelligent systems based on the semantic representation of
knowledge,” in Ontologiya proyektirovaniya, G. V.V., Ed. Russian
Federation, Samara: Samara National Research University named
after Academician S.P. Korolev, 2019, pp. 132–148.

[47] M. J. Jacobs, “A software development project ontology,” Master’s
thesis, University of Twente, 2022.

[48] V.V. Gribova and A.S. Kleschev and D.A. Krylov and F.M.
Moscalenko, “The basic technology development of intelligent
services on cloud platform iacpaas. part 1. the development of a
knowledge base and a solver of problems,” Software engineering,
no. 12, pp. 3–11, 2015.

[49] Yurii I. Molorodov, “Development of information system based
on ontological design patterns,” in 5th International Conference
Information Technologies in Earth Sciences and Applications for
Geology, Mining and Economy,. Institute of Computational
Technologies, Siberian Branch of the Russian Academy of
Sciences, 2019.

[50] C. M. Zapata Jaramillo, G. L. Giraldo, and G. A. Urrego Giraldo,
“Ontologies in software engineering: approaching two great
knowledge areas,” Revista Ingenierías Universidad de Medellín,
vol. 9, no. 16, pp. 91–99, 2010.

[51] D. N. Koronchik, “Unificirovannye semanticheskie modeli
pol’zovatel’skih interfejsov intellektual’nyh sistem i tekhnologiya
ih komponentnogo proektirovaniya [Unified semantic models of
user interface for intelligent systems and technology for their
develop],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2013,
pp. 403–406.

[52] V. P. Ivashenko and N. L. Verenik and A. I. Girel’ and E.
N. Sejtkulov and M. M. Tatur, “Predstavlenie semanticheskih
setej i algoritmy ih organizacii i semanticheskoj obrabotki na
vychislitel’nyh sistemah s massovym parallelizmom [Semantic
networks representation and algorithms for their organization and
semantic processing on massively parallel computers],” in Otkrytye
semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems],
V. Golenkov, Ed. BSUIR, Minsk, 2015, pp. 133–140.

[53] E. Iotti, “An agent-oriented programming language for jade multi-
agent systems,” 2018.

[54] D. Shunkevich, “Agentno-orientirovannye reshateli zadach
intellektual’nyh sistem [Agent-oriented models, method and
tools of compatible problem solvers development for intelligent
systems],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2018,
pp. 119–132.

[55] (2022, Nov) Implementation of the sc-memory. [Online].
Available: https://github.com/ostis-ai/sc-machine

[56] R. Bayer and K. Unterauer, “Prefix b-trees,” ACM Transactions
on Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977.

[57] K. Tsuruta, D. Köppl, S. Kanda, Y. Nakashima, S. Inenaga,
H. Bannai, and M. Takeda, “c-trie++: A dynamic trie tailored for
fast prefix searches,” Information and Computation, vol. 285, p.
104794, 2022.

[58] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna, “Fast prefix
search in little space, with applications,” in European Symposium
on Algorithms. Springer, 2010, pp. 427–438.

[59] Bhumij Gupta1, Dr. M.P. Vani, “An overview of web sockets: The
future of real-time communication,” in International Research
Journal of Engineering and Technology (IRJET), 2018.

[60] A. A. Naik and M. R. Khare, “Study of “websocket protocol
for real-time data transfer”,” International Reasearch Journal of
Engineering and Technology, 2020.

[61] M. Tomasetti, “An analysis of the performance of websockets in
various programming languages and libraries,” Available at SSRN
3778525, 2021.

[62] Q. Liu and X. Sun, “Research of web real-time communication
based on web socket,” 2012.

[63] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Foun-
dations of json schema,” in Proceedings of the 25th International
Conference on World Wide Web, 2016, pp. 263–273.

[64] T. Marrs, JSON at work: practical data integration for the web.
" O’Reilly Media, Inc.", 2017.

[65] Myers B.A., Rosson M.B., “Survey on user interface programming,”
in Proceedings SIGCHI’92: Human Factors in Computing Systems.
Monterrey, CA, 1992, pp. 195–202.

[66] (2022, Niv) Implementation of the interpreter of user interface
sc-models. [Online]. Available: https://github.com/ostis-ai/sc-web

[67] M. Sadouski, “Semantic-based design of an adaptive user interface,”
in International Conference on Open Semantic Technologies for
Intelligent Systems. Springer, 2022, pp. 165–191.

[68] J. Kong, W. Zhang, N. Yu, and X. Xia, “Design of human-
centric adaptive multimodal interfaces,” Int. J. Hum.-Comput. Stud.,
vol. 69, pp. 854–869, 12 2011.

[69] (2022, Nov) OSTIS Metasystem. [Online]. Available:
https://ims.ostis.net

Программная платформа для
интеллектуальных компьютерных систем

нового поколения
Зотов Н.В.

Данная работа посвящена проблемам обеспечения про-
ектирования семантически совместимых компьютерных си-
стем и их независимости от реализации платформ проекти-
рования таких систем. Работа показывает высокий уровень
значимости проектирования и реализации платформ нового
поколения, а также определяет решение задачи в виде про-
ектирования и разработки универсальных интерпретаторов
логико-семантических моделей систем по принципам, лежа-
щим в основе Технологии OSTIS. Вторая часть работы отра-
жает текущее состояние реализуемой платформы, приводит
достоинства и недостатки реализуемых в ней компонентов,
предлагает пути совершенствования платформы.

Received 28.10.2022

326


	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\013-420. Basic.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\24_OSTIS22_ID11_Zotov_SoftwPfN_GICS.pdf


