

 ISSN 2415-7740 (Print)

ISSN 2415-7074 (Online)

Belarusian State University of Informatics and Radioelectronics

Open Semantic Technologies

for Intelligent Systems

Research Papers Collection

Founded in 2017

Issue 6

Minsk

2022

UDC 004.822+004.89-027.31

The collection includes peer-reviewed articles approved by the Editorial board. Designed

for university professors, researchers, students, graduate students, undergraduates, as well as

for specialists of enterprises in the field of intelligent systems design.

E d i t o r i a l b o a r d :

V. V. Golenkov – Editor-in-chief,

I. S. Azarov, V. A. Golovko, A. N. Gordey, N. A. Guliakina,

V. V. Krasnoproshin, A. N. Kurbatsky, B. M. Lobanov, B. N. Panshin,

V. B. Taranchuk, L. A. Tarasevich, D. V. Shunkevich

E d i t o r i a l a d d r e s s :

220005, Minsk, Platonova str., 39, rm. 606 b

Phone: +375 (17) 293-80-92

E-mail: ostisconf@gmail.com

Web-site: http://proc.ostis.net

The collection is included in the List of scientific publications of the Republic of Belarus for

publishing the results of dissertation research in the technical field of science (computer science,

computer technology and management)

The collection is included in the Russian Science Citation Index

 © Belarusian State University of

Informatics and Radioelectronics, 2022

mailto:ostisconf@gmail.com

 ISSN 2415-7740 (Print)

ISSN 2415-7074 (Online)

Учреждение образования

«Белорусский государственный университет

информатики и радиоэлектроники»

Открытые семантические технологии

проектирования интеллектуальных систем

Сборник научных трудов

Основан в 2017 году

Выпуск 6

Минск

2022

УДК 004.822+004.89-027.31

Сборник включает прошедшие рецензирование и утвержденные Редакционной

коллегией статьи.

Предназначен для преподавателей высших учебных заведений, научных

сотрудников, студентов, аспирантов, магистрантов, а также для специалистов

предприятий в сфере проектирования интеллектуальных систем.

Р е д а к ц и о н н а я к о л л е г и я :

В. В. Голенков – главный редактор,

И. С. Азаров, В. А. Головко, А. Н. Гордей, Н. А. Гулякина,

В. В. Краснопрошин, А. Н. Курбацкий, Б. М. Лобанов, Б. Н. Паньшин,

В. Б. Таранчук, Л. А. Тарасевич, Д. В. Шункевич

А д р е с р е д а к ц и и :

220005, г. Минск, ул. Платонова 39, каб. 606 б

Телефон: +375(17)293-80-92

Электронный адрес: ostisconf@gmail.com

Сайт: http://proc.ostis.net

Сборник включён в Перечень научных изданий Республики Беларусь для опубликования

результатов диссертационных исследований по технической отрасли науки (информатика,

вычислительная техника и управление)

Сборник включён в Российский индекс научного цитирования

 © УО «Белорусский государственный

университет информатики

и радиоэлектроники», 2022

mailto:ostisconf@gmail.com

TABLE OF CONTENTS

FOREWORD 11

FACTORS THAT DETERMINE THE LEVEL OF INTELLIGENCE OF CYBERNETIC

SYSTEMS

Alexandr Zagorskiy

13

NEXT-GENERATION INTELLIGENT COMPUTER SYSTEMS AND TECHNOLOGY OF

COMPLEX SUPPORT OF THEIR LIFE CYCLE

Vladimir Golenkov, Natalya Gulyakina

27

GENERAL-PURPOSE SEMANTIC REPRESENTATION LANGUAGE AND SEMANTIC

SPACE

Valerian Ivashenko

41

FAMILY OF EXTERNAL LANGUAGES OF NEXT-GENERATION COMPUTER SYSTEMS,

CLOSE TO THE LANGUAGE OF THE INTERNAL SEMANTIC REPRESENTATION OF

KNOWLEDGE

Alexandra Zhmyrko

65

REPRESENTATION OF FORMAL ONTOLOGIES OF BASIC ENTITY CLASSES IN

INTELLIGENT COMPUTER SYSTEMS

Stanislau Butrin

81

STRUCTURE OF KNOWLEDGE BASES OF NEXT-GENERATION INTELLIGENT

COMPUTER SYSTEMS: A HIERARCHICAL SYSTEM OF SUBJECT DOMAINS AND

THEIR CORRESPONDING ONTOLOGIES

Kseniya Bantsevich

87

MEANS OF FORMAL DESCRIPTION OF SYNTAX AND DENOTATIONAL SEMANTICS

OF VARIOUS LANGUAGES IN NEXT-GENERATION INTELLIGENT COMPUTER

SYSTEMS

Artem Goylo, Sergei Nikiforov

99

HYBRID PROBLEM SOLVERS OF INTELLIGENT COMPUTER SYSTEMS OF A NEW

GENERATION

Daniil Shunkevich

119

SEMANTIC THEORY OF PROGRAMS IN NEXT-GENERATION INTELLIGENT

COMPUTER SYSTEMS

Nikita Zotov

145

NON-PROCEDURAL PROBLEM-SOLVING MODELS IN NEXT-GENERATION

INTELLIGENT COMPUTER SYSTEMS

Maksim Orlov, Anastasia Vasilevskaya

161

CONVERGENCE AND INTEGRATION OF ARTIFICIAL NEURAL NETWORKS WITH

KNOWLEDGE BASES IN NEXT-GENERATION INTELLIGENT COMPUTER SYSTEMS

Mikhail Kovalev, Aliaksandr Kroshchanka, Vladimir Golovko

173

DEEP NEURAL NETWORKS APPLICATION IN NEXT-GENERATION INTELLIGENT

COMPUTER SYSTEMS

Aliaksandr Kroshchanka

187

AUTOMATIC CONSTRUCTION OF CLASSIFIERS BY KNOWLEDGE ECOSYSTEM

AGENTS

Viktor Krasnoproshin, Vadim Rodchenko, Anna Karkanitsa

195

5

THE STRUCTURE OF NEXT-GENERATION INTELLIGENT COMPUTER SYSTEM

INTERFACES

Mikhail Sadouski

199

NATURAL LANGUAGE INTERFACES OF NEXT-GENERATION INTELLIGENT

COMPUTER SYSTEMS

Artem Goylo, Sergei Nikiforov

209

ONTOLOGICAL APPROACH TO THE DEVELOPMENT OF NATURAL LANGUAGE

INTERFACE FOR INTELLIGENT COMPUTER SYSTEMS

Longwei Qian

217

AUDIO INTERFACE OF NEXT-GENERATION INTELLIGENT COMPUTER SYSTEMS

Vadim Zahariev, Kuanysh Zhaksylyk, Denis Likhachov, Nick Petrovsky, Maxim Vashkevich,

Elias Azarov

239

3D REPRESENTATION OF OBJECTS IN NEW GENERATION INTELLIGENT COMPUTER

SYSTEMS

Katsiaryna Halavataya, Aliaksandr Halavaty

251

COMPREHENSIVE LIBRARY OF REUSABLE SEMANTICALLY COMPATIBLE

COMPONENTS OF NEXT-GENERATION INTELLIGENT COMPUTER SYSTEMS

Maksim Orlov

261

METHODS AND TOOLS FOR DESIGNING AND ANALYZING THE QUALITY OF

KNOWLEDGE BASES OF NEXT-GENERATION INTELLIGENT COMPUTER SYSTEMS

Stanislau Butrin

273

METHODOLOGY AND TOOLS FOR COMPONENT INTERFACE DESIGN OF NEXT-

GENERATION INTELLIGENT COMPUTER SYSTEMS

Mikhail Sadouski, Alexandra Zhmyrko

279

UNIVERSAL MODEL OF INTERPRETING LOGICAL-SEMANTIC MODELS OF

INTELLIGENT COMPUTER SYSTEMS OF A NEW GENERATION

Daniil Shunkevich

285

SOFTWARE PLATFORM FOR NEXT-GENERATION INTELLIGENT COMPUTER

SYSTEMS

Nikita Zotov

297

PROBLEMS AND PROSPECTS OF AUTOMATING VARIOUS TYPES AND FIELDS OF

HUMAN ACTIVITY WITH THE HELP OF NEXT-GENERATION INTELLIGENT

COMPUTER SYSTEMS

Vladimir Golenkov, Valery Taranchuk, Mikhail Kovalev

327

PRINCIPLES FOR IMPLEMENTING THE ECOSYSTEM OF NEXT-GENERATION

INTELLIGENT COMPUTER SYSTEMS

Alexandr Zagorskiy

347

METASYSTEM OF THE OSTIS TECHNOLOGY AND THE STANDARD OF THE OSTIS

TECHNOLOGY

Kseniya Bantsevich

357

INTEGRATION OF COMPUTER ALGEBRA TOOLS INTO OSTIS APPLICATIONS

Valery Taranchuk

369

SEMANTICALLY COMPATIBLE OSTIS EDUCATIONAL AUTOMATIVE SYSTEMS

Natalya Gulyakina, Alena Kazlova

375

6

A SEMANTICS-BASED APPROACH TO AUTOMATIC GENERATION OF TEST

QUESTIONS AND AUTOMATIC VERIFICATION OF USER ANSWERS IN THE

INTELLIGENT TUTORING SYSTEMS

Wenzu Li

381

ONTOLOGICAL APPROACH TO BATCH ENTERPRISE WITHIN INDUSTRY 4.0

Valery Taberko, Dzmitry Ivaniuk

395

SOFTWARE-TECHNOLOGICAL COMPLEX FOR ADAPTIVE CONTROL OF A

PRODUCTION CYCLE OF ROBOTIC MANUFACTURING

Viktor Smorodin, Vladislav Prokhorenko

401

TOWARDS SEMANTIC REPRESENTATION OF THE IOT ECOSYSTEM AND SMART

HOME APPLICATIONS

Alexey Andrushevich, Iosif Vojteshenko

405

NEXT-GENERATION INTELLIGENT GEOINFORMATION SYSTEMS

Sergei Samodumkin

411

INFORMATION SECURITY IN INTELLIGENT SEMANTIC SYSTEMS

Valery Chertkov

417

AUTHOR INDEX 421

7

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ 11

ФАКТОРЫ, ОПРЕДЕЛЯЮЩИЕ УРОВЕНЬ ИНТЕЛЛЕКТА КИБЕРНЕТИЧЕСКИХ

СИСТЕМ

Загорский А. Г.

13

ИНТЕЛЛЕКТУАЛЬНЫЕ КОМПЬЮТЕРНЫЕ СИСТЕМЫ НОВОГО ПОКОЛЕНИЯ И

ТЕХНОЛОГИЯ КОМПЛЕКСНОЙ ПОДДЕРЖКИ ИХ ЖИЗНЕННОГО ЦИКЛА

Голенков В.В., Гулякина Н.А.

27

УНИВЕРСАЛЬНЫЙ ЯЗЫК СМЫСЛОВОГО ПРЕДСТАВЛЕНИЯ ЗНАНИЙ И

СМЫСЛОВОЕ ПРОСТРАНСТВО

Ивашенко В. П.

41

СЕМЕЙСТВО ВНЕШНИХ ЯЗЫКОВ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ

СИСТЕМ НОВОГО ПОКОЛЕНИЯ, БЛИЗКИХ ЯЗЫКУ ВНУТРЕННЕГО

СМЫСЛОВОГО ПРЕДСТАВЛЕНИЯ ЗНАНИЙ

Жмырко А. В.

65

ПРЕДСТАВЛЕНИЕ ФОРМАЛЬНЫХ ОНТОЛОГИЙ БАЗОВЫХ КЛАССОВ

СУЩНОСТЕЙ В ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМАХ

Бутрин С.В.

81

СТРУКТУРА БАЗ ЗНАНИЙ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМ

НОВОГО ПОКОЛЕНИЯ: ИЕРАРХИЧЕСКАЯ СИСТЕМА ПРЕДМЕТНЫХ ОБЛАСТЕЙ

И СООТВЕТСТВУЮЩИХ ИМ ОНТОЛОГИЙ

Банцевич К. А.

87

СРЕДСТВА ФОРМАЛЬНОГО ОПИСАНИЯ СИНТАКСИСА И ДЕНОТАЦИОННОЙ

СЕМАНТИКИ РАЗЛИЧНЫХ ЯЗЫКОВ В ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ

СИСТЕМАХ НОВОГО ПОКОЛЕНИЯ

Гойло А. А., Никифоров С. А.

99

ГИБРИДНЫЕ РЕШАТЕЛИ ЗАДАЧ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ

СИСТЕМ НОВОГО ПОКОЛЕНИЯ

Шункевич Д. В.

119

СЕМАНТИЧЕСКАЯ ТЕОРИЯ ПРОГРАММ В ИНТЕЛЛЕКТУАЛЬНЫХ

КОМПЬЮТЕРНЫХ СИСТЕМАХ НОВОГО ПОКОЛЕНИЯ

Зотов Н. В.

145

НЕПРОЦЕДУРНЫЕ МОДЕЛИ РЕШЕНИЯ ЗАДАЧ В ИНТЕЛЛЕКТУАЛЬНЫХ

КОМПЬЮТЕРНЫХ СИСТЕМАХ НОВОГО ПОКОЛЕНИЯ

Орлов М. К., Василевская А. П.

161

КОНВЕРГЕНЦИЯ И ИНТЕГРАЦИЯ ИСКУССТВЕННЫХ НЕЙРОННЫХ СЕТЕЙ С

БАЗАМИ ЗНАНИЙ В ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМАХ

НОВОГО ПОКОЛЕНИЯ

Ковалёв М.В., Крощенко А.А., Головко В.А.

173

ПРИМЕНЕНИЕ ГЛУБОКИХ НЕЙРОННЫХ СЕТЕЙ В ИНТЕЛЛЕКТУАЛЬНЫХ

КОМПЬЮТЕРНЫХ СИСТЕМАХ НОВОГО ПОКОЛЕНИЯ

Крощенко А. А.

187

8

АВТОМАТИЧЕСКОЕ ПОСТРОЕНИЕ КЛАССИФИКАТОРОВ АГЕНТАМИ

ЭКОСИТЕМЫ ЗНАНИЙ

Родченко В.Г., Краснопрошин В.В., Карканица А.В.

195

СТРУКТУРА ИНТЕРФЕЙСОВ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМ

НОВОГО ПОКОЛЕНИЯ

Садовский М. Е.

199

ЕСТЕСТВЕННО-ЯЗЫКОВЫЕ ИНТЕРФЕЙСЫ ИНТЕЛЛЕКТУАЛЬНЫХ

КОМПЬЮТЕРНЫХ СИСТЕМ НОВОГО ПОКОЛЕНИЯ

Никифоров С. А., Гойло А. А.

209

ОНТОЛОГИЧЕСКИЙ ПОДХОД К РАЗРАБОТКЕ ЕСТЕСТВЕННО-ЯЗЫКОВОГО

ИНТЕРФЕЙСА

Цянь Л.

217

АУДИО-ИНТЕРФЕЙС ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМ

НОВОГО ПОКОЛЕНИЯ

Захарьев В.А., Жаксылык К.Ж., Лихачев Д.С., Петровский Н.А., Вашкевич М.И.,

Азаров И.С.

239

3D-ПРЕДСТАВЛЕНИЕ ОБЪЕКТОВ В ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ

СИСТЕМАХ НОВОГО ПОКОЛЕНИЯ

Головатая Е.А., Головатый А.И.

251

КОМПЛЕКСНАЯ БИБЛИОТЕКА МНОГОКРАТНО ИСПОЛЬЗУЕМЫХ

СЕМАНТИЧЕСКИ СОВМЕСТИМЫХ КОМПОНЕНТОВ ИНТЕЛЛЕКТУАЛЬНЫХ

КОМПЬЮТЕРНЫХ СИСТЕМ НОВОГО ПОКОЛЕНИЯ

Орлов М. К.

261

МЕТОДИКА И СРЕДСТВА ПРОЕКТИРОВАНИЯ И АНАЛИЗА КАЧЕСТВА БАЗ

ЗНАНИЙ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМ НОВОГО

ПОКОЛЕНИЯ

Бутрин С.В.

273

МЕТОДИКА И СРЕДСТВА КОМПОНЕНТНОГО ПРОЕКТИРОВАНИЯ

ИНТЕРФЕЙСОВ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМ НОВОГО

ПОКОЛЕНИЯ

Садовский М. Е., Жмырко А. В.

279

УНИВЕРСАЛЬНАЯ МОДЕЛЬ ИНТЕРПРЕТАЦИИ ЛОГИКО-СЕМАНТИЧЕСКИХ

МОДЕЛЕЙ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМ НОВОГО

ПОКОЛЕНИЯ

Шункевич Д. В.

285

ПРОГРАММНАЯ ПЛАТФОРМА ДЛЯ ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ

СИСТЕМ НОВОГО ПОКОЛЕНИЯ

Зотов Н. В.

297

ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ АВТОМАТИЗАЦИИ РАЗЛИЧНЫХ ВИДОВ И

ОБЛАСТЕЙ ЧЕЛОВЕЧЕСКОЙ ДЕЯТЕЛЬНОСТИ С ПОМОЩЬЮ

ИНТЕЛЛЕКТУАЛЬНЫХ КОМПЬЮТЕРНЫХ СИСТЕМ НОВОГО ПОКОЛЕНИЯ

Голенков В.В., Таранчук В.Б., Ковалёв М.В.

327

ПРИНЦИПЫ РЕАЛИЗАЦИИ ЭКОСИСТЕМЫ ИНТЕЛЛЕКТУАЛЬНЫХ

КОМПЬЮТЕРНЫХ СИСТЕМ НОВОГО ПОКОЛЕНИЯ

Загорский А. Г.

347

9

МЕТАСИСТЕМА ТЕХНОЛОГИИ OSTIS И СТАНДАРТ ТЕХНОЛОГИИ OSTIS

Банцевич К. А.

357

ИНТЕГРАЦИЯ ИНСТРУМЕНТОВ КОМПЬЮТЕРНОЙ АЛГЕБРЫ В ПРИЛОЖЕНИЯ

OSTIS

Таранчук В. Б.

369

СЕМАНТИЧЕСКИ СОВМЕСТИМЫЕ OSTIS-СИСТЕМЫ АВТОМАТИЗАЦИИ

ОБРАЗОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ

Гулякина Н. А., Козлова Е. И.

375

ОСНОВАННЫЙ НА СЕМАНТИКЕ ПОДХОД К АВТОМАТИЧЕСКОЙ ГЕНЕРАЦИИ

ТЕСТОВЫХ ВОПРОСОВ И АВТОМАТИЧЕСКОЙ ПРОВЕРКЕ ОТВЕТОВ

ПОЛЬЗОВАТЕЛЕЙ В ИНТЕЛЛЕКТУАЛЬНЫХ ОБУЧАЮЩИХ СИСТЕМАХ

Ли В.

381

ОНТОЛОГИЧЕСКИЙ ПОДХОД К РЕЦЕПТУРНОМУ ПРЕДПРИЯТИЮ В РАМКАХ

ИНДУСТРИИ 4.0

Таберко В.В., Иванюк Д.С.

395

ПРОГРАММНО-ТЕХНОЛОГИЧЕСКИЙ ИНСТРУМЕНТАРИЙ АДАПТИВНОГО

УПРАВЛЕНИЯ ТЕХНОЛОГИЧЕСКИМ ЦИКЛОМ РОБОТИЗИРОВАННОГО

ПРОИЗВОДСТВА

Смородин В. С., Прохоренко В. А.

401

О СЕМАНТИЧЕСКОМ ПРЕДСТАВЛЕНИИ ЭКОСИСТЕМЫ ИНТЕРНЕТА ВЕЩЕЙ И

ПРИЛОЖЕНИЙ УМНОГО ДОМА

Андрушевич А.А., Войтешенко И.С.

405

ИНТЕЛЛЕКТУАЛЬНЫЕ ГЕОИНФОРМАЦИОННЫЕ СИСТЕМЫ НОВОГО

ПОКОЛЕНИЯ

Самодумкин С. А.

411

ИНФОРМАЦИОННАЯ БЕЗОПАСНОСТЬ ИНТЕЛЛЕКТУАЛЬНЫХ

СЕМАНТИЧЕСКИХ СИСТЕМ

Чертков В. М.

417

АВТОРСКИЙ УКАЗАТЕЛЬ 421

10

FOREWORD

Research papers collection “Open Semantic Technology for Intelligent Systems” is devoted to

the flexible and compatible technologies development that ensure the rapid and high-quality design of

intelligent systems for various purposes.

The collection reflects research in the field of artificial intelligence in the following areas:

 Hybrid intelligent computer systems;

 Intelligent human-machine systems;

 Computer vision;

 Fuzzy computin ;g

 Intelligent agent ;s

 Intelligent automation;

 Knowledge management;

 Knowledge engineering;

 Ontological design;

 Semantic networks;

 Machine learning;

 Neural networks;

 Natural-language interface

The main focus of this issue is on the development of models, methods and tools that ensure the

semantic compatibility of intelligent computer systems and their ability to coordinate their activities in

the collective solution of complex problems.

In total, the collection contains 34 articles. The editors are thankful for all authors who sent their

articles. Scientific experts selected for publication the best of the submitted works, many of them were

revised in accordance with the comments of reviewers.

We are grateful our scientific experts for their great job in reviewing the articles in close

cooperation with the authors. Their work allowed to raise the level of scientific results presentation,

and also created a platform for further scientific discussions.

We hope that, as before, the collection will perform its main function — to promote active

cooperation between business, science and education in the field of artificial intelligence.

Editor-in-chief

Golenkov Vladimir

11

ПРЕДИСЛОВИЕ

Сборник научных трудов «Открытые семантические технологии проектирования

интеллектуальных систем» посвящен вопросам разработки гибких и совместимых технологий,

обеспечивающих быстрое и качественное построение интеллектуальных систем различного

назначения.

В сборнике отражены исследования в сфере искусственного интеллекта по следующим

направлениям:

• Гибридные интеллектуальные компьютерные системы;

• Интеллектуальные человеко-машинные системы;

• Компьютерное зрение;

• Нечеткие вычисления;

• Интеллектуальные агенты;

• Интеллектуальная автоматизация;

• Управление знаниями;

• Инженерия знаний;

• Онтологическое проектирование;

• Семантические сети;

• Машинное обучение;

• Искусственные нейронные сети;

• Естественно-языковой интерфейс.

Основной акцент в этом выпуске сборника сделан на разработку моделей, методов и

средств, обеспечивающих семантическую совместимость интеллектуальных компьютерных

систем и их способность координировать свою деятельность при коллективном решении

сложных задач.

В общей сложности сборник содержит 34 статьи. Редакция сборника благодарит всех

авторов, представивших свои статьи. Для публикации научными экспертами были отобраны

лучшие из представленных работ, многие из них были переработаны в соответствии с

замечаниями рецензентов.

Мы также благодарим экспертов за большой труд по рецензированию статей в тесном

взаимодействии с авторами, который позволил повысить уровень изложения научных

результатов, а также создал платформу для дальнейших научных дискуссий.

Надеемся, что, как и прежде, сборник будет выполнять свою основную функцию —

способствовать активному сотрудничеству между бизнесом, наукой и образованием в области

искусственного интеллекта.

Главный редактор

Голенков Владимир Васильевич

12

Factors that determine the level of intelligence
of cybernetic systems

Alexandr Zagorskiy
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: alexandr.zagorskiy.research@gmail.com

Abstract—In the article, a hierarchical system of prop-
erties of cybernetic systems that determine their quality
and allow formulating the requirements, that a cybernetic
system with strong intelligence must satisfy, is considered.
The quality level of cybernetic systems is determined by a
sufficiently large set of parameters of cybernetic systems.
Each of the parameters determines the quality level of the
cybernetic system in the corresponding aspect, indicating
the level of development of specific abilities and capabilities
of the cybernetic system. The obtained results will allow
assessing the quality level of cybernetic systems, as well as
determining the direction for development of a cybernetic
system to increase the level of intelligence.

Keywords—cybernetic system, cybernetic system intelli-
gence, cybernetic system quality level, multi-agent system,
computer system

I. INTRODUCTION

At present, the usage of intelligent systems in various
fields is becoming more and more relevant. The modern
technology of Artificial Intelligence is represented by
a variety of technologies focused on developing and
maintaining various types of components of intelligent
computer systems. Along with all their advantages, they
have a number of serious drawbacks associated with the
laboriousness of their development and maintenance. In
particular, these disadvantages include the following ones:

• lack of a metric to assess the current level of
intelligence of a particular system;

• lack of a standardized method for comparing the
level of intelligence of different systems;

• lack of understanding of how to increase the level
of intelligence of a cybernetic system.

To further increase the efficiency and level of practical
significance of intelligent computer systems in increasing
the level of automation of human activity [1], [2], it is
necessary to clarify possible directions for improving the
quality and level of intelligence in modern intelligent
computer systems.

This work is dedicated to clarifying the criteria and rel-
evant parameters that determine the quality of cybernetic
systems, their level of intelligence. Quality criteria are
touched upon not only for artificial cybernetic systems
(computer systems of various types) but also for natural

cybernetic systems, as well as various kinds of symbioses
of natural and artificial cybernetic systems.

II. PROBLEM DEFINITION

Intelligence is not defined in terms of matching human
reaction times, error rates, or exact responses, but instead,
the purpose is to build computer systems that exhibit the
full range of the cognitive capabilities we find in humans
[3]. From a formal point of view, intelligence is a set
of classes of cybernetic systems, each of which includes
cybernetic systems that are equivalent in terms of the
level and nature for the manifestation of intelligent prop-
erties (including abilities). Thus, the nature of intelligent
properties and the level of their development may be
different for different cybernetic systems. Accordingly,
cybernetic systems can be compared with each other.

The main property of a cybernetic system is the level
of its intelligence. Intelligence is an integral characteristic
that determines the level of efficiency during interaction of
a cybernetic system with the environment of its existence.
The process of evolution of cybernetic systems should be
considered as a process of increasing the level of their
quality in a number of properties and, first of all, as a
process of increasing the level of intelligence of these
cybernetic systems. At the same time, we can talk about
the evolution of each specific cybernetic system in the
course of its “life activity”, as well as the evolution of a
whole class of cybernetic systems, when new instances of
this class are more intelligent than their predecessors. In
this aspect, the evolution of computer systems (artificial
cybernetic systems) can be considered.

Various system metrics have been proposed for measur-
ing the quality of computer-based systems. As computer-
based systems grow in complexity with many subsystems
or components, measuring their quality in multiple
dimensions is a challenging problem [4]. Quality metrics
involve a set of measures that can describe the attributes
of a system in terms that are independent of the structure
which leads to these attributes; these measures should be
quantified numerically and should have a significant level
of accuracy and reliability [5].

Researchers of artificial intelligence have traditionally
defined intelligence as an inherent property of a machine

13

[6]. At the moment, there are no standardized metrics that
allow assessing the level of intelligence of a cybernetic
system, therefore, there is no way to compare different
systems. The problem of identifying criteria for the
intelligence of systems is considered in a number of works
[7], [8], [9], [10], [11]. Nevertheless, for the practical
implementation of intelligent computer systems, it is
necessary to detail and refine these properties, trying
to reduce them to more constructive, transparent, and
understandable properties for implementation. It is impor-
tant to clarify what other properties of cybernetic systems
determine the level and nature of their intelligence. It
is essential to clarify the point by which the level of
intelligence of a cybernetic system can be increased.

III. PROPOSED APPROACH

As part of this work, it is proposed to use an OSTIS
Technology [12] as a basis, the principles of which make it
possible to formally clarify and agree on the interpretation
of such concepts as cybernetic system, quality of a
cybernetic system, multi-agent system, and others within
the corresponding set of ontologies. Based on the results
obtained, it is necessary to clarify properties that affect
the level of intelligence.

The OSTIS Technology is based on a universal way
of semantic representation of information in the memory
of intelligent computer systems, called an SC-code.
SC-code texts are unified semantic networks with a
basic set-theoretic interpretation. The elements of such
semantic networks are called sc-elements (sc-nodes and
sc-connectors, which, in turn, depending on orientation,
can be sc-arcs or sc-edges). The Alphabet of the SC-code
consists of five main elements, on the basis of which SC-
code constructions of any complexity are built, including
more specific types of sc-elements (for example, new
concepts). The memory that stores SC-code constructions
is called semantic memory, or sc-memory.

Within the technology, several universal variants of
visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant).

The basis of the knowledge base within the OSTIS
Technology is a hierarchical system of subject domains
and ontologies. Based on this, in order to solve the above
problems, it is proposed to implement a complex Subject
domain of cybernetic systems and the corresponding
Ontology of the quality of cybernetic systems.

Within this article, fragments of structured texts in the
SCn code [13] will often be used, which are simultane-
ously fragments of the source texts of the knowledge base,
understandable both to a human and to a machine. This
allows making the text more structured and formalized,
while maintaining its readability. The symbol “:=” in
such texts indicates alternative (synonymous) names of
the described entity, revealing in more detail certain of
its features.

The development of the specified family of sc-models
of subject domains and ontologies will allow:

• explicitly linking the class of the system and the
parameters corresponding to this system;

• assessing the intelligence level for a system of a
particular class;

• comparing systems of different classes in terms of
the level of intelligence, i.e. providing an ability to
solve more complex problems;

• making automation tools for assessing the intelli-
gence level for the system.

Further, fragments of sc-models of the specified subject
domains and ontologies are considered in more detail.

IV. TYPOLOGY OF CYBERNETIC SYSTEMS

The term “cybernetic system” has a clear quantitative
definition. It is a system that dynamically matches
acquired information to selected actions relative to a
computational issue that defines the essential purpose
of the system or machine [14]. A cybernetic system is
a system that is able to control its actions, adapting
to changes in the state of the external environment,
the environment of its “habitat”. The purpose of such
adaptation can be both self-preservation (preserving own
integrity and “comfort” of existence by keeping own
“vital” parameters within certain limits of “comfort”)
and the formation of certain reactions, influences on
the external environment in response to certain stimuli,
situations, or events in the external environment.

The cybernetic system is able to evolve in the direction
of:

• studying its external environment at least to predict
the consequences of its own influences on the
external environment, as well as to predict changes
in the external environment that do not depend on
its own influences;

• studying oneself and, in particular, its interaction
with the external environment [15];

• creating technologies, methods, means, that ensure a
change in their external environment, the conditions
of their existence in their own interests.

The cybernetic system is an adaptive, purposeful
system, an active subject of the independent life. The
functioning of such a system is based on the processing of
information about the environment in which this system
exists. It is able to monitor, analyze, and actively influence
its state and the state of the environment.

The classification of cybernetic systems on the basis
of naturalness or artificiality is given bellow.

A feature of computer systems is that they can play
the “role” not only of the products of the corresponding
actions for the implementation of these systems, but
they themselves are subjects capable of performing
(automating) a wide range of actions. At the same

14

cybernetic system
⇒ subdividing*:

Attribute of naturalness or artificiality of
cybernetic systems
= {{{• natural cybernetic system

⊃ human
• artificial cybernetic system
• symbiosis of natural and artificial

cybernetic systems
⊃ community of computer

systems and humans
}}}

time, the intellectualization of these systems significantly
expands this spectrum.

The structural classification of cybernetic systems is
given bellow.

cybernetic system
⇒ subdividing*:

Structural classification of cybernetic systems
= {{{• simple cybernetic system

• individual cybernetic system
• multi-agent system

}}}

The development level for a simple cybernetic system
is below the level of individual cybernetic systems. It is a
specialized means of information processing, a specialized
problem solver that most often implements (interprets)
one problem-solving method and, accordingly, solves
only problems of a given class of problems. A simple
cybernetic system can be a component built into an
individual cybernetic system, and it can also be an agent
of a multi-agent system, which is a collective of simple
cybernetic systems.

An individual cybernetic system is a cybernetic system
with a level of development based on the transition from
a specialized problem solver to an individual solver that
provides the interpretation of an arbitrary (non-fixed)
set of problems-solving methods (programs), provided
that these methods are introduced (loaded, recorded) in
memory of a cybernetic system. Such a system is capable
of being independent, able to “survive” on its own. The
features of individual cybernetic systems are:

• the presence of memory designed to store at least
interpreted methods, programs and provide correc-
tion of stored methods, their deletion from memory,
and the introduction of new methods into memory;

• the ability to “re-program” a cybernetic system easily
to solve other problems, which is ensured by the
presence of a universal problem-solving model and,

accordingly, a universal interpreter of any models
represented in the corresponding language;

• the presence of even simple means of communi-
cation, information exchange with other cybernetic
systems (for example, with humans);

• the ability to enter into various collectives of cyber-
netic systems.

A multi-agent system is a collective of interacting
autonomous cybernetic systems that have a common
operation environment [16]. The classification of multi-
agent systems is given bellow.

multi-agent system
⇒ subdividing*:

{{{• single-level multi-agent system
• hierarchical multi-agent system

}}}

A single-level multi-agent system implements either
one model of parallel (distributed) problem solving of the
corresponding class or a combination of a fixed number
of different and parallel implemented problem-solving
models. A hierarchical multi-agent system consists of
agents, which can be individual cybernetic systems,
collectives of individual cybernetic systems, as well as
collectives consisting of individual cybernetic systems
and collectives of individual cybernetic systems.

V. STRUCTURE OF A CYBERNETIC SYSTEM

The generalized decomposition of the cybernetic system
is represented in Figure 1:

cybernetic system
⇒ generalized decomposition*:

{{{• information stored in the memory of a
cybernetic system

• abstract memory of a cybernetic system
• problem solver of a cybernetic system
• physical shell of a cybernetic system

}}}

The information stored in the memory of a cybernetic
system is an information model of the environment
in which this cybernetic system operates, exists, and
functions.

The abstract memory of a cybernetic system is the
internal abstract information environment of a cybernetic
system, which is a dynamic information construction.
Each state of such an information structure is nothing but
the information stored in the memory of the cybernetic
system at the appropriate moment in time.

The problem solver of a cybernetic system is a
combination of all the skills and abilities acquired by a

15

Figure 1. The structure of the cybernetic system

cybernetic system by the moment in question. A problem
solver is a subject built into a cybernetic system that is
capable of performing purposeful, “conscious” actions
in the external environment of this cybernetic system, as
well as in its internal environment (in abstract memory).
The classification of actions of a cybernetic system is
represented below:

action of a cybernetic system
⇒ subdividing*:

{{{• external action of a cybernetic system
• action of a cybernetic system performed

in its own physical shell
• action of a cybernetic system performed

in its own abstract memory
}}}

Each complex action performed by a cybernetic system
outside its own abstract memory includes sub-actions
performed in the specified abstract memory. This means
that all external actions of a cybernetic system are
controlled by its internal actions (actions in abstract
memory).

It should be noted that the conventionally allocated
component of the cybernetic system problem solver is the

interface of the cybernetic system. It provides a solution
to interface problems aimed at the direct implementation
of the interaction of a cybernetic system with its external
environment. Such an interface should be distinguished
from the physical provision of the interface of a cybernetic
system.

The physical shell of a cybernetic system is a part of
a cybernetic system that is an “intermediary” between
its internal environment (memory in which information
of a cybernetic system is stored and processed) and its
external environment. The generalized decomposition of
the physical shell of a cybernetic system is given bellow.

physical shell of a cybernetic system
⇒ generalized decomposition*:

{{{• cybernetic system memory
• cybernetic system processor
• physical provision of the cybernetic

system interface
• cybernetic system physical shell

}}}

In this context, the memory of a cybernetic system
is understood as a physical shell, the implementation
of the abstract memory of a cybernetic system, within
which the cybernetic system forms and uses, processes
an information model of its external environment.

Not every cybernetic system possesses memory. In
cybernetic systems without memory, information process-
ing is reduced to the exchange of signals between the
components of these systems. The occurrence of memory
in cybernetic systems as a medium for “centralized” stor-
age and processing of information is the most important
stage in their evolution. The fact of the occurrence of
memory in a cybernetic system significantly increases the
level of adaptability of a cybernetic system to various
changes in its environment. The principles of organizing
the memory of a cybernetic system can be different
(associative, addressable, structurally fixed/structurally
adjustable, non-linear/linear). Its quality largely depends
on the organization of memory.

The cybernetic system processor is a hardware-
implemented interpreter of the methods and programs
stored in the memory of a cybernetic system, correspond-
ing to the problem-solving model basic for this cybernetic
system.

An example of the physical shell of artificial cybernetic
systems is a computer. A computer for intelligent com-
puter systems must be an effective hardware interpreter
of any problem-solving models, both intelligent problems
and fairly simple ones, since an intelligent system should
be able to solve any problems.

16

VI. COMPLEX OF PROPERTIES THAT DETERMINES THE
OVERALL QUALITY LEVEL OF CYBERNETIC SYSTEMS

The quality of a cybernetic system is an integral,
comprehensive assessment of the development level for a
cybernetic system. This is a property, a characteristic
of cybernetic systems, a sign of their classification,
which allows placing these systems along the “steps” of
some conditional “evolutionary ladder”. Each such “step”
includes cybernetic systems that have the same level of
development, each of which corresponds to its own set of
values of additional properties for cybernetic systems that
refine (detail, specialize) the corresponding development
level of cybernetic systems. Such an evolutionary ap-
proach to the consideration of cybernetic systems makes
it possible, firstly, to detail the directions for evolution of
cybernetic systems and, secondly, to clarify the place of
this evolution, where and due to which the transition from
non-intelligent cybernetic systems to intelligent ones is
carried out.

The evolutionary approach to considering the diversity
of cybernetic systems is based on the position that ideal
cybernetic systems do not exist, but there is a constant
striving for the ideal, for greater perfection. It is important
to clarify what specifically in each cybernetic system
should be changed in order to bring this system to a
more perfect form.

So, for example, the development of computer system
design technologies should be aimed at the transition
to such new architectural and functional principles un-
derlying computer systems that provide a significant
reduction in the complexity of their development and
reduce development time, as well as provide a significant
increase in the level of intelligence and, in particular, the
level of learnability of the developed computer systems,
for example, by moving from supporting learning with
a teacher to implementing effective self-learning (to
automating the organization of self-study).

To refine the concept of the cybernetic system quality,
it is necessary to set a metric of the cybernetic system
quality and build a hierarchical system of properties, pa-
rameters, features, that determine the quality of cybernetic
systems.

A. Complex of properties that determine the quality of
the physical shell of a cybernetic system

The quality of the physical shell of the cybernetic
system is the integral quality of the physical, hardware
basis of the cybernetic system. The selected set of
properties that determine the quality of the physical shell
of a cybernetic system is given below:

It is essential that the memory provides a high level of
flexibility to the specified information model. It is also
important that this information model should be a model
not only of the external environment of the cybernetic
system but also a model of this information model

cybernetic system quality
⇒ prerequisite property*:

• quality of the physical shell of a
cybernetic system

• quality of information stored in the
memory of a cybernetic system

• quality of the problem solver of a
cybernetic system

• hybridity of a cybernetic system
⇒ private property*:

{{{• variety of knowledge types stored
in the memory of a cybernetic
system

• variety of problem-solving models
• variety of types of sensors and

effectors
}}}

• adaptability of the cybernetic system to
its improvement

• cybernetic system performance
• reliability of the cybernetic system
• cybernetic system interoperability

quality of the physical shell of a cybernetic system
⇒ prerequisite property*:

• memory quality of a cybernetic system
• cybernetic system processor quality
• quality of cybernetic system sensors
• quality of cybernetic system effectors
• adaption of the physical shell of a

cybernetic system to its improvement
• ease of transportation of the cybernetic

system
• reliability of the physical shell of a

cybernetic system

itself – a description of its current situation, prehistory,
regularities.

memory quality of a cybernetic system
⇒ prerequisite property*:

• ability of the memory of a cybernetic
system to provide storage of high-quality
information

• ability of a cybernetic system memory to
provide a high quality problem solver

• memory size

The fact of the occurrence of memory in a cybernetic
system is the most important stage in its evolution.
Further development of the cybernetic system memory,

17

which ensures the storage of more and more high-
quality information stored in memory and more and
more high-quality organization of the processing of this
information, i.e. the transition to supporting more and
more high-quality information processing models, is the
most important factor in the evolution of cybernetic
systems.

The ability of the memory of a cybernetic system
to ensure the functioning of a high-quality problem
solver is based on the quality of access to information
stored in the cybernetic system memory, the logical
and semantic flexibility of the memory of a cybernetic
system, the ability of the memory of a cybernetic system
to provide interpretation of a wide variety of problem-
solving models.

The quality of a cybernetic system processor is deter-
mined by its ability to provide a high quality problem
solver.

ability of the cybernetic system processor to ensure the
functioning of a high-quality problem solver
⇒ prerequisite property*:

• variety of problem-solving models
interpreted by the cybernetic system
processor

• simplicity and quality of interpretation by
the system processor of a wide variety of
problem-solving models

• providing high-quality control of
information processes in memory by the
cybernetic system processor

• cybernetic system processor speed

The maximum level of quality of the cybernetic system
processor in terms of the variety of problem-solving
models interpreted by the cybernetic system processor is
its universality, i.e. its fundamental ability to interpret any
model for solving both intelligent and non-intelligent
problems. Simplicity is determined by the degree of
proximity of the interpreted problem-solving models
to the “physical” level of organizing the cybernetic
system processor. High-quality control of information
processes in memory implies a competent combination of
such aspects of process management as centralization
and decentralization [17], synchrony and asynchrony,
sequence and parallelism.

The quality of sensors and effectors of a cybernetic
system is reduced to the variety of types of sensors and
effectors in a cybernetic system, i.e. to the variety of
means of perception and influence on information about
the current state of the external environment and its own
physical shell. The adaption of the physical shell of the
cybernetic system to its improvement is determined by

the flexibility and stratification of the physical shell of
the cybernetic system.

B. Complex of properties that determine the quality of
information stored in the memory of a cybernetic system

The quality of the information model for the “habitat”
of a cybernetic system, in particular, is determined by:

• the correctness of this model, the absence of errors
in it;

• the adequacy of this model;
• completeness, sufficiency of the information con-

tained in it for the effective functioning of the
cybernetic system;

• structuredness and systematization.
The most important stage in the evolution of the

information model for the environment of a cybernetic
system is the transition from an insufficiently complete
and unsystematized information model of the environment
to a knowledge base.

The correctness/incorrectness of information is the
level of adequacy of the stored information of the
environment in which the cybernetic system exists and
the information model of which this stored information
is. The consistency/inconsistency of information means
the level of presence in the stored information of various
types of contradictions and, in particular, errors. Errors in
the stored information can be syntactic and semantic,
contradicting some rules that may not be explicitly
represented in memory and are considered true.

The completeness/incompleteness of information is the
degree to which the information stored in the memory of a
cybernetic system describes the environment of existence
of this system and the methods used by it for solving
problems sufficiently fully so that the cybernetic system
can actually solve the entire set of problems corresponding
to it. The more complete the information stored in the
memory of a cybernetic system is, the more complete
the information support of the activity of this system,
the more effective (of higher quality) this activity itself
is. The completeness is determined by the structuring of
information and the variety of knowledge types stored in
the memory of a cybernetic system.

The unambiguity/ambiguity of information is deter-
mined by the variety of forms of information duplication
and the frequency of information duplication.

The integrity/non-integrity of information is the level
of meaningful informativeness of information, the level of
how semantically coherent the information is, how fully
all the entities described in memory are specified (by
describing the necessary set of relations of these entities
with other entities being described), how rarely or often
information holes occur within the stored information
corresponding to the apparent insufficiency of some
specifications. Examples of information holes are:

• missing method for solving common problems;

18

quality of information stored in the memory of a
cybernetic system
⇒ prerequisite property*:

• semantic power of the language for
representing information in the memory
of a cybernetic system

• amount of information immersed into the
memory of a cybernetic system

• degree of convergence and integration of
various types of knowledge stored in the
memory of a cybernetic system

• stratification of information stored in the
memory of a cybernetic system

• simplicity and locality of performing
semantically integral operations on
information, stored in the memory of a
cybernetic system

• correctness/incorrectness of information
stored in the memory of a cybernetic
system

• unambiguity/ambiguity of information
stored in the memory of a cybernetic
system

• integrity/non-integrity of information
stored in the memory of a cybernetic
system

• compliance/incompliance of information
stored in the memory of a cybernetic
system

• reliability/unreliability of information
stored in the memory of a cybernetic
system

• accuracy/inaccuracy of information stored
in the memory of a cybernetic system

• clarity/fuzziness of information stored in
the memory of a cybernetic system

• certainty/uncertainty of information stored
in the memory of a cybernetic system

• missing definition of the concept being used;
• insufficiently detailed specification of frequently

considered entities.
The compliance/incompliance of information means

the variety of forms and the total amount of information
garbage that is part of the information stored in the
memory of a cybernetic system. Information garbage
is understood as an information fragment that is part of
information, the removal of which will not significantly
complicate the operation of a cybernetic system. Examples
of information garbage are:

• information that is not frequently needed but can be
easily inferred, when necessary;

• information that has expired.

The semantic power of the language for representing
information in the memory of a cybernetic system is
determined by the hybrid nature of the information stored
in the memory of a cybernetic system. A language whose
information constructions can represent any configuration
of any relations between any entities is a universal
language. The universality of the internal language of
a cybernetic system is the most important factor in its
intelligence.

The hybridity of information stored in the memory
of a cybernetic system is determined by the variety of
knowledge types and the degree of convergence and
integration of various knowledge types.

Stratification of information is the ability of a cyber-
netic system to allocate such sections of information
stored in the memory of this system that would limit
the areas of action for the agents of the problem solver
of the cybernetic system, which are sufficient to solve
the given problems. Stratification is determined by the
structuredness and reflexivity of information stored in
the memory of a cybernetic system. The reflexivity of
information stored in the memory of a cybernetic system,
i.e. the presence of meta-linguistic means, is a factor that
provides not only the structuring of stored information but
the possibility of describing the syntax and semantics of
the most diverse languages used by a cybernetic system.

The knowledge base is an example of information
stored in the memory of a cybernetic system and that has
a high quality level in all respects and, in particular, a
high level of:

• semantic power of the language for representing
information stored in the memory of cybernetic
systems;

• hybridity of information stored in the memory of a
cybernetic system;

• variety of knowledge types stored in the memory of
a cybernetic system;

• formalization of information stored in the memory
of a cybernetic system;

• structuredness of information stored in the memory
of a cybernetic system;

The transition of information stored in the memory
of a cybernetic system to a quality level corresponding
to knowledge bases is the most important stage in the
evolution of cybernetic systems.

C. Complex of properties that determine the quality of a
problem solver of a cybernetic system

The quality of the problem solver of a cybernetic
system is an integral qualitative assessment of the set
of problems that a cybernetic system is capable of
performing at a given moment. The main property and
purpose of the problem solver of a cybernetic system
is the ability to solve problems based on various types
of skills accumulated and acquired by the cybernetic

19

system using the cybernetic system processor, which is
a universal interpreter of all kinds of accumulated skills.
The quality of this ability is determined by a number of
additional factors.

The total volume of problems solved by a cybernetic
system is determined by the power of the language for
representing problems solved by a cybernetic system.
The power of the problem representation language is
primarily determined by the variety of types of problems
represented (the variety of types of described actions).
Each problem is a specification of the corresponding
(described) action. Therefore, consideration of the variety
of types of problems solved by a cybernetic system is
fully consistent with the variety of activities carried out by
this system. It is important to note that there are activities
of a cybernetic system that determine the quality and, in
particular, the level of intelligence of a cybernetic system.

The ability of a cybernetic system to analyze the
problems to be solved involves assessing the problem
for:

• achievement difficulty;
• expediency of achievement (need, importance, prior-

ity);
• compliance of the purpose with the existing norms

(rules) of the relevant activity.
A problem-solving method is a type of knowledge

stored in the memory of a cybernetic system and con-
taining information that is sufficient either to reduce each
problem from the corresponding class of problems to a
complete system of subproblems, the solution of which
guarantees the solution of the initial problem, or to finally
solve this problem from the specified class of problems.
As problem-solving methods, not only algorithms can
act but also functional programs, production systems,
logical calculations, genetic algorithms, artificial neural
networks of various types. Problems, for which there
are no methods corresponding to them, are solved using
problem-solving meta-methods (strategies) aimed at:

• generating the necessary initial data (the necessary
context) for solving each problem;

• generating a plan for solving the problem, which
describes the reduction of the initial problem to
subproblems (down to those subproblems whose
solution methods are known to the system);

• narrowing the problem solution area (to the context
of the problem sufficient for its solution).

The quality of the solution of each problem is deter-
mined by:

• the time of its solution (the faster the problem is
solved, the higher the quality of its solution);

• completeness and correctness of the result of solving
the problem;

• memory resources spent to solve the problem (the
extent of a fragment of stored information used to
solve the problem);

general characteristics of the problem solver of a
cybernetic system
⇒ prerequisite property*:

{{{• total volume of problems solved by a
cybernetic system

• variety of types of problems solved by a
cybernetic system

• ability of a cybernetic system to analyze
the problems being solved

• ability of a cybernetic system to solve
problems, methods for solving which are
currently known

• ability of a cybernetic system to solve
problems, the methods for solving which
it currently does not known

• set of skills used by the cybernetic system
• degree of convergence and integration of

various types of problem-solving models
used by a cybernetic system

• quality of organizing interaction between
problem-solving processes in a cybernetic
system

• performance of the problem solver of a
cybernetic system

• ability of a cybernetic system to solve
problems involving the usage of
information that has various kinds of
non-factors

• variety and quality of solving information
retrieval problems

• ability of a cybernetic system to generate
answers to questions of various types in
case when they are completely or
partially absent in the current state of the
information stored in memory

• ability of a cybernetic system to
reasoning of various kinds

• quality of goal-setting
• quality of implementation of own action

plans
• ability of a cybernetic system to localize

such an area of information stored in its
memory, which is sufficient to provide a
solution to a given problem

• ability of a cybernetic system to identify
the essential in the information stored in
its memory

• cybernetic system activity
}}}

20

• the resources of the problem solver used to solve
the problem (amount of used internal agents).

Thus, improving the quality of the process of solving
each specific problem, as well as each class of problems
(by improving the corresponding method, in particular,
the algorithm) is an important factor in improving the
quality of the problem solver as a whole.

A promising option for building a problem solver for
a cybernetic system is the implementation of an agent-
based information processing model, i.e. construction of a
problem solver in the form of a multi-agent system whose
agents process information stored in the memory of a
cybernetic system and are controlled by this information
(more precisely, by its current state). A special place
among these agents is occupied by sensory, receptor, and
effector agents, which, respectively, perceive information
about the current state of the external environment and
influence the external environment, in particular, by
changing the state of the physical shell of the cybernetic
system.

The indicated agent-oriented model for organizing the
interaction of problem-solving processes in a cybernetic
system is, in fact, nothing more than a model of situational
control for the problem-solving processes solved by a
cybernetic system both in its external environment and
in its memory.

The speed of the problem solver of a cybernetic system
is reduced to the speed of solving problems, the speed of
the problem solver, the speed of reaction of the cybernetic
system to various problem situations. In many ways, the
property is determined by the speed of the processor of
the cybernetic system.

Examples of problems involving the usage of informa-
tion that has various kinds of non-factors are the problems
of design, recognition, goal-setting, prediction, etc. Most
often, these are:

• vaguely formulated problems;
• problems that are solved in conditions of incom-

pleteness, inaccuracy, inconsistency of the source
data;

• problems belonging to classes of problems for
which it is almost impossible to build corresponding
algorithms.

These problems are characterized by:
• the inaccuracy and unreliability of source data;
• the lack of result quality criterion;
• the impossibility or high complexity of algorithm

development;
• the need to take into account the context of the

problem.
The ability of a cybernetic system to generate (build,

synthesize, derive) answers to a variety of questions
and, in particular, to questions like “what is it”, to why-
questions, means the ability of a cybernetic system to
explain (justify the correctness) of its actions.

Independence of goal-setting is the ability of a cyber-
netic system to generate, initiate, and solve problems
that are not subproblems initiated by external (other)
subjects, as well as the ability, based on an analysis of its
capabilities, to refuse to perform a problem initiated from
outside, redirecting it to another cybernetic system, or on
the basis of analysis of this problem itself to substantiate
its inexpediency or incorrectness. Increasing the level of
independence significantly expands the capabilities of the
cybernetic system, i.e. the volume of those problems that
it can solve not only in “ideal” conditions, but also in
real, complicated circumstances. The ability of the system
to adequately prioritize its purposes and not “disperse” to
achieve non-priority (insignificant) purposes is the ability
to analyze the expediency of activities.

The ability of a cybernetic system to identify the
essential in the information stored in its memory is
the ability to identify (detect, allocate) such fragments
of information stored in the memory of the cybernetic
system that are essential, important for achieving the
corresponding purposes. The concept of an essential
fragment of information stored in the memory of a
cybernetic system is relative and is determined by the
corresponding problem. Nevertheless, there are important
permanently solved problems, in particular, the problems
of analyzing the quality of information stored in the
memory of a cybernetic system. The essential fragments
of the stored information, allocated in the process of
solving these problems, are relative not so much in
relation to the problem being solved but in relation to
the current state of the stored information.

The level of activity of a cybernetic system can be
different for different problems being solved, for different
classes of actions performed, for different types of
activities. The higher the activity of a cybernetic system
is, the more it manages to do, therefore, the higher its
quality and efficiency. The inverse property is the concept
of passivity of a cybernetic system.

D. Complex of properties that determine the level of
learnability of a cybernetic system

The learnability of a cybernetic system is the ability
of a cybernetic system to improve its quality, adapting
to solving new problems, the quality of the internal
information of its environment model, the quality of its
problem solver, and even the quality of its physical shell.
The ability of a cybernetic system to improve (evolve,
increase its quality), to self-improve with varying degrees
of independence.

The maximum level of learnability of a cybernetic
system is its ability to evolve (increase the level of its
quality) as quickly as possible and in any direction, i.e. the
ability to quickly and without any restrictions to acquire
any new knowledge and skills.

Realization of the ability of a cybernetic system to
learn, i.e. to solve the permanently initiated superproblem

21

of self-learning, imposes additional requirements on the
information stored in the memory of the cybernetic
system, on the problem solver of the cybernetic system,
and in the future also on the physical shell of the
cybernetic system.

The most important characteristic of a cybernetic
system is not only what level of intelligence the cybernetic
system possesses at the moment, what set of actions
(problems) it is capable of performing, but also how
quickly this level can be increased.

learnability of a cybernetic system
⇒ prerequisite property*:

• flexibility of a cybernetic system
• stratified cybernetic system
• reflexivity of a cybernetic system
• limited training of a cybernetic system
• cognitive activity of a cybernetic system
• self-preservation ability of a cybernetic

system

Since learning always comes down to making certain
changes to the cybernetic system being trained, without
a high level of flexibility of this system, there cannot be
a high level of its learning. The flexibility of possible
self-changes of a cybernetic system is determined by
the simplicity and variety of possible self-changes of a
cybernetic system.

If the cybernetic system is stratified, it becomes possible
to clearly define the scope of various changes introduced
into the cybernetic system, i.e. the possibility of clearly
limiting those parts of the cybernetic system beyond which
there is no need to take into account the consequences
of the primary changes made to the system (to carry
out additional changes that are the consequences of the
primary changes).

The reflexivity of a cybernetic system is the ability of
a cybernetic system to self-reflection. The constructive
result of the reflection of a cybernetic system is the
generation in its memory of the specification of various
negative or suspicious features that should be taken into
account in order to improve the quality of the cybernetic
system. Such features (disadvantages) include identified
contradictions (mistakes), identified pairs of synonymous
signs, homonymous signs, information holes.

The limitation of learning a cybernetic system defines
the boundary between the knowledge and skills that the
corresponding cybernetic system in principle can acquire
and those knowledge and skills that the specified cyber-
netic system will never be able to acquire. This property
determines the maximum level of potential capabilities
of the corresponding cybernetic system. The maximum
degree of absence of restrictions in the acquisition of
new knowledge and skills is the complete absence of

restrictions, i.e. full universality of the capabilities of the
corresponding cybernetic systems.

The cognitive activity of a cybernetic system is
curiosity, activity, and independence in acquiring new
knowledge and skills. It is necessary to distinguish the
ability to acquire new knowledge and skills, as well as to
improve them, from the desire to do so. The desire (target
setting) to learn how to solve certain problems can be
formulated by a cybernetic system either independently
or from outside (by some teacher).

cognitive activity of a cybernetic system
⇒ prerequisite property*:

• ability of a cybernetic system to
synthesize cognitive purposes and
procedures

• ability of a cybernetic system to
self-organize its own learning

• ability of a cybernetic system to perform
experimental actions

The ability of a cybernetic system to synthesize
cognitive purposes and procedures is the ability to plan its
own learning and manage the learning process, the ability
to ask questions or purposeful sequences of questions, the
ability to generate a clear specification of its information
needs. The ability of a cybernetic system to self-organize
its own learning is the ability to manage its own learning,
the ability of a cybernetic system itself to play the role
of its teacher. The ability of a cybernetic system for
experimental actions is the ability to deviate from the
prepared plans of its actions in order to improve the
quality of the result or maintain the purposefulness of
these actions, the ability to improvise.

The higher the level of security of a cybernetic system,
the higher its level of learning. The ability of a cybernetic
system to self-preserve means the ability of a cybernetic
system to identify and eliminate threats aimed at reducing
its quality and even destroying it, which means a complete
loss of the required quality.

E. Complex of properties that determine the level of
intelligence of a cybernetic system

The main property, characteristic of a cybernetic system
is the level of its intelligence, which is an integral
characteristic that determines the efficiency level of
interaction of a cybernetic system with the environment
of its existence. The process of evolution of cybernetic
systems should be considered as a process of increasing
the level of their quality in a number of properties and
as a process of increasing the level of their intelligence.

A cybernetic system can be both intelligent and non-
intelligent. In turn, the intelligent system can be both
low-intelligent and high-intelligent.

22

intelligence level of a cybernetic system
⇒ prerequisite property*:

• education of the cybernetic system
• learnability of a cybernetic system
• interoperability of a cybernetic system

The level of education of a cybernetic system is the
level of skills, as well as other knowledge acquired by a
cybernetic system by a given moment.

education of the cybernetic system
⇒ prerequisite property*:

• quality of skills acquired by a cybernetic
system

• quality of information stored in the
memory of a cybernetic system

Examples of an educated cybernetic system are:
• a knowledge-based cybernetic system;
• a knowledge-driven cybernetic system;
• a targeted cybernetic system;
• a hybrid cybernetic system;
• a potentially universal cybernetic system.
A learnable cybernetic system is a cybernetic system

capable of knowing its environment, that is, building
and constantly updating in its memory an information
model of this environment, as well as using this model to
solve various problems (to organize its activities) in this
environment. Examples of a trainable cybernetic system
are:

• a cybernetic system with a high level of stratification
of its knowledge and skills;

• a reflexive cybernetic system;
• a self-learning cybernetic system;
• a cybernetic system with a high level of cognitive

activity.
The intelligence of a cybernetic system, as well as the

underlying cognitive process performed by a cybernetic
system, has a social character, since it is most effectively
formed and developed in the form of interaction of
a cybernetic system with other cybernetic systems. A
socially oriented cybernetic system has a sufficiently high
level of intelligence to be a useful member of various,
including human-machine communities. A certain level
of socially significant qualities is a necessary condition
for the intelligence of a cybernetic system. Examples of
a socially oriented cybernetic system are:

• a cybernetic system capable of establishing and
maintaining a high level of semantic compatibility
and mutual understanding with other systems;

• a negotiable cybernetic system.

All properties inherent in cybernetic systems can have
very different levels in different cybernetic systems.
Moreover, in some cybernetic systems, some of these
properties may not exist at all. At the same time, in
cybernetic systems, which we will be conditionally called
intelligent systems, all the above properties must be
represented in a sufficiently developed form.

VII. COMPLEX OF PROPERTIES THAT DETERMINE THE
QUALITY OF A MULTI-AGENT SYSTEM

The transition from cybernetic systems to collectives
of interacting cybernetic systems, i.e. to the social
organization of cybernetic systems, is the most important
factor in the evolution of cybernetic systems. A cybernetic
system, which is a collective of interacting cybernetic
systems with a certain degree of independence (self-
sufficiency, freedom of choice), will be called a multi-
agent system [18].

cybernetic system
⇒ subdividing*:

{{{• individual cybernetic system
• cybernetic system, which is the minimum

component of an individual cybernetic
system

• cybernetic system, which is a complex of
components of the corresponding
individual cybernetic system

• community of individual cybernetic
systems
⇒ subdividing*:

{{{• simple community of
individual cybernetic
systems

• hierarchical community of
individual cybernetic
systems

}}}
}}}

The agents of a multi-agent system can (but do not
have to) be intelligent systems. For example, agents
of an intelligent problem solver with an agent-oriented
architecture are not intelligent systems. An agent of a
hierarchical multi-agent system may act as another multi-
agent system [19].

In a multi-agent system with centralized control, there
are specially allocated agents that make decisions in
a certain area of activity of the multi-agent system
and ensure the implementation of these decisions by
controlling the activities of other agents that are part of
this system.

In a multi-agent system with decentralized control
[20], decisions are made collegially and “automatically”

23

(decisions on recognizing new information proposed by
someone including initiating a certain problem, decisions
on correcting, clarifying previously recognized, agreed
information) on the basis of a well-thought-out and
constantly improved methodology, as well as on the basis
of the active participation of all agents in the formation
of new proposals to be recognized or agreed upon. In
such a multi-agent system, all agents participate in the
control of this system. An example of such a system is
an orchestra capable of playing without a bandmaster.

The transition to multi-agent systems is the most im-
portant factor in improving the quality (and, in particular,
the level of intelligence) of cybernetic systems, since
the level of intelligence of a multi-agent system can be
much higher than the level of intelligence of each agent
included in it. This does not always occur, since the most
important factor in the quality of multi-agent systems
is not only the quality of the agents included in it but
also the organization of the interaction of agents and, in
particular, the transition from centralized to decentralized
control. Quantity does not always become a new quality.

The quality of individual cybernetic systems is deter-
mined, among other things, by how much an individual
cybernetic system contributes to improving the quality
of the collectives to which it belongs. This property of
individual cybernetic systems will be called the level of
their interoperability [21].

A synergetic cybernetic system is a multi-agent system
with a high level of collective intelligence, whose atomic
agents are individual intelligent systems with a high level
of interoperability [22] [23]. An example of a synergetic
cybernetic system is a creative collective implementing a
complex science-intensive project.

The effectiveness of the creative collective (for example,
in the field of scientific and technical activities) is
determined by:

• the consistency of motivation, goal-setting of the
whole collective and each of its members (there
should be no contradictions between the purpose
of the collective and the creative self-realization of
each of its members);

• the effective organization of decentralized control of
the activities of collective members;

• the clear, prompt, and accessible to all documentation
of the current state of the completed tasks and
directions for its further development;

• the level of labor intensity of the efficiency for fixing
individual results within a collectively created overall
result;

• the level of structuredness and, above all, stratifica-
tion of the generalized documentation (knowledge
base);

• efficiency of associative access to documentation
fragments;

• flexibility of a collectively created base;

• automation of analysis of the completed tasks and
project control.

The intelligence level of a multi-agent system can
be significantly lower than the intelligence level of the
most “stupid” member of this collective, but it can also
be significantly higher than the intelligence level of the
most “intelligent” member of the specified collective. In
order for the number of intelligent systems to turn into
a significantly more intelligent quality of a collective
of such systems, all intelligent systems combined into
a collective must have a high level of interoperability,
which imposes additional requirements on the information
stored in memory, as well as on the problem solvers of
intelligent systems, combined in a collective.

The interoperability of a cybernetic system is the ability
of a cybernetic system to interact with other cybernetic
systems in order to create a collective of cybernetic
systems (multi-agent systems), the level of quality and,
in particular, the level of intelligence of which is higher
than the quality level of each cybernetic system that is
part of this collective.

In order for the number of members of the collective
of a cybernetic system to turn into a higher quality
of the collective itself, the members of the collective
must have additional abilities, which we will call the
properties of interoperability. The main such properties
are the ability to establish and maintain a sufficient level
of semantic compatibility (mutual understanding) with
other cybernetic systems and negotiability (the ability to
coordinate own actions with others) [24].

Purposeful exchange of information between cybernetic
systems significantly accelerates the process of their
learning (the process of accumulating knowledge and
skills). Consequently, the ability to effectively use the
specified channel for the accumulation of knowledge
and skills significantly increases the level of learning of
cybernetic systems. Increasing the level of interoperability
of a cybernetic system is, on the one hand, an additional
increase in the level of intelligence of this cybernetic
system itself, as well as a factor in increasing the level of
intelligence of those collectives, those multi-agent systems
that include this cybernetic system.

cybernetic system interoperability
⇒ prerequisite property*:

• negotiability of a cybernetic system
• social responsibility of a cybernetic

system
• social activity of a cybernetic system

Properties-preconditions for the level of negotiability
of a cybernetic system are represented below:

Understanding information coming from outside in-
cludes:

24

negotiability of a cybernetic system
⇒ prerequisite property*:

• the ability of a cybernetic system to
understand received messages

• the ability of a cybernetic system to form
transmitted messages understandable to
recipients

• the ability of a cybernetic system to
provide semantic compatibility with
partners

• communication skills of a cybernetic
system

• the ability of a cybernetic system to
discuss and agree on the purposes and
plans of collective activity

• the ability of a cybernetic system to take
on the solving of urgent problems within
agreed plans for collective activity

• translation of this information into the internal
language of the cybernetic system;

• local verification of input information;
• immersion (convergence, placement) of the text

resulting from the specified translation into the stored
information (in particular, into the knowledge base).

The immersion of the input information into the
knowledge base of a cybernetic system is reduced to
the identification and elimination of contradictions that
arise between the immersed text and the current state of
the knowledge base. The complexity of the problem of
understanding the input verbal information lies not only
in the complexity of the consistent immersion of the input
information in the current state of the knowledge base but
also in the complexity of translating this information from
the external language into the internal language of the
cybernetic system, i.e., in the complexity of generating the
text of the internal language, semantically equivalent the
input text of the external language. For natural languages,
this translation is a difficult problem, since at present
the problem of formalizing the syntax and semantics of
natural languages has not been solved.

The semantic compatibility of two given cybernetic
systems is determined by the consistency of the concepts
systems used by both interacting cybernetic systems.
The problem of providing permanent support for the
semantic compatibility of interacting cybernetic systems
is a necessary condition for ensuring a high level of
mutual understanding of cybernetic systems and, as a
result, their effective interaction.

The sociability of a cybernetic system is the ability of a
cybernetic system to establish mutually beneficial contacts
with other cybernetic systems (including collectives of
intelligent systems) by honestly identifying mutually

beneficial common purposes, interests.
Properties-prerequisites for the level of social respon-

sibility of a cybernetic system are represented below:

social responsibility of a cybernetic system
⇒ prerequisite property*:

• the ability of a cybernetic system to fulfill
its obligations in a quality and timely
manner within the relevant collectives

• the ability of a cybernetic system to
adequately assess its capabilities in the
distribution of collective activity

• altruism/selfishness of a cybernetic system
• absence/presence of actions that, due to

the illiteracy of the cybernetic system,
reduce the quality of the collectives it is
part of

• absence/presence of “conscious”,
motivated actions that reduce the quality
of collectives, which include a cybernetic
system

Properties-prerequisites for the level of social activity
of a cybernetic system are represented below:

social activity of a cybernetic system
⇒ prerequisite property*:

• the ability of a cybernetic system to
generate proposed purposes and plans for
collective activity

• activity of the cybernetic system in the
examination of the results of other
participants in the collective activity

• the ability of a cybernetic system to
analyze the quality of all the collectives it
belongs to, as well as all members of
these collectives

• the ability of a cybernetic system to
participate in the formation of new
collectives

• quantity and quality of those collectives
in which the cybernetic system is or was
a part

The formation of a specialized collective of cybernetic
systems comes down to the fact that in the memory
of each cybernetic system included in the collective,
the specification of this collective is generated, which
includes:

• a list of all collective members;
• abilities of each member of the collective;
• their responsibilities within the collective;

25

• specification of the entire set of problems (type of
activity) for the solution of which the given collective
of cybernetic systems is formed.

Each cybernetic system can be part of a large number
of collectives, while performing, in the general case, dif-
ferent “duties”, different “business processes” in different
collectives.

VIII. CONCLUSION

To increase the level of automation of human activity,
it is necessary to automate more complex problems. The
solution of such problems is reduced to the requirement
to increase the level of intelligence of individual cyber-
netic systems. However, the individual intelligence of
cybernetic systems has its limitations. It is possible to
achieve a significant increase in the level of intelligence
by forming collectives of cybernetic systems, i.e. move
to multi-agent systems.

Thus, one of the most important factors determining
the level of intelligence of a cybernetic system is inter-
operability, the ability to form collectives with individual
cybernetic systems. At the same time, the level of quality
of individual cybernetic systems of the entire collective
should be quite high. This will allow the number of
intelligent systems to be transferred into a significantly
more intelligent quality of the collective of such systems.

ACKNOWLEDGMENT

The author would like to thank the research group of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for its help in the work and valuable
comments.

REFERENCES

[1] E. Popkova and B. Sergi, Artificial Intelligence: Anthropogenic
Nature vs. Social Origin, 01 2020.

[2] T. Choudhury, B. K. Dewangan, R. Tomar, B. K. Singh, T. T.
Toe, and N. G. Nhu, Autonomic Computing in Cloud Resource
Management in Industry 4.0. Springer, 2021.

[3] J. E. Laird, R. E. Wray III, R. P. Marinier III, and P. Langley,
“Claims and challenges in evaluating human-level intelligent
systems,” in 2nd Conference on Artificiel General Intelligence
(2009). Atlantis Press, 2009, pp. 80–85.

[4] J.-H. Cho, S. Xu, P. M. Hurley, M. Mackay, T. Benjamin, and
M. Beaumont, “Stram: Measuring the trustworthiness of computer-
based systems,” ACM Comput. Surv., vol. 51, no. 6, feb 2019.

[5] Y. S. Sherif, E. Ng, and J. Steinbacher, “Computer software
development: Quality attributes, measurements, and metrics,”
Naval Research Logistics (NRL), vol. 35, no. 3, pp. 425–436,
1988.

[6] R. Gao and L. Tsoukalas, “Performance metrics for intelligent
systems: An engineering perspective,” NIST SPECIAL PUBLICA-
TION SP, pp. 5–10, 2002.

[7] M. Molina, “What is an intelligent system?” p. 16, 2022.
[8] Finn V.K, Intellekt, informatsionnoe obshchestvo, gumanitarnoe

znanie i obrazovanie, Moscow, 2021.
[9] N. J. Nilsson, “Human-level artificial intelligence? be serious!”

AI magazine, vol. 26, no. 4, pp. 68–68, 2005.
[10] C. I. Kerr, L. Mortara, R. Phaal, and D. Probert, “A conceptual

model for technology intelligence,” International Journal of
Technology Intelligence and Planning, vol. 2, no. 1, pp. 73–93,
2006.

[11] S. Antsyferov, “Estimation of quality level of intellectual systems,”
Iskusstvennyj intellekt [Artificial intelligence], 2013.

[12] Vladimir Golenkov and Natalia Guliakina and Daniil Shunkevich,
Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
V. Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[13] (2022, Nov) Ostis Metasystem. [Online]. Available:
https://ims.ostis.net

[14] R. L. Fry, “The engineering of cybernetic systems,” in AIP
Conference Proceedings, vol. 617, no. 1. American Institute of
Physics, 2002, pp. 497–528.

[15] D. Weyns, B. SCHMERL, V. Grassi, S. Malek, R. Miran-
dola, C. Prehofer, J. Wuttke, J. AN-DERSSON, H. Giese, and
K. GOSCHKA, “Software engineering for self-adaptive systems
ii, lncs vol. 7475,” 2013.

[16] M. Hadzic, E. Chang, P. Wongthongtham, and T. Dillon, Ontology-
based multi-agent systems. Springer, 2009.

[17] O. Melekhova, J. Malenfant, R. Mescheriakov, and A. Chueshev,
“A decentralised solution for coordinating decisions in large-scale
autonomic systems,” in MATEC Web of Conferences, vol. 161.
EDP Sciences, 2018, p. 03024.

[18] A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A
survey,” Ieee Access, vol. 6, pp. 28 573–28 593, 2018.

[19] J. Ferber, O. Gutknecht, and F. Michel, “From agents to or-
ganizations: an organizational view of multi-agent systems,” in
International workshop on agent-oriented software engineering.
Springer, 2003, pp. 214–230.

[20] P. G. Balaji and D. Srinivasan, “An introduction to multi-agent
systems,” in Innovations in multi-agent systems and applications-1.
Springer, 2010, pp. 1–27.

[21] A. M. Ouksel and A. Sheth, “Semantic interoperability in global
information systems,” vol. 28, no. 1, p. 5–12, mar 1999. [Online].
Available: https://doi.org/10.1145/309844.309849

[22] P. Lopes de Lopes de Souza, W. Lopes de Lopes de Souza, and
R. R. Ciferri, “Semantic interoperability in the internet of things:
A systematic literature review,” in ITNG 2022 19th International
Conference on Information Technology-New Generations, S. Latifi,
Ed. Cham: Springer International Publishing, 2022, pp. 333–340.

[23] Hamilton, Gunther, Drummond, and Widergren, “Interoperability
- a key element for the grid and der of the future,” in 2005/2006
IEEE/PES Transmission and Distribution Conference and Exhibi-
tion, 2006, pp. 927–931.

[24] F. W. Neiva, J. M. N. David, R. Braga, and F. Campos, “Towards
pragmatic interoperability to support collaboration: A systematic
review and mapping of the literature,” Information and Software
Technology, vol. 72, pp. 137–150, 2016.

Факторы, определяющие уровень
интеллекта кибернетических систем

Загорский А.Г.
В работе рассмотрена иерархическая система свойств ки-

бернетических систем, определяющихих качество и позволя-
ющих сформулировать требования, которым должна удовле-
творять кибернетическая система с сильным интеллектом.
Уровень качества кибернетических систем определяется
достаточно большим набором параметров кибернетических
систем. Каждый из параметров определяет уровень качества
кибернетической системы в соответствующем аспекте, ука-
зывая уровень развития конкретных способностей и возмож-
ностей кибернетической системы. Полученные результаты
позволят оценить уровень качества кибернетических систем,
а также определить направление развития кибернетической
системы для повышения уровня интеллекта.

Received 29.10.2022

26

Next-generation intelligent computer systems
and technology of complex support of their life

cycle
Vladimir Golenkov

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: golen@bsuir.by

Natalya Gulyakina
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: guliakina@bsuir.by

Abstract—The paper considers the principles of building
next-generation intelligent computer systems, as well as the
principles of building a comprehensive technology for their
development and life cycle support - OSTIS Technology.
Semantic compatibility and interoperability are highlighted
as the key properties of the next-generation intelligent
systems. The paper considers an approach to providing
these properties, realized within the framework of OSTIS
Technology.

Keywords—OSTIS, ostis-system, ontological approach,
intelligent computer system, interoperability, knowledge
base, problem-solving model, semantic representation of
information, SC-code

I. INTRODUCTION

The most important direction of increasing the level
of intelligence of individual intelligent cybernetic sys-
tems is the transition to individual intelligent cybernetic
systems collectives and further to hierarchical intelligent
cybernetic systems collectives, whose members are both
individual intelligent cybernetic systems and individual
intelligent cybernetic systems collectives, as well as
hierarchical intelligent cybernetic systems collectives.
Similarly, it is necessary to increase the level of in-
telligence and individual intelligent computer systems
(artificial cybernetic systems). But at the same time, we
must remember that not every association of intelligent
cybernetic systems (including computer systems) becomes
an intelligent collective. For this, it is necessary to comply
with additional requirements imposed on all members
of intelligent collectives. The most important of them
is the requirement of a high level of interoperability,
in other words the ability to interact effectively with
other members of the team. The transition from modern
intelligent computer systems to interoperable intelligent
computer systems is a key factor in the transition to the
next-generation intelligent computer systems, providing
a significant increase in the level of automation of human
activity.

II. NEXT-GENERATION INTELLIGENT COMPUTER
SYSTEMS

The creation of various complexes of interacting intel-
ligent computer systems requires improving the quality of
not only these systems themselves, but also the quality of
their interaction. Next-generation intelligent computer sys-
tems should have a high level of interoperability, in other
words, a high level of ability to effectively, purposefully
interact with their own kind and with users in the process
of collective (distributed) and decentralized solution of
complex problems [1], [2], [3], [4], [5], [6]. The level
of interoperability of intelligent computer systems is,
figuratively speaking, the level of their "socialization",
usefulness within the framework of various a priori
unknown communities (collectives) of intelligent systems.
The level of interoperability of intelligent computer
systems is the level of their communication (social)
compatibility, which allows them to independently form
collectives of intelligent computer systems and their users,
as well as independently coordinate and coordinate their
activities within these collectives when solving complex
tasks in partially predictable conditions. Increasing the
level of interoperability of intelligent computer systems
determines the transition to the next-generation intelli-
gent computer systems, without which it is impossible
to implement projects such as smart-enterprise, smart-
hospital, smart-city, smart-society [7], [8].

intelligent computer system
:= [intelligent artificial cybernetic system]
⇒ decomposition*:

{{{• individual intelligent computer system
• intelligent collective of intelligent

computer systems
}}}

Let’s take a closer look at the concept of intelligent
collective of intelligent computer systems.

27

intelligent collective of intelligent computer systems
:= [intelligent multi-agent system, whose agents are

intelligent computer systems]
⇒ note*:

[Not every collective of intelligent computer
systems can be intelligent, because the level of
intelligence of such a collective is determined
not only by the level of intelligence of its
members, but also by the efficiency (quality) of
their interaction.]

⇒ decomposition*:
{{{• intelligent collective of individual

intelligent computer systems
• hierarchical intelligent collective of

intelligent computer systems
:= [intelligent collective of intelligent

computer systems, at least one of
whose members is an intelligent
collective of intelligent computer
systems]

}}}

next-generation intelligent computer systems
⇒ requirements*:

• high level of interoperability
• high level of learning
• high level of hybridity
• a high level of ability to solve intelligent prob-

lems (in other words problems, which solution
methods and/or the background information
required for their solution are priori unknown)

• high level of synergy

interoperability^
:= [ability to effectively (focused) interaction with

other independent subjects]
:= [ability to the partnership in solving complex

problems, that require collective activity]
:= [ability to work in collective (in a team)]
:= [level of socialization]
:= [social skills]

high level of interoperability
⇒ provided by*:

• high level of understanding
⇒ provided by*:

• high level of semantic compatibil-
ity of a given subject with other
subjects of a given collective

• high level of ability to understand
the messages and behavior of part-
ners

• high level of ability to be under-
standable for partners:

– ability to clearly and reasonably
formulate their suggestions and
information useful for solving
current problems;

– ability to act and comment on
their actions so that they and their
motives are clear to partners;

• high level of ability to increase the
level of semantic compatibility with
their partners

• high level of negotiability, in other words the
ability to coordinate with partners their plans
and intentions in order to ensure timely high
quality of the collective result

• high level of ability to decentralize coordina-
tion of their actions with the actions of partners
in unpredictable (abnormal) circumstances

• high level of ability to minimize the negative
consequences of conflict situations with other
subjects
⇒ provided by*:

• high level of ability to prevent the
occurrence of conflict situations

• compliance with ethical standards
and rules that prevent the occur-
rence of destructive consequences
of conflict situations

• high level of ability to share re-
sponsibility with partners for timely
and high-quality achievement of a
common goal

semantic compatibility^
:= [degree of coherence (coincidence) of systems of

concepts and other key entities, used by specified
interacting entities]

⇒ note*:
[Provision of semantic compatibility requires for-
malization of the semantic representation of
information]

ability to share responsibility with partners, which is
a necessary condition for decentralized management of
collective activity

⇒ provided by*:
• ability to monitor and analyze collectively

performed activity
• ability to promptly inform partners about

adverse situations, events, trends, as well as
initiate appropriate collective actions

learning^
:= [ability to quickly and efficiently acquire new

knowledge and skills, as well as improve already
acquired knowledge and skills]

28

high level of learning
⇒ provided by*:

• high level of flexibility of the information
stored in the memory of the intelligent system

• high level of quality of stratification of infor-
mation, stored in the memory of the intelligent
system by the stratification of the knowledge
base

• high level of reflexivity of intelligent system
• high level of ability to correct its mistakes

(including to eliminate contradictions in its
knowledge base)

• high level of cognitive activity
• absence of restrictions on the type of acquired

knowledge and skills (the absence of such
restrictions means the potential universality
of the intelligent system)

hybridity^
:= [degree of diversity of the types of knowledge and

models of problem solving used and the level of
efficiency of their sharing]

:= [individual ability to solve complex problems that
require the use of different types of knowledge, as
well as various combinations of different models
of problem solving]

high level of hybridity
⇒ provided by*:

• high degree of diversity of the types of knowl-
edge and models of problem solving used

• high degree of convergence [9], [10] and
deep integration (degree of interpenetration)
of various types of knowledge and models of
problem solving

• ability to indefinitely expand the level of its
hybridity

We emphasize that the hybridity and interoperability
of intelligent computer systems of the next-generation
implies the rejection of the well-known paradigm of
"black boxes", since:

• all the variety of problem solving models of a hybrid
intelligent computer system should be interpreted on
one common universal platform;

• availability of information about how each method
used, the model of problem solving, each subject sig-
nificantly improves the quality of their coordination
when solving complex tasks together;

• it becomes possible to use some methods, models
of problem solving and entire subjects (for instance,
intelligent computer systems) to improve (improve
the quality) of other methods, models and subjects.

It is especially necessary to note the following char-
acteristics of intelligent computer systems of the next-
generation:

• degree of convergence, unification and standardiza-
tion of intelligent computer systems and their com-
ponents and the corresponding degree of integration
(integration depth) of intelligent computer systems
and their components;

• semantic compatibility between intelligent computer
systems in general and semantic compatibility be-
tween the components of each intelligent computer
system (in particular, compatibility between different
types of knowledge and different models of knowl-
edge processing), which are the main indicators of
the degree of convergence (convergence) between
intelligent computer systems and their components.

The feature of these characteristics of intelligent
computer systems and their components is that they play
an important role in solving all the key tasks of the
modern stage of artificial intelligence development and
are closely related to each other.

It should also be noted that the listed requirements
for the next-generation intelligent computer systems are
aimed at overcoming the curse of Babel [11] both within
intelligent computer systems of the next-generation (be-
tween internal information processes for solving various
problems) and between interacting independent next-
generation intelligent computer systems in the process of
collective solution of complex problems.

At the present stage of evolution of intelligent computer
systems for a significant expansion of their application
areas and a qualitative increase in the level of automation
of human activity:

• It is necessary to move to the creation of
semantically compatible intelligent computer sys-
tems of the next-generation, focused not only on
individual, but also on collective (joint) solution
of complex problems requiring coordinated activity
several independent intelligent computer systems
and the use of various models and methods in
unpredictable combinations, which is necessary to
significantly expand the scope of application of
intelligent computer systems, for the transition from
automation of local types and areas of human activity
to complex automation of larger (combined) types
and areas of this activity;

• It is necessary to develop a General formal theory
and standard for the next-generation intelligent
computer systems;

• It is necessary to develop a Technology for in-
tegrated support of the life cycle of the next-
generation intelligent computer systems, which
includes support for the engineering of these systems
(as the initial stage of their life cycle) and ensuring
their compatibility at all stages of their life cycle;

• Convergence and unification of the next-generation
intelligent computer systems is necessary;

• It is necessary to implement "seamless", "diffuse",

29

interpenetrating, deep integration of semantically
adjacent components of intelligent computer sys-
tems, in other words, integration in which there
are no clear boundaries ("seams") of the integrated
(connected) components, and which can be carried
out automatically. This means moving to hybrid
intelligent computer systems;

• It is necessary to observe the Occam’s razor princi-
ple – maximum possible structural simplification of
intelligent computer systems of the next-generation,
exclusion of eclectic solutions;

• It is necessary to focus on potentially universal
(in other words, capable of quickly acquiring any
knowledge and skills), synergetic intelligent com-
puter systems with "strong" intelligence;

next-generation intelligent computer systems
⇒ underlying principles*:

• semantic representation of knowledge in the
memory of intelligent computer systems, as-
suming the absence of homonymic signs, which
in different contexts denote different enti-
ties, as well as the absence of synonymy,
in other words pairs of synonymous signs,
which denote the same entity. The semantic
representation of the information structure in
general has a nonlinear (graph) character and
is called semantic network

• use of a common for all intelligent computer
systems universal language of semantic repre-
sentation of knowledge in memory intelligent
computer systems, having the simplest pos-
sible syntax, providing the representation of
any types of knowledge and having unlimited
possibilities of transition from knowledge to
meta-knowledge. The simplicity of the syntax
of information constructions of the specified
language allows us to call these constructions
refined semantic networks

• structurally tunable (graphodynamic) memory
organization of intelligent computer systems,
in which knowledge processing is reduced
not so much to changing the state of stored
characters, as to changing the configuration
of the connections between these characters

• semantically unlimited associative access to
information stored in the memory of intelligent
computer systems, according to a given sample
of arbitrary size and arbitrary configuration

• decentralized situational management of in-
formation processes in the memory of intelli-
gent computer systems, realized using agent-
oriented model of knowledge base process-
ing, in which initiation of new information
processes is not carried out by transferring

control to the corresponding a priori known
procedures, and as a result of the occurrence
of the corresponding situations or events in
the memory of an intelligent computer system,
because «The main problem of computer
systems is not the accumulation of knowl-
edge, but the ability to activate the necessary
knowledge in the process of solving problems»
(Pospelov D.A.). Such a multi-agent process of
information processing is a activity performed
by some collective of independent information
agents (information processing agents), the
condition for initiating each of which is the
appearance in the current state of knowledge
base corresponding to this agent situation
and/or events.
The choice of multi-agent technologies is
explained by the fact that currently any com-
plex production, logistics or other system
can be represented by a set of interactions
of simpler systems to any level of detail,
which provides a fractal-recursive principle
of building multi-tiered systems built as open
digital colonies and AI ecosystems. Multi-
agent technologies are based on a distributed
or decentralized approach to problem solving,
in which dynamically updated information
in a distributed network of intelligent agents
is processed directly from agents along with
locally available information from "neighbors".
At the same time, both resource and time
costs for communication in the network are
significantly reduced, as well as time for
processing and decision-making in the center
of the system (if there is one).»
⇐ quotation*:

Barinov I.I.. DevelSFoftheConAI-2021/p.
270 [12]

• Transition to semantic models of problem
solving, which are based on taking into ac-
count not only syntactic (structural) aspects of
the processed information, but also semantic
(semantic) aspects of this information – "From
data science to knowledge science"

• ontological model of knowledge bases of
intelligent computer systems, in other words
the ontological structuring of all information
stored in memory of intelligent computer
system, assuming a clear stratification of the
knowledge base in the form of a hierarchical
system of subject areas and the corresponding
ontologies, each of which provides a semantic
specification of all concepts that are key within
the corresponding subject area

• ontological localization of problem solving

30

in intelligent computer systems, assuming
localization scope of each stored in memory
method and each information agent in accor-
dance with ontological model processed by
knowledge base. Most often, such a scope is
one of subject areas or one of subject areas
together with its corresponding ontology

• ontological model of the interface intelligent
computer system which includes:
– ontological description of syntax of all lan-

guages used by intelligent computer system
for communication with external subjects;

– ontological description of denotational se-
mantics of each language used by intelligent
computer system for communication with
external subjects;

– family of information agents providing syn-
tactic analysis, semantic analysis (transla-
tion into an internal semantic language)
and understanding (immersion in knowledge
base) of any entered message belonging
to any to an external language, the full
ontological description of which is in the
knowledge base of intelligent computer
system;

– family of information agents providing the
synthesis of messages that (1) are addressed
to external subjects with whom an intel-
ligent computer system communicates, (2)
are semantically equivalent to the specified
fragments of the knowledge base of an
intelligent computer system that determine
the meaning of the transmitted messages,
(3) belong to one of the external languages,
the full ontological description of which
is in the knowledge base of an intelligent
computer system;

• semantically friendly nature of the user in-
terface, provided by (1) a formal description
in the knowledge base of the user interface
management tool and (2) the introduction of
the corresponding help subsystems into the
intelligent computer system, providing a signif-
icant reduction in the language barrier between
users and intelligent computer systems, which
will significantly increase the efficiency of
operation of intelligent computer systems

• minimizing the negative impact of the human
factor on the efficiency of operation intelligent
computer systems thanks to the implementation
of an interoperable (partner) style of interaction
not only between intelligent computer systems
themselves, but also between intelligent com-
puter systems and their users. Responsibility
for the quality of joint activities should be

distributed among all partners
• multimodality (hybrid character) intelligent

computer system, which assumes:
– variety of types of knowledge included in the

knowledge base of an intelligent computer
system;

– variety of problem solving models used
by the problem solver of an intelligent
computer system;

– variety of sensor channels that monitor the
state of the external environment of an
intelligent computer system;

– variety of effectors that affect the external
environment;

– variety of languages of communication with
other subjects (with users, with intelligent
computer systems);

• internal semantic compatibility between the
components of an intelligent computer system
(i.e., the maximum possible introduction of
common, matching concepts for various frag-
ments of the stored knowledge base), which is
a form of convergence and deep integration
within an intelligent computer system for dif-
ferent types of knowledge and different models
of problem solving, which ensures the effective
implementation of the multimodality of an
intelligent computer system

• external semantic compatibility between vari-
ous intelligent computer systems, expressed not
only in the commonality of concepts used, but
also in the commonality of basic knowledge
and is a necessary condition for ensuring a high
level of interoperability of intelligent computer
systems

• orientation to the use of intelligent computer
systems as cognitive agents in hierarchical
multi-agent systems

• platform independence of intelligent com-
puter systems, assuming:
– clear stratification of each intelligent com-

puter system (1) to a logical-semantic model
represented by its knowledge base, which
contains not only declarative knowledge, but
also knowledge having operational seman-
tics, and (2) to a platform providing inter-
pretation of the specified logical-semantic
model;

– universality of the specified platform of
interpretation of the logical-semantic model
of an intelligent computer system, which
makes it possible for each such platform
to provide interpretation of any logical-
semantic model of an intelligent computer
system, if this model is presented in the

31

same universal language of semantic repre-
sentation of information;

– variety of options for implementing plat-
forms for interpreting logical and seman-
tic models of intelligent computer systems
- both options that are programmatically
implemented on modern computers, and
options that are implemented in the form
of new-generation mainframe computers fo-
cused on use in intelligent computer systems
of a new generation (such computers we
called associative semantic computers);

– easily implemented possibility of trans-
ferring (reinstalling) the logical-semantic
model (knowledge base) of any intelligent
computer system to any other platform for
interpreting logical-semantic models;

• initial orientation of intelligent computer sys-
tems of the new generation to the use of univer-
sal associative semantic computers (computers
of the new generation) as a platform for
the interpretation of logical-semantic models
(knowledge bases) of intelligent computer
systems

Currently, a large number of different types of problem
solving models, models of representation and processing
of knowledge of various types have been developed.
But different combinations of these models may be in
demand in different intelligent computer systems. When
developing and implementing various intelligent computer
systems, appropriate methods and tools should guarantee
the logical and semantic compatibility of the components
being developed and, in particular, their ability to use
common information resources. For this, obviously, the
unification of these models is necessary.

The variety of different types of intelligent computer
systems and, accordingly, the variety of combinations of
knowledge representation models and problem solving
used by them is determined by:

• variety of the purpose of intelligent computer systems
and the type of their environment;

• variety of different types of stored knowledge; a
variety of knowledge processing models and problem
solutions;

• variety of different types of interfaces (signal pro-
cessing, audio, video, effector means).

The following aspects of the compatibility of knowl-
edge representation and processing models in intelligent
computer systems should be highlighted:

• syntactic;
• semantic (consistency of systems of concepts);
• functional (operational).

It should also be distinguished:

• compatibility between components of intelligent
computer systems;

• compatibility between the upper logical-semantic
level of the knowledge representation and processing
models used and various levels of their interpretation
up to the hardware level;

• compatibility between individual intelligent computer
systems;

• compatibility between individual intelligent computer
systems and their users;

• compatibility between teams of intelligent computer
systems.

III. SEMANTIC REPRESENTATION OF INFORMATION

semantic representation of information
:= [recording (representation) of the information

structure at the semantic level]
:= [information construct whose syntactic structure

is close to its meaning, i.e. close to the de-
scribed configuration of connections between the
described entities]

:= [semantic representation of the information struc-
ture]

⊂ semantic network
⊃ refined semantic network

refined semantic network
⇒ the underlying principles*:

• Each element (syntactically atomic fragment)
of a refined semantic network is a sign of one
of the described entities

• Each entity described by a refined semantic
network should be represented by its own sign,
which is an element of this network

• Within each separate refined semantic network,
there is no synonymy of different signs, and
there are also no homonymous signs

• The variety of entities described by refined
semantic networks is not limited by anything.
Accordingly, the semantic typology of the
elements of refined semantic networks is very
rich

• A special type of elements of refined semantic
systems are signs of connections between other
elements of these networks. At the same time,
connected elements (i.e. elements that are
incident to the specified signs of connections)
there may also be signs of other connections.
Most often, the sign of the connection between
the elements of a refined semantic network is
a reflection of the connection between entities
that are designated by these elements. But in
some cases, the sign of the connection between
the elements of a refined semantic network can

32

be a reflection, for example, of the connection
between one described entity and the sign of
another described entity

IV. MULTI-AGENT MODELS OF PROBLEM SOLVING
BASED ON THE SEMANTIC REPRESENTATION OF

INFORMATION

next-generation intelligent computer systems problem
solver
⇒ requirements*:

• problem solver of intelligent computer systems
of a new generation should be able to solve
intellectual problems, which include the fol-
lowing types of tasks:
– poorly formulated problem

:= [problem whose formulation con-
tains various non-factors (incom-
pleteness, vagueness, inconsis-
tency (incorrectness),..)]

– problem for which, in addition to the for-
mulation of the problem itself and the cor-
responding method of solving it, additional,
but a priori unknown, information about
the objects specified in the formulation
(statement) of the problem is needed. At
the same time, the specified additional in-
formation may or may not be present in
the current state of the knowledge base of
intelligent computer systems. In addition,
for some tasks, the area of the knowledge
base can be specified (specified), the use of
which is sufficient to search for or generate
(in particular, logical output) the specified
additional required information. Such an
area of the knowledge base will be called the
area of solving the corresponding problem

– problem for which the appropriate method
of solving it is not currently known. refor-
mulate the problem, in other words generate
(logically output) a logically equivalent
formulation of the original problem for
which the method of its solution is currently
known; To solve such a problem , you can:
* reformulate the problem, in other words

generate (logically output) a logically
equivalent formulation of the original
problem for which the method of its
solution is currently known;

* reduce the original problem to a family
of subtasks for which the methods of
their solution are currently known.

• process of solving problems in intelligent
computer systems of a new generation is
implemented by a team of information agents

processing the knowledge base of intelligent
computer systems

• management of information processes in the
memory of intelligent computer systems of a
new generation is carried out in a decentralized
manner according to the principles of situa-
tional management

situational management
:= [situational and event management]
⇒ explanation*:

[managing the sequence of actions, in which the
condition ("trigger") for initiating these actions
is:

□ occurrence of some situations (conditions,
states);

□ and/or the occurrence of some events

]

situation
:= [structure describing some temporarily existing

configuration of relationships between some
entities]

:= [description of the temporarily existing state of
some fragment (some part) of some dynamic
system]

event
⊃ emergence of a temporary entity

:= [appearance, birth, the beginning of the
existence of some temporary entity]

⊃ disappearance of a temporary entity
:= [termination, termination of the existence

of some temporary entity]
⊃ transition from one situation to another

⇒ note*:
[It takes into account not only the fact
of the emergence of a new situation, but
also its background - i.e. the situation
that immediately precedes it. So, for
example, reacting to an abnormal value
of a parameter, it is important for us to
know:
□ what is the dynamics of the change of

this parameter (it increases or decreases
and at what rate);

□ what measures were taken earlier to
eliminate this anomaly.

]

33

V. ONTOLOGICAL MODELS OF INTERFACES OF
INTELLIGENT COMPUTER SYSTEMS BASED ON THE

SEMANTIC REPRESENTATION OF INFORMATION

interface of the next-generation intelligent computer
system
⇒ underlying principles*:

• interface of an intelligent computer system of
a new generation is considered as a solver
of a particular type of problems - interface
problems, the main of which are:
– problems of understanding verbal informa-

tion acquired by an intelligent computer
system (syntactic analysis, semantic analysis
and immersion in the knowledge base of an
intelligent computer system)

– problems of understanding nonverbal infor-
mation perceived by sensory subsystems
of an intelligent computer system (image
analysis, audio signal analysis, immersion
of analysis results into the knowledge base
of an intelligent computer system)

– problems of synthesizing messages ad-
dressed to external entities (cybernetic sys-
tems)

• fact that the interface of an intelligent computer
system of a new generation is a solver of a
particular type of problems of an intelligent
computer system of a new generation, the
properties underlying the problem solvers of in-
telligent computer systems of a new generation
are inherited by the interfaces of intelligent
computer systems of a new generation. It
follows from this that the basis of intelligent
computer systems of the new generation is:
– semantic representation of accumulated (ac-

quired knowledge);
– interpretation of semantic analysis of ac-

quired verbal information as a process of
translating this information into the internal
language of the semantic representation of
knowledge, followed by immersion (input,
integration) of the result of this translation
into the current state of the knowledge base
of an intelligent computer system of a new
generation;

– interpretation of the synthesis of messages
addressed by external entities as a process
of reverse translation of some fragment
of the knowledge base from the internal
language of the semantic representation of
information into an external language used
to communicate with a given subject;

– agent-oriented organization of interface
problem solving, implemented by the re-

spective teams of internal agents of the
interface of intelligent computer systems of
a new generation interacting through the
knowledge base of an intelligent computer
system of a new generation that is publicly
available to them

• interface of an intelligent computer system of a
new generation is interpreted as a specialized
integrated intelligent computer system of a
new generation, which is part of the above-
mentioned intelligent computer system, the
knowledge base of which includes:
– ontology of the syntactic internal language

of the semantic representation of informa-
tion;

– ontology of denotational semantics of the
internal language of semantic representation
of information;

– syntax ontology of all external languages
used to communicate with external entities;

– ontologies of denotational semantics of all
external languages used for communication
with external subjects (each such ontology
from a formal point of view is a description
of the correspondence between the texts of
external languages and semantically equiv-
alent texts of the internal language of the
semantic representation of information.
At the same time, we emphasize that all
of these ontologies, which are part of the
knowledge base, interfaces of intelligent
computer systems of a new generation, as
well as all other information included in this
knowledge base, are presented in the internal
language of the semantic representation of
information, which, accordingly, is used in
this case as a meta language.

Conversations about a friendly and, in particular,
adaptive user interface have been going on for a long
time, but this most often concerns the form ("syntactic"
side) of the user interface, and not the semantic content
of interaction with users. Currently, user interfaces of
computer systems (including intelligent computer systems)
for a wide contingent of users are not semantically
(meaningfully) friendly (semantically comfortable). The
organization of user interaction with computer systems
(including intelligent computer systems) is a "bottleneck"
that has a significant impact on the efficiency of au-
tomation of human activity. The modern organization
of user interaction with a computer system is based on
the paradigm of a competent user who knows what he
wants from the tool he uses and is fully responsible for
the quality of interaction with this tool. This paradigm
underlies the activities of a logger in interaction with

34

an axe, a rider in interaction with a horse, a car driver,
a pilot in interaction with a corresponding vehicle, an
operator of a nuclear power plant, a railway dispatcher,
and so on.

At the present stage of the development of Artificial in-
telligence, in order to increase the efficiency of interaction,
it is necessary to move from the paradigm of competent
management of the tool used to the paradigm of equal
cooperation, partnership interaction of an intelligent
computer system with its user. An intelligent computer
system should turn "face" to the user.

Semantic friendliness of the user interface should
consist in adaptability to the peculiarities and qualifi-
cations of the user, the exclusion of any problems for
the user in the process of dialogue with an intelligent
computer system, in permanent care of improving the
user’s communication skills.

VI. ADVANTAGES OF THE PROPOSED APPROACH TO
THE CREATION OF INTELLIGENT COMPUTER SYSTEMS

OF A NEW GENERATION WHAT MEASURES WERE
TAKEN EARLIER TO ELIMINATE THIS ANOMALY

The semantic representation of information in the
memory of intelligent computer systems ensures the
elimination of duplication of information stored in the
memory of an intelligent computer system, i.e. the
elimination of a variety of forms of representation of
the same information, the prohibition of the appearance
in one memory of semantically equivalent information
structures, including synonymous signs. This significantly
reduces complexity and improves quality:

• development of various models of knowledge pro-
cessing (because there is no need to take into account
the variety of forms of representation of the same
knowledge);

• semantic analysis and understanding of information
received (transmitted) from various external entities
(from users, from developers, from other intelligent
computer systems);

• convergence and integration of different types of
knowledge within each intelligent computer system;

• ensuring semantic compatibility and mutual un-
derstanding between various intelligent computer
systems, as well as between intelligent computer
systems and their users.

We consider the concept of semantic network not
as a beautiful metaphor of complexly structured sign
constructions, but as a formal refinement of the concept of
semantic representation of information, as the principle of
representation of information underlying a new generation
of computer languages and computer systems themselves
- graph languages and graph computers. A semantic
network is a nonlinear (graph) sign construction with the
following properties:

• all elements (in other words syntactically elemen-
tary fragments) of this graph structure (nodes and

bundles) are signs of the entities being described
and, in particular, signs of connections between these
entities;

• all signs included in this graph structure do not have
synonyms within this structure;

• "internal" pattern (structure) of the signs included in
the semantic network does not need to be taken into
account in its semantic analysis (understanding);

• meaning of a semantic network is determined by the
denotational semantics of all the signs included in it
and the configuration of the incidence relationships
of these signs;

• of the two incident signs included in the semantic
network, at least one is a communication sign.

A refined semantic network is a semantic network
having a simple syntactic structure in which, in particular,

• finite alphabet of semantic network elements is
used, in other words a finite number of syntactically
distinguished types (syntactic labels) attributed to
these elements;

• external identifiers (in particular, names) attributed
to semantic network elements are used only for
information input/output.

An agent-oriented model of information processing
combined with decentralized situational control of the
information processing process, as well as with the
semantic representation of information in the memory
of an intelligent computer system significantly reduces
the complexity and improves the quality of integration of
various models of problem solving in the processing of a
common knowledge base. This refers to the simultaneous
use of different models of problem solving when process-
ing the same knowledge, in particular, when solving the
same problem.

A high level of semantic flexibility of information stored
in the memory of an intelligent computer system of a new
generation is ensured by the fact that each deletion or
addition of a syntactically elementary fragment of stored
information, as well as the deletion or addition of each
incident relationship between such elements has a clear
semantic interpretation.

A high level of stratification of information stored
in the memory of the next-generation intelligent com-
puter system is provided by the ontologically oriented
structuring of the knowledge base of the next-generation
intelligent computer system.

A high level of individual learning of the next-
generation intelligent computer systems (in other words
their ability to rapidly expand their knowledge and skills)
is provided:

• semantic flexibility of the information stored in their
memory;

• the stratification of this information;
• reflexivity of intelligent computer systems of the new

generation.

35

A high level of collective learning of the next-
generation intelligent computer systems is ensured by
a high level of their socialization (i.e. the ability to effec-
tively participate in the activities of various collectives
consisting of the next-generation intelligent computer
systems and people) and, above all, a high level of their
mutual understanding.

The high level of interoperability of intelligent com-
puter systems of the new generation fundamentally
changes the nature of the interaction of computer systems
with people whose activities they automate - from the
management of these automation tools to equal partner
meaningful relationships.

Each next-generation intelligent computer system is
capable of:

• independently or by invitation to join a team con-
sisting of intelligent computer systems of a new
generation and/or people. Such teams are created
on a temporary or permanent basis for the collective
solution of complex tasks;

• participate in the distribution (including coordination
of the distribution) of tasks – both "one-time" tasks
and long-term tasks (responsibilities);

• monitor the state of the entire process of collective
activity and coordinate their activities with the
activities of other members of the team in case
of possible unpredictable changes in the conditions
(state) of the relevant environment.

The high level of intelligence of the next-generation
intelligent computer systems and, accordingly, the high
level of their independence and purposefulness allows
them to be full members of a wide variety of communities
within which next-generation intelligent computer systems
receive the right to initiate independently (based on
a detailed analysis of the current state of affairs and,
including, the current state of the community action plan)
a wide the range of actions (problems) performed by
other members of the community, and thus participate
in the coordination and coordination of the activities of
community members. The ability of the next-generation
intelligent computer system to coordinate its activities with
other similar systems, as well as to adjust the activities
of the entire collective of the next-generation intelligent
computer systems, adapting to various types of changes
in the environment (conditions) in which this activity
is carried out, allows you to significantly automate the
activities of a system integrator both at the stage of
creating a collective of the next-generation intelligent
computer systems, and and at the stage of its updating
(reengineering).

The advantages of intelligent computer systems of the
new generation are provided by:

• advantages of the language of internal semantic
encoding of information stored in the memory of
these systems;

• advantages of the organization of graphodynamic
associative semantic memory of intelligent computer
systems of a new generation;

• advantages of semantic representation of knowledge
bases of intelligent computer systems of a new
generation and means of ontological structuring of
knowledge bases of these systems;

• advantages of agent-oriented problem solving models
used in intelligent computer systems of a new
generation in combination with decentralized control
of the information processing process.

VII. TECHNOLOGY OF INTEGRATED LIFE CYCLE
SUPPORT FOR INTELLIGENT COMPUTER SYSTEMS OF

THE NEXT GENERATION

life cycle of the next-generation intelligent computer
system
⇒ includes*:

• designing the next-generation intelligent com-
puter system
⇒ includes*:

• designing the knowledge base of
the next-generation intelligent com-
puter system

• designing the next-generation in-
telligent computer system problem
solver

• designing the interface of the next-
generation intelligent computer sys-
tem

• realization of the next-generation intelligent
computer system

• initial training of the next-generation intelli-
gent computer system

• quality monitoring of the next-generation in-
telligent computer system

• restoring the required level of the next-
generation intelligent computer system

• reengineering of the next-generation intelligent
computer system

• ensuring the security of the next-generation
intelligent computer system

• operation of the next-generation intelligent
computer system by end users

The construction of a technology for integrated support
of the life cycle of the next-generation intelligent computer
systems involves:

• Clear description of the current version of the next-
generation intelligent computer systems standard,
which ensures semantic compatibility of the systems
being developed;

• Creation of powerful libraries of semantically com-
patible and reusable components of developed intel-
ligent computer systems;

36

• Clarification of the requirements for the integrated
technology being created and caused by the features
of the next-generation intelligent computer systems
developed and operated using this technology.

Creation of an infrastructure that provides intensive
permanent development of Technology for integrated
support of the life cycle of the next-generation intelligent
computer systems involves:

• Ensuring a low threshold of entry into the technology
of designing intelligent computer systems for both
technology users (i.e. developers of applied or spe-
cialized intelligent computer systems) and developers
of the technology itself;

• Ensuring high rates of technology development by
taking into account the experience of developing
various applications by actively involving application
authors to participate in the development (improve-
ment) of technology.

At the heart of the creation of the technology we offer
for integrated support of the life cycle of intelligent
computer systems of the next generation, are the
following provisions:

• implementation of the proposed technology for the
development and maintenance of intelligent com-
puter systems of the next generation in the form of
an intelligent computer metasystem that fully com-
plies with the standards of the proposed intelligent
computer systems of the next generation developed
by the proposed technology. The structure of such
an intelligent computer metasystem implementing
the proposed technology includes:
– formal ontological description of the current

version of the standard for intelligent computer
systems of the next generation;

– formal ontological description of the current
version of methods and tools for designing, im-
plementing, maintaining, reengineering and op-
erating intelligent computer systems of the next
generation.

Due to this, the technology of designing and reengi-
neering intelligent computer systems of a new
generation and the technology of designing and
reengineering the technology itself (i.e. intelligent
computer metasystem) are the same thing;

• unification and standardization of intelligent com-
puter systems of the next generation, as well as
methods of their design, implementation, mainte-
nance, reengineering and operation;

• permanent evolution of the standard of intelligent
computer systems of the next generation, as well
as methods of their design, implementation, mainte-
nance, reengineering and operation;

• ontological design of intelligent computer systems
of the next generation, assuming:

– clear coordination and operational formalized
fixation (in the form of formal ontologies) of
the approved current state of the hierarchical
system of all concepts underlying the permanently
evolving standard of intelligent computer systems
of the next generation, as well as at the heart of
each developed intelligent computer system;

– fairly complete and prompt documentation of the
current status of each project;

– using the "top-down" design methodology.
• component design of intelligent computer systems of

a new generation, i.e. design focused on the assembly
of intelligent computer systems from ready-made
components based on constantly expanding libraries
of reusable components;

• complex nature of the proposed technology that
performs:
– support for designing not only components of

intelligent computer systems of the next generation
(various fragments of knowledge bases, knowledge
bases in general, various methods of problem solv-
ing, various internal information agents, problem
solvers in general, formal ontological descriptions
of various external languages, interfaces in gen-
eral), but also intelligent computer systems in
general as independent design objects taking into
account the specifics of those classes to which the
designed intelligent computer systems belong;

– support not only for the integrated design of intel-
ligent computer systems of the next generation, but
also support for their implementation (assembly,
reproduction), maintenance, reengineering during
operation and operation itself.

To create a technology for integrated design and
comprehensive support for the subsequent stages of the
life cycle of intelligent computer systems of the next
generation, it is necessary:
• Unify the formalization of various models of repre-

sentation of various types of used information stored
in the memory of intelligent computer systems and
various models of solving intelligent problems to
ensure semantic compatibility and simple automated
integrability of various types of knowledge and
models of solving problems in intelligent computer
systems. To do this, it is necessary to develop a basic
universal abstract model of knowledge representation
and processing, which provides the implementation
of various models of problem solving.

• Unify the structuring of knowledge bases of intelli-
gent computer systems in the form of a hierarchical
system of ontologies of different levels.

• Unify the system of concepts used, specified by the
corresponding ontologies to ensure semantic com-
patibility and interoperability of various intelligent
computer systems.

37

• Unify the architecture of intelligent computer sys-
tems, providing semantic compatibility:
– between intelligent computer systems and their

users;
– between individual intelligent computer systems;
– between collective intelligent computer systems,
as well as ensuring the interoperability of communi-
ties consisting of:
– individual intelligent computer systems;
– collective intelligent computer systems;
– users of intelligent computer systems

• To develop a basic model of interpretation of various
formal models of problem solving in intelligent
computer systems with a focus on the maximum
possible simplification of such interpretation in next
generation computers that are specifically designed
for the implementation of individual intelligent
computer systems.

• To develop the next generation of computers, the
principles of functioning of which are as close
as possible to the basic abstract model, which
ensures the integration of all kinds of knowledge
representation models and problem solving models.
At the same time, the basic information processing
machine underlying these computers should differ
significantly from the von Neumann machine and
should be close to the basic model of problem
solving in intelligent computer systems in order to
significantly reduce the complexity of interpreting
the entire variety of problem solving models in
intelligent computer systems.

The implementation of all these stages of the devel-
opment of Artificial Intelligence technologies represents
a transition to a fundamentally new technological order,
which provides a significant increase in the efficiency
of practical use of the results of work in the field of
Artificial intelligence and a significant increase in the
level of automation of human activity.

We have called the proposed technology of integrated
support of the life cycle of the next-generation intelligent
computer systems the OSTIS Technology (Open Semantic
Technology for Intelligent Systems). Accordingly, intelli-
gent computer systems of the next generation developed
using this technology are called ostis-systems. The OSTIS
technology itself is implemented by us in the form of a
special ostis-system, which we call the OSTIS Metasystem
and the knowledge base of which contains:

• Formal theory of ostis-systems;
• Standard of ostis-systems

– Standard for ostis-systems knowledge base
∗ Standard of the internal universal language of

semantic representation of knowledge in the
memory of ostis-systems

∗ Standard for the internal representation of top-

level ontologies in the memory of ostis-systems
∗ Standard for the presentation of the source

texts of knowledge bases of ostis-systems
– Standard for ostis-systems problem solvers

∗ Standard of the ostis-systems basic program-
ming language

∗ Standard of high-level programming languages
for ostis-systems

∗ Standard for the representation of artificial neu-
ral networks in the memory of ostis-systems

∗ Standard of internal information agents in
ostis-systems

– Standard for ostis-systems interfaces
∗ The standard of external languages of ostis-

systems close to the internal universal language
of semantic representation of knowledge

• Standard for ostis-systems and the OSTIS Technol-
ogy (OSTIS standard) [13];

• The core of the Library of reusable components
ostis-systems (OSTIS Libraries);

• Methods and tools to support the life cycle of ostis-
systems and their components.

ostis-system
⇒ subdividing*:

{{{• ostis-subject
:= [independent ostis-system]
⇒ subdividing*:

{{{• individual ostis-system
• collective ostis-system

:= [multi-agent system,
which is a collec-
tive of individual
and collective ostis-
systems, whose ac-
tivities are coordi-
nated by the corre-
sponding corporate
ostis-system]

⇒ note*:
[The ostis-systems
collective may
include individual
ostis-systems may
include individual
ostis-systems
of any kind
– including
corporate
ostis-systems
representing the
interests of other
ostis-systems
teams]

38

}}}

• built-in ostis-system
:= [ostis-system, which is part of some

individual ostis-system]
}}}

individual ostis-system
:= [minimal independent ostis-system]
⇒ subdividing*:

{{{• personal ostis-assistant
:= [ostis-system, which provides com-

prehensive adaptive service to a
specific user on all issues related
to his interaction with any other
ostis-systems, as well as represent-
ing the interests of this user in
the entire global network of ostis-
systems]

• corporate ostis-system
:= [ostis-system that coordinates the

joint activities of ostis-systems
within the framework of the cor-
responding ostis-system collective,
monitors and reengineers the cor-
responding set of ostis-systems
and represents the interests of
this collective within other ostis-
system collectives]

• individual ostis system that is neither a
personal ostis assistant nor a corporate
ostis system

}}}

VIII. CONCLUSION

Let us briefly list the main provisions of this work:
• The main practically significant direction of the

development of modern intelligent computer systems
is the transition to interoperable intelligent computer
systems capable of effective interaction with each
other and with users, which
– provides automation of solving complex problems

that require the creation of temporary or perma-
nent collectives

– turns intelligent computer systems into
independent active subjects capable of initiating
various complex problems and, in fact, initiating
for this purpose workable collectives consisting
of people and interoperable intelligent computer
systems of the required qualifications

• Collectives consisting of independent interoperable
intelligent computer systems and people have good
prospects of becoming synergetic systems.

• The interoperability of intelligent computer systems
is ensured
– a high level of mutual understanding and, accord-

ingly, semantic compatibility
– a high level of contractual capacity, in other words.

the ability to pre-coordinate their actions with the
actions of other subjects

– a high level of ability to quickly coordinate their
actions with the actions of other subjects in the
course of their realization

• Among the principles underlying the construction of
interoperable intelligent computer systems are:
– semantic representation of knowledge in the mem-

ory of intelligent computer systems in the form
of refined semantic networks

– using the universal language of the internal se-
mantic representation of knowledge

– graphodynamic organization of knowledge pro-
cessing

– agent-based problem solving models
– structuring and stratification of knowledge bases

in the form of a hierarchical system of formal
ontologies

– semantically friendly user interface
• To develop a large number of interoperable semanti-

cally compatible intelligent computer systems that
ensure the transition to a fundamentally new level
of automation of human activity, it is necessary to
create technologies that ensure the mass production
of such intelligent computer systems, participation in
which is available to a wide contingent of developers
(including developers of intermediate qualifications
and novice developers). The main provisions of this
technology are
– standardization of interoperable intelligent com-

puter systems
– widespread use of component design based on

a powerful library of semantically compatible
reusable (typical) components of interoperable
intelligent computer systems

• Effective operation of interoperable intelligent com-
puter systems requires the creation of not only the
technology of designing such systems, but also a
family of technologies to support all other stages of
their life cycle. This is especially true of the technol-
ogy of permanent support ofsemantic compatibility
of all interacting interoperable intelligent computer
systems during their operation.

ACKNOWLEDGMENT

The authors would like to thank the scientific team
of the Departments of Intelligent Information Technolo-
gies of the Belarusian State University of Informatics
and Radioelectronics for their assistance and valuable
comments.

39

REFERENCES

[1] K. Yaghoobirafi and A. Farahani, “An approach for semantic
interoperability in autonomic distributed intelligent systems,”
Journal of Software: Evolution and Process, vol. 34, no. 10, p.
e2436, 2022.

[2] Ouksel, A. M. and Sheth, A., “Semantic interoperability in global
information systems,” SIGMOD Rec., vol. 28, no. 1, p. 5–12, mar
1999.

[3] Lanzenberger, Monika and Sampson, Jennifer and Kargl, Horst
and Wimmer, Manuel and Conroy, Colm and O’Sullivan, Declan
and Lewis, David and Brennan, Rob and Ramos-Gargantilla,
José Ángel and Gómez-Pérez, Asunción and Fürst, Frédéric and
Trichet, Francky and Euzenat, Jérôme and Polleres, Axel and
Scharffe, François and Kotis, Konstantinos, “Making ontologies
talk: Knowledge interoperability in the semantic web,” IEEE
Intelligent Systems, vol. 23, no. 6, pp. 72–85, 2008.

[4] Frâncila Weidt Neiva and José Maria N. David and Regina Braga
and Fernanda Campos, “Towards pragmatic interoperability to
support collaboration: A systematic review and mapping of the
literature,” Information and Software Technology, vol. 72, pp.
137–150, 2016.

[5] J. Pohl, “Interoperability and the need for intelligent software: A
historical perspective,” 09 2004.

[6] Jeff Waters and Brenda J. Powers and Marion G. Ceruti, “Global
interoperability using semantics, standards, science and technology
(gis3t),” Computer Standards & Interfaces, vol. 31, no. 6, pp.
1158–1166, 2009.

[7] Lopes de Lopes de Souza, Pedro and Lopes de Lopes de Souza,
Wanderley and Ciferri, Ricardo Rodrigues, “Semantic interoper-
ability in the internet of things: A systematic literature review,”
in ITNG 2022 19th International Conference on Information
Technology-New Generations, Latifi, Shahram, Ed. Cham:
Springer International Publishing, 2022, pp. 333–340.

[8] Hamilton and Gunther and Drummond and Widergren, “Interop-
erability - a key element for the grid and der of the future,” in
2005/2006 IEEE/PES Transmission and Distribution Conference
and Exhibition, 2006, pp. 927–931.

[9] A. E. Yankovskaya, A. A. Shelupanov, A. N. Kornetov, N. N.
Ilinskaya, and V. B. Obukhovskaya, “Gibridnaya intellektual’naya
sistema ekspress-diagnostiki organizatsionnogo stressa, depres-
sii, deviantnogo povedeniya i trevogi narushitelei na osnove
konvergentsii neskol’kikh nauk i nauchnykh napravlenii [hybrid
intelligent system of express diagnostics of organizational stress,
depression, deviant behavior and anxiety of violators based on
convergence of several sciences and scientific directions],” in
Trudy kongressa po intellektual’nym sistemam i informatsionnym
tekhnologiyam «IS&IT’17». Nauchnoe izdanie v 3-kh tomakh.
[Works of congress on intelligent 17 scientific publication in 3
volumes], ser. T. 1. Stupin A. S. publishing House, Taganrog,
2017, pp. 323–329.

[10] A. Palagin, “Problemy transdisciplinarnosti i rol’ informatiki
[problems of transdisciplinarity and the role of informatics],”
Kibernetika i sistemnyj analiz [Cybernetics and Systems Analysis],
no. 5, p. 3–13, 2013.

[11] A. Iliadis, “The tower of babel problem: Making data make sense
with basic formal ontology,” 02 2019.

[12] I. Barinov, , N. Borgest, S. Borovik, O. Granichin, S. Grachev,
Y. Gromyko, R. Doronin, S. Zinchenko, A. Ivanov, V. Kizeev,
R. Kutlakhmetov, V. Laryukhin, S. Levashkin, A. Mochalkin,
M. Panteleev, S. Popov, E. Sevastyanov, P. Skobelev,
A. Chernyavsky, V. Shishkin, and S. Shlyaev, “Development
strategy formation of the committee on artificial intelligence in
the scientific and educational center "engineering of the future",”
Ontology of Designing, vol. 11, no. 3, pp. 260–293, Sep. 2021.
[Online]. Available: https://doi.org/10.18287/2223-9537-2021-11-
3-260-293

[13] V. Golenkov, N. Guliakina, and D. Shunkevich, Open technology
of ontological design, production and operation of semantically
compatible hybrid intelligent computer systems, V. Golenkov, Ed.
Minsk: Bestprint [Bestprint], 2021.

Интеллектуальные компьютерные
системы нового поколения и технология
комплексной поддержки их жизненного

цикла
Голенков В. В., Гулякина Н. А.

В работе рассмотрены принципы построения интеллек-
туальных компьютерных систем нового поколения, а также
принципы построения комплексной технологии их разработ-
ки и поддержки жизненного цикла – Технологии OSTIS. В
качестве ключевых свойств интеллектуальных систем нового
поколения выделяются их семантическая совместимость
и интероперабельность. В работе рассматривается подход
к обеспечению указанных свойств, реализуемый в рамках
Технологии OSTIS.

Received 01.11.2022

40

General-purpose semantic representation language
and semantic space*

Valerian Ivashenko
Department of Intelligent Information Technologies

Belarusion State University of Informatics and Radioelectronics
Minsk, Republic of Belarus

ivashenko@bsuir.by

Abstract—In the article, models and tools that provide a
unified representation of knowledge and their integration within a
“semantic space” are considered. For this, the concept of a “gen-
eralized formal language” is introduced, which makes it possible
to identify the relation between formal languages and known
knowledge representation languages such as semantic networks
for the purpose of analysis. Based on this analysis, the semantics
of the languages of the unified semantic knowledge representation
model is specified. A general-purpose language is also introduced
as the basis for the technology of developing intelligent systems.
And as a result, the concept of “semantic space” is given. The
latter is focused on the usage in order to assess the quality of
intelligent computer systems within the OSTIS technology. Based
on the proposed models, applied problems and further prospects
for the development of technologies and their components are
considered.

Index Terms—Semantic Space, Distensible Sets, Generalized
Formal Language, Generalized String, Generalized Kleene’s
Closure, Set Ordination, Individual Set, Ordered Set, Unified
Knowledge Representation Model, Knowledge Specification
Model, OSTIS, Knowledge Integration, Introscalar product,
Introscalar basis, Taxonomy optimization, Homogeneous Semantic
Network, denotational semantics, operational semantics, game
semantics, Holomovement, Interoperability, Convergence, Space-
Time, Topological Space, SemanticMetric Space, SemanticMetric,
Manifold, Becoming, Finite Structure

I. Introduction

In the article, models and tools that provide a unified
representation of knowledge and their integration within the
“semantic space” in order to develop a standard for the
technology of designing intelligent computer systems are
considered [5]. This takes into account various aspects of
integration, including the integration of data and knowledge
representation levels, as well as dynamic aspects of integration
that are closely related to the operational semantics of
knowledge [9], [11]. As for the review of languages and models
focused on a unified semantic representation of knowledge
and their integration, and the corresponding approaches to
solving these problems, it is proposed to refer to the work
[10] for access to review materials. In this paper, the review
part is dedicated to the issues and history of refining the

* The author is grateful to Dr. Tech. Sc., Professor V.V. Golenkov for
clarifying the formulation of the problem and the topic of this work, as well
as for providing additional materials to the OSTIS standard. The author is also
grateful to E. Bobyor, A. Shichko and D.A. Ivashenko for technical assistance
and support in the work on the article.

concept of “semantic space”. The need to consider knowledge
representation languages that provide a unified semantic
representation of knowledge is conditioned be the need to
represent elements of the semantic space.

In the article, the following will be considered: 1) the
formulation of the problem of forming concepts that can express
themeaning of the term “semantic space”, the formulation of the
identified problems that need to be overcome in order to solve the
problem; generalization of the concept of formal language [20],
and mathematical foundations for the model representation of
texts of knowledge representation languages in the form of texts
of generalized formal languages; 2) identifying requirements for
the alphabet of a knowledge representation language focused on
the semantic (meaningful) representation of knowledge, which
are the rationale for choosing such a language and identifying
such a language among generalized formal languages, as well
as languages of the unified semantic knowledge representation
model; 3) the language with its core proposed on the basis of
the identified abstractions, which provide a unified semantic
representation of knowledge in intelligent systems within an
open technology for the development of intelligent computer
systems; 4) historically formed approaches to the genesis of the
concept of “semantic space” and those close to it, including some
abstractions of “space” inmathematics; 5) proposed approaches,
formalisms, and models for the becoming of concepts capable
of expressing the meaning of the term “semantic space” in
accordance with the model of a unified semantic representation
of knowledge; 6) application of some of the proposed problem-
solving models of the level of knowledge control in ontologies
on the example of taxonomies; 7) a conclusion containing the
main results and prospects for the application of the proposed
models.

The semantic space implies the inclusion of various
meanings, therefore, an important problem on the way to
learning the corresponding “semantic space” concept is the
integration of knowledge and the represented meanings.

In knowledge-based systems [22], four directions of
integration (of knowledge and models of their representation)
are distinguished:

• vertical (introspection);
• horizontal profile (knowledge engineering);
• horizontal frontal (unification);

41

• the direction of continuous integration (training and
adaptation).

Problems of integrating knowledge into a single semantic
space (unification) are:

• the availability and usage of non-finite structures in models
and methods for the representation and processing of
knowledge and the formalization of meanings, which make
it difficult or exclude the algorithmization of working
with such representations, including their analysis and
unification;

• uncertainty of models reflecting the results of vertical
integration of models and information representation
languages, including formal languages, and providing
consistent (continuous) integration of texts of dynamic
knowledge representation models;

• the presence of different types of knowledge semantics:
game [23], [24], [9], operational [9], [25], denotational
[5], [26], model [8], etc., requiring correlation in order to
identify the equivalence of knowledge;

• dynamic, non-monotonic nature of knowledge, the
presence of non-factors [1] in knowledge, the presence
of reliable knowledge and knowledge about the unreliable
and hypothetical.

Let us formulate the main problems:
• search, comparison, and grounding of the chosen means

for knowledge representation;
• search for models for representing and analyzing the

structure of the text elements in the languages of the
selected knowledge representation model;

• application of the results of the analysis to solve the
problems of the level of knowledge operation.

To solve the problem and overcome the identified problems,
it is proposed to use methods of mathematical modeling,
including embedding (isomorphic injective mapping) of some
mathematical structures into others, application of models and
methods of theories of formal languages and formal systems,
combinatorics, and discrete optimization.

II. Generalization of formal languages and semantic network
knowledge representation models

As it is known, the language as a “sign system” is designed
to perform “communicative”, “cognitive” (“epistemological”),
“representative”, and other “functions” [27]. Within the
language, signs are organized into texts, which have a sequential
structure performing a “communicative function”: sounds,
words of oral speech are organized into a sequence, just like
letters, written signs are into lines. Mathematically, a string is
an “oriented” (“ordered”) “set” (of characters) [29]. The “set”
itself is a mathematical abstraction of thinking reflecting its
ability to generalize and move from parts to the whole. The
question of correlating “oriented sets” and “unoriented sets”
belongs to the foundation of mathematics [28]. This question is
retaining its actuality. The need to consider this issue is related
to the combination of classes “oriented” and “unoriented sets”
used in the representation of knowledge, and corresponding

to them within the “semantic space” (“semantic metric”), in
which it is necessary to correlate elements of these classes
(Fig. 1 and 2). There are known particular solutions to this
issue for the concept of “oriented” (“ordered”) “pairs” proposed
by N. Wiener, F. Hausdorff, K. Kuratovsky, and others.

Definition according to N. Wiener [30]:

⟨χ, γ⟩W
def
= {{{χ} , ∅} , {{γ}}}

Definition according to F. Hausdorff [30]:

⟨χ, γ⟩12
def
= {{χ} ∪ {1}} ∪ {{γ} ∪ {2}}

The disadvantage is that either ({χ} ∩ {2}) × ({γ} ∩ {1}) =
∅ or ⟨2, 1⟩12 = {{1, 2}}. In addition, there are lacks for the
technical implementation.

Definition according to K. Kuratovsky [31]:

⟨χ, γ⟩K
def
= {{χ}} ∪ {{χ} ∪ {γ}}

The disadvantage is that ⟨χ, χ⟩K = {{χ}}. There are also lacks
for the technical implementation.

Other definitions:

⟨χ, γ⟩reverse
def
= {{χ} ∪ {γ}} ∪ {{γ}}

Disadvantages are similar to ⟨χ, γ⟩K .

⟨χ, γ⟩short
def
= {χ} ∪ {{χ} ∪ {γ}}

The disadvantage is that either ({χ} ∩ {{γ}})×({γ} ∩ {χ}) =
∅ (axiom of foundation) or ⟨{γ} , χ⟩short = {χ}. It is also
a disadvantage from the point of view of type theories that the
elements in the set will have a different type, whereasχ and γ are
of the same type. For ordinal numbers constructed according to
von Neumann, [33] we have ⟨∅, ∅⟩short = ⟨0Ord, 0Ord⟩short =
2Ord.

⟨χ, γ⟩01
def
= {{χ} ∪ {0} , {γ} ∪ {1}}

Disadvantages are similar to ⟨χ, γ⟩12.
Let

s (χ)
def
= {∅} ∪ {{τ} |τ ∈ χ} then, according to M. Morse, an

oriented pair, triple, etc. will be [32]:
⟨χ, γ⟩M

def
= ({0} × s (χ)) ∪ ({1} × s (γ)),

⟨χ, γ, ζ⟩M
def
= ({0} × s (χ)) ∪ ({1} × s (γ)) ∪ ({2} × s (ζ)).

The disadvantage is that the Cartesian product uses a pair in
accordance with the definition of K. Kuratovsky.

.giF 1. A correlation diagram for the set and oriented set concepts.

As shown, the above proposals do not solve the issue in
general or have their drawbacks. Other definitions rely on the
existence of infinite structures (Fig. 1).

42

Let us define an oriented set σ in the following way :
σ

def
=

⋃|σ|
ι=1

{
(|σ| − ι+ 1)

{σι}
}
ι
.

An oriented set σ is the combination of individual sets of
order ι of all ordinations of its components singletons σι to the
base of |σ| − ι+ 1, where ι takes values from 1 to |σ|.
Ordination of the set σ to the base 1:

1σ
def
= σ.
Ordination of the set σ to the base ι+ 1:

(ι+ 1)
σ def
= {ιτ |τ ⊆ σ }.

It should be noted that the logarithm of a set σ to the base 2
is its boolean 2σ [34] .
An individual set of order 1 of element χ:

{χ}1
def
= {χ}.

An individual set of order ι+ 1 of element χ:
{χ}ι+1

def
= {{χ}}ι.

It should be noted that an oriented set of one element is :
⟨χ⟩ def=

{
1{χ}

}
1

= {{χ}}, an oriented set of two elements
coincides with an oriented pair according to N. Wiener :
⟨χ, γ⟩ def=

{
2{χ}

}
1
∪

{
1{γ}

}
2

= {{{χ} , ∅}} ∪ {{{γ}}} =
{{{χ} , ∅} , {{γ}}}, and the oriented triple is :
⟨χ, γ, ζ⟩ def=

{
3{χ}

}
1

∪
{
2{γ}

}
2

∪
{
1{ζ}

}
3

=
{{{{χ} , ∅} , {∅}} , {{{γ} , ∅}} , {{{ζ}}}}.

.giF 2. A correlation diagram for the set and defined oriented set concepts.

Thus, according to this definition, oriented sets are sets and
finite structures (Fig. 2).

If it is necessary for some non-empty oriented sets to be non-
oriented, it is possible to define an own subclass as unoriented
sets, according to the definitions:⋃

τ∈.χ {[τ]} def
=

⋃
τ∈.χ

{
2{τ}

}
κ(χ)

; χ
def
=

⋃
τ∈.χ

{
2{τ}

}
κ(χ)

,

where κ (χ)
def
= 1.

For example:
{[χ]} ∪ {[γ]} def

= {{{χ} , ∅}} ∪ {{{γ} , ∅}} .
Knowledge representation languages (formal languages) and

semantic networks with a graph structure are used to represent
knowledge, but there is no known general model in which
these knowledge representationmeans can be compared in order
grounding the choice of anyone of them.

Let us extend a class of languages beyond the known class
of formal languages in order to ground the choice of the
means (language) of knowledge representation to overcome
the problem of the lack of known models that reflect the
results of vertical integration [11] of models and information
representation languages and provide consistent (continuous)
integration [11] of texts of dynamic knowledge representation
models (Fig. 4).

.giF 3. The correlation of syntax knowledge representation means.

.giF 4. The correlation of generalized formal languages and knowledge
representation means.

We introduce the concept of generalized Kleene closure and
generalized formal language [3], [20] in order to extend the
class of languages beyond formal languages. The expediency
of this extension is conditioned by the need to endow
knowledge representation languageswith associative properties.
The associative properties of a language are reduced to the
presence of associations in its texts. The simplest associations
are abstract connections (connectives), which are considered
mathematically as sets (or directed sets). We will also consider
only oriented sets as associations (strings and generalized
strings, i.e. strings whose components can only be symbols
of the alphabet of the language, strings from them and other
generalized strings) in order for the texts of the language to
remain finite and the “communicative function” of the language
to be preserved.

As it is known, a formal language Λ is a subset of the Kleene
closure [20] of its alphabet. A:
Λ ⊆ A∗/

(
A/A1

)
,

where the Kleene closure of the alphabet A (the definition is
slightly modified to preserve the extensiveness and idempotency
of the closure operator):
A∗Σ

def
= A ∪

(⋃
ι∈N/{0} A

ι
)⊕Σ

.

A∗ def
= A∗A

The operation ⊕A for each element χ of the set to which it is
applied, if γ is a string, “insert” in order all the components
of the string χ, which is a component of the string χ, into this
string χ instead of (γ) if each inserted component belongs to
A and the string γ itself does not belong to A. Empty lines are
excluded from the string unless they are in A.

Here and below:
• A×B is the Cartesian product of set A and set B;

43

• An is the Cartesian power n of set A;
• BA is the exponential (a set of completely defined functions

with domain A and domain B);
• BA

+ is the extended exponential (set of functionswith origin
A and range B (BA ⊆ BA

+));
• 2A is the boolean of set A (set of all subsets of set A

(BA
+ ⊆ 2A×B)) ;

• R−1 is the inverse binary relation to R;
• R ◦ S is the composition of binary relations R and S;
• R◦ is the transitive closure of the binary relation R.
A generalized formal languageΛ is a subset of the generalized

Kleene closure of the alphabet A:

Λ ⊆ A(∗∗)/
(
A/A1

)
.

The generalized Kleene closure of the alphabetA satisfies the
following definitions:

A(∗∗) def
=

⋃
ι∈N/{0}

A(∗ι);

A(∗ι+1) def
=

(
A(∗ι) ∪A

)∗
;

A(∗1) def
= A∗.

The generalized Kleene closure is extensive:

A(∗∗) ∪A = A(∗∗).

The generalized Kleene closure is monotonic:

A(∗∗) ⊆ (A ∪∆)
(∗∗)

.

The generalized Kleene closure is idempotent:(
A(∗∗)

)(∗∗)

= A(∗∗).

The cardinalities of the generalized Kleene closure and the
Kleene closure of the non-empty either finite or countable
alphabet A are equal (aleph-0).

A generalized formal language Λ is called a symmetric
language [3] if and only if for any ∆:

((∅ ⊂ ∆n ∩ Λ) → (∆n ⊆ Λ)) .

Symmetric languages, as a rule, correspond to languages in
which the order of transmission of text elements is not essential
for the preservation of the transmitted meaning. Among such
languages, there are languages focusedmore on the performance
of “cognitive” and “representative” “functions” rather than
“communicative”, i.e. refer to representation languages.

A generalized formal language Λ is called an associative
language [3] if and only if:

∃T∃∆∃n
(
∅ ⊂ (∆n ∪ T)

∗ ∩ Λ
)
.

A generalized formal language Λ is called a pseudograph
(graph) language if and only if A exists and for any ∆, T, n:

Λ ⊆
(
A2 ∪A

)∗
;((

∅ ⊂
(
∆2 ∪ T

)n ∩ Λ
)
→ (∆ ⊆ T)

)
.

A syntactically distinguishable fragment of text is a fragment
of text (subtext) whose structure differs from others or its
position in such language texts as (semantically equivalent)
permutations of elements of one of them differs from other
fragments (is unique) relative to the structure of all such texts
[8].

The consideration of generalized formal languages as amodel
for knowledge representation languages is conditioned by:

• the finite structure of texts;
• the ability to consider knowledge representation means

with a more complex structure of associations than in
graphs, in particular, the ability to construct texts that
one-to-one correspond to abstract simplicial complexes [3],
[35];

• the possibility of associative coding of meaning
(representation of knowledge) by associations of a given
level and belowwithin the hierarchical structure of the text,
which allows for continuous integration (monotonicity)
of knowledge represented in this way, changing only the
structure of connections in associations of upper levels
(in the limit, only the order of elements in the text)
but not the state of text elements during processing
information in dynamic (procedural, non-monotonic)
models of knowledge processing;

• the possibility of syntactic (hierarchical) inclusion of texts
of one language into the texts of other languages as a
whole (without including their parts and without reflecting
their structure) which allows working with texts of several
languages from the position of a single model in a single
syntactic space and ensure representing the results of
processing texts of one language in another,which is typical
for vertical integration processes [11];

• the natural way of the syntax reflection of such artificial
intelligence languages as LISP [36], [8].

Statement. There are p∗(p+ 1) /2 connected distinguishable
text fragments for texts with p characters with a linear
association structure [8].

Statement. There are(((√
5 + 1

)
/2

)2∗p+1 −
((
1−

√
5
)
/2

)2∗p+1
)
/
√
5 − 1

distinguishable text fragments for texts with p characters with a
linear association structure [8].

Statement. There are at least
(⌈(q − p) / (2 ∗ p)⌉+ p− 1)!/ (p! ∗ (⌈(q − p) / (2 ∗ p)⌉ − 1)!)
connected distinguishable text fragments for connected texts
with p symbols with a non-linear structure of q (q ≥ p)
associations [8].

The choice of pseudograph (graph) languages is determined
by (Fig. 5):

• the ability to build a non-linear association structure,
whichmakes it possible to achieve a number (exponentially
dependent on the size of the text) of connected syntactically
distinguishable text fragments which are potential answers
to questions to the knowledge base, in contrast to languages
with a linear association structure (corresponding to
formal languages that are not associative), which have

44

only a quadratic number of connected syntactically
distinguishable fragments of texts [8];

• the fact that hypergraph languages do not qualitatively
raise the number of connected syntactically distinguishable
fragments in their texts but cause difficulties in
implementation.

.giF 5. Symmetrical, associative, and pseudograph languages.

III. Unified representation
Requirements for the knowledge representation language [5]:
• semantic representation, each element of the language text,

with the exception, perhaps, of syntactic connectives of
their incidence, should be a designation (sign) of the entity;

• universality of representation:
– representation of phenomena of arbitrary structure,

including associations of an unlimited number of
elements,

– representation of knowledge and expression of
semantics of any kind;

• simple syntactic structure of texts;
• minimum number of alphabet elements types, unification

of representation;
• ensuring the basic properties of knowledge representation

(the possibility of eliminating synonymy and bringing it to
homogeneous (refined) semantic networks).

A simple syntactic structure of texts means a case when the
number of incident connectives is expressed as no more than a
linear dependence on the number of symbols in the text, i.e. the
relation of the number of incident connectives to the number of
symbols in the text does not exceed a certain constant. So, for
example, if there are m nodes and n arcs in the text, each of
which has three connectives of incidence, the dependence has
the following form 3 ∗ n, and the relation is expressed by the
formula 3∗n

n+m , what is less than three for any natural m and
n. In the case of a complex syntactic structure, the number of
incident connectives in the texts of pseudograph languages can
be expressed as a dependence on the number of designations in
the text, reaching n2.
Thus, the alphabet close to theminimumone I should contain:
• designations of entities (including connectives) that can

have an unlimited number of incident designations (and
corresponding incident connectives);

• designations (of basic connectives), which can have
a limited number of incident designations (and

IelbaT
Comparison of languages with different types of alphabet elements

more than
one kind two kinds two

kinds
syntactic
restrictions - + - + +

simple
syntactic - + - + +
structure
semantic

representation + + - + + - + +

arbitrary
phenomena structure + - + + - + + +

representation
ability

to represent
any knowledge

and - + - +
to express
semantics
of any kinds

corresponding incident connectives), in the simplest case
— equal to two;

• designations (of common connectives) that can have
a limited number of incident designations (and
corresponding incident connectives), in the simplest case
— equal to two.

Basic and common connectives are assumed to be oriented,
since unoriented connectives are relatively easy to define with a
pair of oriented connectives and the designation of an entity that
does not denote a basic or common connective. In order to define
an oriented connective through unoriented connectives, at least
three unoriented connectives and at least two entity designations
are required that do not denote the basic or common unoriented
connectives.

Thus, the alphabet of the required knowledge representation
language (core) must specify designations of at least three types:
vertices (VESC

) and two types of arcs (BESC
, CESC

):

ESC = VESC
∪BESC

∪ CESC
.

Each designation may belong to (be a member of) more than
one type, however, for each occurrence of the designation in
the text of the required knowledge representation language, of
which this designation is an element, its type is determined
unambiguously.

For arcs, it is possible to define a single view as the union of
both types of arcs:

EESC
= BESC

∪ CESC
.

If we consider the designations of the uncertain typeUESC
⊆

ESC , convenient when representing knowledge in the presence
of such NON-factors [1] as incompleteness, then the remaining
types of designations can be expressed as:

VESC
= UESC

/EESC
,

45

CESC
= EESC

/BESC
.

The alphabet of the required language of knowledge
representation contains designations of the types:

• elements of the uncertian type UESC
;

• arcs of an unified type EESC
;

• basic arcs BESC
.

The alphabet of the extension of the required language for
knowledge representation differs in the contents of a larger
number of types of designations (elements):

• elements of an uncertain type (vertexes) UESC
;

• nodes VESC
;

• arcs of permanent membership PESC
;

• arcs of temporal actual membership (basic arcs) AESC

(BESC
);

• arcs of temporal phantom membership TESC
;

• arcs of fuzzy membership (arcs of an unified type) FESC

(EESC
);

• arcs of temporal phantom non-membership HESC
;

• arcs of temporal actual non-membership GESC
;

• arcs of permanent non-membership NESC
.

The listed types of elements are connected by the following
relations:
UESC

∪ VESC
∪ EESC

⊆ ESC , where
PESC

∪AESC
∪TESC

∪FESC
∪HESC

∪GESC
∪NESC

= EESC
,

• a node cannot be an arc: VESC
∩ EESC

= ∅;
• the arc of permanent membership cannot be the arc of

temporal membership, the arc of permanent membership
cannot be the arc of temporal non-membership, the arc of
permanent non-membership cannot be the arc of temporal
membership, the arc of permanent non-membership cannot
be the arc of temporal non-membership: (PESC

∪NESC
)∩

(AESC
∪ TESC

∪HESC
∪GESC

) = ∅;
• the arc of permanent non-membership cannot be the arc of

permanent membership: PESC
∩NESC

= ∅.
Such types of elements and their relations are conditioned by

the need to solve the problems of horizontal profile integration
[11] by unifying the representation.

When there is mapping into generalized formal languages
for the purpose of vertical integration of languages (texts) for
representation and reduction of texts to the fundamental alphabet
ASC , the following is true:

ESC⊂̃ASC
(∗∗)

ESC
2⊂̃ASC

(∗∗).

The model of the unified semantic representation of knowledge
[8] is set by a triple:

⟨SSC , RSC , FSC⟩

The model languages of the unified semantic representation of
knowledge are defined based on the elements of the alphabet
and syntax, the set of all texts forms a general sc-language
(Semantic Code, LSC language), as well as the set of all its
subsets (SSC = 2LSC) is sc-languages (sc-sublanguages):

LSC⊂̃ASC
(∗∗).

The syntax of the model languages for the unified semantic
representation of knowledge (sc-languages) [8] describes the
properties of connectives of incidence relations in the alphabet
elements of these languages in their texts. Two incidence
relations for elements of the alphabet of these languages are
distinguished ISC and CSC :

ISC⊆̃ESC
2;

CSC ⊆ ISC .

Based on these relations ISC , CSC one incidence relation R
can be determined:

R = (ISC − CSC)
−1 ∪ ISC ;

R⊆̃ESC
2;

LSC⊆̃(R ∪ ESC)
∗
.

The syntax of sc-languages can be set as follows. For each
text S of sc-languages and the set of all its components and only
them, X (S∈̃Xn):

(∀Y ((Y ⊂ X) → (¬ (S∈̃Y n)))) ,

there will be such sets of incident connectives I , C and the
set of occurrences of designations T (terminals), V (nodes), E
(edges), A (arcs), and B (basic arcs), that:

|I ∪ C|+ |T ∪ V ∪ E| = n; I=̃ISC ∩X;C=̃CSC ∩X;

A=̃EESC
∩X;B⊆̃ (PESC

∪AESC
) ∩X;T ∪ V ∪ E⊆̃X;

V ⊆̃VESC
∩X; I∩C = C;V ∩A = ∅;E∩A = A;A∩B = B,

neither terminals nor nodes that are not edges are incident to
each other:

I ∩ ((T ∪ V/E)× (T ∪ V/E)) = ∅;

any edge is incident to at least one designation:

∀e ((e ∈ E) → (∅ ⊂ I ∩ ({e} × (V ∪ T ∪ E)))) ;

no more than two designations are incident to any edge:

∀e ((e ∈ E) → (|I ∩ ({e} × (V ∪ T ∪ E))| ≤ 2)) ;

one (second) designation is incident to any arc:

∀e ((e ∈ A) → (|C ∩ ({e} × (V ∪ T ∪ E))| = 1)) ;

at least one node is incident to any edge, if it is a basic arc, the
element that is not incident to it (not the second one) is a node:

∀e((e ∈ B) → ((∅ ⊂ I ∩ ({e} × V)) ∧ ((I − C)
∩ ({e} × V) = (I − C) ∩ ({e} × (V ∪ T ∪ E))))).

There are interpretations of the texts of model languages for
the unified semantic representation of knowledge as texts of
the symmetric (pseudo-) graph (or multipseudograph) language
(see Fig. 6, Fig. 7, and Fig. 8). Where k + 1 order associations
correspond to connectives of incidence relations and sc-
elements (designations in the texts of model languages for the
unified semantic knowledge representation) correspond to k
order associations of the fundamental alphabet ASC .

46

When representing connectives of both incidence relations
in the texts of a generalized formal language, duplication
of connectives is allowed (multipseudograph), the second
occurrence of the connective corresponds to belonging to the
second relation, each designation corresponds to the vertex of
the multipseudograph (Fig. 6):

⟨⟨a, b⟩ , ⟨a, e⟩ , a, b, e, ⟨a, e⟩⟩ .

Рис. 6. Multipseudograph representation (right) of SC-text (left)

.giF 7. Pseudograph representation (right) of SC-text (left)

Transformation of arcs of a unified type (sc-arcs), to which
the nodes (sc-nodes) are incident (Fig. 7).

.giF 8. Pseudograph representation (right) of SC-text with incident arcs (left)

Transformation of arcs of a unified type (sc-arcs), to which
arcs of a unified type (sc-arcs) are incident (Fig. 8).

Transition from text to oriented pseudograph (Fig. 7 and
Fig. 8):

• mapping the vertices of elements (sc-elements);
• mapping of arcs to connections (connectives) of incidence.
To reduce “changes in state” of “memory elements” to

“changes in the connections between them” when representing
texts of sublanguages of symmetric associative (pseudo)graph
(or multipseudograph) language, it can be agreed that the actual
elements (sc-elements, sc-arcs) are separated from the phantom
elements (sc-elements, sc-arcs) by connectives of incidence
relations (some are before those, and others are after).

Representation for connectives of relations of actual and
phantommembership (Fig. 9) in the texts of a generalized formal
language:

⟨⟨a, b⟩ , ⟨a, e⟩ , ⟨f, r⟩ , ⟨f, a⟩ , a, b, e, r, ⟨a, e⟩ , ⟨f, a⟩ , f⟩ .

Relations of the unified semantic knowledge representation
model [8]:

• sublanguage (sc-sublanguage),
• injective language mapping (of sc-languages).

.giF 9. SC-language text with connectives of actual and phantom membership

Features (functions) of the model languages of the unified
semantic representation of knowledge (sc-languages) [8]:

• proper and non-proper sublanguage key elements for (pairs
of) languages (language and sublanguage);

• semantic neighborhoods of key elements in sublanguage
texts for language pairs;

• semantic interpretations of text elements.
When representing arcs of a unified type (sc-arcs), it can be

assumed that they denote a pair ⟨⟨x,℧⟩ , y⟩.

IV. Internal language of ostis-systems
The internal language of ostis-systems – an SC-code

(Semantic Computer code) – is a model language of unified
semantic representation, that is, the language of unified semantic
representation of knowledge in the memory of intelligent
computer systems [5].

An SC-code is [5]:
• an abstract language, that is, a language for which the

way of representing symbols (syntactically elementary
fragments) that are part of the texts of this language is
not specified, but only the alphabet of these symbols is
specified, that is, a family of character classes that are
considered syntactically equivalent to each other;

• a pseudograph language;
• a universal language that provides internal representation

and structuring of all (!) knowledge used by the ostis-
system in the course of its functioning, and is the
result of unification (refinement) of syntax and denotation
semantics of semantic networks.

Graph language (pseudograph language) is a language, each
text of which [5]:

• is defined by a set of elementary fragments (symbols)
included in it, which, in turn, consists of a set of nodes
(vertices), possibly of syntactically different types, and a
set of connective designations, which may also belong to
different syntactically distinguished classes;

• is defined in the general case by several relations of the
incidence of connective designations with the components
of these connectives (in this case, the specified components
in the general case can be not only nodes but also connective
designations).

Each abstract language can be matched with a family of
real languages that provide an isomorphic real representation
of the texts of the specified abstract language by clarifying
the ways of representation (images, encoding) of the symbols

47

included in these texts, as well as by clarifying the rules
for establishing syntactic equivalence of these symbols. In all
other respects, the syntax and denotational semantics of these
real languages are completely similar and correspond to the
syntax and denotational semantics of the corresponding abstract
language [5].

The universality of the SC-code is also ensured by the fact
that the elements of sets denoted by the elements of SC-code
texts can be signs of the described entities of any kind, including
signs of connections between the described entities and/or their
signs [5].

Texts of the SC-code are graph structures of an extended
form, in which the designations of the described connections
can connect not only the vertices (nodes) of the graph structure
but also the designations of other connections [5].

The SC-code is the basic universal language of the internal
representation of knowledge in the ostis-systems memory (the
basic internal language of ostis-systems) [5], this means that it
is the maximum internal language of ostis-systems, in relation
to which all other (specialized) internal languages are its
sublanguages (subsets), that is, it is a set of all possible text of
the SC-code (sc-texts). The signs (designations) of all entities
described in sc-texts (texts of the SC-code) are represented as
syntactically elementary (atomic) fragments of sc-texts and,
therefore, do not have an internal structure in the same sc-text,
not consisting of simpler fragments of sc-text, such as names
(terms), which represent the signs of the described entities
in familiar languages and consist of letters. Names (terms),
natural language texts, and other information constructions
(generalized strings) that are not sc-texts can be contained in
sc-elements included in the sc-text as files described (specified)
by sc-texts [5], [3]. Thus, the knowledge base of an intelligent
computer system built on the basis of the SC-code may contain
names (terms) denoting some of the described entities in the
form of corresponding files. Each sc-element will be called
an internal designation of some entity, and the name of this
entity, in the form of a file (sc-file), will be called an external
identifier (external designation) of this entity. An external
identifier can be not only a name (term) but also a hieroglyph,
a pictogram, a voiced name, a gesture. It should be particularly
noted that the external identifiers of the described entities in an
intelligent computer system built on the basis of the SC-code
are used for: (1) analyzing information coming into this system
from outside from various sources and entering (understanding
and immersing) this information into the knowledge base, (2)
synthesis of various messages addressed to various subjects
(including users).

Texts of the SC-code (sc-texts) generally have a pseudograph
(graph, nonlinear) structure, since the sign of each described
entity can be incident to an unlimited number of other signs,
since each described entity can be connected by an unlimited
number of connections with other described entities [5].

The knowledge base, represented by the text of the SC-code,
is a graph structure of a special kind, the alphabet of elements
of which includes many elements of the explained type, many
nodes, many basic arcs – arcs of a specially highlighted type

that provide structuring of knowledge bases, as well as [8] a set
of arcs of permanent non-membership, a set of arcs of temporal
actual non-membership, a set of arcs of temporary phantomnon-
membership, a set of arcs of fuzzy membership, a set of arcs of
phantommembership, a set of arcs of permanent membership, a
set of special nodes, each of which has content that is a file stored
in the memory of an intelligent computer system. The structural
feature of this graph structure is that its arcs and edges can
connect not only a node with a node but also a node with an arc
or an arc with another arc [5].

An arc is the designation of a binary oriented connective
between two entities. An arc of a special kind (base arc) is a
sign of connection between a node denoting a certain set of
elements of the graph structure under consideration and one
of the elements of this graph structure that currently belongs
to the specified set. At the same time, the connections denoted
by the elements of the graph structure under consideration can
be permanent (always existing) and temporal (connections that
correspond to the period of their existence) [5].

In the considered graph structure, which is a representation
of the knowledge base in the SC-code, there may but should not
exist different elements of the graph structure denoting the same
entity. If a pair of such elements is detected, then these elements
can be pasted together (equated). Thus, the synonymy of internal
designations in the knowledge base of an intelligent computer
system built on the basis of the SC-code is undesirable. At the
same time, the synonymy of external designations is considered
as a normal phenomenon [5].

In addition to files (sc-files) representing various external
designations (names, hieroglyphs, pictograms), files of various
texts (books, articles, documents) can be stored in the memory
of an intelligent computer system built on the basis of the
SC-code, notes, comments, explanations, drawings, pictures,
schemes, photographs, video and audio materials [5].

Any entity, that is capable of having a designation, in the text
of the SC-code can be associated with an sc-element denoting
a set to which only the designation of this entity belongs. This
is one of the factors that ensure the universality of the SC-
code. We emphasize that sc-elements are not just designations
but designations that are elementary (atomic) fragments of a
sign construction, i.e. fragments whose detailed structure is
generally not required for ”reading” and understanding this sign
construction [5].

The text of the SC-code, like any other graph structure, is
an abstract mathematical object that does not require detailing
(refinement) of its encoding in thememory of a computer system
(for example, in the form of an adjacency matrix, an incidence
matrix, a list structure). But such detailing will be required for
the technical implementation of the memory in which sc-texts
are stored and processed [5].

The most important additional property of the SC-code is
that it is convenient not only for the internal representation of
knowledge in the memory of an intelligent computer system but
also for the internal representation of information in thememory
of computers specifically designed to interpret semantic models
of intelligent computer systems. That is, the SC-code defines

48

the syntactic, semantic, and functional principles of organizing
the memory of next-generation computers focused on the
implementation of intelligent computer systems – the principles
of organizing graphodynamic associative semantic memory [5].

The SC-code includes the SC-code Core and is considered as
an Extension of the SC-Code Core [5].
It should be emphasized that unification and the maximum

possible simplification of syntax and denotational semantics
in the internal language of intelligent computer systems are
primarily necessary because the overwhelming amount of
knowledge stored in the knowledge base of an intelligent
computer system are meta-knowledge describing the properties
of other knowledge. Meta-knowledge, in particular, should
include various kinds of logical propositions and various kinds
of programs, descriptions of methods (skills) that provide
solutions to various classes of problems. It is necessary
to exclude the dependence of the form of the represented
knowledge on the type of this knowledge. The form (structure)
for the internal representation of knowledge of any kind should
depend only on (!) from the meaning of this knowledge [5].

Moreover, constructive (formal) development of the
theory of intelligent computer systems is impossible
without clarification (unification, standardization) and ensuring
semantic compatibility of various knowledge types stored in
the knowledge base of an intelligent computer system. It is
obvious that the variety of forms for representing semantically
equivalent knowledge makes the development of a general
theory of intelligent computer systems practically impossible
[5].

TheAlphabet of the SC-code Core [5], as well as the alphabet
of the required knowledge representation language, contains:

• sc-elements of an uncertain type (vertexes, sc-elements)
(= UESC

) 1;
• sc-arcs (arcs of a unified type) (= EESC

);
• basic sc-arcs (basic arcs) (= BESC

).
During processing the text of the SC-code Core, from text to
text, the syntactic type of sc-elements can be specified – an
sc-element of an uncertain type can be an sc-arc, an sc-arc –
basic sc-arc.

The Alphabet of the SC-code Core corresponds to the
features of the classification of sc-elements and sets the syntactic
classification of sc-elements [5].

Syntactic classification of sc-elements of the SC-code Core
[5]:

• sc-elements of an uncertain type (= UESC
);

– sc-nodes (= VESC
);

– sc-arcs (= EESC
);

∗ sc-arcs of a common type (= CESC
);

∗ basic sc-arc (= BESC
).

All classes of sc-elements included in the syntactic classification
of sc-elements are syntactically highlighted classes of sc-
elements [5]. The SC-code is referred to as the syntactic

1Similarly (by the equality of the name in parentheses) we will denote
synonyms of key elements of knowledge representation languages, in order
to reduce the length of formulas in which they are used as synonymous names
in a local context

extension of the SC-code Core, since the Alphabet of the SC-
code is an extension of the Alphabet of the SC-Code Core.

The syntactic extension of the SC-code Core consists in the
introduction of an additional class of syntactically equivalent
elementary fragments of constructions of theSC-code Core –
sc-elements designating internal files stored in the ostis-system
memory [5].

All files representing electronic images of information
constructions external to the SC-code can be represented in the
SC-code using graph structures in which sc-elements designate
letters of texts or pixels of images [5].

The most important type of internal files of ostis-systems
are files of external identifiers of sc-elements (in particular,
names of sc elements) representing sc-elements in texts of
external languages (including in texts of SCs- and SCn-codes)
[8], [10], [5]. The Set of all the elements of the SC-code Core
constructions and the Set of all the elements of the SC-code
constructions completely coincide, since for each element of the
SC-codeCore construction there is an element synonymouswith
the SC-code construction and vice versa. It follows from this
that the semantic classification of the elements of SC-code and
SC-code Core information constructions are also completely
identical. Everything that can be designated and described by
texts of the SC-code can be designated and described by texts
of the SC-code Core. The difference between the SC-code and
the SC-code Core is that a new syntactically highlighted class
of sc-elements is added to the SC-code – a class of sc-elements
that are signs of specific (constant) files stored in the ostis-
system memory. Such ”internal” files are necessary so that
information constructions that are not texts of the SC-code can
be stored and processed in the ostis-system memory, which
is necessary when entering (perceiving) information coming
from outside, as well as when generating information structures
transmitted to other subjects. The inclusion in the SC-code of
special syntactically highlighted sc-nodes denoting electronic
images (files) of various types of information constructions that
are not SC-code constructions makes it possible to process
not only in the ostis-system memory, that is, in the same
storage environment, not only SC-code constructions but also
constructions ”external” for it. Without the implementation
of the ostis-system interface, it is impossible to implement
syntactic analysis, semantic analysis, and understanding, as well
as it is also impossible to realize the synthesis (generation) of
external information constructions belonging to a given external
language and semantically equivalent to a given meaning. Since
all the syntactic and semantic properties of the SC-code and
the SC-code Core are very close, when describing the SC-code,
attention is focused on its differences from the SC-code Core,
as well as for a more detailed consideration of the semantic
classification of elements [5].

The Syntax of the SC-code differs from the Syntax of the
SC-Code Core by the fact that in the Alphabet of the SC-code,
the class of sc-elements is additionally introduced, which are
signs of files stored in the ostis-system memory [5].

The Alphabet of the ostis-systems language, the Alphabet of
sc-elements within the SC-code, the alphabet of the extension

49

of the required knowledge representation language contains:
• sc-element of an uncertain type (vertexes, sc-elements of

the common type) (= UESC
);

• sc-elements with contents (sc-files) (= DESC
);

• sc-nodes (nodes) (= VESC
);

• sc-arcs of permanent membership (arcs of the permanent
membership) (= PESC

);
• sc-arcs of temporal actual membership (basic arcs, basic

sc-arcs) (= AESC
(BESC

));
• sc-arcs of temporal phantom membership (arcs of

temporal phantom membership) (= TESC
);

• sc-arcs of fuzzy membership (arcs of fuzzy membershipи,
arcs of a unified type (= FESC

(= EESC
));

• sc-arcs of temporal phantom non-membership (arcs of
temporal phantom non-membership) (= HESC

);
• sc-arcs of temporal actual non-membership (arcs of

temporal actual non-membership) (= GESC
);

• sc-arcs of permanent non-membership (arcs of permanent
non-membership) (= NESC

).
The Alphabet of the ostis-systems language is [5]:
• a family of maximum sets of syntactically equivalent

(within the SC-code) sc-elements;
• a family of classes with syntactically equivalent sc-

elements of the SC-code;
• a family of sets, each of which includes all syntactically

equivalent to each other (within the SC-code) sc-elements
and only them.

The Alphabet of the ostis-systems language sets the signs
(parameters) of syntactic equivalence of sc-elements [5].

The set of all elements of the SC-code constructions coincides
with the set of all elements of the SC-code Core constructions.
Just in the SC-code constuctions some sc-elements having a
”syntactic label” (syntactic type) of an sc-element of a common
type, will have the ”label” of the sc-element, which is the sign
of an internal file stored in the ostis-system memory [5].

Syntactic classification of sc-elements of the SC-code [5]:
• sc-element of an uncertain type (vertexes, sc-elements)

(= UESC
);

– sc-nodes (nodes) (= VESC
);

– sc-arcs (sc-arcs of fuzzy membership) (= FESC

(EESC
));

∗ sc-arcs of a common type (= CESC
);

· sc-arcs of permanent membership (= PESC
);

· sc-arcs of temporal phantom membership (=
TESC

);
· sc-arcs of temporal phantom non-membership
(= HESC

);
· sc-arcs of temporal actual non-membership (=
GESC

);
· sc-arcs of permanent non-membership (=
NESC

).
∗ sc-arcs of temporal actualmembership (= BESC

).
The sets of sc-elements of an uncertain type, sc-nodes, sc-

arcs of a unified type, and sc-files are subsets of the set of
sc-elements.

The set of sc-arcs is equal to the union of the sets of sc-
arcs of permanent membership, sc-arcs of temporal actual
membership, sc-arcs of temporal phantom membership, sc-
arcs of fuzzy membership, sc-arcs of temporal phantom non-
membership, sc-arcs of temporal actual non-membership, sc-
arcs of permanent non-membership.

The sets of sc-arcs and sc-nodes do not intersect, that is, they
do not have common elements.

The set of sc-arcs of permanent membership does not
intersect neither with the set of sc-arcs of temporal actual
membership, nor with the set of sc-arcs of temporal phantom
membership, nor with the set of sc-arcs of temporal actual non-
membership, not with the set of sc-arcs of temporal phantom
non-membership.

The set of sc-arcs of permanent non-membership does not
intersect neither with the set of sc-arcs of temporal actual
membership, nor with the set of sc-arcs of temporal phantom
membership, nor with the set of sc-arcs of temporal actual non-
membership, not with the set of sc-arcs of temporal phantom
non-membership.

The set of sc-arcs of permanent membership does not
intersect with the set of sc-arcs of permanent non-membership.
Such types of elements and their correlations are caused by

the need to solve the problems of horizontal profile integration
by unifying the representation [11], [8], [12], [3].

In order to ensure vertical integration, some elements of
the alphabet can be represented by non-atomic information
constructions, which can be interpreted as ”contents” of these
elements [10], [3], [8], [5], for example, based on generalized
formal languages. Such elements can be distinguished into a
separate type of alphabet elements.

When mapping to generalized formal languages for the
purpose of vertical integration (texts), a set of sc-elements
(ESC) corresponds to a subset of a generalized formal language
with a given alphabet (ASC), just as the set of all pairs of
sc-elements corresponds to a subset of a generalized formal
language with a given alphabet (ASC).
This Syntactic classification of sc-elements from the

Syntactic classification of sc-elements of the SC-code Core
is distinguished by an additional clarification of the syntactic
typology of sc-elements.

A. Syntax of the ostis-system internal language
The Syntax of the SC-code Core corresponds to the syntax of

the languages of the unified semantic knowledge representation
model (sc-languages) and is set by the Alphabet of the SC-
code Core and two mentioned incident relations of the alphabet
elements of these languages by the Incidence relation of sc-
connectors* (= ISC) and the Incidence relation of incoming
sc-arcs* (= CSC).
The Incidence relation of sc-connectors* is a binary oriented

relation, the first component of each oriented pair of which is
some sc-connector and the second component is one of the sc-
elements connected by the specified sc-connector with some
other sc-element, which is specified in another incidence pair
for the same sc-connector [5], [8].

50

The set of sc-connectors is a subset of sc-elements [5], [8].
The set of sc-arcs is a subset of sc-connectors [5].
The Incidence relation of incoming sc-arcs* is a binary

oriented relation, the first component of each oriented pair
of which is some sc-arc and the second component is an sc-
element, in which the specified sc-arc is included, i.e. the sc-
element, which is the second component connected (linked) by
the specified sc-arc [5].
The Incidence relation of incoming sc-arcs* is a subset of

the Incidence relation of sc-connectors* [5].
On the basis of these relations, one incidence relation can

be distinguished Incidence relation* (= R). The Incidence
relation* is a union of the Incidence relation of sc-connectors*
and the backward relation to its symmetric difference with the
Incidence relation of incoming sc-arcs*.
For each sc-connector (E), there are two and no more

than two pairs of the Incident relation of sc-connectors*, the
specified sc-connector is the first binding component. At the
same time, for each sc-arc (A), one of the specified incident
pairs must belong to the Incidence relation of the incoming
sc-arc*.

The sc-connectors connecting the sc-element to itself will
be called loop sc-connectors (loop sc-edges and loop sc-arcs).
The incidence pairs of loop sc-connectors are as if they were
multiples.

To the Incidence relations of sc-connectors* and Incidence
relations of incoming sc-arcs* definition domain, not only sc-
nodes are included but alsosc-connectors. This means that an
sc-connector can connect (link) not only an sc-node with an
sc-node but also an sc-node with an sc-connector and even an
sc-connector with an sc-connector.

In the sc-text, for each occurrence of an sc-element, its
syntactic class can be set (syntactic class of the occurrence
of the sc-element in the sc-text*), according to which syntactic
subclasses of occurrences of sc-elements can be distinguished
for this sc-text: syntactic class of occurrences of terminal sc-
elements in the sc-text*(T), syntactic class of occurrences
of node sc-elements in the sc-text* (V), syntactic class of
occurrences of edge sc-elements in the sc-text* (E), syntactic
class of occurrences of arc sc-elements in the sc-text* (A),
syntactic class of occurrences of basic sc-elements in the sc-
text* (B). For each sc-text, it is possible to determine the set of
all its components (components of sc-text*) and the relation of
occurrences of the components of the Incidence relation of sc-
connectors* and Incidence relations of sc-arcs* connectives:
Relation of occurrences of incident sc-connectors of the sc-
text* (I), Relation of occurrences of incident sc-arcs of the
sc-text* (C).

In this case, the following features will be performed:
• the sum of powers for unions of sets of Relation of

occurrences of incident sc-connectors of sc-text* and
Relation of occurrences of incident sc-arcs of sc-text*
and sets of syntactic class of occurrences of terminal
sc-elements in sc-text*, syntactic class of occurrences
of node sc-elements in sc-text* and syntactic class of

occurrences of edge sc-elements in sc-text* to the number
of components of this sc-text (components of sc-text*);

• the syntactic class of occurrences of arc sc-elements in
sc-text* is a subset of syntactic class of occurrences of
edge sc-elements in sc-text*;

• The Relation of occurrences of incident sc-connectors
of sc-text* is a set of pairs connecting the occurrence of a
component of sc-text*with the occurrence of a component
of the same sc-text, a pair of these components is an element
of the Incidence relation of sc-connectors*;

• TheRelation of occurrences of incident sc-arcs of sc-text*
is a set of pairs connecting the occurrence of a component
of sc-text* with the occurrence of a component of the
same sc-text, a pair of these components is an element of
the Incidence relation of sc-arcs*;

• The Relation of occurrences of incident sc-arcs of sc-
text* is a subset of the Relation of occurrences of incident
sc-connectors of sc-text*;

• the syntactic class of occurrences of basic sc-elements in
sc-text* is a subset of the syntactic class of occurrences
of arc sc-elements in sc-text*;

• a syntactic class of occurrences of arc sc-elements in sc-
text* is a subset of the syntactic class of occurrences of
edge sc-elements in sc-text*;

• the syntactic class of occurrences of arc sc-elements
in sc-text* does not intersect with the syntactic class of
occurrences of node sc-elements in sc-text*;

• the syntactic class of occurrences of arc sc-elements in sc-
text* is a set of pairs connecting sc-text with its component
(components of sc-text*), which is an sc-arc;

• the syntactic class of occurrences of node sc-elements
in sc-text* is a set of pairs connecting sc-text with its
component (components of sc-text*), which is an sc-node;

• the syntactic class of occurrences of basic sc-elements
in sc-text* is a set of pairs connecting sc-text with its
component (components of sc-text*), which is an sc-arc
of actual membership;

• the direct product of the set (Cartesian product of the
set*) of the union of the syntactic class of occurrences of
terminal sc-elements in the sc-text* with the difference of
the syntactic class of occurrences of node sc-elements in
the sc-text*with the syntactic class of occurrences of edge
sc-elements in the sc-text* of itself does not intersect with
the Relation of occurrences of incident sc-connectors of
sc-text*;

• for each pair of the syntactic class of occurrences of edge
sc-elements in the sc-text*, there is at least one pair of
the Relation of occurrences of incident sc-connectors of
sc-text*, the first component of which it is;

• for each pair of the syntactic class of occurrences of
edge sc-elements in the sc-text*, there are no more than
two pairs of the Relation of occurrences of incident sc-
connectors of sc-text*, the first component of which it is;

• for each pair of the syntactic class of occurrences of arc
sc-elements in the sc-text*, there is a single pair of the
Relation of occurrences of incident sc-connectors of sc-

51

text*, the first component of which it is;
• for each pair of the syntactic class of a of occurrences of

basic sc-elements in the sc-text*, there is at least one pair
of the Relation of occurrences of incident sc-connectors
of sc-text*, not belonging to theRelation of occurrences of
incident sc-arcs of sc-text*, but only if there is another pair
of the Relation of occurrences of incident sc-connectors
of sc-text*, the first component of which it is and the
second component of which belongs to the syntactic class
of occurrence of node sc-elements in the sc-text*.

The Syntax of the SC-code Core [5] is set:
• by the Alphabet of the SC-code Core;
• by the Incidence relation of sc-connectors* and the

Incidence relation of incoming sc-arcs*;
• by the rules of connection (incidence) of sc-elements (for

example, which types of sc-elements cannot be incident to
each other) when they occur in sc-texts;

• by structural (syntactic) constraints in the semantic
neighborhood of the key elements of the SC-code Core.

The syntax of the internal language of ostis-systems (the
Syntax of the SC-code) is set by the syntax of the languages
for the unified semantic representation of knowledge model (sc-
languages) and with the exception of the Alphabet of the SC-
Code Core and the Alphabet of the SC-code is exactly the same
as the Syntax of the SC-Code Core.
The Syntax of the SC-code [5] is set:
• by the Alphabet of the SC-code, that is, the typology

(alphabet) of sc-elements (atomic fragments of SC-code
texts);

• by the Incidence relation of sc-connectors* and the
Incidence relation of incoming sc-arcs*;

• by the rules of connection (incidence) of sc-elements (for
example, sc-elements of which types cannot be incident to
each other) when they occur in sc-texts;

• by structural (syntactic) constraints in the semantic
neighborhood of the key elements of the SC-code.

B. Basic denotation semantic of the ostis-system internal
language

Denotational semantics is a description of the correspondence
of information constructions belonging to the language (the SC-
code Core) and entities described by these constructions [5].

Denotational semantics of the SC-code Core [5]. According
to the unified semantic knowledge representation model, the
semantics of the SC-code Core (including the basic one) is
expressed by:

• proper and non-proper sublanguage key elements for (pairs
of) languages (language and sublanguage);

• semantic neighborhoods of key elements in sublanguage
texts for language pairs;

• semantic interpretations of text elements.
Due to the fact that the semantics andmeaning of designations

in the texts of languages of the unified semantic representation
of knowledge model are expressed through the connections of
elements, the family of all texts of a language defines a set of key

elements in relation to any of its superlanguages and vice versa.
Accordingly, the semantics (interpretations) of text elements
and semantic neighborhoods of key elements of the language
are designated [8].

Thus, semantics can be defined by enumeration of the
key elements of a language (semantic types of elements) or
enumeration, formation of its texts. It is important to note that the
becoming of language texts in the process of their integration is a
natural mechanism that sets not only the denotational semantics
of the language, but also the operational and game semantics
[9], [23], [24], allowing to consider their joint and unified
formalizations within one semantic (meaningful) spaces.

Due to the above and the fact that the integration and
processing of knowledge is unthinkable without movement and
change,which is a special case of becoming [12], [3], the concept
of becoming and the key element of becoming* is a necessary
key element of the SC-code Core and the internal language of
ostis-systems (SC-code).
The basic mathematical concept that allows expressing the

basic denotational semantics of the language in question is the
concept of a distensible set (sc-set) [8], [3].

Projectively, the concept of an distensible set (Distensible)
can be expressed in accordance with the scheme [8]:

⟨Universe,Events,Becoming,Designator,Distensible,
□,Z+, [0; 1]⟩

through the mathematical concept of a set as follows:

Distensible⊆̃Ξ,

where
Ξ = 2Events × ΦUniverse,

Universe – a set of elements (including designations of
distensible sets), Events – a set of (elementary) events,
becoming relation Becoming:

Becoming ⊆ Events× Events,

designation event function Designator:

Designator ∈
(
2Events

)Universe
,

and
Φ =

⋃s∈□

s
(Ψ)

{s}
; Ψ = ∇×

(
∆Events

)
;

∇ =
⋃p∈Z+

p
D(Dp−1);∆ =

⋃q∈+

q
D(Dq−1);D = [0; 1] ,

where □ – a linearly ordered set (Z+ ⊆ □).
An algebraic structure over distensible sets with operations is

permissible: {
•kΞ

}
⊆ ΞΞ×Ξ,

when k ∈ {∪,∩,⊗,⊕, ...}, which can be expressed:

⟨α, δ⟩ •kΞ ⟨β, γ⟩ =
〈
α ∪ β, τ

(〈
δ, γ, •kΦ, Universe

〉)〉
,

where

τ (⟨α, β, φ, σ⟩) = {⟨χ, φ (⟨α (χ) , β (χ)⟩)⟩ |χ ∈ σ } ,

52

and operations {
•kΦ

}
⊆ ΦΦ×Φ

in turn
α •kΦ β = τ

(〈
α, β, •kΨ,□

〉)
.

The last ones are expresses through operations{
•k∆

}
⊆ ∆∆×∆

and mappings: {
•k∇

}
⊆

(
∇(∆Events)

)∇×∇

as follows:

⟨α, δ⟩ •kΨ ⟨β, γ⟩ = κ
(〈
α, β, •k∇, τ

(〈
δ, γ, •k∆, Events

〉)〉)
,

where
κ (⟨α, β, φ, ε⟩) = ⟨φ (⟨α, β (ε)⟩) , ε⟩ .

In turn, the remaining operations and mappings are expressed
by: {

•kD
}
⊆ DD×D,

ζ ∈
(⋃p∈Z+

p
D(Dp−1)

)(Z+×D)

,

ν ∈ Z+

(⋃p∈Z+
p D(D

p−1)
)
,

µ ∈ D

(⋃p∈Z+
p D(D

p−1)
)

as follows:

α •k∇ β = ζ
(〈
ν (α)∪Z+

ν (β) , µ (α) •kD µ (β)
〉)
,

where ∪Z+
= max, and, for example, •∪D = max, •∩D = min,

•⊗D = ∗, α •⊕D β = (α∩+ (1− β))∪+ ((1− α)∩+β) .
Moreover:

∀φ∀p
((
φ ∈ D(Dp−1)

)
→ (ν (φ) = p− 1)

)
,

∀σ∀p∀ε
((
σ ∈ Dp−1

)
→ (ζ (⟨p, ε⟩) (σ) = π (σ + ⟨ε⟩))

)
,

∀σ
((
σ ∈ {1}ν(χ)−1

)
→ (µ (χ) = χ (σ))

)
,

where:
χ ∈ D(Dν(χ)−1),

π (⟨⟩) = 1,
π (s+ ⟨e⟩) = e · π (s) + (1− e) · (1− π (s))

or in a non-recurrent form:

π (s) =
1+(−1)dim(s)·

i∈N∪{0}∑
i

(−2)
i!

i

·
m∈{sj |j }i∑

m

mj∏
j

mj

2 .

Structurally, the concept of a distensible set can be expressed
within the formal reflexive and descriptive semantics of the
languages for the unified semantic representation of knowledge
model, with the involvement of more fundamental concepts of
the becoming of the actual and phantom (event) [12], [3], [37].

Key elements of the SC-Code Core [8]:
• an sc-sign is the designation of the sc-set and the element

(component) of any sc-set designated by the sc-element
[3], [17];

• sc-set;
– the sc-set is a distensible set, any sc-element is a

designation (sign) of the sc-set;
• node sc-set;

– a node sc-set is a distensible set that is not an sc-pair of
fuzzy membership, any sc-node is a designation (sign)
of a node sc-set;

• sc-pair of fuzzy membership;
– an sc-pair of fuzzy membership is an sc-pair, the

designation of which belongs to the relation of
fuzzy membership, sc-arc of fuzzy membership is the
designation (sign) of the sc-pair, the first component
of which is the designation (sc-sign) of the sc-set,
denoted by the sc-element from which this sc-arc
goes out, and the second component which is the
designation (sc-sign) of the sc-set denoted by the sc-
element in which this sc-arc comes [12];

• sc-pair of permanent membership;
– an sc-pair of permanent membership is an sc-pair,

the designation of which belongs to the relation
of permanent membership, an sc-arc of permanent
membership is the designation (sign) of an sc-pair, the
first component ofwhich is the designation (sc-sign) of
the sc-setS, denoted by the sc-element fromwhich this
sc-arc goes out, and the second component of which
is permanently (as long as it exists) belonging to the
sc-set S designation (sc-sign) of the sc-set designated
by the sc-element in which this sc-arc comes [12];

• sc-pair of temporal actual membership;
– an sc-pair of temporal actual membership is an sc-pair

whose designation belongs to the relation of temporal
actual membership, an sc-arc of temporal actual
membership is the designation (sign) of the sc-pair,
the first component of which is the designation (sc-
sign) of the sc-set S, denoted by the sc-element from
which this sc-arc goes out, and the second component
of which is temporarily currently belonging to the sc-
set S designation (sc-sign) of the sc-set designated by
the sc-element in which this sc-arc comes [12];

• sc-pair of temporal phantom membership;
– an sc-pair of temporal phantom membership is an

sc-pair whose designation belongs to the relation of
temporal phantom membership, an sc-arc of temporal
phantom membership is the designation (sign) of the
sc-pair, the first component of which is the designation
(sc-sign) of the sc-set S, denoted by the sc-element
from which this sc-arc goes out, and the second
component of which is temporarily belonging to the
sc-set S designation (sc-sign) of the sc-set designated
by the sc-element in which this sc-arc comes [12];

53

• sc-pair of temporal phantom non-membership;
– an sc-pair of temporal phantom non-membership is

an sc-pair whose designation belongs to the relation
of temporal phantom non-membership, an sc-arc of
temporal phantom non-membership is the designation
(sign) of the sc-pair, the first component of which is
the designation (sc-sign) of the sc-set S, denoted by
the sc-element from which this sc-arc goes out, and
the second component of which is temporarily not
belonging to the sc-set S designation (sc-sign) of the
sc-set designated by the sc-element in which this sc-
arc comes [12];

• sc-pair of temporal actual non-membership;
– an sc-pair of temporal actual non-membership is an

sc-pair whose designation belongs to the relation
of temporal actual non-membership, an sc-arc of
temporal actual non-membership is the designation
(sign) of the sc-pair, the first component of which is
the designation (sc-sign) of the sc-set S, denoted by
the sc-element fromwhich this sc-arc goes out, and the
second component of which is temporarily currently
not belonging to the sc-set S designation (sc-sign) of
the sc-set designated by the sc-element in which this
sc-arc comes [12];

• sc-pair of permanent non-membership;
– an sc-pair of permanent non-membership is an sc-

pair whose designation belongs to the relation of
permanent non-membership, an sc-arc of permanent
non-membership is the designation (sign) of the sc-
pair, the first component of which is the designation
(sc-sign) of the sc-set S, denoted by the sc-element
from which this sc-arc goes out, and the second
component of which is permanently (as long as it
exists) not belonging to the sc-set S designation (sc-
sign) of the sc-set designated by the sc-element in
which this sc-arc comes [12];

• node sc-pair;
– node sc-pair is an sc-pair designated by the sc-node;

• sc-pair;
– sc-pair is an sc-set, to which there are only two

memberships of different sc-elements or of the same
sc-element;

• sc-connective;
– sc-connective is an sc-set whose sc-subset is an sc-

pair;
• sc-relation;

– sc-relation is an sc-set of sc-connectives;
• binary sc-relation;

– binary sc-relation is an sc-set of sc-pairs;
• slot sc-relation;

– slot sc-relation is an sc-set of sc-pairs that are not node
sc-pairs;

• attributive sc-relation;

– attributive sc-relation is an sc-set of sc-pairs
of membership (permanent, temporal, actual, or
phantom);

• sc-file;
– sc-file is an entity designated by an sc-element whose

contents is an sc-file (a finite dynamic or static data
structure);

• sc-structure*;
– sc-structure* is an sc-set in which there is an sc-

subset-carrier (the set of primary elements of the sc-
structure);

• perception *;
– perception* is a binary sc-relation between an sc-

element and an sc-set of its images;
• explanation*;

– explanation* is a binary sc-relation between an sc-
element and an sc-set of its explanations;

• becoming*;
– becoming* is a binary sc-relation between events

(states) or phenomena.
Each sc-element is a sign (designation) of some described

entity [5].
Any entity can be designated by an sc-element and,

accordingly, described as a construction of the SC-code Core
[5].

With the help of the sc-elements, it is possible to represent
any connections between sc-elements and/or between entities
that are designated by these sc-elements. In this case, these
connections are considered as extensible sets of connected sc-
elements and are designated by sc-arcs, and in the case of non-
binary connections – by sc-nodes [5].

Since each sc-connector is semantically interpreted as the
designation of a pair of sc-elements connected (linked) by
this sc-connector, each pair of incidence of the sc-connector is
semantically interpreted as an membership pair connecting the
sc-connector with one of the elements of the pair of sc-elements
designated by it, and the sc-connector itself is its designation
[5]. Any described entity can be designated by an sc-element of
an uncertain type, however, the reverse is not true, since some
entities can only be designated by sc-arcs of a general type, basic
sc-arcs [5].

Basic denotational semantics of the internal language of
ostis-systems (SC-code). The basic denotational semantics of
the SC-code (the internal language of ostis-systems) basically
corresponds to the basic denotational semantics of the SC-Code
Core, due to the preservation of all the key elements of the SC-
Code Core in the SC-code. However, the semantics of the sc-
texts of the SC-code differs from the semantics of the sc-texts of
the SC-code Core, since a more precise semantic interpretation
can be set by the membership of the sc-text component to the
corresponding syntactic class that does not belong to this sc-text,
in contrast to its assignment by belonging to the key element,
belonging to sc-text of which is required [5], [8].

54

The semantic proximity of the SC-code and the SC-code
Core is a consequence of the fact that the SC-code is a syntactic
extension of the SC-code Core [5].

V. Semantic Space
A. Review of approaches

The word “space” takes its etymological roots in Proto-Indo-
European word with the meaning “to stretch” or “to pull”. The
word “semantics” originates from Anc. Greek “semantikos”
that is created by union of “semaino” (to indicate, to sign) and
suffix “ikos”. On the other hand, “meaning” rooted in “semaino”
originates from the Proto-Indo-Europeanwordwith themeaning
“to think” or “to change”. So, “semantic space”means “stretched
thought” and is interpreted as a phenomenon of thinking (i.e.
movement of thoughts). The need for considering such a concept
is related to the need for analysis of structural and quantitative
(metrical) features aiming to detect limits, assess completeness
of thinking processes, and to optimize costs needed per their
modeling having finite resources.

It probably might seem, that the concept of “semantic space”,
or something close or similar to this, originates from ancient
times by philosophers, including idealists and dualists, e.g.
Platonic “world of ideas” [38]. However, philosophic concepts
change along their development and are often not well defined
so that one can make unambiguous statements and be definitely
certain about them, particularly being in the conditions of
incomplete information about historical “facts” and inaccuracy
of historical evidence. In addition, the concept of “space” often
related to the concept of “time”, for it most likely is a “container”
(“substance”) for something changeable, impermanent, i.e. –
materialistic, things (from “thinking”) rather than constant,
“perpetual” “ideas”. Perhaps, R. Descartes was one of the first in
European history who showed signs of intentions, which came
down to us, to connect “thinking” and “material” (“things”)
“space” via the God and relationism [39] that was stood by
G. W. Leibniz afterwards [40], and together with the similarity
of properties of “thinking” to natural “extension” is reflected
by D. Hilbert [41]. Reasoning about “space” and “thinking”,
D. Hilbert had been rejecting their infinity. Also, it could
be that Hegel’s concepts [37] are closer to the concept of
“semantic space”. In dialectical materialism in accordance with
the definition for “matter” the existence of meaning should be
accepted only materialistically in the space and time.

Largely due to the development and definition of
mathematical concepts for various mathematical structures, in
modern science, “space” is understood not only as “material”,
“physical space”.

Let us take a look at the history of the usage of the term
“space” in mathematics. It is believed that infinite constructions
are not considered in the beginnings of Euclid, which is also
considered characteristic of ancient mathematicians, therefore
there are no sufficient grounds to speak of an “ancient
concept” of“Euclidean space”. Modern science II defines a lot
of mathematical structures (Fig. 10) up to hypothetical ones
(“antispace” [47]) in the name of which the term “space” is
used:

• vector (linear) space (/finite-dimensional) [48];
• affine space (/finite-dimensional);
• topological space [49];
• linear topological space;
• pseudometric space [50];
• metric space [51];
• locally convex space;
• semi-normed space;
• normed space [54];
• Banach space;
• pre-Hilbert space;
• Hilbert space;
• function space;
• Euclidean space;
• pseudo-Euclidean space;
• space with measure;
• probability space.

.giF 10. A conceptual scheme of “spaces”.

In other sciences, it is possible to find “phase space” [52],
“object space” [53], etc. Among the representatives of more
exact sciences, the works of D. Bohm and V. V. Nalimov can be
highlighted.

The works of D. Bohm [43], [42] raise questions of
interpretation of physical phenomena at the level of the
microworld within the subject of quantummechanics, questions
related to the mutual influence of an observer (subject) on
an object in an experiment, questions related to integrity and
partiality of perception, the physical nature of consciousness
and the duality of the properties of the objects of the
microcosm, revealed in the experiments II. For D. Bohm,
“holonomic movement” and “implicate order” are conceived
as a principle and substance capable of linking “part” and

55

“whole”, “consciousness” associated with “field of knowledge”
(thougths), considered as a process, and “matter” in space,which
has higher dimensions. The most complete work in this regard
is his work “Wholeness and the Implicate Order” [43].

In the works of V. V. Nalimov [44], [45], the “probabilistic
space of meanings” is considered within the “probabilistic
theory of meanings”. According to the position of one of the
founders of the theory of probability, A. N. Kolmogorov, one
of its fundamental questions is the question of the connection
and mutual influence of the subject on the object [71]. Despite
the fact that the concept of a probability space could hardly be
considered as a model for the world of ideas in Plato’s time,
V. V. Nalimov considers himself a Platonist. Such a “probability
space of meanings” is assumed to be different from the “physical
space” and not included in it II:

“Physical space, according toBastin’s ideas, represents a finite
series of points, for which the rules for constructing new points
are postulated, creating a hierarchy of points (see [215], p. 99).”
[46]

I elbaT I
Comparison of approaches to investigate «semantic spaces»

exterior interior
(physical) (abstract, logic-semiotic)
approach approach

based on analysis of
quantitative struc-
features ture-dynamic

(probabilistic features
(additive)
measures)

cognitive
process analysis
(introspection) + - ?
adaptation + - +
unification - + +

In modern works in the technical sciences [14], perhaps
the closest concepts are those expressing the meaning of the
term “semantic space” (interior approach II). Common in
many approaches to working with “semantic space” is the
consideration of word forms or lexemes (sets of word forms)
and their features (II). The following approaches III are found
in the literature [14]:

• an approach based on semic axes and feature space (binary
{0, 1}n , unipolar [0; 1]n , bipolar (bisemic) [−1; 1]

n);
• an approach based on semic axes and neural encoding of

a place field recognition of meanings (while words and
phrases have areas (subsets) of meanings being connected
by other parts of speech as inclusion and intersection,
texts correspond to the path of connected areas, and
binary coding is used for groups of neurons recognizing
meanings);

• an approach based on the “sense-text” [55] model
(reflection of the incompleteness of semantic scales and
analysis of syntagmas and surface-syntactic structure);

• an approach based on neurolinguistic data that reflects
the processes of production and perception of speech in

neural networks (lexical production network), is close to
the “meaning-text” model;

• models built on the basis of static analysis (of corpora) of
texts (vector space model).

The statistical approach to natural language processing is
opposed to the intuition and communicative experience of
scientists [14].

An approach is based on the semantic statistical hypothesis
that the meaning of words (lexemes) is determined by the
context of usage (its statistical pattern) in the language (with
a communicative structure) [14].

Vector space models of semantics [14]. A concrete model is
considered for two cases: a large vocabulary case (N ≤ M)
and an information retrieval case (M ≤ N), where M is the
dictionary size, N is the number of contexts.
On the basis of statistics, a matrix of dimensions M × N

of frequencies pij of occurrences of a lexeme (word) wi in
document (context, subtexts that may overlap) cj .

xij = max

(
{0} ∪

{
log

(
pij

(
∑

j pij)∗(
∑

i pij)

)})
The denominator contains word and context probability
estimates, respectively.

In the case of a nondegenerate matrix with its rank r = N ,
each such matrix defines a point in the Grassmannian of N -
dimensional subspaces of aM -dimensional space (N ≤M).
In the case of a nondegenerate matrix with its rank r = M ,

each such matrix defines a point in the Grassmannian of M -
dimensional subspaces of a N -dimensional space (M ≤ N).

Each text is a point in the Grassmannian [56] corresponding
to the projective space PM−1 = Gr (⟨1,M⟩), relative to one
selected context. For all contexts, in accordance with the order
of contexts in texts and the resulting oriented N -tuple, a route
(path) can be constructed by connecting adjacent points in the
N -tuple with geodesics. For two texts T and T′, these paths
will be two polygonal curves. The Frechet metric between these
curves [18] can be calculated using the Fubini-Studymetric [19]
in PM−1. To calculate it, the paths Γ (T) and Γ (T′) should be
parameterized through t (γ ∈ Γ(T)

[0;1], γ′ ∈ Γ(T′)
[0;1]):

δ (⟨Γ (T) ,Γ (T′)⟩) = inf
γ,γ′

max
t∈[0;1]

{dFS (⟨γ (t) , γ′ (t)⟩)} .

Another way to specify a linear order is to consider the flag
(filtering (flag manifold)) [57] in RM defined by expanding
(embedding) contexts. As a result, for the text we get points
(flags) in the flag manifold. For flag varieties, one can also
calculate the Fubini-Study metric [19].

This order corresponds to the temporal dimension
(communication process in time), which can be significant.
Other ordering may be independent of this, such as alphabetical
or Zipf’s order [58], [59].

The issues of formalizing meanings, their correlation, the
genesis (in space and time) of languages are considered in the
works of V.V. Martynov [60], [61], [62].

To solve the identified problems, it may be worth turning to
an alternative approach: to explore not only the communicative

56

IelbaT II
Comparison of “semantic spaces” construction approaches

semic “mean- neuro- stati-
axes and ing-text” lingvi- stical

feature neural model stic model
spaces encod- coding (seman-

ing tic
place vector
field space
recog- model)
nition

defined
semic + + - - -
axes

dynamic
(computing) - + - + -
decomposition

cognitive
process analysis - + - + -
(introspection)
accounting of
NON-factors - - + + +

(incompleteness)

structures of the language but also the cognitive-representational
structures of the language [70].

The prerequisites for building knowledge representation
models that claim to be universal have been created in the works
carried out in accordance with the graph-dynamic paradigm of
information representation and processing [17], [5], [8] .

B. SC-space
The concepts of SC-space and SC-code are necessary to

clarify and formalize themeaning of information structures with
the unification of the semantic representation of information.
The meaning of an information construction is ultimately
determined by (1) the internal connections of all elementary
fragments of this construction and (2) its external connections
with the elements of the semantic space (its position in the
context). The semantic space is the result of the natural
formation of knowledge in the process of their integration.

The most important advantage of SC-space is the possibility
of clarifying such concepts as the concept of similarity
(similarities and differences) of various described “external”
entities, similarity of unified semantic networks (texts of the
SC-code), the concept of semantic proximity of the described
entities (including texts of the SC-code).
It should be noted that it cannot be ruled out that the

union of two arbitrary texts of such languages will not be
the text of the language of the unified semantic knowledge
representation model due to the abstractness of the languages
of the unified semantic knowledge representation model and
the conventionality of the choice of labels for the elements of
their texts. To avoid the results of such eclectic combinations
in terms of syntax or semantics, a set of “semantic spaces”
should be considered for abstract languages. However, it may
be sufficient to consider one “semantic space” for specific (real)
languages.

Next, consider:

• possibility of transition from sc-texts to graph structures
and from them to topological space;

• the ability to move from sc-texts to graph structures and
from them to a manifold (topological space);

• possibility of transition from sc-texts to graph structures
and from them to metric space.

On the set of elements that form SC-space, it is possible
to study topological properties and consider SC-space as a
topological space. It should be noted that despite the fact
that the SC-code is focused on the semantic representation
of knowledge, due to the presence of non-factors, not all
meanings can be represented at some point in time while
the structure of the corresponding representation is unknown.
Therefore, the structural and topological properties of the texts
of the knowledge representation language rather determine the
syntactic space than the semantic (meaning) one. Although both
can approach each other as the uncertainties caused by non-
factors are eliminated.

It is necessary to make several transitions to get the
topological space as a transformation of the sc-text, which could
result from the integration of many smaller sc-texts:

• transition from texts with syntax of sc-languages to a
pseudograph (oriented or unoriented) (Fig. 6, Fig. 7, and
Fig. 8);

• transition from an oriented pseudograph to a transitive
oriented pseudograph;

• transition from an oriented (transitive) pseudograph to an
oriented (transitive) graph;

• transition from an oriented transitive pseudograph to a
topological space;

• transition from an oriented pseudograph to an unoriented
graph;

• transition from an unoriented graph to a manifold
(topological space).

There is a transition from an oriented pseudograph to
an oriented bipartite graph (Fig. 11). During this transition,
the following occurs: mapping vertices to edges and arcs;
mapping arcs to connections (connectives) in accordance with
the direction of arc orientation.

.giF 11. Transformation of an oriented pseudograph to a bipartite orgraph.

There is a transition from an oriented pseudograph to a
transitive oriented pseudograph. (Fig. 12).

In this transition, transitive closure of arcs is performed.
There is a transition from a (transitive) oriented pseudograph

to a (transitive) oriented graph (Fig. 13).
With this transition, loops are eliminated.
There is a transition from an oriented pseudograph to an

unoriented graph (Fig. 14).

57

.giF 12. Transformation of an oriented pseudograph to a transitive oriented
pseudograph.

.giF 13. Transformation of a (transitive) oriented pseudograph to a (transitive)
orgraph.

In this transition, the following is carried out: matching
vertices to vertices; matching pairs of triples of vertices and
triples of edges to arcs.

.giF 14. Transformation of an oriented pseudograph to an unoriented graph.

There is a transition from an unoriented graph to a manifold
(topological space) (Fig. 15).

The following is carried out in this transition: matching
figures (points) to vertices; matching figures (lines, two-point
sets) to edges.

.giF 15. Transformation of an unoriented pseudograph to a manifold.

The transition from a transitive oriented graph G = ⟨V,E⟩
to a topological space T is [63]:

G→ G ↓→ T → T ;

G ↓= ⟨V,E ↓⟩ ;

E ↓= {g ↓ |g ∈ E } ;

E ↓=
{
E−1 (v) ∪ {v} |v ∈ V

}
.

Let us consider the concept of specialization for the reverse
transition as a transitive relation (x is the specialization of y):

x ∈ {y}
T
,

that is, x belongs to the closure of {y} in T .

There is a reverse transition:

E =
{
⟨x, y⟩

∣∣∣x ∈
(
{y}

T
/ {x}

)}
.

Let us study the question of the possibility of considering
SC-space as a metric space.
The syntacticmetric is specified on the lines of the generalized

formal language in accordance with the metric tensor over
the identified matches, transpositions, exhanges, duplications,
fusions, generations, and deletions [13], [3]. The distance ρp
between the generalized strings α and β is:

ρp (⟨α, β⟩) = ρ0p (⟨α, β⟩) ; (16)

ρkp (⟨α, β⟩) =

1 |⟨α, β⟩ ∈ A×A

ψβ
k

(
ρkp (⟨α, ⟨β⟩⟩)

) ∣∣⟨α, β⟩ ∈ (
A(∗∗)/A

)
×A

ψα
k

(
ρkp (⟨⟨α⟩ , β⟩)

) ∣∣⟨α, β⟩ ∈ A×
(
A(∗∗)/A

)
φk
p (⟨α, β⟩)

∣∣⟨α, β⟩ ∈ (
A(∗∗)/A

)
×

(
A(∗∗)/A

)
ψχ
k (γ) = υχk ∗ γ; (17)

φk
p (⟨α, β⟩) =

p

√
dim(α)∑
i=1

dim(β)∑
j=1

ψ
(〈
εαβ (i) ,

(
ρk+1
p (⟨αi, βj⟩)

)p
, ω

εαβ (i)

ijk

〉)
;

ψ (⟨δ, λ, χ⟩) = χ ∗
(
1
{δ}
{M,R,X,T,P} ∗ λ+ 1

{δ}
{I,D,G,C,E,F}

)
;

(18)

1γλ =

{
0 |∅ = (λ ∩ γ)
1 |∅ ⊂ (λ ∩ γ) , (19)

εαβ ∈
{M,T,R, I,D}{i|(i∈(N/{0}))∧(i≤max({dim(α)}∪{dim(β)}))} ,

where υχk , ωε(⟨α,β⟩)(i)
ijk are weight coefficients, p is a parameter.

Therefore, the syntactic metric and the metric space are
defined in a natural way in the case of representation of sc-
texts by texts of a generalized formal language.

It is necessary to take into account the semantics of sc-
elements and structures from them in all its forms, i.e.
denotational, operational, and others [9], [23], [24], for
the purpose of constructing a “semantic metric” (“semantic
space metric”). Thus, it is also necessary to consider not
only structures and their elements (sc-elements) but also the
becoming [12] of structures and their elements in the processes
of accumulation and integration of knowledge as well as models
in which their specification is possible [15], [16]. To do this,
we turn to models of knowledge specification and knowledge
integration as well as models that can generalize these models
for calculating semantic metrics for limit type structures.

C. Knowledge specification model
The knowledge specification model [8] is given by a set of

(finite) formal models of (finite) fragments ontologies [4] of
knowledge bases (KB) Z:

Z = {⟨G,R,O⟩} ,

G is a finite non-empty set of designations in a KB fragment,
R is an oriented finite set of relations on designations in

58

a KB fragment, O is an oriented finite set of designations
interpretation functions in a KB fragment.〈

Z ∪ 2{ω(z)|z∈Z2}, 2Ω
〉
,

where 2Ω is a set of relations of the specification model and ω
is a function of ontological model elements:

Ω =
⋃

{x}∪{y}⊆Z
({x} × {y})× 2ω(x)×ω(y);

ω (zi) = Gi ∪ {r |r = Rij } ∪ {o |o = Oij } ∪ {k |k ∈ Rij }
∪ {p |p ∈ Oij } ∪ {a |⟨a, v⟩ ∈ Oij } .

The knowledge specification model considers the semantics
of knowledge for pairs of knowledge base fragments on finite
structures within knowledge specification relations, the power
of which can be unlimited. As a result, all problems of semantics
analysis within the knowledge specification model are solvable
for any pair of knowledge base fragments.

D. Knowledge integration
The [8] knowledge integration model is aimed at

solving problems of continuous horizontal-profile knowledge
integration and concludes a set of (finite) knowledge base
fragments J ⊆ 2V ∪E , where V is a set of designations (sc-
elements), E is a set of connectives of designations incidence
relations V .
The integration model concludes four types of relations:
• relations of ontological comparison, which for a pair of KB

fragments allow obtaining a set of relations (sc-relations,
comparisons) of similarity and difference, which have the
property of reflexivity or irreflexivityRM ⊆ (J × J)×Ξ;

• the fusion relation RF ⊆ (J × J)× 2V×V ;
• the (designations) mapping relation (embedding,

inclusion) RO ⊆ J × J ;
• the integration relation RI ⊆ (J × J)× J ;
These four types of relations define the order of solving

knowledge integration problems:
• first, the similarity and difference of designations in

the original fragments (texts) should be determined
by alignment and comparison (in accordance with the
knowledge specification model);

• then, the pairs of matching designations must be localized
and fused;

• then, the mapping must be found as a mapping of each
original fragment to a fragment containing the designations
resulting from the merger and the remaining designations
of the original fragments;

• then a fragment should be formed, which is the result of
integrating a pair of original fragments, that is, a fragment
onto which each of the original fragments is mapped.

The process of solving this problem is expressed in the
becoming of designations as a result of merging and in the
becoming (formation) of integrated fragments (texts) resulting
from the integration of the original fragments.

If we trace the branches of the relation of becoming of
integrated fragments (texts) from the original fragments along

the mapping relation (embedding), then we can see that the
formation of integrated texts generates the movement in the
direction of knowledge accumulation as a natural “arrow” that
regulates memorization processes. The later allows defining an
ordinal scale on such texts, which sometimes may be internal:
«arrow of time».

The formation (becoming) of integrated texts preserves
the connectives of incidence in their structure, ensuring the
convergence of structures to some integrated substructures
(of a “space”), which allows proposing and establishing a
(semantic) metric for such substructures which are the limit
type substructures.

E. Semantic space metamodel
In accordance with the model of events and phenomena

[12] and the relation of becoming [3], [37], let us consider
linearly ordered sequential unions of non-intersecting chains
of the generalized relation of the designations mapping in the
unions of texts of languages of the unified semantic knowledge
representation model.

To each sequential union, let us associate the numbering
function on the universal linear scale □ of the elements F
(F ⊆ J) connected by the edges of the chain, in the order
of the edges of this chain.

Let us single out a subclass of historically finite linearly
ordered unions of disjoint chains of the generalized designations
mapping relation.

Let us single out a subclass of locally finite linearly ordered
unions of disjoint chains of the generalized designations
mapping relation.

A subclass of finite linearly ordered unions of disjoint chains
of a generalized relation is the intersection of the subclasses of
historically finite linearly ordered unions of disjoint chains of
the generalized designations mapping relation and locally finite
linearly ordered unions of disjoint chains of the generalized
designations mapping relation.

For the subclasses, we also consider the same numbering
function as for the entire class of sequential unions. The
corresponding functions will be called «histories»: H =
F□. Accordingly, let us single out the historically finite
histories RHISTORICFINITE ∈ SH , the local finite histories
RLOCALFINITE ∈ SH and the finite histories RFINITE ∈
SH ; RFINITE = RHISTORICFINITE ∩ RLOCALFINITE .
Let us also single out:

• the subclass of well-ordered histories to the beginning
RTOTALBACKWARD ∈ SH ;

• the subclass of well-ordered histories to the end
RTOTALFORWARD ∈ SH ;

• the subclass of well-ordered histories (two-sided)
RTOTAL ∈ SH ; RTOTAL = RTOTALFORWARD ∩
RTOTALBACKFORWARD.

The metamodel is given by the pair:

⟨H,SH⟩ ,

where SH ⊆ 2(H
∗). Let us single out the following relations of

the semantic space metamodel:

59

• the subhistory relation RSUB ∈ SH ;
• the superhistory relation RSUPER ∈ SH (inverse to the

subhistory relation RSUPER = (RSUB)
−1);

• the continuous subhistory relation RSUBCONTINOUS ∈
SH ; RSUBCONTINUOUS ⊆ RSUB ;

• the continuous superhistory relation
RSUPERCONTINUOUS ∈ SH (inverse to the continuous
subhistory relation RSUPERCONTIONUOUS =
(RSUBCONTIONUOUS)

−1);
• the relation of the initial subhistory RSTART ∈ SH ;
• the relation of the final subhistory RFINAL ∈ SH ;
• the history convergence relation RCONV ERGENCE ∈
SH (two sequences of becoming (of) integrated
texts converge if they have a common final history
RCONV ERGENCE =

(
(RFINAL)

−1 ◦RFINAL

)
∪(

RFINAL ◦ (RFINAL)
−1

)
);

• the relation of the maximum well-ordered subhistory
to the beginning RFORWARD ∈ SH ; RFORWARD ⊆
RSTART ;

• the relation of the maximumwell-ordered subhistory to the
end RBACKWARD ∈ SH ; RBACKWARD ⊆ RFINAL;

• the relation of maximal linearly ordered strict subhistory
REDGE ∈ SH (the edge relation REDGE ⊂ RSUB);

• the relation of minimal linearly ordered strict superhistory
RFACE ∈ SH (the face relation RFACE ⊂ RSUPER ,
inverse to the edge relation RFACE = (REDGE)

−1);
• the enclosure relation RENCLOSE ∈ SH ;
• the disclosure relation RDISCLOSE ∈ SH , inverse to the

enclosure relation RDISCLOSE = (RENCLOSE)
−1;

• the relation of possibility of interaction (interoperability)
RINTEROPERABILITY = RDISCLOSE ◦RENCLOSE .

The following relations are reflexive: RENCLOSE ,
RDISCLOSE , RSTART , RFINAL, RSUB , RSUPER,
RSUBCONTINUOUS , RSUPERCONTINUOUS .

For locally finite histories h, the following is true:

∀ι ((ι ∈ □) → (|h (ι+ 1) /h (ι)| ∈ N ∪ {0})) .

Sequences of integrated texts (histories) can be embedded in
some (unified) “semantic space”.

Such substructures as subspaces can be distinguished within
spaces of various kinds (topological, vector, metric).

The metric of the metric semantic space can be constructed
for the structures of the metamodel of the semantic space. For
ontologies in which all NON-factors of extensional knowledge
(the closed world assumption) can be eliminated during some
finite history, it is possible to construct a space with a metric by
introducing for each designation of a set (sc-set) a characteristic
vector (or matrix (i.e. vector of vectors or matrices)). Such a
vector characterizes inclusion in the history of the designation
of the set (sc-set) or the possible occurrence of the designation of
this set (sc-set) and contains all the corresponding components
for each designation of the set (sc-set) or the possible occurrence
of its element or attribute of such an occurrence. The order of
the components of the vector is coordinated with the order of
the becoming of designations in history. Events, values of fuzzy

measures are considered as attributes of occurrences. When
calculating the semantic metrics (metrics of the semantic space)
for vectors, the vector of modules of the difference of their
components is calculated. Next, a certain norm of the vector
is calculated, which allows introducing a semantic metric. For
such ontologies with a (finite) set of attributes, the metric can
be calculated similarly due to the one-to-one correspondence:(

AB
)C

= AB×C .

The above is also true if the components of the characteristic
vector take values on the interval [0; 1], that is, if there is
such a non-factor as fuzziness (according to L. Zade). When
attribute values do not belong to this interval, it is required
to reduce attributes (sc-sets) to attributes (sc-sets) in canonical
form, whose values belong to this interval.

In the case of the presence of uncertainty (the open world
assumption) as a non-factor of knowledge, one can turn to the
apparatus of rough sets [6]. Due to the presence of necessary
operations in the algebra of distensible sets (sc-sets), for a pair
of sets and for each component of the characteristic vector, it
is possible to define an upper and lower estimates (by analogy
with rough sets [6], [7]), which correspond to a component of
some distensible subset (of an distensible superset). Further,
according to the approaches for rough sets, it is possible to
calculate the maximum (upper) and minimum (lower) vectors
of the modules of the differences and calculate their norms. It
should be noted that if one can obtain a metric space based on
the norm of the upper vector then, in the worst case, one can
obtain only a family of pseudometrics based on the lower vector
and its norm [50]. However, one can find some pseudometric
not exceeding of the value of none of this family for any pair
of elements. Thus, in this case, one (or more) pairs of spaces
can be obtained on one carrier, the first of which will be metric
(and pseudometric) (the metric estimate is from above), and
the second is pseudometric (the metric estimate is from below).
With further accumulation of knowledge, as the mentioned non-
factor (uncertainty) is eliminated, both spaces may converge to
each other in terms of the value of pseudometrics until the values
of the pseudometric (lower estimate) coincide with the values
of the metric (upper estimate).

Since the transition from finite structures to non-finite
structures consists of a sequence of steps, it takes time (potential
infinity). This formation, in turn, is connectedwith the formation
of integrated texts, which, in turn, is associated with their
operational semantics. Thus, the very process of formation
(becoming) of integrated texts (integration) determines the
metrics of the semantic space.

Is the metric for designations with potentially unbounded
(reflexive) semantics computable?

In the case when there is confidence that the histories
are not represented either as historically finite histories or
as locally finite histories, but the rules or the mechanism
for generating histories to calculate (possibly only with the
engagement of hypercomputing) the metrics are known, the
following grammatical rules can be used.

60

0 → XXX

1 → Y Y Y

Y Y Y XXX → Y XY XYX

XXXY Y Y → Y XY XYX

YXYXYXYXYXYX → Y XY XYX

Y Y Y Y XY XYXXXX → Y XY XYX

XXXYXYXYXY Y Y → Y XY XYX

Y Y Y Y XY XYXY Y Y → Y Y Y XXXY Y Y

XXXYXYXYXXXX → XXXY Y Y XXX

YXYXYX → ε

XXX → ε

Y Y Y → ε

. They can be used as rules of game [23], [24]. It is possible
to calculate some value of the metric by counting the number
and remembering the order in which these rules are applied to
obtain a given set of vectors in accordance with the semantics
of such a game.

In a finite time, it is practically impossible without
hyper(super)computations to distinguish (semantically) a
knowledge base with finite semantics from a knowledge base
with potentially unlimited semantics.

Designations with potentially unlimited semantics can be
represented as structures with finite semantics, for which the
metric is defined with the accuracy of a given interval.

F. Space-time and semantic space order
The objects and connections of the subject domain, as well

as the texts themselves, are assumed to be located in physical
time and space (space-time [64], [65], [14]). It is considered
inappropriate if the complexity of the spatio-temporal structures
presented in the texts significantly exceed the complexity of
the structure of physical space and time. Elementary events
are connected by the relation of becoming. These events are
assumed to correspond to the elements (points) of space-time.
Thus, they are represented and explicitly expressed in the
semantics of designations in the texts of the languages of the
model of the unified semantic representation of knowledge.

This curve can be a curve of the second order (a quadric).
Any graph can be represented by geometric shapes in three-
dimensional space without intersections of shapes that would
correspond to its non-incident vertex or edge. For example, it
is in the case of (1) representation of graph vertices in three-
dimensional space by straight lines intersecting a parametrically

given convex curve lying in a plane along a given (not forming a
cycle) step of the parameter and also perpendicular to this plane
at intersection points and (2) representation of arcs by straight
lines intersecting pairs of straight lines representing vertices.
Each line lies in its own plane parallel to the plane in which
the convex curve lies. If there is a metric space for the physical
space-time then it is possible to define the metric of elementary
events with the metric space on them for the knowledge base.

Distensible sets can be considered as the average of the set of
points of elementary events, then the space-time metric for the
pair of designations for distensible sets s and n:

M(⟨s, n⟩) =

∑|V (s)|
x=1

∑|V (n)|
y=1 d

(〈
V (s)x, V (n)y

〉)
|V (s)| ∗ |V (n)|

 ,

where V is a function of the feature vector (points of elementary
events), d is the metric of points of elementary space-time
events.

In general, the relation of becoming is not antisymmetric, but
its condensation can set the order, which can be represented
by structures formed in the processes of semantic logging [3],
[66]. Recording the processes [66] of integration (fragments) of
texts sets the internal (temporal) order and allows you to reverse
these processes along each of the branches of the formation
of integrated (fragments) of texts. It is assumed that this order
corresponds to the temporal order in space-time.

VI. Application for problem solving of taxonomy optimization
Let’s consider the application of concepts related to the

concept of a metric space to solve the problem of optimizing
the representation of taxonomies This task lies in the fact that
it is necessary to minimize the number of operations on the
states of the taxonomy knowledge processing model and the
number of permanently stored classes. If we consider taxonomy
classes as classical sets, then for their expression we can choose
the operational basis of set-theoretic operations. They are the
operation of removing the taxonomy class and constructive
operations of the algebra of sets: intersection and symmetric
difference (∩, −). Examples of other operational bases of set
algebra are set difference with union or intersection of sets. In
the mentioned basis, the union of sets is expressed:Examples
of other operational bases of set algebra are set difference with
union or intersection of sets. The union of sets is expressed
through the mentioned basis as follows:

A ∪B = (A ∩B)−A−B.

In addition to the operational basis, a model basis is considered.
The model basis is the minimum number of taxonomy classes
through which any of its classes can be expressed. Thus,
the taxonomy is defined in accordance with the structural
approach by two sets: an initial state, a set of classes and
a set of rules (operations), with which it is possible to get
any family of taxonomy classes Let’s define the concept of
closure of a taxonomic structural model (operational-model
closure) in order to formulate the problem: ⟨{σ} , λ⟩ =〈(⋃

φ∈λ φ
)◦

(σ) ,
(⋃

φ∈λ φ
)◦〉

, where σ ⊆ θ is a subset of

61

the set of all taxonomy classes θ, λ ⊆
(
2θ
)(2θ) is a set of

operations on taxonomy classes.
Let’s consider the set of all possible transitions

⋃
φ∈λ φ on

the set of operations λ.
Task.
Given:

Γ ⊆ 2
⋃

φ∈λ φ;

function of useful output from job (information capacity):

ρ ∈ δ2
θ×2θ ;

cost function of (time) resources for job:

τ ∈ δ2
θ×2θ ;

functions:
π ∈ δ{|γ||γ∈Γ};

ψ ∈ δ{|γ||γ∈Γ};

α, β.
Required:

α ∗ |σ|+ β ∗ |λ| → min;

⟨σ, λ⟩ → max;

|Γ| → max for any γ ∈ Γ to satisfy∑
χ∈γ

τ (χ) ≤ π (|γ|) ∗
∑

χ∈γ
ρ (χ);∑

χ∈γ
τ (χ) ≥ ψ (|γ|) ∗

∑
χ∈γ

ρ (χ).

Note that if the metric is defined µ (⟨A,B⟩) = |A−B| then
the cardinality (norm) of the set can be expressed inversely
|S| = µ (⟨S, ∅⟩).

Assume that the inequalities with respect to π and ψ are
always satisfied. Taking on such additional requirements as
⟨{σ} , λ⟩ =

〈
2θ, 2θ × 2θ

〉
we are considering the following

concepts in order to establish the basis of the model.
Introscalar product of sets is [8]:

is (⟨A,B, S⟩) = |S − (S ∩ (A−B))| − |S ∩ (A−B)| ;

is (⟨A,B, S⟩) = |S| − 2 ∗ |(S ∩A)− (S ∩B)| ;

is (⟨A,B⟩) = is (⟨A,B,A ∪B⟩) .

Introcoscalar product of sets is:

ics (⟨A,B, S⟩) = ±2∗
√
|S − (S ∩ (A−B))| ∗ |S ∩ (A−B)|;

ics (⟨A,B⟩) = ics (⟨A,B,A ∪B⟩) .

These concepts make it possible to define an analogue of
trigonometric functions for sets and a formal analogue of the
Euler formula:

icos (⟨A,B, S⟩) = is (⟨A,B, S⟩)
|S|

;

isin (⟨A,B, S⟩) = ics (⟨A,B, S⟩)
|S|

;

iexp (⟨A,B, S⟩) = icos (⟨A,B, S⟩) + i ∗ isin (⟨A,B, S⟩) ;

iexp (⟨A,B⟩) = iexp (⟨A,B,A ∪B⟩) .

Two sets are subintroorthogonal if and only if:

iexp (⟨A,B, S⟩) = ±i;

iexp (⟨A,B⟩) = ±i.

Two sets are subintroorthogonal if and only if the square of
the introscalar product is minimal:

is(⟨A,B, S⟩)2 → min;

is(⟨A,B⟩)2 → min .

A family of sets is called a introorthogonal basis if and only
if any different of them are pairwise introorthogonal.

A family of sets is called a subintroorthogonal basis [8] iff
any different of them are pairwise subintroorthogonal.

Thus, the subintroorthogonal basis can be chosen as the basis
of the model (Fig. 16).

In the case of stronger restrictions it is required to additionally
determine the maximum possible value of the area Γ.
The introduced models and concepts make it possible to

transfer the obtained results to an distensible taxonomy, which
has a distensible set of classes. They also provide an opportunity
to simulate the adaptation of the model basis of an distensible
taxonomy when new classes are added to it. It can also be
used when distensible sets (kinds) are used instead of taxonomy
classes.

.giF 16. Taxonomy states-transition diagram.

62

VII. Conclusions
The proposed models and approaches form the basis

for solving problems in knowledge-driven systems aimed at
ensuring interoperability and convergence of OSTIS ecosystem
users and agents [69], [3], [9].

It seems promising to further study the properties of the
semantic space and develop the OSTIS [5], [2] standard and
technology based on the results obtained, including solving the
problems of quality analysis andmanagement of knowledge base
and agents of intelligent computer systems.

References
[1] A.S. Narinyani. NE-faktory: netochnost’ i nedoopredelennost’ – razlichie

i vzaimosvyaz’ [Non-factors: inaccuracy and underdetermination –
difference and interrelation]. Izv RAN (RAS). Ser. Teoriya i sistemy
upravleniya 5, 2000. pp. 44—56.

[2] V.V. Golenkov. Otkrytyi proekt, napravlennyi na sozdanie tekhnologii
komponentnogo proektirovaniya intellektual’nykh sistem [An open
project aimed at creating a technology for the component design of
intelligent systems], Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for intelligent
systems], 2013, pp. 55—78.

[3] V.P. Ivashenko. Modeli resheniya zadach v intellektual’nykh sistemakh. V
2 ch. Ch. 1 : Formal’nyemodeli obrabotki informatsii i parallel’nyemodeli
resheniya zadach : ucheb.-metod. posobie [Models for solving problems
in intelligent systems. In 2 parts, Part 1: Formal models of information
processing and parallel models for solving problems: a tutorial] Minsk,
BGUIR, 2020. 79 p.

[4] T.A. Gavrilova, V.F. Khoroshevsky. Bazy znanii intellektual’nykh sistem
[Knowledge bases of intelligent systems], Saint Petersburg, Piter, 2001.
384 p.

[5] V.V. Golenkov, N.A. Gulyakina, D.V. Shunkevich. Otkrytaya
tekhnologiya ontologicheskogo proektirovaniya, proizvodstva i
ekspluatatsii semanticheski sovmestimykh gibridnykh intellektual’nykh
komp’yuternykh system [Open technology for ontological design,
production and operation of semantically compatible hybrid intelligent
computer systems], Minsk, Bestprint, 2021. 690 p.

[6] Z. Pawlak. Rough sets. International Journal of Parallel Programming,
1982, vol. 11, no. 5, pp. 341—356.

[7] D. Dubois, H. Prade. Rough fuzzy sets and fuzzy rough sets International
Journal of General Systems, 1990, vol. 17, no. (2-3), pp. 191-–209.

[8] V.P. Ivashenko. Modeli i algoritmy integratsii znanii na osnove
odnorodnykh semanticheskikh setei (disc. na soiskanie stepeni kand.
tekhn. nauk: 05.13.17) [Models and algorithms for knowledge integration
based on homogeneous semantic networks (thesis for the degree of
Candidate of Technical Sciences: 05.13.17)] ,Minsk, BGUIR, 2014, 152 p.

[9] V.P. Ivashenko Operatsionnaya semantika mnogoagentnykh sistem
obrabotki znanii [Operational semantics of multi-agent knowledge
processing systems], InformationTeсhnologies and Systems, 2020,Minsk,
BGUIR, pp. 78–79.

[10] V.P. Ivashenko. Modeli i algoritmy integratsii znanii na osnove
odnorodnykh semanticheskikh setei [Models and algorithms for
knowledge integration based on homogeneous semantic networks],
Otkrytye semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems], 2015,Minsk,
BGUIR, pp. 111—132.

[11] V.P. Ivashenko Tekhnologiya razrabotki programmnykh komponentov
intellektual’nykh sistem na osnove integratsionnoi platformy [Technology
for the development of software components of intelligent systems based
on an integration platform], Information Technologies and Systems, 2021,
Minsk, BGUIR, pp. 84–85.

[12] V.P. Ivashenko. Ontologicheskaya model’ prostranstvenno-vremennykh
otnoshenii sobytii i yavlenii v protsessakh obrabotki znanii [Ontological
model of the space-time relations of the event and the phenomenon in the
processes of knowledge processing] 2017, vol. 5, no. 107, Minsk, BSUIR,
pp. 13–17.

[13] V.P. Ivashenko. String processing model for knowledge-driven systems.
Minsk, Doklady BGUIR, 2020, vol. 18, no. 6, pp. 33–40.

[14] Yu. Manin, M. Marcolli. Semantic spaces. Published, Location, 2016. 32
p. (arXiv)

[15] M.A. Perez, D.I. Spivak. Toward formalizing ologs, Preprint
arXiv:1503.08326, 2015. 35 p.

[16] D.I. Spivak, R.E. Kent. Ologs: a categorical framework for knowledge
representation. Preprint arXiv:1102.1889, 2011. 52 p.

[17] V.V. Golenkov, O.E. Eliseeva, V.P. Ivashenko. Predstavlenie i obrabotka
znanii v parallel’nykh grafodinamicheskikh assotsiativnykh mashinak
[Representation and processing of knowledge in parallel graphodynamic
associative machines], Minsk, BGUIR, 2001. 412 p.

[18] H. Alt, M. Godau, Computing the Fr´echet distance between two
polygonal curves, Int. J. Comput. Geom. Appl., 1995, vol. 5, pp. 75–91.

[19] E. Study. Kürzeste Wege im komplexen Gebiet. Mathematische Annalen
(in German). Springer Science and Business Media LLC, 1905, vol. 60
no. 3, pp. 321–378.

[20] G. Rozenberg, A. Salomaa. Handbook of Formal Languages, Volume 1:
Word, Language, Grammar. Verlag, Berlin, Heidelberg, Springer, 1997.
873 p.

[21] B. Smith. Metody i algoritmy vychislenii na strokakh [Computing Patterns
in Strings], Moscow, OOO “I.D. Williams”, 2006. 496 p.

[22] D.A. Pospelov. Situatsionnoe upravlenie: teoriya i praktika [Situational
management: theory and practice], Moscow, Nauka, 1986. 288 p.

[23] A. Blass. A game semantics for linear logic. Annals of Pure and Applied
Logic, 1992, vol. 56, pp. 183–220.

[24] J.H. Conway. OnNumbers andGames. AKPeters/CRCPress, 2000. 242 p.
[25] G. Plotkin. Call-by-name, call-by-value and the lambda-calculus.

Theoretical Computer Science, 1975, vol. 1, no. 2. pp. 125–159.
[26] D. Scott, Ch. Strachey. Toward a mathematical semantics for computer

languages. Proceedings of the Symposium on Computers and Automata,
Microwave Research Institute Symposia Series, Polytechnic Institute of
Brooklyn Press, New York, 1971, vol. 21, pp. 19—46.

[27] F. Daneš. On Prague school functionalism in linguistics. Functionalism in
Linguistics, 1987, pp. 3–38.

[28] A. R. D. Mathias. Unordered pairs in the set theory of Bourbaki 1949,
Archiv der Mathematik, 2010, vol. 94, pp. 1–10.

[29] W. Quine. On ordered pairs. Journal of Symbolic Logic, 1945, vol. 10,
no. 3, pp. 95—96.

[30] J. Heijenoort. From Frege to Gödel. A source book in mathematical logic,
1879–1931. Cambridge, Mass., Harvard University Press, 1967, 664 p.

[31] C. Kuratowski. Sur la notion de l’ordre dans la Théorie des Ensembles.
Fundamenta Mathematicae, 1921, vol. 2, no. 1,pp. 161–171.

[32] A.P. Morse. A Theory of Sets. Academic Press, 1965, 130 p.
[33] A. Levy. Basic Set Theory, Springer-Verlag, 1979, 391 p.
[34] K.J. Devlin. Fundamentals of contemporary set theory. Universitext.

Springer-Verlag, 1979, 182 p.
[35] J.M. Lee. Introduction to Topological Manifolds, Springer, 2011, 452 p.
[36] J. McCarthy. Recursive Functions of Symbolic Expressions and Their

Computation by Machine, Part I. Communications of ACM, New York,
1960, vol. 3, no. 4, pp. 184–195.

[37] G. W. F. Hegel. Nauka logiki [Science of Logic]: v 3-h t. T.1, Moscow,
“Mysl”’, 1970. 501 p.

[38] Platon. Sobr. soch. v 4-kh tomakh. [Collected works in 4 volumes.]: T. 3,
Moscow, “Mysl”’, 1994. 654 p.

[39] J. Cottingham, René Descartes: Meditations on First Philosophy: With
Selections from the Objections and Replies, Cambridge, Cambridge
University Press, 2015. 282 p.

[40] R.T.W. Arthur. Leibniz on Time, Space, and Relativity, Oxford University
Press, 2022, 432 p.

[41] D. Hilbert. On the infinite. In Philosophy of Mathematics (1984), Selected
Readings, Cambridge, Cambridge University Press, 2012, pp. 183–201.

[42] D. Bohm and B.J. Hiley. The Undivided Universe: An Ontological
Interpretation of Quantum Theory, London, Routledge, 1993. xii + 397 p.

[43] D. Bohm. Wholeness and the Implicate Order, London, Routledge, 2002.
284 p.

[44] V.V. Nalimov, Zh.A. Drogalina. Real’nost’ nereal’nogo. Veroyatnostnaya
model’ bessoznatel’nogo [The reality of the unreal. Probabilistic model
of the unconscious], Мoscow, Mir idei, AO Akron, 1995. 432 p.

[45] V.V. Nalimov. Spontannost’ soznaniya. Veroyatnostnaya teoriya smyslov
i smyslovaya arkhitektonika lichnosti [Spontaneity of consciousness.
Probabilistic theory of meanings and semantic architectonics of
personality], Мoscow, Prometei, 1989. 287 p.

[46] V.V. Nalimov. Veroyatnostnaya model’ yazyka. O sootnoshenii
estestvennykh i iskusstvennykh yazykov [Probabilistic model of language.
On the relationship between natural and artificial languages] Moscow,
Nauka, 1979. 304 p.

63

[47] I.N. Taganov, Yu.I. Babenko. Antivremya i antiprostranstvo [Anti-time
and anti-space], Saint Petersburg, RAN, 2016. 200 p.

[48] S. Roman, Advanced Linear Algebra, Graduate Texts in Mathematics, vol.
135 (2nd ed.), Berlin, New York, 2005. 488 p.

[49] M.A. Armstrong, Basic Topology [1979], Undergraduate Texts in
Mathematics, Springer, 1983. 263 p.

[50] L. Collatz. Functional Analysis and Numerical Mathematics, New York,
San Francisco, London, Academic Press, 1966. xx + 473 p.

[51] J. Heinonen. Lectures on analysis on metric spaces, New York, Springer,
2001. X+141 p.

[52] A.A. Adronov, A.A. Vitt, S.E. Haikin. Teoriya kolebanii (2-e izd.)
[Oscillation theory (2nd ed.)], Moscow, Nauka. 1981. 586 p.

[53] GOST 7427-76. Geometricheskaya optika. Terminy, opredeleniya i
bukvennye oboznacheniya. S izmeneniem №1, utverzhdennym v iyule
1982 g. [GOST 7427-76. Geometric optics. Terms, definitions and letter
designations. With change No. 1, approved in July 1982]. Moscow,
Izdatel’stvo standartov, 1988. 19 p.

[54] H.H. Schaefer,M.P.Wolff. TopologicalVector Spaces,NewYork, Springer
New York Imprint Springer, 1999. 361 p.

[55] I. Mel’ˇcuk. Language: from Meaning to Text. Ed. by D. Beck. Moscow
& Boston, 2016.

[56] J. Harris. Algebraic Geometry: A First Course, NewYork, Springer, 1992.
330 p.

[57] A. Kostrikin, Yu. Manin. Linear Algebra and Geometry, Gordon and
Breach Science Publishers, 1997. 320 p.

[58] W. Lowe. Towards a theory of semantic space, in Proceedings of the 23rd
Conference of the Cognitive Science Society, 2001, pp. 576–581.

[59] Yu. I. Manin. Zipf’s law and L. Levin’s probability distributions.
Functional Analysis and its Applications, 2014, vol. 48, no. 2. Preprint
arXiv:1301.0427.

[60] V.V. Martynov. V tsentre soznaniya cheloveka [At the center of human
consciousness], Minsk, BGU, 2009. 272 p.

[61] V.V. Martynov. Yazyk v prostranstve i vremeni: k probleme glottogeneza
slavyan (2-e izd.) [Language in space and time: to the problem of
glottogenesis of the Slavs (2nd ed.)], Moscow, Editorial URSS, 2004.
106 p.

[62] A.N. Gordey. Teoriya avtomaticheskogo porozhdeniya arkhitektury znanii
(TAPAZ-2) i dal’neishaya minimizatsiya semanticheskikh ischislenii [The
theory of automatic generation of knowledge architecture (TAPAZ-2)
and further minimization of semantic calculus]. Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open semantic
technologies for intelligent systems], 2014, Minsk, BGUIR. pp. 49–64.

[63] C. Marijuan. Finite topologies and digraphs. Proyecciones (Antofagasta),
2010, vol. 29, pp. 291–307.

[64] R. Penrose. The Road to Reality, Oxford, Oxford University Press, 2004.
1094 p.

[65] A.K. Guts. Khronogeometriya. Aksiomaticheskaya teoriya otnositel’nosti
[Chronogeometry. Axiomatic theory of relativity], Omsk, OOO“UniPak”,
2008. 340 p.

[66] V. Ivashenko, N. Zotov, M. Orlov. Semantic Logging of Repeating Events
in a Forward Branching Timemodel. Pattern Recognition and Information
Processing (PRIP’2021), United Institute of Informatics Problems of the
National Academy of Sciences of Belarus, Minsk, 2021, pp. 149–152.

[67] M. Bansal, D. Burkett, G. de Melo, Gerard, D. Klein, Dan. Structured
Learning for Taxonomy Induction with Belief Propagation. 52nd Annual
Meeting of the Association for Computational Linguistics, ACL 2014 –
Proceedings of the Conference, 2015, vol. 1, pp. 1041–1051.

[68] Yu.I. Zhuravlyov. Ob algebraicheskom podkhode k resheniyu zadach
raspoznavaniya ili klassifikatsii [On an algebraic approach to solving
problems of recognition or classification]. Problemy kibernetiki, 1978,
vol. 33. pp. 5–68.

[69] V.V. Golenkov, D.V. Shunkevich. Аgentno-orientirovannye modeli,
metodika i sredstva razrabotki sovmestimykh reshatelei zadach
intellektual’nykh sistem [Agent-based models, methodology and tools
for developing compatible problem solvers for intelligent systems].
Programmnye produkty i sistemy, 2020, vol. 33, no. 3. pp. 404–412.

[70] J.A. Fodor. The Language Of Thought. Crowell Press, 1975. 214 p.
[71] A.N. Kolmogorov. Problems of Probability Theory. Theory of Probability

& Its Applications, 1994, vol. 38, no. 2, pp. 177–178.

Универсальный язык смыслового
представления знаний и смысловое

пространство
Ивашенко В.П.

Статья рассматривает модели и средства, обеспечивающие
унифицированное представление знаний и их интеграцию в рамках
«смыслового пространства». Для этого вводится понятие «обоб-
щённого формального языка», позволяющего выявить с целью
анализа взаимоотношениеформальных языков и известных языков
представления знаний, включая семантические сети.

На основе этого анализа уточняется семантика языков модели
унифицированного представления знаний, вводится язык, являю-
щийся основой стандарта для технологии разработки интеллекту-
альных систем, и даётся концепция «смыслового пространства»,
ориентированного использование в целях оценки качества интел-
лектуальных компьютерных систем в рамках технологии OSTIS.
Рассматриваются прикладные задачи на основе предложенных
моделей и дальнейшие перспективы развития технологии и её
компонентов.

64

grakova
Received 11.11.2022

Family of external languages of next-generation
computer systems, close to the language of the
internal semantic representation of knowledge

Alexandra Zhmyrko
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: aleksashazh@gmail.com

Abstract—In the article, the concepts of external and
internal languages of next-generation intelligent computer
systems are considered. External languages of knowledge
representation within the OSTIS Technology are described,
namely SCg-code, SCs-code, SCn-code. For each of the
external languages, its syntax and denotational semantics
are considered in detail.

Keywords—next-generation intelligent computer system,
external language, internal language, OSTIS, SC-code, SCg-
code, SCs-code, SCn-code

I. INTRODUCTION

At the current stage of information technologies devel-
opment, the problem of ensuring semantic interoperability
of computer systems and their components is the most
important and significant. To solve this problem it is
necessary to move from traditional computer systems and
modern intelligent computer systems to computer systems
based on the semantic representation of information (next-
generation intelligent computer systems).

Such systems have a high level of learnability, i.e. the
ability to rapidly acquire new and improve already im-
mersed knowledge and skills, while having no limitations
on the type of knowledge and skills gained, improved,
and shared. The components of such systems have a
high degree of compatibility, which virtually eliminates
the duplication of engineering solutions and makes it
possible to significantly accelerate the development of
computer systems based on the semantic representation
of information through a constantly expanding library of
reusable and compatible components.

Next-generation intelligent computer systems require an
internal language to represent information in a meaningful
way. By internal language is meant the language used
by a system to represent the information stored in its
memory [1].

For operation of next-generation intelligent computer
systems, except for a method of abstract internal rep-
resentation of knowledge bases, methods of external
representation of abstract texts convenient for users and
used at registration of initial texts of knowledge bases

of the specified intelligent computer systems and initial
texts of fragments of these bases, as well as used for
display of various fragments of knowledge bases on user
request, are required [2].

All basic external formal languages are variants for
the external representation of the texts of the internal
language of the system. Such languages are universal and
therefore semantically equivalent.

For any language, syntactic rules (rules for construct-
ing information constructions of such a language) and
semantic rules (denotational semantics – rules for relating
to those entities and configurations of entities that are
described (reflected) by the specified sign constructions)
must be specified.

A next-generation intelligent system must be able to
visualise certain information in different ways. Each
visualisation option requires the design and development
of visualisation languages and tools to translate these lan-
guages from the system internal representation language
into an external language. At the moment, the lack of a
universal mechanism for describing external languages,
translators for them, and their “seamless” integration into
the system remains problematic.

In the article, a family of external languages of next-
generation intelligent computer systems close to the
language of internal knowledge representation on the
example of ostis-systems is considered. For each of the
external languages, its syntax, denotational semantics,
and hierarchical family of semantically equivalent sub-
languages are described in detail.

II. STATE OF ART

Knowledge representation languages are frequently
difficult to understand, particularly for those who is not
trained in formal logic. They are in common used to
describe domains ranging from biology to finance. These
languages are typically used by both computer scientists
and domain experts [3].

It is often said that a picture is worth a thousand
words. That is true of sketches, diagrams, and graphs

65

used in various fields of knowledge. Conceptual maps are
widely used in education to represent and clarify complex
relations between concepts. Flowcharts serve as graphical
representations of procedural knowledge or algorithms.
Decision trees are another form of representation used in
various fields, particularly in decision-making or expert
systems.

All these representation methods are useful at an
informal level, as thinking aids and tools for the commu-
nication of ideas, but they have limitations. One is the
imprecise meaning of the links in the model. Non-typed
arrows can mean many things, sometimes within the same
graph. Another problem is the ambiguity around the type
of entities. Objects, actions on objects, and propositions
of properties about them are all mixed-up, which make
graph interpretation a fuzzy and risky business.

Another difficulty is to combine more than one rep-
resentation in the same model. For example, concepts
used in procedural flowcharts as entry, intermediate, or
terminal objects could be given a more precise meaning by
developing them in conceptual maps as sub-models of the
procedure. The same is true of procedures represented in
conceptual models that could be developed as procedural
sub-models described by flowcharts, combined or not with
decision trees. In software engineering, many graphic
representation formalisms have been or are used such
as EntityRelationship models [4], Conceptual Graphs
[5], Object modelling technique (OMT) [6], KADS [7],
or the Unified Modeling Language (UML) [8]. These
representation systems have been built for the analysis
and architectural design of complex information systems.
The most recent ones require the usage of up to eight
different kinds of model so the connections between
them become rapidly hard to follow without considerable
expertise.

Graphic representation system should be both simple
enough to be used by educational specialists who are not
computer scientists in general, be general and powerful
enough to represent the components of computer-based
educational environments and their relations.

Graphic. The benefits of graphical cognitive mod-
elling have been eloquently summarized by Ausubel [9],
Dansereau [10], and Jonassen [11]. Graphs illustrate
relations among components of complex phenomena.
They uncover the complexity of actor interactions. They
facilitate the communication about the reality studied.
They favour the global comprehension of studied phe-
nomena. They help grasp the structure of related ideas by
minimizing the usage of ambiguous natural language texts.
As an example, entity-relation graphs reduce ambiguity
compared to a natural language description but some
remain on the interpretation of the terms written on the
connections or nodes. Ambiguity can be reduced further
by the usage of standardized typed objects and typed
connections.

User-friendliness. Not all graphic modeling languages
are user-friendly. A good counter-example is UML. The
large number models and symbols require considerable
expertise for the interpretation and construction of the
model of a system. Furthermore, each type of model
captures a different viewpoint on the information, and it
is impossible to mix them in the same graph to provide
a global view of a subject domain. The representation
system must be easy to use without technical or scientific
mastery after a short period of initiation. Dansereau
and Holley [12] have studied experimentally the usage
of different sets of graphic symbols by learners. Their
results show that typed connections are preferred by the
majority of learner, as long as there are neither too few
nor too many types of connections and they are clearly
differentiated with well-defined meanings.

General. Generality means that the representation
language should have the capacity to represent, with a rel-
atively small number of objects and connection categories,
knowledge in very different subject domains, at various
levels of granularity and precision. It should be possible
to represent simple models such as a multiplication table,
up to complex models such as multi-actor workflows, rule-
based systems, methods, and theories. It should also be
possible to offer equivalent representations to commonly
used graphs such as conceptual maps, semantic networks,
flowcharts, decision trees, or cause/effect diagrams.

Formalizable. The graphic language should be upward
compatible from informal graphs, up to semiformal and
totally unambiguous formal models. At the informal
level, an integrated representation framework facilitates
thought organization and communication between humans
about the knowledge as the graphic representation model
evolves. Here, the process is more important than the
result. At the other hand, the graphic language offers more
constrained elements to produced totally unambiguous
descriptions that can be exported to set of symbols, such
as an XML file, that can be processed by computer agents.
Here, the model is more important than the process.

Declarative. Graphic language can be procedural or
declarative. Procedural graphic languages have been built
in the past, extending flowcharts to promote graphi-
cal programming that produces code directly. However,
declarative language is, firstly, easier for a human to
declare the components of their knowledge than to
describe also the way it should be processed. In expert
systems, for example, the execution instructions are
not wired in the program but externalized and made
visible in a knowledge base on which a general inference
engine proceeds. Secondly, the same model can be
used for many different applications not necessarily
the one for which the processing has been planned in
a procedural program. This is done by querying the
model using an inference engine, in a Prolog-like manner.
Thirdly, the processing knowledge itself can be given

66

declaratively, so that higher order metaknowledge can
be also singled-out. This idea is similar to structural
analysis [13] and is exactly the way we should see
the relation between generic skills and specific domain
knowledge in a competency, as meta-knowledge given
declaratively, applied to domain knowledge. For example,
rules for diagnosing a component-based system applied
to models describing a car, a software, or a learning
environment provide a good way to represent generic
skills and competencies.

Standardized. Standardization is an important property
to enlarge knowledge communication and use between
humans and/or software agents. At the informal level,
each model constructed by a human must be interpretable
by another human.

Computable. Computability is a step beyond standard-
ization. The graphic model can not only receive a non-
ambiguous formal representation that can be processed
by computer agents, but this formal representation is com-
plete (all conclusions are guaranteed to be computable)
and decidable (all computations will finish in finite time)
[14].

Thus, knowledge representation languages in next-
generation intelligent computer systems must comply
with the above properties.

III. PROPOSED APPROACH

To solve the problem of integrating new external
languages of knowledge representation into the system,
it is proposed to describe external languages on the basis
of ontologies. As already mentioned, each language is
defined by its syntax and denotational semantics, which
can be written in an ontological way, which will allow
universalising and docking these languages with each
other, creating tools for visualising and understanding the
languages, making them more universal.

The OSTIS Technology, a next-generation technology
for intelligent computer system design, is proposed as a
tool to implement the specified approach.

The advantages of the OSTIS Technology:
• at the heart of the OSTIS Technology, there is

an SC-code, which allows any information to be
represented in a unified (same) way, making the
proposed approach universal and suitable for any
class of intelligent system;

• the OSTIS Technology and the SC-code in particular
can be easily integrated with any modern technology,
allowing the proposed approach to be applied to
a large number of already developed intelligent
systems;

• the SC-code allows storing and describing in the
knowledge base of the ostis-system any external
(foreign) information in relation to the SC-code
in the form of internal ostis-system files. Thus,
the knowledge base of the training subsystem can

contain explicitly fragments of already existing
documentation for the system, represented in any
form;

• the OSTIS Technology has already developed mod-
els for ostis-system knowledge bases, ostis-system
problem solvers, and ostis-system user interfaces,
assuming their complete description in the system
knowledge base. Thus, for ostis-systems, the pro-
posed approach to training end-users and developers
is much easier to implement and provides additional
benefits;

• one of the main principles of the OSTIS Technology
is to ensure the flexibility (modifiability) of the
systems developed on its basis. Thus, the usage of
the OSTIS Technology will enable the evolution of
the intelligent learning subsystem itself [2].

The systems developed on the basis of the OSTIS
Technology are called ostis-systems. The universality of
the SC-code is ensured by the fact that the elements of
the SC-code texts can be signs of described entities of any
kind, including connection signs between the described
entities and/or their signs. Accordingly, the texts of the SC-
code are graph structures of an extended form, in which
the characters of the described connections can connect
not only the vertices (nodes) of the graph structure but
also the characters of other connections.

The SC-code is an abstract language, i.e. a language
for which the way, in which the characters (syntactically
elementary fragments) that make up the texts of this
language are represented, is not specified but only the
alphabet of these characters, i.e. the family of character
classes considered syntactically equivalent to each other,
is specified.

Each abstract language can be assigned a whole family
of real languages providing isomorphic real representation
of texts of the specified abstract language by specifying
ways of representation (representation, coding) of symbols
included in these texts, as well as by specifying rules for
establishing syntactic equivalence of these symbols. Ob-
viously, in all other respects, the syntax and denotational
semantics of the mentioned real languages completely
coincides with the syntax and denotational semantics of
the corresponding abstract language.

Every intelligent system operates with a knowledge
base in an internal language, and the dialog takes place
as an exchange of messages between the user and the
system. For such a dialog to take place, a fragment of
the knowledge base must be displayed into an external
form. Such a form can be either universal or specialized.

Within the OSTIS Technology, three universal external
knowledge representation languages are proposed:

• the SCg-code – one possible way of visually rep-
resenting SC-texts. The basic principle behind the
SCg-code is that each sc-element is matched with
an sc.g-element (graphical representation);

67

• the SCs-code – string (linear) representation of the
SC-code, designed to represent sc-graphs (texts of
SC-code) as sequences of characters;

• the SCn-code – string non-linear variant for repre-
sentation of the SC-code. The SCn-code is intended
to represent sc-graphs as formatted sequences of
characters according to predefined rules, within
which basic hypermedia such as graphical images
can be used, as well as means of navigation between
parts of sc.n-texts [15].

Each of these languages meets the requirements for
universal languages of knowledge representation and
allows the user to choose the most convenient variant of
visual representation of any subject domain. In addition,
each of these languages has the unique property of being
able to be described in the same language, being able to
be translated from one to the other. Thus, it is proposed
to use SCg-code, SCs-code, and SCn-code as knowledge
representation languages, whose syntax and denotational
semantics will be considered within this article.

IV. INTERNAL LANGUAGE OF THE ostis-system – AN
SC-CODE

SCg-code, SCs-code, and SCn-code are sub-languages
of the SC-code, which define the syntactic, semantic, and
functional principles of memory organisation in next-
generation computers focused on the implementation of
next-generation intelligent computer systems.

The SC-code texts (sc-texts) are unified semantic
networks with a basic set-theoretic interpretation. The
elements of such semantic networks are called sc-elements
(sc-nodes and sc-connectors, which in turn can be sc-arcs
or sc-rules, depending on their orientation). The Alphabet
of the SC-code consists of five basic elements, on the
basis of which SC-code constructions of any complexity
are built, including the introduction of more specific types
of sc-elements (e.g. new concepts). A detailed description
of the SC-code can be found in the standard [16].

The signs (designations) of all entities described in
sc-texts (SC-code texts) are represented as syntactically
elementary (atomic) fragments of sc-texts and therefore
have no internal structure, not consisting of simpler text
fragments, such as names (terms), which represent signs
of described entities in familiar languages and consist of
letters.

Names (terms), natural language texts, and other
information constructions which are not sc-texts can be
included in sc-text but only as files described (specified)
by sc-texts. Thus, a knowledge base of an intelligent
computer system based on the SC-code can include names
(terms) denoting some describable entities and represented
by corresponding files.

Each sc-element will be called an internal designator of
some entity, and the name of this entity represented by the
corresponding file will be called an external identifier (ex-
ternal designator) of this entity. Each named (identifiable)

sc-element is connected by an arc of membership to the
“to be an external identifier*” relation with a node whose
content is an identifier file (in particular, a name) denoting
the same entity as the above sc-element. The external
identifier can be a name (term) but also a hieroglyph,
a pictogram, a spoken name, a gesture. It should be
emphasized that external identifiers of described entities
in an intelligent computer system based on the SC-code
are used only:

• to analyse information coming into this system
from various sources and to input (understand and
immerse) this information into the knowledge base;

• to synthesise different messages addressed to differ-
ent subjects (including users).

V. IDENTIFICATION OF SC-ELEMENTS

External sc-element identifiers (or, for short, sc-
identifiers) are necessary for the ostis-system to exchange
information with other ostis-systems or with its users. In
order to represent its knowledge base, to solve various
problems related to analysis of the current state and
evolution of its knowledge base, problems related to
analysis of the current state (current situations) of the
environment, making appropriate decisions (purposes),
and organising appropriate actions to implement the
decisions made (to achieve the purposes), the ostis- system
does not need any external identifiers (in particular names)
corresponding to sc-elements.

However, in order to understand messages received
from other subjects (which for the ostis-system means
to construct the sc-text semantically equivalent to the
received message) and to analyze messages transmitted to
other subjects (which for the ostis-system means synthe-
sizing an external text that is semantically equivalent to a
given sc-text and meeting some additional requirements,
such as an emotional one). The ostis-system needs to know
how characters that are synonymous with sc-elements
which are or could be stored in the knowledge base of
the ostis-system are represented in the message being
received or transmitted.

The external identifiers of sc-elements are most often
the names (terms) of the corresponding (denoted) entities,
represented by single words or phrases in various natural
languages, however, hieroglyphs, conventions, pictograms
can also be used.

In general, an sc-element can correspond to several
synonymous names in different natural languages. More-
over, an sc-element can correspond to several synonymous
names in the same natural language. In this case, one of
these names is declared as the main external identifier
for the corresponding sc-element and the corresponding
natural language. The main requirement for such external
identifiers is that there are no synonyms as well as
homonyms within the set of basic external identifiers
of sc-elements for each natural language.

68

Each external sc-element identifier used by the ostis-
system can be described (represented) in its memory as an
internal ostis-system file, i.e. as an electronic image of all
possible occurrences of this external identifier in all possi-
ble external texts of the corresponding external language.
In some cases, an explicit representation in memory is not
required, e.g. in the case of non-translatable sc-identifiers.

Next, let us consider the external universal languages
of knowledge representation.

VI. SCG-CODE. ALPHABET OF THE SCG-CODE AND
DENOTATIONAL SEMANTICS

An SCg-code is a way of visualising sc-texts (SC-code
information constructions) as drawings of these abstract
structures. We emphasize that an abstract graph structure
and its drawing (graphical representation) are not the
same thing even if they are isomorphic to each other.

We consider the SCg-code as an combination of the
SCg-code Core, which provides an isomorphic graphical
representation of any sc-text and several extensions to this
core that provide increased compactness and “readability”
of SCg-code (sc.g-texts) texts.

The main purpose of the SCg-code is to have a clear
syntactic graphic representation of sc.g-elements, allowing
the classes of sc.g-elements to be easily identified and
distinguished, such as:

• sc.g-constants (signs of constant entities) and sc.g-
variables (images of variables whose values are the
corresponding sc-elements);

• sc.g-variables whose values are sc-constants and
sc.g-variables whose values are sc-variables;

• signs of permanent (stable) entities and signs of
temporal (unstable, temporary existing, situational)
entities;

• sc.g-connectors (binary characters) and sc.g-elements
that are not sc.g-connectors;

• non-oriented sc.g connectors (sc.g edges) and ori-
ented (sc.g arcs);

• sc.g-arcs of membership and sc.g-arcs that are not
such;

• sc.g-arc of positive membership, negative member-
ship, and fuzzy membership.

Figure 1 is the element list for the Alphabet of the
SCg-code.

This list is created in the form of sc.g-text and is
a representation for examples of all put types of sc.g-
elements (one example of each type). At the same time,
the specified examples of sc.g-elements are divided into
five groups (SCg-text. Alphabet of the SCg-code). The
first group (top row) includes sc.g-element for which the
constancy and consistency of the entities they denote
requires further specification. The remaining four groups
of sc.g-elements are similar to each other and include,
respectively:

• signs of constant permanent entities;

• signs of constant temporal entities;
• images of sc-variables whose values or whose

value values (in case the values of the variables
are variables) are the signs of constant permanent
entities;

• images of sc-variables whose values or whose value
values (in case the values of the variables are
variables) are the signs of constant temporal entities.

A special point of the SCg-code is the representation
of sc-elements, which are designations of the membership
pair* by explicitly using this semantically distinguishable
class of sc-elements. This sc.g-element is used when
we need to represent an sc-arc that is known to be a
designation of the membership pair*, but it is not known
whether it is constant or variable, permanent or temporal,
positive, negative, or fuzzy.

In addition to the sc.g-elements listed in Figure 1, the
Alphabet of the SCg-code also includes the following
sc.g-elements:

• external sc-element identifiers that are identical
(attributed) to the corresponding sc.g-elements;

• sc.g-contours, each of which is a sign of some sc-text
(a structure consisting of sc-elements). Each such
sc-text can be:
– either a constant permanent structure;
– a constant temporal structure (situation);
– or a variable structure whose values are permanent

structures of an isomorphic configuration;
– or a variable structure whose values are temporal

structures (situations) of an isomorphic configura-
tion.

• enlarged sc.g-frames that are image limiters for the
various files stored in the ostis-system memory;

• sc.g-buses, which are designations of the same
entities as their incident sc.g-elements.

Let us note also that, in addition to all the above
elements of the Alphabet of the SCg-code, each of
which has quite specific denotational semantics, a number
of “smaller” syntactic objects need to be introduced to
formalise the SCg-code syntax, e.g:

• incidence points of sc.g-connectors with sc.g-nodes,
with other sc.g-connectors, with sc.g-contours, with
sc.g-frames;

• sc.g-bus incidence points;
• salient points of linear sc.g-elements (sc.g-

connectors, sc.g-contours, sc.g-frames, sc.g-buses).
Within the SCg-code, the SCg-code Core and its

extensions are allocated. The Alphabet of SCg-code Core
is an alphabet of sc.g-elements graphically represented
by sc-elements. The Alphabet of the SCg-code Core is
mutually unambiguous with the Alphabet of the SC-code.

The denotational semantics of the SCg-code Core
correspond to the denotational semantics of the SC-code.
This is demonstrated in Figure 2.

69

Figure 1. Elements of the Alphabet of the SCg-code

70

Figure 2. Denotational semantics of the SCg-code Core

The Alphabet of the SCg-code Core is represented by
the following elements:

• an sc.g-node of a common type – an sc.g-element
which is a graphical representation of the sc-node
of a common type. All sc-nodes, which are not file
signs, in the text (construction) of the SCg-code
Core, are represented as small black circles of the
same diameter, which we denote by ’d’ and the exact
value of which depends on the scale of sc.g-text;

• an sc.g-edge of a common type – an sc.g-element,
which is a graphical representation of the sc-edge
of a common type. Each sc-edge in the SCg-code
Core is represented as a wide line with alternating
solid-filled and non-filled fragments that have no
self-intersections and an overall weight of about 0.7
d;

• an sc.g-arc of a common type – an sc.g-element,
which is a graphical representation of the sc-arc of a
common type. Each sc-arc in the SCg-code Core is
represented as a wide line with alternating solid-filled
and non-filled fragments, with no self-intersections,
having an overall weight of about 0.7 d and having
an arrow at one end of this line;

• a basic sc.g-arc – an sc.g-element, which is a
graphical representation of the basic sc-arc. Each un-
derlying sc-arc in the SCg-code Core is represented
as an arbitrary shaped line without self-intersections,
having a weight of 0.4 d and an arrow at one of its
ends;

• an internal ostis-file – an sc-node, which is the sign
of the internal ostis-system file;

• an sc.g-node with contents – an sc.g-node, which
is the sign of the internal ostis-system file, an sc.g-
frame;

• an sc.g-frame is always a rectangle, the maximum
size of which is not limited, but the minimum size
is fixed and corresponds to the sc.g-frame, inside
which the file it designated is not displayed. Each
sc-node in the sc-text that has contents is represented
as an arbitrarily sized rectangle with a line weight
of 0.6 d in the SCg-code Core. Inside this rectangle,
it is possible to see the file indicated by the depicted
sc-node. If there is no need to represent the file

itself in the text, the sc-node denoting such a file is
represented in sc.g-text as a rectangle with sides 2d
vertically and 4d horizontally.

It is difficult to believe at once that such a simple
alphabet can be used to build a convenient and versatile
graph language. Besides, we should not be alarmed by
simplicity of the alphabet because mankind has a great
experience of coding, storing in memory, and transfer-
ring through communication channels the most various
information resources using the alphabet consisting of
only two classes of elements – ones and zeros. We are
talking about a fundamentally different (graphical) way
of encoding information in computer systems, but we try
to reduce this encoding to a simple enough alphabet at
least in order not to artificially complicate the problem of
creating next-generation computers based on information
encoding method. Extensions of the SCg-code Core will
be considered as directions of transition from the SCg-
code Core texts to more compact texts. However, since it
leads to complication of the Syntax of the SCg-code and,
first of all, to expansion of the Alphabet of the SCg-code,
it is necessary to make such extensions reasonably taking
into account frequency of occurrence within knowledge
bases of ostis-systems of corresponding fragments.

VII. SCS-CODE. ALPHABET OF THE SCS-CODE AND
DENOTATIONAL SEMANTICS

An SCs-code is a language of linear knowledge repre-
sentation of ostis-systems. A set of linear texts (sc.s-texts),
each consisting of sentences (sc.s-sentences) separated
from each other by a double semicolon (separator of sc.s-
sentences). In this case, the sc.s-sentence is a sequence
of sc-identifiers which are the names of the described
entities and are separated from each other by different
sc.s-separators and sc.s-delimiters.

The Alphabet of the SCs-code is based on modern
commonly used character sets, which simplifies the
development of tools for working with sc.s-texts using
modern technologies.

The sc.s-texts, as well as the texts of any other
languages which are variants of the external representation
of the SC-code texts, can include various files, including
natural language files or even files containing other sc.s-
texts. In general, such files can use a variety of characters,

71

so we will assume that these characters are not included
in the Alphabet of the SCs-code.

The alphabet of symbols used in sc.s-separators
consists of: space, semicolon, colon, round marker, and
equality sign.

The alphabet of symbols used in sc.s-separators dis-
playing the incidence relation of sc-elements consists of:
“<”, “>”, “|”, “-”.

The basic alphabet of characters used in sc.s-connectors
consists of: “∼”, underscore sign, equality sign, colon,
‘<”, “>”, “|”, “-”, “/”.

The extended alphabet of symbols used in sc.s-
connectors consists of “∈”, “∋”, “⊆”, “⊇”, “⊂”, “⊃”,
“≤”, “≥”, “⇐”, “⇒”, “←”, “→”, “⇔”.

Both in the Basic and the Extended Alphabets of sc.s-
connectors, the following common features to characterize
the type of sc-connector being represented are used:

• an underscore as an image feature of the sc-
connectors variables (one underscore for sc-
connectors that are primary sc-variables, two un-
derscores for sc-connectors that are secondary sc-
variables (sc-meta-variables));

• a vertical line “|” as an image feature of negative
sc-arcs of membership;

• slash “/” as an image feature of fuzzy sc-arcs of
membership;

• tilde “∼” as an image sign of temporal sc-arcs of
membership.

To simplify the process of developing knowledge
base source texts using the SCs-code and creating corre-
sponding tools, two character alphabets are introduced.
The basic alphabet of characters used in sc.s-connectors
includes only the characters included in the portable
character set and available on a standard modern keyboard.
Thus, to develop the source code of knowledge bases
using only the Basic alphabet of symbols used in
sc.s-connector, a normal text editor is sufficient. The
extended alphabet of characters used in sc.s-connectors
also includes additional characters that make sc.s-texts
(and sc.n-texts) more readable and clear. To visualize and
develop sc.s-texts using the extended alphabet, specialized
tools are required.

The alphabet of symbols used in sc.s-delimiters consists
of: “(”, “)”, “*”.

The alphabet of symbols used in ambiguous sc.s-images
of sc-nodes consists of: “{”, “}”, “-”, “!”, “ [”, “] .

Important elements of the SCs-code are the sc.s-
separator and the sc.s-delimiter.

An sc.s-separator is a separator used in sc.s-texts. The
sc.s-separator splits into:

• an sc.s-separator used to structure sc.s-sentences.
– it separates the sc-identifier of a binary relation

and the second component of one of its connec-
tives, in case the specified binary relation and its

connective are connected by a constant sc-arc of
membership. It is represented as a colon.

– Separates the sc-identifier of a binary relation and
the second component of one of its connectives,
in case the specified binary relation and its
connective are connected by a variable sc-arc of
membership. It is represented as a double colon.

• sc.s-separator of sc.s-sentences is represented as a
double semicolon.

sc.s-delimiter is represented as: (![(∗]!∪![∗)]!)
The parentheses with an asterisk limit attached sc.s-

sentences, which, in turn, may have other attached sc.s-
sentences in their structure.

There is also an sc.s-connector. The typology of sc.s-
connectors is fully consistent with that of sc.g-connectors
and even more so with sc-connectors, since it takes into
account the well-established tradition of representing
the connectives of a number of specific relations. The
following sc.s-connectors are distinguished:

• an oriented sc.s-connector,
• a non-oriented sc.s-connector;
• an sc.s-connector, corresponding to the sc.g-arc of

membership,
• an sc.s-connector corresponding to a sc.g-connector

that is not an sc.g-arc.

The set of sc-elements has a binary oriented sc-element
incidence relation, as well as a subset of this relation – the
incidence relation of incoming sc-arcs, each pair of which
relates the sc-arc to the sc-element it is a part of. In the
SC-code, sc-connectors can connect not only an sc-node
with sc-nodes but also an sc-node with an sc-connector
and even an sc-connector with an sc-connector. In the
latter case, specifying the incidence of sc-connectors, it
is necessary to specify which of them is connecting and
which is connectable. Therefore, the incidence relation
specified on the set of sc-elements is oriented. The first
component of the pair of this relation is the connecting sc-
connector and the second component is the connecting sc-
element. Obviously, the connecting sc-element is always
an sc-connector and the sc-node can only be connectable.

The sc.s-separator displaying the incidence relation of
sc-elements is divided into:

• incidence sign of the “right” sc-connector – the in-
cidence sign of the sc-connector whose sc-identifier
is on the right, represented as “⊢”;

• incidence sign of the “left” sc-connector – the
incidence sign of the sc-identifier whose sc-identifier
is on the left, represented as “⊣”;

• incidence sign of the incoming sc-arc on the right is
the incidence sign of the sc-arc, whose sc-identifier
is on the right, represented as “| <”;

• incidence sign of the incoming sc-arc on the left is
the incidence sign of the sc-arc, whose sc-identifier
is on the left, represented as “> |”.

72

Specified sc.s-separators are similar to sc.s-sentences
in terms of their syntactic structure, but in terms of their
denotational semantics, unlike sc.s-connectors, they are
not representations of corresponding sc-connectors.

In Figure 3, an image of sc.s-connectors of the Basic
and Extended alphabet corresponding to sc.g-connectors,
which are sc.g-arc of membership, is shown.

The equality sign is the sc.s-separator of two sc-
identifiers which identify (name) the same entity and,
therefore, are sc-identifiers* (external unique images)
of the same sc-element. Most often, one of these two
sc-identifiers is a simple sc-identifier and the other is
an sc-expression. Rarely, both of these sc-identifiers are
sc-expressions. And quite rarely, they are both simple
sc-identifiers. The latter indicates that both of these sc-
identifiers are basic sc-identifiers* of the same sc-element.
An example:

SC-code = sc.s-text;;
Here, the first sc-identifier is a proper name and the

second is a common noun.
When translating sc.s-text into the SC-code, the equality

sign may at some stage be matched with an sc-edge which
belongs to the synonymy* relation of the sc-elements
identified by the sc-identifiers connected by the equality
sign. However, in the next step, the specified sc-edge is
removed, and the sc-elements connected by it are patched
together. Thus, the sc-edge belonging to the synonymy*
relation of sc-elements has not only denotational but also
operational semantics.

An equality sign with inclusion is an image of an sc-
arc belonging to an immersion* relation connecting two
sc-nodes denoting sc-texts, the first of which is immersing
and the second (in which specified sc-arc comes) is
immersed, introduced into the first sc-text. The sc-arc
belonging to the immersion* relation is interpreted as a
command to immerse one sc-text into the composition
of another. When this command is executed, (1) all
sc-elements of the immersing sc-text become elements
belonging to the immersing sc-text, (2) all synonymous
sc-elements that happen to be part of the immersing sc-
text are patched together, (3) the sc-node denoting the
immersing sc-text, as well as the specification of this sc-
text (including the list of all its sc-elements), is immersed
in the history of the knowledge base evolution together
with the specification of the event of immersion of the
considered sc-text into the knowledge base.

In Figure 4, the Alphabet of sc.s-connectors correspond-
ing to sc.g-connectors that are not sc.arcs of membership
is shown.

The minimum semantically coherent fragment of sc.s-
text is the sc.s-sentence; an sc.s-sentence, (1) consisting of
either two sc-identifiers connected by an sc.s-connector
or three sc-identifiers separated by sc. separators rep-
resenting an incidence relation of sc-elements and (2)
ending with a double semicolon.

It is easy to notice that simple sc.s-sentences are
essentially the same as RDF triplets, except that a simple
sc.s-sentence can be “unfolded” using sc.s-sentence
conversion* without changing its meaning, while an RDF-
triplet cannot ensure that. This is one of the reasons
why, unlike RDF triplets, in simple sc.s-sentences, sc.s-
connectors and sc.s-separators displaying the sc-element
incidence relation cannot be omitted, since they also show
the direction of the relation they display between the sc.s-
elements.

The operations defined on the set of sc.s-sentences can
be divided into three groups:

• a group of conversion operations of sc.s-sentences
consisting of a single operation;

• a group of combination operations of sc.s-sentence;
• a group of decomposition operations of sc.s-

sentences and, in particular, decomposition oper-
ations of sc.s-sentences.

The list of operations defined on the set of sc.s-
sentences is as follows:

• Conversion operation of the sc.s-sentence*. Every
sc.s-sentence (including the simple sc.s-sentence) can
be transformed into a semantically equivalent sc.s-
sentence by a conversion (’reversal’) of the chain of
sc.s-sentence components. Thus, for example, when
converting (“unfolding”) a simple sc.s-sentence
– its first sc-identifier (the first component of this

sc.s-sentence) becomes the third component of the
converted sc.s-sentence;

– its second sc-identifier (the third component of
the original sc.s-sentence) becomes the first com-
ponent of the “converted” one;

– the second component of the original sc.s-sentence
(sc.s-connector or sc.s-separator, representing the
sc-element incidence relation connecting the above
components) remains the second component of the
converted sc.s-sentence, but it changes direction
(“ ∋ ” is replaced by “ ∈ ” and vice versa, “
⊃ ” by “ ⊂ ” and vice versa, “ ⇒ ” by “ ⇐ ”
and vice versa, etc.). We can talk not only about
the conversion of sc.s-sentence but also about the
conversion of sc.s-connector, the conversion of
sc.s-separator displaying the incidence relation of
sc.s-elements.

• The attachment operation of the sc. s-sentence* is
the operation of attaching two sc.s-sentence when
the last component of the first sentence matches the
first component of the second one*. As a result of
performing this operation:
– the first component of the second sc.s-sentence is

deleted;
– the rest of the second sentence is surrounded by

the sc.s-delimiter of attached sentences “ (* ” and
“ *) ”. The separator of sc.s-sentences “ ;; ” also

73

Figure 3. An image of sc.s-connectors of the Basic and Extended alphabet corresponding to sc.g-connectors, which are sc.g-arc of membership

74

Figure 4. The Alphabet of sc.s-connectors corresponding to sc.g-connectors that are not sc.arcs of membership

falls inside the specified delimiter;
– the resulting construction is placed between the

last component of the first sentence and the sc.s-
sentence separator that ended the first sentence;

– the second sentence thus becomes an attached
sc.s-sentence.

Similarly, any attached sc. s-sentence can be “docked”
with other attached sc.s-sentences, in general, the
level of such nesting is not limited.

• The merge operation of sc.s-sentences* is the opera-
tion of attaching a simple sc.s-sentence to an sc.s-
sentence where the last sc.s-connector is the same
as the sc.s-connector of the simple sc.s-sentence
and the sc-identifier preceding that sc.s-connector
is the same as the first sc-identifier of the simple
sc.s-sentence
This operation causes the matching of sc.s-identifiers
and sc.s-connector of the linked sc.s-sentences to be
“patched” together, and the last sc.s-identifiers of the
linked sc.s-sentence become the last components of

the merged sc.s-sentence, separated by semicolons.
In the same way, any number of simple sc.s-sentence
can be attached.

• The decomposition operation* of sc.s-sentences into
simple sc.s-sentences
Every sc.s-sentence can be decomposed into a set of
simple sc.s-sentences, i.e. represented as a sequence
of simple sc.s-sentences.

• The decomposition operation of sc.s-sentences into
simple sc.s-sentences with the sc.s-separator repre-
senting the incidence relation of the sc-elements*
Each sc.s-sentence (including a simple sc.s-sentence
with an sc.s-connector) can be represented as a
semantically equivalent sequence of simple sc.s-
sentences with sc.s-separator displaying the in-
cidence relation of sc-elements. This operation
uniquely generates a set of simple sc.s-sentences
of the specified kind.

Obviously, the combination operations of sc.s-sentences
and the decomposition operations of sc.s-sentences are

75

inverse operations to each other.
From the semantic point of view, the sc.s-sentence is

a description of some route in the corresponding sc-text,
which is a graph structure of a special kind and whose
structure is described (displayed) with sc.s-sentences. The
specified route is “traversed” by sc-connectors and sc-
element incidence relations, if the route passes through
incident sc-connectors. The description of the specified
route may additionally specify the sets (most often
relations) to which the sc-connectors included in the
described route belong. In addition, the specified route
may have branches at the beginning and/or at the end,
where any sc-element is equally incidental to several sc-
connectors of the same type, connecting the specified sc-
element to some other sc-elements. Thus, each specified
branching consists of an unlimited number of branches,
each of which consists of one sc-connector and one sc-
element connected by it.

A sequence of sc.s-sentences separated by double dots
forms the sc.s-text. Accordingly, the sc.s-sentence is the
minimum sc.s-text.

The meaning of the sc.s-text (as well as the sc.s-text
included in the structure) does not depend on the order
of sc.s-sentences in these sc-texts. That is, rearranging
sc.s-sentences within such sc.s-texts does not change the
meaning of these sc.s-texts (i.e. leads to semantically
equivalent sc.s-texts), but greatly affects the human
perception (the “readability”) of these texts.

Similar to SCg-code, the SCs-code has a sublanguage –
the SCs-code Core, which uses a minimal set of syntactic
tools but has a semantic power equivalent to the power
of SCs-code as a whole.

In the SCs-code Core:
• only simple sc-identifiers are used, including sc-

identifiers of external ostis-files (sc-expressions are
not used);

• only sc.s-separators are used, displaying the inci-
dence relation of sc-elements, and sc.s-connectors
displaying a constant permanent positive pair of
membership (“ ∈ ” and “ ∋ ” in the Extended
Alphabet and “ → or ” and “ ← ” in the Basic
Alphabet). Other sc.s-connector are not used;

• sc.s-modifiers and, consequently, colons, which are
a sign of completion of sc.s-modifiers, are not used;

• only simple sc.s-sentences, which, as follows from
the above properties of the SCs-code Core, either
consist of two simple sc-identifiers connected by a
sc.s-connector representing a constant permanent
positive pair of membership or three simple sc-
identifiers separated by sc.s-separators representing
an incendence relation of sc-elements are used.

It follows from the above properties of the SCs-code
Core that in order to represent any sc-text by means of
the SCs-code Core it is necessary for all sc-elements of
this sc-text (except constant permanent positive pairs of

membership) to build simple sc-identifiers corresponding
to them, i.e. it is necessary to name all the specified sc-
elements. In turn, the type of each used sc-element (except
the constant permanent positive pairs of membership)
is specified explicitly by indicating the membership of
these elements to the corresponding sc-element classes,
including the classes included in the SC-code Core.

As it is possible to notice from the above description,
the SCs-code Core corresponds to the SCg-code Core,
except that the SCg-code Core does not need to name
all represented sc-elements, and also in the SCg-code,
there are graphic images for sc-elements that belong to
the corresponding classes of the SC-code Core, and this
membership need not to be explicitly specified.

Obviously, it is inconvenient and inefficient to use the
SCs-code Core for writing large fragments of knowledge
bases in practice. Nevertheless, from a practical point of
view, the SCs-code Core can be used, for example, to
exchange information with third-party graph representa-
tion tools designed to represent information in the form
of triplets (e.g., RDF storages). Syntactic extensions to
the SCs-code Core are needed to enable wider practical
usage with next purposes:

• to minimize the number of identifiable (named) sc-
elements by using sc-expressions and eliminating
the need to identify (name) all sc-elements;

• reducing text by minimizing the number of rep-
etitions of the same sc-identifier by linking sc.s-
sentences;

• to increase the visibility, “readability” of the sc.s-
texts.

Next, let us consider the structured knowledge repre-
sentation language of ostis-systems – an SCn-code.

VIII. SCN-CODE. ALPHABET OF THE SCN-CODE AND
DENOTATIONAL SEMANTICS

An SCn-code is a language for the structured external
representation of the SC-code texts, which is a syntactic
extension of the SCs-code, aimed at increasing the clarity
and compactness of the SCs-code texts.

The SCn-code allows switching from linear texts of the
SCs-code to formatted and actually two-dimensional texts
in which there appears a decomposition of the original
linear text of the SCs-code into lines placed “vertically”.
In this case, the beginning of all lines of text is fixed
and defined by a known and limited set of rules, which
makes it possible to use this when formatting sc.n-text
(text belonging to the SCn-code).

An SCn-code is a language of two-dimensional texts.
Accordingly, each text of such a language is defined by:

• a set of characters included in it;
• a “horizontal” character order (sequence) relation;
• a “vertical” character order (sequence) relation.
A character that is part of a two-dimensional text can

generally have four “adjacent” characters:

76

• a character to its left within the same line;
• a character to its right within the same line;
• a character located strictly above it in the previous

line;
• a character located strictly below it in the next line

of text.
Due to the fact that sc.n-texts can include both sc.s-

texts and sc.g-texts (delimited by the sc.n-contour), the
SCn-code can be considered an integrator of different
external knowledge representation languages. This makes
it possible to compensate the disadvantages of one of the
proposed options for external representation of sc-texts
(SCg-code, SCs-code, SCn-code) with the advantages
of other options when visualizing and developing the
knowledge base of the ostis-system.

In this case, there is a transition from linearity of sc.s-
texts to two-dimensionality of sc.n-texts.

An important feature of the SCn-code is the “two-
dimensional” nature of its texts. This is manifested in
that for each SCn-code fragment of text, the value of the
indentation from the left edge of the line is essential.

In the SCn-code text, unlike the SCs-code text, the
important thing for each text fragment is not only how this
fragment is connected to other fragments “horizontally”
(which fragment is to the left or to the right of the
same line) but also how it is related to other fragments
“vertically” (which fragment is higher on the previous line
and which is lower on the next line), which fragment is
below on the next line).

So, for example, if in the text of the SCn-code
some sc-identifier(external sc-element identifier) is placed
immediately after the vertical tab line and a certain
sc.s-connector is placed exactly below it, it means that
the specified sc-element is incident to the sc-connector
represented by the specified sc.s-connector.

In order to provide the exact setting (formulation) of the
rules of two-dimensional incidence elements (elementary
fragments) of sc.n-texts, the concept of sc.n-text page is
introduced, the concept of a line of sc.n-text, and also
a special markup is used, which is vertical tab lines,
the distance between which is approximately equal to
the maximum length of the sc.s-connector (usually this
distance equals the width of 4-5 characters).

The sc.n-text (text of the SCn-code) is a sequence of
sentences of the SCn-code, each of which is not part of
any other sentence in the sequence.

If the sc.n-text is part of some other file that is
paginated, such as the publication of some part of a
knowledge base, then the sc.n-page is only the part of
the page that shows the sc.n-text, while the page of the
specified file may be larger due to, for example, white
fields on the edges of the page needed for subsequent
printing.

The maximum number of characters in sc.n-text lines
for each sc.n-text is fixed and is determined by the specific

sc.n-text placement option. At the same time, depending
on the indentation within a particular sc.n-text sentence,
a line of sc.n-text may not start from the left edge of the
sc.n-text (but always from some of the vertical markup
lines) and have an arbitrary length limited by the right
border of the sc.n-page.

A markup line is used to make sc.n-texts easier to read.
The 1st markup line borders the left edge of the sc.n-page,
the 2nd markup line is located approximately between the
5th and 6th characters of the line, and so on. The distance
between the markup lines may vary depending on the
font size but always remains the same within a single
sc.n-text. The total number of markup lines is limited
by the maximum possible width of the sc.n-page in the
particular ostis-system file containing that sc.n-text.

The Alphabet of the SCn-code is the same as the
Alphabet of the SCs-code. All components of sc.s-texts
are also used in sc.n-texts:

• sc-identifiers;
• sc.s-identifiers;
• modifiers of sc.s-connectors with the corresponding

delimiters (colons);
• separators used in sc-expressions denoting sc-

multiples given by enumeration of elements with cor-
responding separators (semicolon or round marker);

• round markers in enumerations of sc-element identi-
fiers linked by the same-type sc-connectors with the
same-type modifiers to a given sc-element;

• sentence separators (double semicolons) (omitted
when converting sc.s-sentences to sc.n-sentences);

• delimiters of attached sc.s-sentences (omitted when
converting sc.s-sentences to sc.n-sentences).

However, unlike sc.s-texts in sc.n-texts:

• new kinds of sc-expressions (namely, sc-expressions
that have a two-dimensional character) are added;

• a new kind of sentence separators – a blank line –
is added;

• the placement of sentences, taking into account
the two-dimensional nature of this placement, is
changed.

New types of sc-expressions are added to the SCn-code
compared to the SCs-code:

• an sc-expression, which is a two-dimensional sc.n-
text delimited by an sc.n-contour or an sc.n-frame.
Each sc.n-contour is represented conventionally as
an opening curly bracket and a closing curly bracket
located strictly below it through several lines. Inside
these brackets (starting from the vertical markup line
where the brackets are located to the right page edge),
sc.n-text is placed. The resulting sc.n-frame is an
image of the structure resulting from the translation
of the specified sc.n-text into the SC-code. Each sc.n-
frame is represented in the same way, only instead
of curly braces it uses square brackets or square

77

brackets with an exclamation mark (in the case of a
sample file);

• an sc-expression, which is a two-dimensional sc.g-
text delimited by an sc.n-contour or an sc.n-frame;

• an sc-expression, which is a two-dimensional graph-
ical representation of an information construct en-
coded in some ostis-system file, delimited by the
sc.n-frame. Such an information construction can be
a table, a picture, a photograph, a diagram, a graph,
and more.

It is easy to notice that an sc.n-contour is essentially the
two-dimensional equivalent of the sc-expression structure,
and an sc.n-frame is the two-dimensional equivalent of
the sc-expression of the inner file of the ostis-system or
sc-expression denoting the pattern file of the ostis-system.

From a formal point of view, an sc.n-frame is always
a single line of sc.n-text. This means that the sc.n-frame
cannot be syntactically divided into parts within the sc.n-
text in which it is used and cannot be inserted inside it, for
example, with attached sc.n-sentences or any other text
(unless the sc.n-frame contains sc.n-text, but in this case
specified sc.n-text will still be considered as a complete
external file and not as a fragment of the surrounding
sc.n-text).

The sc.n-sentences uses a delimiter that is a represen-
tation of the structure, which is called an sc.n-contour.

The concept of the sc.n-sentence is a natural gener-
alization of the concept of the sc.s-sentence. Moreover,
similarly for sc.s-sentences, the concept of concepts are
introduced:

• of a simple sc.n-sentence;
• of a complex sc.n-sentence;
• of an sc.n-sentence containing attached sc.n-

sentence;
• of an sc.n-sentence that does not contain any attached

sc.n-sentence;
• of an attached sc.n-sentence;
• of unattached sc.n-sentence.
If each unattached sc.s-sentence is either the first

sentence of the sc.s-text or begins after the sc.s-sentence
separator (double semicolon), then each unattached sc.n-
sentence starts at the beginning of a new line.

If each attached sc.s-sentence starts either after the
opening delimiter (opening bracket with an asterisk) or
after the separator of the
textitsc.s-sentence, then each attached sc.n-sentence starts
on a new line under the sc-identifier that ends that sc.n-
sentence (and accordingly, sc.s-sentence, respectively) in
which this attached sc.n-sentence is embedded.

The first sc-identifier that is part of the sc.n-sentence
before the sc.s-connector is highlighted in bold italics.

In sc.n-sentences, the double semicolon is not used as a
sign of completion of these sentences and therefore is not
used as a separator for sc.n-sentences. Such a separator
is an empty line.

The two-dimensionality of the SCn-code gives more
possibilities (degrees of freedom) for a clear and compact
layout of the sc.n-sentences.

When the sc.n-sentence is drawn up, all the sc.n-
sentences attached to it are clearly tabulated and attached
to the original “vertical” one. The vertical tabulation line
specifies the left border of the original (maximum) sc.n-
sentence or the left border of the sc.n-sentence attached
vertically.

The left border of the sc.n-sentence specifies the start
of the first sc.n-sentence that is part of this sc.n-sentence
and the start of the sc.s-connector that is incident to the
specified sc.s-identifier and is placed strictly below this
sc-identifier. The distance between the vertical tab lines
is fixed and approximately equal to the maximum length
of the sc.s-connector.

In contrast to sc.s-texts, in sc.n-texts, an sc.s-connector
can be incident to the preceding sc-identifier (either simple
one or an sc-expression) not only “horizontally” but also
“vertically”. To do this, the sc.s-connector is placed strictly
below the sc-identifier that precedes it.

Also “vertical” sc-identifier can be incident to not
one but several sc.s-connectors, which are consecutively
“vertically” placed under the specified sc-identifier. This
allows within one sc.n-sentence representing an arbitrary
number of “branches” from each sc-identifier, i.e. an
arbitrary number of sc.s-connectors incident to that sc-
identifier.

Each sc-identifier, including the sc-expression delimited
by curly or square brackets, must be placed immediately to
the right of the vertical marking line if an sc.s-connector
is placed below it.

Each sc.s-connector is highlighted in bold, non-cursive
font and, if it is below an incident sc-identifier, is placed
strictly between the two vertical marking lines, nestled
to the left of these two marking lines.

Since in relation to the SCn-code, the SCs-code is
the syntactic core of the language*, the SCn-code can be
considered as the result of integrating several extensions of
the SCs-code based on the syntactic transformation rules
of sc.s-texts and sc.n-texts, oriented towards making better
usage of those possibilities of visibility and compactness
of sc.n-texts which are opened by the transition from
linearity of sc.s-texts to two-dimensional sc.g-texts.

The list of operations defined on the set of sc.n-
sentences is as follows:

• Transformation operation of sc.s-sentence to the sc.n-
sentence*
Every sc.s-sentence written linearly (“horizontally”)
can be transformed into the corresponding two-
dimensional sc.n-sentence. Let us list the basic rules
for transforming sc.s-sentences into sc.n-sentences
– The sc.s-connector can be placed on the next line

below the preceding sc-identifier, starting from

78

the same character of the next line as the specified
sc-identifier;

– If the sc-identifier is moved to the next line,
it is continued on the next line with the same
indentation from the beginning of the line as the
specified sc-identifier starts;

– A semicolon-delimited listing of sc-identifiers can
be carried out not “line by line” but “column by
column” by placing each following sc-identifier
strictly below the preceding one. In this case, the
semicolon separator can be replaced by a circle
marker placed in front of each sc-identifier to be
enumerated;

– a closing curly or square bracket may be placed
strictly below the corresponding opening bracket;

– The sc-identifier in the sc.n-sentence can be
connected to other sc-identifiers via several dif-
ferent sc.s-connectors. In this case, each of these
sc.s-connector is placed strictly below the pre-
ceding one but only after the recording of the
entire, generally branched, chain of sc.s-connector
and sc-identifier that starts with the preceding
sc.s-connector is completed. In the SCs-code,
there is no analogue to such sentences with the
unrestricted possibility of describing “branched”
connections of sc-identifiers. Consequently, if
in sc.s-text, the sc-identifier can be incident to
no more than two sc.s-connectors (to its left
and right), then in sc.n-text, sc-identifier can
additionally be incident to an unlimited number
(not necessarily identical) of sc.s-connectors that
are placed “vertically” strictly below it.

• Attachment operation of the sc.n-sentence*
Some sc.n-sentence can be attached to another
sc.n-sentence if this other sc.n-sentence has an sc-
identifier (but not an sc.s-modifier) that begins the
first (attachable) sc.n-sentence. Joining in is done as
follows:

• The initial sc-identifier of the attached sentence is
omitted;

• The remainder of the sc.n-sentence, starting from
the sc.s-connector, is written under the same sc.s-
identifier but forming part of the sc.n-sentence to
which this sc.n-sentence is attached. All indents in
the attached sc.n-sentence are shifted accordingly.
An arbitrary number of any number of branches can
be formed in this way.

In essence, the semantics of the sc.n-sentence is the set
of routes in sc-text, possibly intersecting and originating
from a given sc-element.

IX. EXAMPLE OF THE TEXT REPRESENTED IN THE
SCG-CODE, SCS-CODE, AND SCN-CODE

Let us consider the fragment of the sc.g-text shown
in Figure 5. This fragment represents a class of material

Figure 5. A fragment of the sc.g-text

Figure 6. A fragment of the sc.s-text

objects including: Earth, Moon, Sun, Mars. The material
object “Moon” has two main identifiers, in Russian and
English. “Earth” and “Mars” are related to “Sun” by a
“revolve around*” relation. “Moon” is related to “Earth”
using the “satellite*” relation.

Any sc.g-text can easily be represented by the sc.s-text.
Accordingly, the fragment of sc.g-text described above is
represented in sc.s-text in Figure 6:

In Figure 7, a fragment of the above text in the SCn
code is shown.

X. CONCLUSION

In this article, the concepts of internal and external
languages of a next-generation intelligent computer sys-
tem, the family of external languages of ostis-systems are
considered. The syntax and denotational semantics of the
SCg-code, SCs-code, SCn-code are clarified.

Examples of information constructions described with
the SCg-code, SCs-code, SCn-code are given.

The results obtained will improve the future devel-
opment of next-generation intelligent computer systems,
as well as the compatibility and interoperability of the
components of such systems.

79

Figure 7. A fragment of the sc.n-text

REFERENCES

[1] V. Martynov, Universal Semantic Code (Grammar. Dictionary.
Texts). Minsk: Nauka i tekhnika [Science and technics], 1977.

[2] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
G. V.V., Ed. Minsk: Bestprint, 2021.

[3] P. Warren, P. Mulholland, T. Collins, and E. Motta, “Improving
comprehension of knowledge representation languages: a case
study with description logics,” International Journal of Human-
Computer Studies, vol. 122, 09 2018.

[4] P. P.-S. Chen, “The entity-relationship model—toward
a unified view of data,” ACM Trans. Database Syst.,
vol. 1, no. 1, p. 9–36, mar 1976. [Online]. Available:
https://doi.org/10.1145/320434.320440

[5] J. Sowa, Conceptual Structures: Information Processing in Mind
and Machine The Systems Programming Series, 01 1984.

[6] J. E. Rumbaugh, M. R. Blaha, W. J. Premerlani, F. Eddy, and
W. E. Lorenson, “Object-oriented modelling and design,” 1991.

[7] G. Schreiber, B. J. Wielinga, and J. Breuker, “Kads : a principled
approach to knowledge-based system development,” 1993.

[8] G. Booch, J. Rumbaugh, and I. Jacobson, “Unified modeling
language user guide, the (2nd edition) (addison-wesley object
technology series),” J. Database Manag., vol. 10, 01 1999.

[9] D. Ausubel, “Educational psychology: A cognitive view,” 01 1968.
[10] D. F. Dansereau, “The development of a learning strategies

curriculum,” 1978.
[11] D. H. Jonassen, K. L. Beissner, and M. Yacci, “Structural

knowledge: Techniques for representing, conveying, and acquiring
structural knowledge,” 1993.

[12] D. F. Dansereau and C. D. Holley, “Development and evaluation
of a text mapping strategy,” Advances in psychology, vol. 8, pp.
536–554, 1982.

[13] J. M. Scandura, “Structural learning theory: Current status
and new perspectives,” Instructional Science, vol. 29,
no. 4, pp. 311–336, Jul 2001. [Online]. Available:
https://doi.org/10.1023/A:1011995825726

[14] G. Paquette, “Building graphical knowledge representation
languages-from informal to interoperable executable models,” 01
2006.

[15] A. Boriskin, M. Sadouski, D. Koronchik, I. Zhukau, and A. Khu-
sainov, “Ontology-based design of intelligent systems user in-
terface,” Otkrytye semanticheskie tekhnologii proektirovaniya in-
tellektual’nykh system [Open semantic technologies for intelligent
systems], pp. 95–106, 2017.

[16] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
G. V.V., Ed. Minsk: Bestprint, 2021.

Семейство внешних языков
интеллектуальных компьютерных систем

нового поколения, близких языку
внутреннего смыслового представления

знаний
Жмырко А.В.

В работе рассматриваются понятия внешних и внутрен-
них языков интеллектуальных компьютерных систем нового
поколения. Описываются внешние языки представления зна-
ний в рамках Технологии OSTIS, а именно SCg-код, SCs-код,
SCn-код. Для каждого из внешних языков уточнены и деталь-
но рассмотрены синтаксис и денотационная семантика.

Received 10.09.2022

80

Representation of formal ontologies of basic
entity classes in intelligent computer systems

Stanislau Butrin
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: stas.butrin1331@gmail.com

Abstract—In the article, the ontological approach to the
design of knowledge bases of next-generation intelligent
computer systems is considered. The main subject domains
and ontologies containing the description of basic entity
classes are allocated. The connections and relations between
the basic concept classes are described. The results obtained
will improve the efficiency of designing knowledge bases of
intelligent computer systems.

Keywords—knowledge base, ontology, top-level ontology,
ontological approach to designing knowledge bases, basic
entity class, subject domain.

I. INTRODUCTION

The number of application fields for various computer
systems increases every year together with the number of
intelligent problems that require automation. This leads
to the need to improve intelligent computer systems and
expand their functionality.

A key element of such systems is knowledge bases,
which largely determine the level of their intelligence [1].

A knowledge base is a systematized totality of knowl-
edge stored in the memory of an intelligent computer
system and sufficient to ensure purposeful (appropriate,
adequate) functioning (behavior) of this system both in its
external and internal environment (in its own knowledge
base) [2].

To ensure the joint usage of different types of knowl-
edge included in the knowledge base, it is necessary to
ensure their compatibility with the specified knowledge
base, which includes semantic compatibility that implies
an unambiguous and unified interpretation of the used
concepts for all fragments of the knowledge base.

II. ANALYSIS OF EXISTING APPROACHES TO SOLVING
THE PROBLEM

Among the variety of means for knowledge representa-
tion, the most effective are ontologies [3]. The essence of
this approach when designing the knowledge base is to
consider the knowledge base as a hierarchical system
of selected subject domains and their corresponding
ontologies. However, ontologically, it is possible to specify
knowledge in different ways. To solve this problem, top-
level ontologies are designed.

Let us consider the currently available top-level ontolo-
gies [4], [5]:

• The Standard Upper Ontology (SUMO) [6]
– The key concept in the SUMO ontology is "En-

tity", and this concept includes the "Physical"
and the “Abstract” concepts. The first category
includes everything that has a position in space
and time, and the second category includes all the
rest.

– The ontology covers the following areas of knowl-
edge: general kinds of processes and objects,
abstractions (set theory, attributes, relations), num-
bers and units of measurement, temporal concepts,
parts and a whole, agents and intentions.

• Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) [7]
– A DOLCE ontology is focused on capturing the

ontological categories underlying natural language
and human common sense.

– The top-level concept in the ontology is “Con-
crete”, indicating that all instances of this and its
subtypes are private.

• Cyc’s upper ontology (OpenCyc) [8], [9]
– At the top of the collection hierarchy is a uni-

versal collection named “Something”, which, by
definition, contains everything that exists within
the domain being described.

– An OpenCyc knowledge base contains informa-
tion from various subject domains: Philosophy,
Mathematics, Chemistry, Biology, Psychology,
Linguistics.

Usage of modern top-level ontologies in the develop-
ment of knowledge bases of intelligent computer systems
involves the problems of ensuring their compatibility.
Since the original purpose of creating top-level ontolo-
gies was to ensure the compatibility of subject domain
ontologies and applied ontologies but not the intelligent
systems themselves.

Such problems are:

• unconstrained interpretation of concepts, caused by
the lack of their clear definition;

81

• the lack of a unified technology of designing knowl-
edge bases on the basis of top-level ontologies;

• the lack of association of top-level ontologies with
any technology, which does not allow using them as
reusable components.

Therefore, there is a need to develop such a top-
level ontology system, which could provide semantic
compatibility between a large number of ontologies of
different subject domains.

III. PROPOSED APPROACH

In this article, to solve the problems mentioned earlier,
we propose to use an OSTIS Technology. This technology
is a set of models, tools, and methods for the development
of next-generation intelligent computer systems.

The proposed models are based on the following basic
principles of the OSTIS Technology:

• using unified semantic networks with a basic set-
theoretic interpretation of their elements as a method
of knowledge representation;

• orientation on the semantic representation of knowl-
edge;

• unification of knowledge base models of intelligent
systems;

• orientation not only on the specification of knowl-
edge but also on the specification of the model of
how this knowledge will be processed.

The OSTIS Technology is based on the usage of unified
semantic networks with a basic set-theoretic interpretation
of their elements as a method of knowledge representation.
This way of knowledge representation is called an SC-
code, and the semantic networks, represented in the SC-
code, are called sc-graphs (sc-texts, or texts of the SC-
code). The elements of such semantic networks are called
sc-elements (sc-nodes and sc-connectors, which, in turn,
can be sc-arcs or sc-edges depending on their orientation).
The Alphabet of the SC-code consists of five basic
elements, on the basis of which SC-code constructions
of any complexity are built, including the introduction of
more particular kinds of sc-elements (e.g., new concepts).
The memory storing SC-code constructions is called
semantic memory, or sc-memory.

The technology also offers several universal options
for visualizing SC-code constructions, such as SCg-
code (graphical variant), SCn-code (nonlinear hypertext
variant), SCs-code (linear string variant).

Within this work, fragments of structured texts in the
SCn-code [10], which are simultaneously fragments of the
original texts of the knowledge base, understandable both
to a human and to a machine, will often be used. This
allows making the text more structured and formalized,
while maintaining its readability. The symbol “:=” in
such texts indicates alternative (synonymous) names of
the described entity, revealing in more detail certain of
its features.

The OSTIS Technology uses subject domains to for-
malize knowledge, allowing allocating from the diversity
of the World only a certain class of entities under study,
focusing attention only on something specific.

The proposed approach implies the development of
families of Subject domains and ontologies, which would
contain descriptions of all the necessary basic classes
of entities for the building of the knowledge base of an
intelligent computer system.

Such Subject domains and ontologies include:
• Subject domain and ontology of sets;
• Subject domain and ontology of connectives and

relations;
• Subject domain and ontology of parameters, quanti-

ties, and scales;
• Subject domain and ontology of numbers and number

structures;
• Subject domain and ontology of structures;
• Subject domain and ontology of temporal entities;
• Subject domain and ontology of temporal entities of

ostis-systems knowledge bases;
• Subject domain and ontology of semantic neighbor-

hoods;
• Subject domain and ontology of subject domains;
• Subject domain and ontology of ontologies;
• Subject domain and ontology of logical formulas,

propositions, and formal theories;
• Subject domain and ontology of external information

constructions and files of ostis-systems;
• Global subject domain of actions and problems

and its corresponding ontology of methods and
technologies.

These subject domains are part of the Knowledge base
Kernel, which should be part of every intelligent system.
This Kernel guarantees the compatibility of intelligent
computer systems due to the common conceptual appa-
ratus. Depending on the specifics of particular systems
different Knowledge base Kernels can be allocated, but
the presence of the basic part, which includes the subject
domains and ontologies mentioned above, should remain
unchanged.

The following Subject domains and ontologies are
considered as part of this article:

• Subject domain and ontology of sets;
• Subject domain and ontology of connectives and

relations;
• Subject domain and ontology of numbers and number

structures;
• Subject domain and ontology of parameters, quanti-

ties, and scales;
• Subject domain and ontology of structures;
• Subject domain and ontology of temporal entities;
• Subject domain and ontology of situations and events,

describing the dynamics of ostis-systems knowledge
bases.

82

To each subject domain, it is possible to assign:
• a family of ontologies of different kinds correspond-

ing to it;
• a set of semantic neighborhoods describing the

research objects of this subject domain.
A Subject domain is a structure, which includes:
• the main research (description) objects – primary

and secondary ones;
• various classes of research objects;
• various connectives whose components are the re-

search objects (both primary and secondary ones),
and possibly other such connectives, that is, the
connectives (as well as the research objects) may
have different structural levels;

• different classes of the above connectives (i.e.,
relations);

• different classes of objects that are neither research
objects nor the above-mentioned connectives but are
components of these connectives.

For the formal specification of the relevant subject
domain, a type of knowledge such as an ontology is used.

ontology
:= [sc-ontology]
:= [semantic specification of any knowledge that has

a fairly complex structure, any coherent fragment
of a knowledge base: a subject domain, a method
for solving complex problems of some class,
a description of a certain type of activity, a
description of the area of performing a certain set
of actions, language of problem-solving methods,
etc.]

The concepts and relations considered in the subject
domains are discussed in more detail in the Standard of
the OSTIS Technology [2].

IV. SUBJECT DOMAIN AND ONTOLOGY OF SETS

Subject domain of sets
:= [Set theory subject domain]
:= [Subject domain of the set theory]
:= [Subject domain whose research objects are sets]
∈ subject domain
∋ maximum class of research objects ′:

set

This subject domain describes:
• concepts: finite set, infinite set, countable set, un-

countable set, set without multiples, multiset, mul-
tiplicity of belonging, class, class of primary sc-
elements, class of sets, class of structures, class of
classes, fuzzy set, clear set, set of primary entities,
family of sets, non-reflexive set, reflexive set, set of
primary entities and sets, formed set, unformed set,

empty set, singleton, pair, pair of different elements,
triple;

• relations: belonging, inclusion, Cartesian product,
Boolean, example, strict inclusion, combination,
subdivision, intersection, pair of intersecting sets,
pairwise intersecting sets, intersecting sets, pair of
non-intersecting sets, pairwise non-intersecting sets,
non-intersecting sets, difference of sets, symmetric
difference of sets, family of subsets, equality of sets.

V. SUBJECT DOMAIN AND ONTOLOGY OF
CONNECTIVES AND RELATIONS

Subject domain and ontology of connectives and
relations
∈ subject domain
∋ maximum class of research objects ′:

relation

This subject domain describes:
• concepts: binary relation, sc-connector, non-atomic

binary relation, non-binary relation, non-oriented
relation, oriented relation, class of equal-powered
connectives, class of connectives of different power,
unary relation, binary relation, quasi-binary relation,
ternary relation, non-binary relation, reflexive rela-
tion, antireflexive relation, partially reflexive relation,
symmetric relation, antisymmetric relation, partially
symmetric relation, transitive relation, antitransitive
relation, partially transitive relation;

• relation: relation attribute, first domain, second
domain, relation composition, factor set, correspon-
dence, correspondence relation, departure domain,
arrival domain, image, prototype, surjective corre-
spondence, non-surjective correspondence, all-round
definite correspondence, partially definite correspon-
dence, unambiguous correspondence, inverse corre-
spondence, reversible correspondence, ambiguous
correspondence, injective correspondence, one-to-
one correspondence, set of combinations, set of
placements, set of permutations.

VI. SUBJECT DOMAIN AND ONTOLOGY OF NUMBERS
AND NUMBER STRUCTURES

Subject domain of numbers and number structures
∈ subject domain
∋ maximum class of research objects ′:

number

This subject domain describes:
• concepts: natural number, whole number, rational

number, irrational number, real number, complex
number, negative number, positive number, arith-
metic expression, arithmetic operation, Pi number,
zero, unit, minor unit, number structure, number

83

system, decimal number system, binary number sys-
tem, hexadecimal number system, fraction, regular
fraction, decimal fraction, digit, Arabic digit, Roman
digit;

• relations: opposite numbers, modulus, sum, product,
exponentiation, greater than, equal to, greater than
or equal to.

VII. SUBJECT DOMAIN OF PARAMETERS, VALUES,
AND SCALES

This subject domain allows describing the properties
and characteristics of objects, both qualitative and quan-
titative ones. The maximum class of research objects for
the subject domain of parameters, values, and scales is
the parameter.

Subject domain of parameters, values, and scales
:= [Subject domain of parameters and equivalence

classes that are their elements (values, quantities)]
∈ subject domain
∋ maximum class of research objects ′:

parameter

parameter
:= [characteristic]
:= [feature]
:= [property]
⇒ explanation*:

[Each parameter is a class that is a family of all
possible equivalence or tolerance classes defined
by either a equivalence relation or a tolerance
relation (symmetric, reflexive but partially tran-
sitive).]

Each particular parameter (characteristic), i.e. each
element of a class of all possible parameters (character-
istics) is essentially a sign of classifying entities with
that characteristic according to the equivalence (similarity
of value) of that characteristic. For example, the color
parameter divides the set of entities with color into classes,
each of which includes entities with the same color.

A description of the parameter example is shown in
Figure 1.

Figure 1. A description of the parameter example

value

:= [value of quantitative parameter]
⇒ inclusion*:

• exact value
• non-exact value
• interval value

⇒ explanation*:
[Each value represents an unambiguous and scale-
independent measurement result for some char-
acteristic of some entity]

exact value
:= [exact parameter value]
:= [set of all exact parameter values]
:= [the parameter value that is a family of equiva-

lence classes corresponding to some equivalence
relation]

:= [equivalence class]
⇒ explanation*:

[Each exact value has one fixed value in some unit
of measurement or on some scale. It is assumed
that all elements of such a class have the same
value of a given parameter, and deviations can
be ignored.]

scale measurement
:= [scale]
⇐ family of subsets*:

measurement
⇒ explanation*:

[Each scale measurement is a subset of the
measurement relation and is characterized not
by a unit of measurement but by some reference
point for that scale. As the result of a scale
measurement, some point on the scale will
serve, which is a certain distance away from the
reference point in the required direction (smaller
or larger).]

A description of an example of a scale measurement
is shown in Figure 2.

In this example, ki denotes the class of entities that
have a exact temperature of 330 K and bi is a specific
example of such an entity.

This subject domain describes:

• concepts: measurable parameter, unmeasurable pa-
rameter, equivalence class level, non-exact value,
interval value, parametric model, fixed unit measure-
ment, arithmetic expression on values, arithmetic
operation on values, action. measurement, problem.
measurement;

• relations: definition area of a parameter, standard,
measurement, exactitude, unit of measurement, zero
mark, unit mark, sum of quantities, product of quan-
tities, exponentiation of quantities, greater quantity,
equality of quantities, greater or equal quantity.

84

Figure 2. A description for an example of a scale measurement

VIII. SUBJECT DOMAIN AND ONTOLOGY OF
TEMPORAL ENTITIES

The subject domain is necessary to describe entities and
processes that occur in time, since the existing top-level
ontologies do not handle this problem well and rarely
operate anything other than the present tense.

Subject domain of temporal entities
:= [Subject domain of temporal connections and

relations]
:= [Subject domain of temporal entities]
∈ subject domain
∋ maximum class of research objects ′:

temporal entity

temporal entity
:= [temporarily existing entity]
:= [non-stationary entity]
:= [entity that has either a beginning and/or an ending

of its existence]
:= [sc-element that is a sign of some temporarily

existing entity]
:= [entity with temporal characteristics (duration,

starting point, ending point, etc.)]
⇒ subdividing*:

{{{• past entity
• present entity
• future entity

}}}
⇒ subdividing*:

{{{• temporal relation
• temporal structure

:= [structure containing at least one
temporal entity]

⇒ inclusion*:
structure

⇒ subdividing*:
{{{• situation

• process
}}}

• material entity
}}}

⇒ subdividing*:
{{{• continuous temporal entity

⇒ subdividing*:
{{{• point temporal entity
• longtime continuous

temporal entity
}}}

• discrete temporal entity
:= [temporal entity that can be decom-

posed into a sequence of point
temporal entities]

• interrupted temporal entity
:= [temporal entity with interrupts]

}}}

It should be noted that the above classification of
temporal entities characterizes not so much the temporal
entities themselves as our knowledge about them and the
degree of granularity of knowledge about these entities
with which they are described in the knowledge base.
Thus, if it is not important for solving specific problems
how a certain temporal entity changed within any period
of time but only its initial and final state, then it can be
considered as a point temporal entity.

This subject domain describes:
• concepts: past entity, present entity, future entity, pro-

cess in sc-memory, process in the external environ-
ment of the ostis-system, material entity, influence,
class of temporal relations, class of temporal and per-
manent relations, situational set, non-situational set,
partial situational set, temporal connection, temporal
relation, beginning, ending, duration, millennium,
century, year, month, day, hour, minute, second;

• relations: influencing entity, influencing object, initial
situation, causal situation, final situation, event, last
added sc-element, temporal inclusion, temporal part,
initial stage, final stage, intermediate stage, temporal
inclusion without coincidence of initial and final
moments.

IX. SUBJECT DOMAIN OF SITUATIONS AND EVENTS
THAT DESCRIBE THE DYNAMICS OF OSTIS-SYSTEMS

KNOWLEDGE BASES

Since it is necessary to distinguish the temporal nature
of the sc-element and the temporal nature of the entity
denoted by this element, it becomes necessary to use the
Subject domain of situations and events that describe the
dynamics of ostis-systems knowledge bases to describe
the dynamics of the knowledge base itself.

Subject domain of situations and events that describe
the dynamics of ostis-systems knowledge bases

85

:= [Subject domain describing the dynamics of the
knowledge base stored in sc-memory]

∈ subject domain
∋ maximum class of research objects ′:

situation

elementary event in sc-memory
⊂ event in sc-memory
⇒ explanation*:

[elementary event in sc-memory is defined as
an event that changes the state of only one sc-
element]

.
⇒ subdividing*:

{{{• event of adding an sc-arc going out of a
given sc-element

• event of adding an sc-arc coming into a
given sc-element

• event of adding an sc-edge incident to a
given sc-element

• event of deleting an sc-arc going out of a
given sc-element

• event of deleting an sc-arc coming into a
given sc-element

• event of deleting an sc-edge incident to a
given sc-element

• event of deleting an sc-element
• event of changing the file contents

}}}

This subject domain describes:
• concepts: sc-element, present sc-element, logically

deleted sc-element, number, uncalculated number,
calculated number, concept, main concept, non-main
concept, concept going from main to non-main
concept, concept going from non-main to main
concept, specified entity, not enough specified entity,
enough specified entity, medium specified entity,
structure, file, event in sc-memory;

• relations: elementary event in sc-memory, event of
adding an sc-arc going out of a given sc-element,
event of adding an sc-arc coming into a given sc-
element, event of adding an sc-edge incident to a
given sc-element, event of deleting an sc-arc going
out of a given sc-element, event of deleting an sc-arc
coming into a given sc-element, event of deleting
an sc-edge incident to a given sc-element, event of
deleting an sc-element, event of changing the file
contents.

X. CONCLUSION

In the article, an approach to designing top-level on-
tologies of knowledge bases of next-generation intelligent
computer systems is considered. This approach is based
on the representation of the knowledge base of intelligent
computer systems grounded on the OSTIS Technology

as a hierarchical structure of interrelated subject domains
and their ontologies.

The main subject domains and ontologies containing
the description of basic classes of entities are allocated.
Connections and relations between basic concept classes
are described.

These ontologies can be used to develop a universal
Knowledge base Kernel, which will ensure interoperability
of intelligent computer systems.

The results obtained will improve the efficiency of
knowledge base development for next-generation intelli-
gent computer systems, at the same time ensuring and
preserving their compatibility.

The author would like to thank the research group of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for its help in the work and valuable
comments.

REFERENCES

[1] C. Gavrilova, Gavrilova T.A. Knowledge Bases of Intelligent
Systems / T.A. Gavrilova, V.F. Khoroshevsky. - SPb: Peter, 2000,
2000.

[2] V. Golenkov, N. Guliakina, and D. Shunkevich, Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva i
jekspluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’juternyh sistem [Open technology of ontological design,
production and operation of semantically compatible hybrid
intelligent computer systems], V. Golenkov, Ed. Minsk: Bestprint
[Bestprint], 2021.

[3] I. Davydenko, “Ontology-based knowledge base design,” Otkry-
tye semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems], pp.
42–50, 2018.

[4] C. Partridge, A survey of Top-Level Ontologies. The Construction
Innovation Hub, 2020.

[5] V. Mascardi, A Comparison of Upper Ontologies. DBLP, 2007.
[6] (2022, Nov) Suggested Upper Merged Ontology (SUMO).

[Online]. Available: https://github.com/ontologyportal/sumo
[7] (2022, Nov) DOLCE: Descriptive Ontology for Lin-

guistic and Cognitive Engineering. [Online]. Available:
http://www.loa.istc.cnr.it/dolce/overview.html

[8] (2022, Nov) Cycorp – Cycorp Making Solutions Better. [Online].
Available: https://cyc.com/

[9] (2022, Nov) Github: Opencyc. [Online]. Available:
https://github.com/asanchez75/opencyc

[10] (2021, Jun) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

Представление формальных онтологий
базовых классов сущностей в

интеллектуальных компьютерных
системах

Бутрин С. В.
В работе рассмотрен онтологический подход к проекти-

рованию баз знаний интеллектуальных компьютерных си-
стем нового поколения. Выделены основные предметные
области и онтологии, содержащие описание базовых клас-
сов сущностей. Полученные результаты позволят повысить
эффективность разработки баз знаний интеллектуальных
компьютерных систем.

Received 01 11. .20 22

86

Structure of knowledge bases of next-generation
intelligent computer systems: a hierarchical

system of subject domains and their
corresponding ontologies

Kseniya Bantsevich
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: ksusha.bantsevich@gmail.com

Abstract—The article is dedicated to the ontological
approach to the design of knowledge bases of next-generation
intelligent computer systems. This approach is based on
the representation of the knowledge base as a hierarchical
structure of interrelated subject domains and their ontologies
built on the basis of top-level ontologies.

Keywords—knowledge base, ontology, top-level ontology,
ontological approach to knowledge base design, knowledge,
structure, semantic neighborhood, subject domain.

I. INTRODUCTION

The development of information technologies has led
to the expansion of the variety of information used and, as
a result, to the need to create intelligent systems capable
of operating voluminous information resources. The most
important types of such resources are knowledge bases.

The knowledge base is a systematized totality of knowl-
edge stored in the memory of an intelligent computer
system and sufficient to ensure the purposeful (appropriate,
adequate) functioning (behavior) of this system both in its
external and internal environment (in its own knowledge
base).

An important stage in the development of knowledge
bases of intelligent systems is their structuring. Structuring
the database, i.e. the allocation of various interconnected
substructures in it, is necessary for a number of reasons.
In particular, this is necessary to ensure their syntactic
compatibility, which implies the unification of the form
of knowledge representation.

II. ANALYSIS OF EXISTING APPROACHES TO SOLVING
THE PROBLEM

To date, there are dozens of models of knowledge
representation, each of which is adapted to represent a
certain kind of knowledge, while when creating intelligent
systems, it often becomes necessary to represent different
types of knowledge within a single base. However,
currently, none of the existing models, taken separately,
can provide this.

In this regard, there is a need to create a universal
structured model of knowledge representation, which
would allow representing any kind of knowledge in a
unified form.

Today, ontologies are the most effective means of
structuring various areas of knowledge. The essence of
the ontological approach when designing the knowledge
base is to consider the structure of the knowledge base
as a hierarchical system of allocated subject domains and
their corresponding ontologies [1]. However, ontologically,
there are many ways in which it is possible to describe
the real world as it is. The solution to this problem is
the usage of top-level ontologies [2] in the design of
knowledge bases of intelligent computer systems.

A competently constructed top-level ontology will
allow for broad syntactic compatibility between a large
number of ontologies for various subject domains, since
the terms of domain-oriented ontologies are subordinate
to the terms of higher-level ontology.

At the moment, there are several developed top-level
ontologies [3], [4]:

• Descriptive Ontology for Linguistic and Cognitive
Engineering (DOLCE) [5]
– The DOLCE ontology is focused on embracing the

ontological categories underlying natural language
and human common sense.

• The Standard Upper Ontology (SUMO) [6]
– The SUMO ontology was created by combining

publicly available ontological contents into a
single, comprehensive, and coherent structure.

– The ontology covers the following areas of knowl-
edge: general types of processes and objects,
abstractions (set theory, attributes, relations), num-
bers and units of measurement, temporal concepts,
parts and a whole, agents and intentions.

• Cyc’s upper ontology (OpenCyc) [7], [8]

87

– The key concept in the OpenCyc ontology is a
collection, which can contain subcollections and
instances, which, in turn, can act as any terms of
the ontology.

– The OpenCyc knowledge base contains informa-
tion from various subject domains: Philosophy,
Mathematics, Chemistry, Biology, Psychology,
Linguistics.

The list represented is not final.
There are more than fifteen top-level ontologies [4],

the purpose for creation of which is to use them when
creating lower-level ontologies. However, attempts to
create a universal top-level ontology capable of ensuring
the compatibility of intelligent computer systems have
not led to the expected results, as they have a number of
key disadvantages:

• Each of the represented ontologies is a monolithic
structure in which there is no clear localization into
separate small ontologies.
The main problem in designing fragments of knowl-
edge bases using the ontological approach is to
allocate ontologies in such a way that they allow
for the relatively independent evolution of each
fragment. The data structure of top-level ontologies is
a hierarchy consisting of a large number of different
concepts. This type of structuring leads to a situation
where the need to make changes in one place will
necessarily entail the impossibility of editing another
part of the ontology. Due to the above, this type
of structuring makes ontologies inconvenient for
their usage in the development of various intelligent
systems.

• The top-level ontologies in question are not part of
a complex technology.
Since the named ontologies are not part of some
complex technology, they cannot be considered as
part of a library of reusable components, which, in
turn, leads to inconveniences in the form of the need
to adapt the ontologies used for each specific system.

• There are no knowledge base design technologies
based on top-level ontology data.
The lack of knowledge base design technologies
makes it difficult to develop intelligent systems.

The lack of a satisfactory solution to these problems
leads to incompatibility of the developed intelligent
computer systems. Based on the above, there is a need
to build such a system of top-level ontologies that could
provide syntactic compatibility between a large number
of ontologies of various subject domains in knowledge
bases of intelligent computer systems.

III. PROPOSED APPROACH

Within this work, it is proposed to take as a basis the
approach developed within the OSTIS Technology [9] to
the development of knowledge bases of next-generation

intelligent computer systems. The proposed models are
based on the following basic principles of the OSTIS
Technology:

• the usage of an ontological approach to the design
of knowledge bases, which involves structuring the
knowledge base grounded on ontologies;

• focus on the possibility of collective design of
knowledge bases within the project;

• orientation to the semantic representation of knowl-
edge;

• unification of knowledge base models of intelligent
systems.

To solve the above problems, it is necessary:
• to formally clarify and coordinate the interpretation

of such concepts as structure, semantic neighbor-
hood, subject domain, ontology, since these concepts
are the basic classes of entities that form the basis for
structuring knowledge bases of intelligent systems;

• to develop top-level ontological models for structur-
ing the knowledge base grounded on the allocated
concepts.

The ontological model built on the basis of these
concepts will become the Kernel of the knowledge base,
ensuring the compatibility of intelligent systems due to the
unified representation of knowledge. It should be noted
that, depending on the specifics of the systems being
developed, their knowledge bases may expand, however,
the ontological model underlying the Kernel, will ensure
further compatibility of the systems being developed.

The approach proposed in this article is based on the
ideas of building systems based on semantic networks
implemented in the OSTIS Technology. This technology
is a complex of models, tools, and methods designed
for the development of intelligent computer systems, as
well as for the constant updating and improvement of the
technology itself.

The OSTIS Technology is based on the usage of unified
semantic networks with a basic set-theoretic interpretation
of their elements as a method of knowledge representation.
This way of knowledge representation is called an SC-
code, and the semantic networks, represented in the SC-
code, are called sc-graphs (sc-texts, or texts of the SC-
code). The elements of such semantic networks are called
sc-elements (sc-nodes and sc-connectors, which, in turn,
can be sc-arcs or sc-edges depending on their orientation).
The Alphabet of the SC-code consists of five basic
elements, on the basis of which SC-code constructions
of any complexity are built, including the introduction of
more particular kinds of sc-elements (e.g., new concepts).
The memory storing SC-code constructions is called
semantic memory, or sc-memory.

The key feature of the SC-code is the joint usage of the
mathematical apparatus of a graph theory and a set theory.
This allows, on the one hand, ensuring the strictness and
universatility of formalization tools and, on the other

88

hand, ensuring the convenience of storing and processing
information represented in this form.

Within the technology, several universal variants of
visualization of the SC-code constructions are also pro-
posed, such as SCg-code (graphic version), SCn-code
(non-linear hypertextual version), SCs-code (linear string
version).

The basis of the knowledge base within the OSTIS
Technology is a hierarchical system of subject domains
and ontologies.

Within this article, fragments of structured texts in
the SCn-code [10] will often be used, which are simul-
taneously fragments of source texts of the knowledge
base, which are understandable both to a human and to a
machine. This allows making the text more structured and
formalized while maintaining its readability. The symbol
“:=” in such texts indicates alternative (synonymous)
names of the described entity, which reveal in more detail
some of its features.

Next, we will take a closer look at the fragments of
sc-models of these top-level ontologies proposed within
the OSTIS Technology.

IV. CONCEPT OF KNOWLEDGE AND FORMAL MODELS
OF OSTIS-SYSTEMS KNOWLEDGE BASES

Within the model of the ostis-systems knowledge base,
syntactically correct (for the corresponding language)
and semantically integral information constructions are
distinguished. We will call such constructions knowledge.

knowledge
⊂ information construction
⇒ coverage*:

knowledge type
:= [Set of various knowledge types]

The fact that a family of knowledge types is a covering
of a Set of various knowledge means that each knowledge
belongs to at least one knowledge type that we have
identified.

knowledge type
∋ specification

:= [description of the specified entity]
⊃ specification of a material entity
⊃ specification of an inverse entity that is

not a set
⊃ specification of a geometric point
⊃ specification of the number

⊃ specification of the set
⊃ connection specification
⊃ structure specification
⊃ class specification

⊃ specification of a class of
entities that are not sets

⊃ relation specification
⊃ specification of the class of

classes
⊃ specification of the class of

structures
⊃ specification of concepts

⊃ semantic neighborhood
⊃ unique specification

∋ formal theory
∋ subject domain
∋ subject domain and ontology

:= [subject domain and its ontology]
:= [subject domain and its corresponding

unified ontology]
∋ meta-knowledge

:= [knowledge specification]
⊃ ontology

⊃ ontology of the subject domain
⊃ structural ontology of the

subject domain
⊃ set-theoretic ontology of

the subject domain
⊃ logical ontology of the

subject domain
⊃ terminological ontology of

the subject domain
⊃ unified ontology of the

subject domain
∋ problem
∋ plan
∋ protocol
∋ method
∋ technology
∋ knowledge base

Even a small list of knowledge types indicates a huge
variety of knowledge types.

Knowledge is divided into declarative and procedural.
Declarative knowledge is understood as knowledge that
has only denotational semantics, which is represented
as a semantic specification of the concepts system used
in this knowledge. Procedural knowledge is meant as
knowledge that has not only denotational semantics but
also operational semantics, which is represented as a
family of agents specifications that interpret procedural
knowledge aimed at solving some initiated problem.

Within the OSTIS Technology, relations defined on a
set of knowledge are also distinguished.

relation defined on a set of knowledge
∋ child knowledge*

:= [knowledge that inherits from the “mater-
nal” knowledge all the properties of the
research objects described there]

⊃ child section*

89

⊃ private subject domain and ontology*
∋ specification*

:= [be knowledge, which is a specification
(description) of a given entity]

∋ ontology*
:= [be a semantic specification of a given

knowledge*]
∋ semantic equivalency*
∋ therefore*
∋ logical equivalency*

V. CONCEPT OF A STRUCTURE

Existing approaches to the development of knowledge
bases are grounded on considering specific elements of
the knowledge base (classes, instances, relations, etc.) as
specification objects. However, with the accumulation of
large amounts of information in the knowledge base, it
becomes necessary to allocate entire fragments of the
knowledge base and be able to specify them, considering
them as separate entities. The concept of a structure
is the basis for the representation of knowledge, meta-
knowledge, and their structuring.

The concept of a structure is one of the most general
concepts (from the point of view of clarifying semantics)
when describing the properties of an object.

By structure we mean a set of sc-elements, the removal
of one of which may lead to a violation of the integrity
of this set.

Let us consider the typology of the structures described
in the knowledge base:

structure
⇒ subdividing*:

{{{• connected structure
• disconnected structure

}}}

The structure represented in the SC-code will be
matched with an orgraph whose vertices are sc-elements
and arcs are connectives of incident relations connecting
sc-connectors with incident sc-elements, which are com-
ponents of these sc-connectors. If the orgraph obtained in
this way is a connected orgraph, then the initial structure
will be considered a connected structure. If the orgraph
obtained in this way is not a connected orgraph, then
the initial structure will be considered a disconnected
structure.

structure
⇒ subdividing*:

{{{• trivial structure
• non-trivial structure

}}}

A trivial structure is a structure that does not contain
connectives as elements. In turn, a non-trivial structure

means a structure, among the elements of which there is
at least one connective.

On the basis of stationarity/nonstationarity, dynamic
structures (processes) are distinguished – structures whose
composition changes over time, as well as static structures
– structures whose composition does not change over time.

structure
⇒ subdividing*:

{{{• process
:= [dynamic structure]

• static structure
:= [stationary structure]

}}}

structure
⇒ subdividing*:

{{{• temporal structure
• permanent structure

}}}

For the formal representation of structures, concepts
describing elements within the structure were introduced:

structure element ′
⇒ subdividing*:

{{{• unrepresented set ′

:= [set that is not represented within
this structure ′]

• fully represented set ′

:= [set fully represented within this
structure ′]

• partially represented set ′

:= [set partially represented within
this structure ′]

• structure element that is not a set ′

}}}

A number of correspondences can be determined
between structures, such as homomorphism, polymor-
phism, automorphism, isomorphism, as well as similarity
of structures, which allows fixing the fact that there
is some analogy, similarities, and differences of some
substructures of the structures under consideration.

VI. CONCEPT OF A SEMANTIC NEIGHBORHOOD

For the specification of particular entities within the
knowledge base, the concept of a semantic neighborhood
is introduced. A semantic neighborhood is a specification
(description) of a given entity, the sign of which is
indicated as a key element of this specification.

The set of attributes by which entities can be specified
is different. In addition, it may be necessary to specify
the same entity in different aspects and explicitly record
these aspects in the knowledge base.

90

A semantic neighborhood is a specification of a given
entity, the sign of which is indicated as a key element of
this specification. Unlike other knowledge types, semantic
neighborhood has only one key element.

There are complete and basic semantic neighborhoods.

complete semantic neighborhood
:= [full specification of some described entity]

The structure of the full semantic neighborhood is
determined primarily by the semantic typology of the
entity being described. So, for example, for a concept, it
is necessary to include the following information in the
full semantic neighborhood (if available):

• identification options in various external languages
(sc-identifiers);

• belonging to a certain subject domain with an
indication of the role performed within this subject
domain;

• set-theoretic connections of a given concept with
other sc-elements;

• definition or explanation;
• propositions describing the properties of the specified

concept;
• problems and their classes, in which this concept is

a key element;
• description of a typical example for using this

concept;
• instances of the described concept.
For a concept that is a relation, the following is

additionally specified:
• domains;
• scope of definition;
• relation diagram;
• classes of relations to which the described relation

belongs.

basic semantic neighborhood
:= [minimally sufficient semantic neighborhood]
:= [minimum specification of the described entity]

The structure of the basic semantic neighborhood is
determined primarily by the semantic typology of the
entity being described. For example, for a concept, the
following information should be included in the basic
semantic neighborhood (if available):

• identification options in various external languages
(sc-identifiers);

• belonging to a certain subject domain with an
indication of the role performed within this subject
domain;

• definition or explanation.
For a concept that is a relation, the following is

additionally specified:
• domains;

• scope of definition;
• description for a typical example of a connective

of the specified relation (specification of a typical
instance).

Also, a specialized semantic neighborhood is distin-
guished – a type of the semantic neighborhood, the set of
relations for which is specified separately for each type
of such a neighborhood.

specialized semantic neighborhood
⊃ explanation
⊃ note
⊃ description of a typical instance

The concept of a semantic neighborhood, supplemented
by the clarification of such concepts as semantic distance
between signs (semantic proximity of signs), the radius
of the semantic neighborhood, is a promising basis for
the study of the properties of semantic space.

VII. CONCEPT OF A SUBJECT DOMAIN

The most important stage in the development of
knowledge bases is the process of identifying the sub-
ject domains described and their representation in the
knowledge base.

The concept of the subject domain is the most impor-
tant methodological technique that allows distinguishing
only a certain class of entities under study and only a
certain family of relations set on the specified class from
the whole variety of the World, that is, localization is
carried out, focusing attention only on this, abstracting
from the rest of the studied World.

Each subject domain can be matched to:
• a family of corresponding ontologies of different

types;
• a set of semantic neighborhoods describing the

research objects in this subject domain.
A Subject domain is a structure, which includes:
• the main research (description) objects – primary

and secondary ones;
• various classes of research objects;
• various connectives whose components are the re-

search objects (both primary and secondary ones),
and possibly other such connectives, that is, the
connectives (as well as the research objects) may
have different structural levels;

• different classes of the above connectives (i.e.,
relations);

• different classes of objects that are neither research
objects nor the above-mentioned connectives, but
are components of these connectives.

At the same time, all classes declared by the concepts
under study must be fully represented within this subject
domain together with their elements, elements of elements,
etc. up to terminal elements.

91

Each knowledge type can be matched with a subject
domain, which is the result of integrating all knowledge
of this type. This knowledge becomes the research object
within the specified subject domain.

subject domain
:= [connections system of a certain set of research

objects, the key elements of which are:

• classes (more precisely, class signs) of research
objects (objects described by this subject
domain);

• specific research objects with special proper-
ties;

• classes of connections that are part of the
system under consideration – relations defined
on the set of elements of the system under
consideration;

• parameters specified on a set of elements of
the system under consideration;

• classes of structures that are fragments of the
system under consideration.

]
:= [structure representing a set of connections (more

precisely, the signs of connections) and the corre-
sponding set of components of these connections,
which include:

• elements (instances) of some specified classes
of research objects (primary entities under
study);

• the connections themselves that are part of the
specified structure;

• introduced classes of research objects;
• introduced relations (connection classes);
• introduced parameters (classes of equivalent

entity classes);
• parameter values (and, in particular, values for

the measured parameters);
• introduced structures that are fragments (sub-

structures) of the structure under consideration;
• introduced classes of substructures of the

structure under consideration.

]

The subject domains allocated within the knowledge
base of the intelligent system and their corresponding
ontologies are a kind of semantic strata, clusters that
allow “decomposing” all knowledge stored in memory
on “semantic shelves” in the presence of clear criteria
that allow unambiguously determining on which “shelf”
should this or that knowledge be placed.

According to the level of research attention, concepts
within the subject domain can perform the following
roles:

role of the subject domain element
:= [role relation that links subject domains with their

key signs]
:= [role of the key element (the sign of the key

entities) of the subject domain]
:= [role of the key sign of the subject domain]
∋ class of research objects ′

:= [be a class of primary (for a given subject
domain) research objects ′]

∋ maximum class of research objects ′

:= [class of research objects for which in the
specified (!) subject domain there is no
other class of research objects that would
be its superset ′]

∋ key research object ′

:= [special research object ′]
:= [be a sign of a special research object

within a given subject domain ′]
:= [research object with special properties ′]

∋ concept used in the subject domain ′

:= [concept used in a given subject domain
not as one of the research objects but as
a key concept ′]

∋ primary research element of the subject domain ′

:= [sign of the primary research object within
a given subject domain ′]

∋ secondary research element of the subject
domain ′

:= [sign of the secondary research object
within the subject domain ′]

∋ non-investigated element of the subject domain ′

:= [auxiliary element of a subject domain
being investigated in another (adjacent)
subject domain ′]

The following types of subject domains are distin-
guished:

subject domain
⇒ subdividing*:

{{{• static subject domain
:= [stationary subject domain]
:= [subject domain, in which the rela-

tions between the entities that are
part of it do not depend on time
(do not change in time); temporal
entities cannot be the elements of
the static subject domain]

• quasi-static subject domain
:= [subject domain, the solution of

problems in which does not re-
quire taking into account the tem-
poral properties of research ob-
jects]

• dynamic subject domain

92

:= [non-stationary subject domain]
:= [subject domain, which describes

a change in the state (including
the internal structure) of research
objects and/or a change in the con-
figuration of connections between
research objects]

:= [subject domain, in which some
relations between entities that are
part of it change over time (that is,
they are situational, non-stationary
in nature, in other words, they are
temporal entities)]

}}}
⇒ subdividing*:

{{{• primary subject domain
:= [subject domain, the research ob-

jects of which are external entities
(denoted by primary sc-elements)]

• secondary subject domain
:= [meta-subject domain]
:= [subject domain, the research ob-

jects of which are sc-sets (re-
lations, parameters, structures,
classes of structures, knowledge,
languages, etc.)]

}}}

In all the variety of subject domains, a special place
is occupied by:

• the Subject domain of subject domains, the research
objects of which are all kinds of subject domains and
the research subject are all kinds of role relations
linking subject domains with their elements, relations
linking subject domains with each other, relation
linking subject domains with their ontologies;

• the Subject domain of entities, which is the subject
domain of the highest level and defines the basic
semantic typology of sc-elements (signs included in
the texts of the SC-code);

• a family of subject domains, each of which defines
the semantics and syntax of some sc-language that
provides a representation of ontologies of the appro-
priate type (for example, set-theoretic ontologies of
terminological ontologies);

• a family of top-level subject domains, in which the
classes of research objects are very “large” entity
classes. Such classes, in particular, include:
– class of various material entities,
– class of various sets,
– class of various connections,
– class of various relations,
– class of various structures,
– class of various temporal (non-stationary) entities,
– class of various actions (influences),

– class of various parameters (characteristics),
– class of various knowledge,
– etc.

It is important to note that a subject domain can also
be considered as a semantic neighborhood if we consider
its center to be the sign of an entity that is the maximum
class of research objects.

VIII. CONCEPT OF AN ONTOLOGY

For the formal specification of the corresponding sub-
ject domain, focused on the description of the properties
and relations of the concepts that make up the specified
subject domain, such a knowledge type as ontology is
used.

Ontologies are the most important knowledge type,
providing semantic systematization of knowledge stored
in memory of intelligent computer systems (including
ostis-systems) and, accordingly, semantic structuring of
knowledge bases.

ontology
:= [sc-ontology]
:= [semantic specification of any knowledge having

a sufficiently complex structure, of any integral
fragment of the knowledge base — a subject
domain, a method for solving complex problems
of a certain class, a description for the history
of a certain activity type, a description for the
scope of a certain set of actions (problem-solving
areas), a representation language for problem-
solving methods, etc.]

:= [semantic specification of some enough informa-
tive resource (knowledge)]

⊂ specification
⊂ meta-knowledge
∈ knowledge type
:= [most important meta-knowledge type included in

the knowledge base]
:= [specification (clarification) of the concepts that

system used in the corresponding (specified)
knowledge]

The ontology includes:
• the typology of the specified knowledge;
• connections of the specified knowledge with other

knowledge;
• the specification of key concepts used in the specified

knowledge, as well as key instances of some such
concepts.

It is important to note that if a specification can specify
(describe) any entity, then an ontology specifies only
various knowledge. At the same time, the most important
objects of such a specification are subject domains.

The main purpose of building ontology is semantic
clarification (explanation, and ideally definition) of such

93

a family of signs used in given knowledge, which are
sufficient to understand the meaning of all specified
knowledge. As it turns out, the number of characters
whose meaning determines the meaning of all specified
knowledge is not large.

ontology
⇒ subdividing*:

{{{• informal ontology
• formal ontology

:= [ontology represented in a formal
language]

:= [formal description of the
denotational semantics (semantic
interpretation) of the specified
knowledge]

}}}

Obviously, in the absence of sufficiently complete
formal ontologies, it is impossible to ensure semantic
compatibility (integrability) of various knowledge stored
in the knowledge base, as well as acquired from the
outside.

An ontology is most often interpreted as a specification
of conceptualization (specification of a concepts system)
of a given subject domain. Here we mean a description
of the set-theoretic relations (first of all, the classification)
of the concepts used, as well as a description of various
regularities for entities belonging to these concepts. How-
ever, important types of the subject domain specification
are also:

• a description of the relations of the specified subject
domain with other subject domains;

• a description of the terminology of the specified
subject domain.

ontology of the subject domain
:= [description of the denotational semantics of the

language being defined (set) by the corresponding
(specified) subject domain]

:= [information suprastructure (meta-information)
over the corresponding (specified) subject do-
main, describing various aspects of this subject
domain as a sufficiently large, self-sufficient, and
semantically integral fragment of the knowledge
base]

:= [meta-information (meta-knowledge) about some
subject domain]

The ontology of the subject domain can be interpreted,
on the one hand, as a semantic neighborhood of the
corresponding subject domain and, on the other hand, as
a combination of a certain type of semantic neighborhoods
of all concepts used within the specified subject domain,
as well as possibly key instances of the specified concepts,

if there are any.
Each specific ontology of a given type is a semantic

neighborhood of the corresponding (specified) subject
domain. Each ontology type uniquely corresponds to a
subject domain, fragments of which are specific ontologies
of this type. Consequently, each ontology type has its own
specialized sc-language that provides a representation of
ontologies of this type.

ontology of the subject domain
⇒ subdividing*:

{{{• particular ontology of the subject domain
:= [ontology representing the speci-

fication of the relevant subject
domain in one aspect or another]

• unified ontology of the subject domain
:= [ontology of the subject domain,

which is the result of combining
all known particular ontologies of
this subject domain]

}}}

Each particular ontology is a fragment of a subject
domain, which includes all (!) particular ontologies
belonging to the corresponding ontology type. At the
same time, the specified subject domain, in turn, also
has a corresponding ontology, which is no longer a
meta-knowledge (like any ontology) but a meta-meta-
knowledge (a specification of meta-knowledge).

particular ontology of the subject domain
⇒ subdividing*:

{{{• structural specification of the subject
domain
:= [meta-knowledge type describing

the properties of subject do-
mains corresponding to this meta-
knowledge type]

:= [scheme of the subject domain]
• set-theoretic ontology of the subject

domain
:= [sc-specification of a given subject

domain within the subject domain
of sets]

• logical ontology of the subject domain
:= [sc-text of the formal theory of a

given subject domain]
• terminological ontology of the subject

domain
}}}

structural specification of the subject domain
:= [structural ontology of the subject domain]
:= [role structure of the key elements of the subject

domain]

94

:= [scheme of the concepts roles of the subject
domain and its relation with related subject
domains]

:= [scheme of the subject domain]
:= [specification of the subject domain from the point

of view of graph theory and theory of algebraic
systems]

:= [description of the internal (role) structure of the
subject domain, as well as its external relations
with other subject domains]

:= [description for the roles of the key elements of
the subject domain (first of all, concepts), as well
as the “place” of the specified subject domain in
the set of similar ones]

:= [semantic neighborhood of the subject domain
sign within this subject domain itself, which
includes all key signs that are part of the subject
domain (key concepts and key objects of subject
domain research) with an indication of their roles
(properties) within this subject domain, and the
semantic neighborhood of the sign of the speci-
fied subject domain within the Subject domain
of subject domains, including the relations of the
specified subject domain with other semantically
close to it subject domains (private and maternal,
similar in one sense or another (for example,
isomorphic), having the same classes of research
objects or the same sets of relations under study)]

set-theoretic ontology of the subject domain
:= [semantic neighborhood of the specified subject

domain within the subject domain of sets, describ-
ing the set-theoretic relations between concepts
of the specified domain, including the relations of
relations with their definition areas, and domains,
the relations of the parameters used, and the
classes of their areas of definition]

:= [ontology that describes:
□ a classification of research objects of

the specified subject domain;
□ the correlation of the areas of definition

and domains of the relations used with
the selected classes of research objects,
as well as with the selected classes of
auxiliary (adjacent) objects that are not
research objects in the specified subject
domain;

□ a specification of the relations used and,
in particular, an indication of whether
all connectives of these relations are
part of the specified subject domain.

]

The set-theoretic ontology of the subject domain
includes:

• set-theoretic connections (including taxonomy) be-

tween all the concepts used, which are part of the
specified subject domain;

• a set-theoretic specification of all relations that are
part of the specified subject domain (orientation,
arity, area of definition, domains, etc.);

• a set-theoretic specification of all parameters used
in the subject domain (parameter definition areas,
scales, units of measurement, reference points);

• a set-theoretic specification of all classes of structures
used.

logical ontology of the subject domain
:= [formal theory of a given (specified) domain, de-

scribing various properties of concepts instances
used in the specified subject domain with the
help of variables, quantifiers, logical connectives,
formulas]

The logical ontology of the subject domain includes:
• a formal definitions of all concepts that are definable

within the specified subject domain;
• informal explanations and some formal specifica-

tions (at least examples) for all concepts that are
indefinable within the specified subject domain;

• a hierarchical concepts system, in which for each
concept studied in the specified subject domain,
either the fact of the indefinability of this concept is
indicated, or all the concepts on the basis of which
the definition of this concept is given are indicated.
As a result, the set of concepts under study is divided
into a number of levels:
– undefined concepts;
– concepts of the 1st level, defined only on the basis

of undefined concepts;
– concepts of the 2nd level, defined on the basis of

concepts that change the 1st level ones and below;
– etc.

• a formal record of all axioms, i.e. propositions that
do not require proof;

• a formal record of propositions whose truth requires
justification (proof);

• formal texts of proving the truth of propositions,
which are a specification for the sequence of steps
of the corresponding reasoning (steps of logical
inference, the application of various logical inference
rules);

• a hierarchical system of propositions, in which for
each proposition, true in relation to the specified
subject domain, either the axiomaticity of this
proposition is indicated, or all propositions are listed,
on the basis of which this proposition is proved. As a
result, the set of propositions that are true in relation
to the specified subject domain is divided into a
number of levels:
– axioms;

95

– propositions of the 1st level, proved only on the
basis of axioms;

– propositions of the 2nd level, proved on the basis
of propositions that are at the 1st level and below.

• a formal record of hypothetical propositions;
• a formal description of the logical-semantic typology

of propositions – propositions about existence, non-
existence, uniqueness, propositions of a defining
type (which can be used as definitions of the
corresponding concepts);

• a formal description of various types of logical-
semantic relations between propositions (for exam-
ple, between an utterance and its generalization);

• a formal description of the analogy:
– between definitions;
– between propositions of any kind;
– between proofs of different propositions.

terminological ontology of the subject domain
:= [ontology describing rules for constructing terms

(sc-identifiers) corresponding to sc-elements be-
longing to the specified subject domain, as well
as describing various kinds of terminological
relations between the terms used, characterizing
the origin of these terms]

:= [system of terms of a given subject domain]
:= [thesaurus of the relevant subject domain]
:= [dictionary of the relevant (specified) subject

domain]
:= [fragment of the global Subject domain of sc-

identifiers (external identifiers of sc-elements),
providing a terminological specification of some
subject domain]

Now let us take a closer look at the concept of a unified
ontology of the subject domain.

unified ontology of the subject domain
:= [combination of all particular ontologies corre-

sponding to the same subject domain]
⇐ generalized combination*:

{{{• structural specification of the subject
domain

• set-theoretic ontology of the subject
domain

• logical ontology of the subject domain
• terminological ontology of the subject

domain
}}}

subject domain and ontology
:= [integration of some subject domain with the

corresponding unified ontology]
:= [subject domain & ontology]

⇐ generalized combination*:
{{{• subject domain
• unified ontology of the subject domain

}}}
:= [sc-text that is a combination of some subject

domain represented in the SC-code and the
combined ontology of this subject domain, also
represented in the SC-code]

:= [integration of the subject domain and all ontolo-
gies specifying this subject domain]

:= [set of various facts about the structure of some
activity domain for some subjects, as well as
various types of knowledge specifying this field
of activity]

:= [facts and knowledge about a certain field of
activity]

:= [sc-model of the subject domain and various
onthologies specifying this subject domain (and,
first of all, its key concepts) from different angles]

:= [coherent fragment of the ostis-system knowledge
base from a logical and semantic point of view,
focusing on a specific class of research objects
and on a specific aspect of their consideration]

Subject domains and ontologies are the main type of
knowledge base sections, having a high degree of their
independence from each other and clear rules for their co-
ordination, which ensures their semantic (understandable)
compatibility within the entire knowledge base.

IX. SUBJECT DOMAINS OF THE REPRESENTED
CONCEPTS

Each of the represented concepts corresponds to subject
domains and ontologies, in which this concept is the
maximum class of research objects:

• Subject domain of knowledge and ostis-systems
knowledge bases

Subject domain of knowledge and ostis-systems
knowledge bases
∈ subject domain
∋ maximum class of research objects ′:

knowledge
∋ class of research objects ′:

• knowledge type
• relation defined on a set of knowledge

• Subject domain of structures

Subject domain of structures
∈ subject domain
∋ maximum class of research objects ′:

structure
∋ class of research objects ′:

• connected structure

96

• disconnected structure
• trivial structure
• nontrivial structure

∋ relation under study ′:
• structure element ′

• unrepresented set ′

• fully represented set ′

• structure element that is not a set ′

• polymorphism*
• homomorphism*
• isomorphism*
• similarity of structures*

• Subject domain of semantic neighborhoods

Subject domain of semantic neighborhoods
∈ subject domain
∋ maximum class of research objects ′:

semantic neighborhood
∋ class of research objects ′:

• full semantic neighborhood
• basic semantic neighborhood
• specialized semantic neighborhood
• terminological semantic neighborhood
• explanation
• note
• set-theoretic semantic neighborhood
• logical semantic neighborhood

• Subject domain of subject domains

The Subject domain of subject domains includes the
structural specifications of all subject domains that are
part of the ostis-system knowledge base, including the
Subject domain of subject domains itself. Thus, the Subject
domain of subject domains is, firstly, a reflexive set and,
secondly, a reflexive subject domain, that is, a subject
domain, one of the research objects of which is itself.

Subject domain of subject domains
:= [Subject domain, the research objects of which

are subject domains]
∈ reflexive set
∋ maximum class of research objects ′:

subject domain
∋ class of research objects ′:

• static subject domain
• dynamic subject domain
• concept
• nontrivial structure

∋ relation under study ′:
• concept under study ′

• maximum class of research objects ′

• non-maximum class of research objects ′

• class of structures under study ′

• private subject domain*

• concept studied in the private subject
domain ′

• Subject domain of ontologies

Subject domain of ontologies
∈ subject domain
∋ maximum class of research objects ′:

ontology
∋ class of research objects ′:

• structural specification of the subject
domain

• particular ontology of the subject domain
• unified ontology of the subject domain
• set-theoretic ontology of the subject

domain
• logical ontology of the subject domain
• ontology of the subject domain

X. CONCLUSION

In the article, an ontological approach to the design
of knowledge bases of next-generation intelligent com-
puter systems is considered. This approach is based on
the representation of the knowledge base of intelligent
computer systems based on the OSTIS Technology as a
hierarchical structure of interrelated subject domains and
their ontologies built on the basis of top-level ontologies.

The formal interpretation of such concepts as knowl-
edge, structure, semantic neighborhood, subject domain,
ontology has been clarified, which together made it
possible to determine on their basis the ontological
model of knowledge bases of next-generation intelligent
computer systems.

This model can form the Kernel of the knowledge base,
which will ensure the compatibility of intelligent systems
due to the unified representation of knowledge.

The results obtained make it possible to increase
the efficiency of the development of next-generation
intelligent systems due to the component approach to
the development of knowledge bases and automation
tools for their development.

ACKNOWLEDGMENT

The author would like to thank the research group of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for its help in the work and valuable
comments.

REFERENCES

[1] I. Davydenko, “Ontology-based knowledge base design,” Otkry-
tye semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems], pp.
42–50, 2018.

[2] S. J.F, “Top-level ontological categories,” International Journal of
Human-Computer Studies, vol. 43, no. 5-6, pp. 669–685, 1995.

[3] C. Partridge, A survey of Top-Level Ontologies. The Construction
Innovation Hub, 2020.

97

[4] V. Mascardi, A Comparison of Upper Ontologies. DBLP, 2007.
[5] (2022, Nov) DOLCE: Descriptive Ontology for Lin-

guistic and Cognitive Engineering. [Online]. Available:
http://www.loa.istc.cnr.it/dolce/overview.html

[6] (2022, Nov) Suggested Upper Merged Ontology (SUMO).
[Online]. Available: https://github.com/ontologyportal/sumo

[7] (2022, Nov) Cycorp – cycorp making solutions better. [Online].
Available: https://cyc.com/

[8] (2022, Nov) Github: Opencyc. [Online]. Available:
https://github.com/asanchez75/opencyc

[9] V. Golenkov, N. Gulyakina, and D. Shunkevich, Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva i
jekspluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’juternyh sistem [Open technology of ontological design,
production and operation of semantically compatible hybrid
intelligent computer systems]. Bestprint [Bestprint], 2021.

[10] (2022, Nov) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

Структура баз знаний интеллектуальных
компьютерных систем нового поколения:

иерархическая система предметных
областей и соответствующих им

онтологий
Банцевич К.А.

В работе рассмотрен онтологический подход к проектиро-
ванию баз знаний интеллектуальных компьютерных систем
нового поколения. Данный подход основан на представлении
базы знаний интеллектуальных компьютерных систем на
основе Технологии OSTIS как иерархической структуры
взаимосвязанных предметных областей и их онтологий, по-
строенных на базе онтологий верхнего уровня.

Уточнена формальная трактовка таких понятий, как
знание, структура, семантическая окрестность, предметная
область, онтология, что в совокупности позволило опре-
делить на их основе онтологическую модель баз знаний
интеллектуальных компьютерных систем нового поколения.

Данная модель может составить Ядро базы знаний, кото-
рое позволит обеспечить совместимость интеллектуальных
системы за счет унифицированного представления знаний.

Полученные результаты позволяют повысить эффектив-
ность разработки интеллектуальных систем нового поколе-
ния за счет компонентного подхода к разработке баз знаний
и средств автоматизации их разработки.

Received 17.11.2022

98

Means of formal description of syntax and
denotational semantics of various languages in
next-generation intelligent computer systems

Artem Goylo
Minsk State

Linguistic University
Minsk, Belarus

Email: artemgoylo@gmail.com

Sergei Nikiforov
Belarusian State University

of Informatics and Radioelectronics
Minsk, Belarus

Email: nikiforov.sergei.al@gmail.com

Abstract—The article is devoted to linguistic means of formal
description of syntax and denotational semantics of different
languages in next-generation intelligent computer systems. A
formal ontology of different languages is proposed. The treatment
of such notions as language, sign, information construction, sign
construction, syntax, semantics, meaning, value, etc. is specified.
The subject domains of syntax and denotational semantics of
natural languages are formalized. As a result, an upper-level
ontology is obtained, using which it becomes possible to formalize
more specific subject domains of specific languages, both natural
and artificial, for their further use in natural-language interfaces
of next-generation intelligent computer systems.

Index Terms—language, sign, information construction, natural
language processing, natural language understanding, ontology,
semantic network, Open Semantic Technology for Intelligent Sys-
tems (OSTIS), SC-code (Semantic Computer Code), constituency
grammar

I. Introduction

The incredible diversity of natural languages and the ex-
istence of a large number of artificial languages undermines
interoperability between different people(s), different computer
systems, as well as between people and computer systems.

This leads to a great number of problems connected with:
• a rapid increase in the amount of information to be
processed by people for performing various kinds of tasks;

• difficulties and low efficiency of human interaction with
computer systems.

These problems can be solved by designing intelligent
computer systems, which are already used in automating all
kinds of human activities.

Such computer systems help to solve problems that exist in
the general domain of human-computer interaction, including
but not limited to:

• automating the processing of such multilingual documents
that cannot be processed manually in sufficient time;

• developing natural language interfaces, which are highly
dependent on the quality of natural language processing;

• developing machine translation systems;

Thus, a very urgent issue is the problem of developing
natural language understanding subsystems for next-generation
intelligent computer systems.
In order to ensure interoperability between systems and

between components of those systems, it is necessary to
introduce a kind of shared foundation, upon which systems
can be built. An ontology can be utilized as said foundation.
Therefore, the implementation of an NLP-component for
next-generation intelligent computer systems is dependent on
designing a set of ontologies necessary for the component to
function. The most vital ontology for natural language interfaces
is the one that describes various aspects of natural languages,
including their syntax and denotational semantics.

Moreover, to solve the problem of interoperability introduced
at the beginning of the article, it is not enough to focus solely on
natural languages. What is needed is a kind of upper ontology
for languages in general and their units of meaning (which
we will call information constructions). We will formalize the
necessary concepts as an ontology of the subject domain of
languages and information constructions.

II. State of the art

Currently, the research in Artificial Intelligence covers a
wide range of problems. However, there is little compatibility
in the conceptual systems of different schools, approaches, and
paradigms within the domain, which results in incompatible
computer systems being developed on the basis of research
findings [1].

Given the complexity of modern software, it is vital to ensure
that there is interoperability between different software entities,
and that it is possible to re-use previous implementations in a
way that they are compatible with current software.

One way to solve this problem is to create software
engineering ontologies. Such ontologies should satisfy the
following requirements [2]:

• formal semantics should be specified to avoid the ambi-
guity of definitions and the possibility of invalid interpre-
tations, in order to ensure interoperability;

99

• it should be possible to apply the ontologies to a different
or a more general subject domain, which would help to
reduce development cost and increase the quality of the
end product;

• it should be possible to perform logical inference over the
ontology.

An example of an ontology in this field is COPS [3]. The
aim of this ontology was to formalize general concepts in
the domain of software engineering in order to simplify the
development and use of software.
The issue of compatibility between research results is also

of concern in linguistics – a science that has many (often
incompatible) theories. Linguists utilize different annotation
schemas, different approaches to structuring of corpora, and
different ways of representing data in them [4], [5].

In order to solve the problem of incompatibility between an-
notation schemas, there have been proposed different standards
for annotation formats. Among the examples of such efforts
are Text Encoding Initiative – a digital data representation
consortium [6] – and guidelines proposed by EAGLES (Expert
Advisory Group on Language Engineering Standards), for ex-
ample, – their corpus encoding recommendations [7]. However,
none of the standards became widely used by linguists [8, p. 4].
Instead of providing recommendations for linguistic data

annotation, a more effective way of solving the aforementioned
problems has been proposed – that is, creating linguistic
ontologies [9], [10]. Apart from the fact that an upper ontology
for the domain of linguistics can provide a link between
divergent linguistic theories, such an ontology by its nature
is conceived as a formal description of concepts used in
linguistics, represented in a machine-readable format, which
means that it can be used in computer systems capable of
understanding annotated linguistic data, performing intelligent
search over language corpora, as well as, potentially, reasoning
over linguistic research [4].
As a result, an ontology of the domain of linguistics has

been created – The General Ontology of Linguistic Description
(GOLD) [11]. This ontology describes the most basic categories
and relations used in linguistics, and the ontology itself
integrated into a top-level ontology called Suggested Upper
Merged Ontology (SUMO) [12]. The authors of GOLD state
that they created the ontology first and foremost with a view
to solve the problem of interoperability of linguistic typology
data so that expert systems could process scientific evidence
of natural languages – that is, the ontology was not aimed
at solving the problems in the domain of natural language
processing per se [13, p. 4].
A natural language ontology, aimed at being used in

natural language processing tasks is Ontologies of Linguistic
Annotation (OLiA) [14]. The main idea of this ontology is
to ensure compatibility between linguistic data annotations
produced by computer systems while analyzing natural language
texts on the one hand, and the corresponding linguistic concepts
within the ontology on the other hand. As opposed to other
linguistically-motivated ontology, OLiA provides not only an
inventory of concepts and relations, but also specifies the way

to integrate the elements of the ontology with linguistic data
annotations used, for example, in corpora [14, p. 4].
When creating an ontology of natural language, it is

necessary to pay attention to the status of specifications of
linguistic information within such ontology. J. Bateman suggests
to differentiate between three types of ontologies according to
the degree with which natural language-specific information is
integrated into the ontology [15]:
1) ontologies that are an abstract semantico-conceptual

representation of world knowledge, which is used directly
as a specification of denotational semantics for syntax and
lexicon of a natural language (mixed ontologies);

2) ontologies that have a separate specification of denota-
tional semantics of natural languages, which is used as
an interface between natural language syntax and the
conceptual ontology itself (interface ontologies);

3) ontologies that are an abstract specification of real world
knowledge that pays no directed attention to meanings
encoded in natural language (conceptual ontologies).

Especially popular within the field of natural language
processing are ontologies of the second type [15, p. 8], because
such ontologies (in contrast to the ontologies of the third type)
make it possible to formalize more information about natural
languages. For example, one of the most popular ontologies
used in natural language processing, the Generalized Upper
Model [16], is a second-type ontology [15]. P. Buitelaar et al.
[17] stress that all formal ontologies have to be linked with
linguistic information in order to solve such tasks as extracting
information from natural language texts, automated population
of ontologies, and natural language text generation.
Since ontological approach to NLP allows to specify the

semantics of data obtained as a result of processing a text as
well as to potentially raise the quality of NLP-analysis, there
has been a shift towards creating ontology-driven NLP systems
[18], [19]. Natural language ontologies are actively used in
NL-text generation from some domain ontology [20], [21].
Ontological approach is also used in systems for making

natural language queries to databases, in which a natural
language query is translated into a subject domain ontology
query language, with the result of the translation itself then
being translated into SQL in order to facilitate user interaction
with relational databases [22].

Moreover, specifying linguistic information within an on-
tology helps in automated ontology design based on natural
language texts [23].
More specialized ontologies for specific subdomains of

linguistics are being created: for example, an ontology of
spacial expressions in natural languages [24], an ontology of
temporal expressions [25], ontologies of individual languages
[26]. When using ontologies in NLP, it is important to "link"
the concepts from an ontology with the lexicon of a specific
natural language. This led to the creation of extensions for
popular linguistic databases, such as WordNet [27], VerbNet
[28] and FrameNet [29], to use the databases together with top-
level ontologies (for an example, see [30]). There is an active
ongoing development of ontologies of natural language lexica,

100

which resulted in a variety of formal descriptions of lexica being
created [31], [32], [33], [34], [35]. Because popular lexical
databases were not designed to serve as an ontology and do not
possess the necessary degree of formalization (e.g., WordNet),
ontologies that could serve as a sort of "superstructure" over
such databases are being created. One such ontology that is
widely used is Lemon [36].

Many of the ontologies above are designed using the Seman-
tic Web technology [37], which possesses several disadvantages,
namely:
1) there is no rigorous and at the same time simple formal

basis for representing information (a kind of kernel, or a
representation invariant), which would be universal in the
sense that all other systems could be designed based on
this kernel. The model that is de facto used in this way
is RDF [38] [39], but it does not sufficiently satisfy the
requirements of universality and formality.

2) no basic relations have been defined that could be reflected
in the syntax of the basic language itself. All relations
have to be specified explicitly.

Thus, the technology used to design such ontologies does
not allow to structure information space in a formal enough
way, streamline information search, ensure compatibility of
descriptions provided by different authors – that is, it cannot
be viewed as a universal language for representing any kinds
of data in knowledge bases.

Moreover, Semantic Web is a technology that is external in
relation to existing solutions for natural language processing,
which is why such systems have to interact with it using APIs
or standardized query languages (in particular, SPARQL) [21].

It is important to highlight the fact that, despite very active
development of ontology-driven NLP systems, many popular
NLP-libraries (e.g., NLTK [40] and spaCy [41]) do not support
the use of ontologies, and the majority of natural language text
markup tools use specific formats, which makes it necessary
to use parsers and converters specific for such tools in order
to utilize them in NLP-related tasks [42, p. 3].
In conclusion, the following problems in state-of-the-art

approaches to natural language processing:
1) Lack of unification (standardization) in the approaches

described above leads to increased costs of their integra-
tion, which significantly complicates the development of
various systems on their basis [43], [1].

2) Despite the fact that ontologies can help to solve a wide
range of NLP tasks, the majority of ontology driven NLP
systems focus on addressing very specific problems (for
example, systems can focus only on text generation, or
ontology population, or natural language querying).

3) A number of specialized linguistic ontologies have been
designed which only formalize a subdomain of linguistics
(lexicon, in particular), which is in some sense a con-
sequence of the problem described above. At the same
time, the existing upper-level linguistic ontologies (e.g.,
OLiA) do not completely solve the problem of unification
because they have to introduce an intermediate level of

representation in order to integrate data collected by an
NLP system with the corresponding ontology fragments.

The solution to these problems requires a language with
enough expressive power to describe knowledge of any kind,
it also requires a technology aimed directly at designing
interoperable next-generation intelligent computer systems. The
OSTIS technology satisfies both of the requirements. Because
of this, natural language interfaces of systems designed using
the OSTIS technology (ostis-systems) will be able to solve a
wide range of NLP-related problems – be it natural language
synthesis in general, dialoging using natural languages, NL-
driven search, information extraction, etc. While currently
such tasks are often performed by specialized tools and
require additional effort to ensure potential compatibility with
individual computer systems, the OSTIS Technology utilizes
a single universal knowledge representation language (called
SC-code), in which all components of the problem solver as
well as the ontology of languages and ontologies of specific
subject domains are implemented, which will help to solve the
problem of interoperability.

Moreover, a natural language ontology designed using such
a technology could be used not only in practical NLP-related
applications but also to ensure interoperability of data obtained
by linguistic research, which would be a valuable contribution
to theoretical linguistics.
Finally, an ontology of natural language can be viewed as

a subset of an ontology of languages in general (not only
natural ones but also formal and artificial) – something that
the aforementioned ontologies do not do. This will make it
possible to conceptualize natural languages and programming
languages within the same information space, and to unify the
concepts used in these different domains to more efficiently
solve natural language processing tasts in intelligent computer
systems.

The aim of this article is to propose basic means of formal
description of syntax and denotational semantics of various
languages. This will be done by way of presenting a fragment
of the ontology of languages and information constructions
created using the OSTIS Technology, which can be used to
design next-generation intelligent computer systems.

III. Ontology of languages and information constructions
As a solution to the problem of interoperability, we suggest

representing knowledge about various languages (including
knowledge of their syntax and semantics) in a unified way.
This will help to ensure compatibility of such representations
and reduce the cost of developing ontology-driven computer
systems.
In our approach, we propose using the OSTIS Technology

[43], which helps to facilitate interoperability of different
problem solver models and reduce the number of modifications
introduced when adding, for example, a new model of the
problem solver.
Systems developed on the basis of the OSTIS Technology

are called ostis-systems. The OSTIS Technology is based on
a universal way of semantic representation of information

101

in the memory of intelligent computer systems, called SC-
code. SC-code texts are unified semantic networks with a basic
set-theoretic interpretation. The elements of such semantic
networks are called sc-elements (sc-nodes and sc-connectors,
which, in turn, depending on their directivity, can be sc-arcs
or textitsc-edges). SC-code alphabet consists of five main
elements, on the basis of which SC-code constructions of any
complexity are built, including the introduction of more specific
types of sc-elements (for example, new concepts). The memory
that stores SC-code constructions is called semantic memory
or sc-memory.

Within the framework of the technology, the structure of the
knowledge base of any ostis-system is described by a hierarchy
of subject domains and their corresponding ontologies. At the
same time, an ontology is treated as a specification of the
corresponding subject domain.
Fragments (substructures) of the subject domains and on-

tologies, as well as structures related to the models of the
knowledge base and problem solver, will be shown below in
the form of SC-code texts (sc-texts).
In the following sections we will describe the proposed

ontologies.

A. Subject domain of languages and information constructions

sign
⇒ subdividing*:

{{{• sign, which is an element of a discrete
information structure

• sign, which is a non-atomic fragment of a
discrete information structure

}}}

Sign is a fragment of an information construction that
conventionally represents (depicts) some describable entity,
which is called the denotation of the sign.

Since all signs are discrete information constructions, the
set of signs is the domain of all relations defined on the set of
discrete information constructions.

the relation defined on the set of signs^
∋ synonymy of signs*

Signs are synonymous if and only if they denote the same
entity. At the same time, synonymous signs may or may not
be syntactically equivalent.

sign construction
⊂ discrete information structure

Sign construction is a discrete information construction,
which generally is a configuration of signs and special frag-
ments of an information construction that provide structuring
of the configuration of signs.

Sign* is a binary oriented relation linking a sign construction
to the set of all signs included in it.

Semantic adjacency of sign constructions* is a binary relation
linking semantically adjacent sign constructions. The sign
constructions T i and Tj are adjacent if and only if there
are synonymous signs ti and tj, one of which is a part of the
construction T i and the other is a part of the construction Tj.

class of sign constructions^
∋ semantically elementary sign construction
∋ semantically coherent sign construction

Semantically elementary sign construction is a sign con-
struction describing some (one) relationship between some
entities.

Semantically coherent sign construction is a sign construction
that can be represented as a concatenation of semantically
elementary sign constructions, each of which is semantically
adjacent to the preceding and subsequent semantically elemen-
tary sign construction.

parameter defined on the set of sign constructions^
∋ semantic coherence of sign constructions^

∋ semantically coherent sign construction
∋ semantically incoherent sign construction

Information construction is a construction (structure) con-
taining some information about some entities. The form of
representation ("image", "materialization"), the form of struc-
turing (syntactic structure), as well as meaning* (denotational
semantics) of information constructions can be very different.

Discrete information construction is an information construc-
tion whose meaning is defined by:

• the set of elements (syntactically atomic fragments) of
this information construction,

• alphabet of these elements - a family of classes of syntacti-
cally equivalent elements of the information construction,

• inclusion of each element of the information construction
to the corresponding class of syntactically equivalent
elements of the information construction,

• configuration of incidence relations between the elements
of the information construction.

A consequence of this is that the form of representation
of the elements of a discrete information construction does
not need to be specified for the analysis of its meaning. It is
important to ensure the following:

• the presence of a simple procedure for selecting (segment-
ing) elements of a discrete information construction,

• specification of a simple procedure for establishing the
syntactic equivalence of different elements of a discrete
information construction,

• the presence of a simple procedure for determining
whether each element of a discrete information construc-
tion belongs to the corresponding class of syntactically
equivalent elements (i.e. to the corresponding element of
the alphabet).

102

Element of a discrete information construction is a syntac-
tically atomic fragment (symbol) included in a discrete infor-
mation construction. Since discrete information constructions
can have common elements (atomic fragments) and even some
of them can be parts of other information constructions, an
element of a discrete information construction can be a part
of several information constructions at once.

Next we will consider the relations defined on the set of
discrete information constructions.

the relation defined on the set of discrete information
constructions^
∋ discrete information construction element*
∋ syntactic equivalence of elements of discrete

information constructions*
∋ incidence of elements of discrete information

constructions*
∋ non-elementary fragment of a discrete information

construction*
∋ alphabet of a discrete information construction*
∋ primary syntactic structure of a discrete information

construction*
∋ syntactic equivalence of discrete information

constructions*
∋ copy of a discrete information construction*
∋ semantic equivalence of discrete information

constructions*
∋ semantic extension of a discrete information

construction*
∋ syntax of an information construction*
∋ meaning*
∋ operational semantics of an information construction*

Element of a discrete information construction* is a binary
oriented relation, each pair of which links (1) a sign of some
discrete information construction and (2) a sign of one of the
elements of this discrete information construction*.
Syntactic equivalence of elements of discrete information

constructions* is the relation linking syntactically equivalent
elements (atomic fragments) of the same or different discrete
information constructions, i.e. elements belonging to the same
class of syntactically equivalent elements of discrete information
constructions*.

Incidence of elements of discrete information constructions*
for linear information constructions is a sequence of elements
(symbols) included in these constructions. For discrete infor-
mation constructions whose configuration has a non-linear
nature, the incident relation of their elements can be broken
down into several partial incidence relations, each of which
is a subset of the combined incidence relation. For example,
for two-dimensional discrete information constructions it is
(1) the incidence of elements of information constructions
"horizontally" and (2) the incidence of elements of information
constructions "vertically".

Elementary fragment of a discrete information construction*
is a binary oriented relation linking a given discrete information

construction with a discrete information construction which is
a substructure for it, which includes (1) a subset of elements
of the given information construction and, respectively, (2) a
subset of incidence pairs of elements of the given information
construction.

Alphabet of a discrete information construction* is a binary
relation linking a discrete information construction with a
family of pairwise non-overlapping classes of syntactically
equivalent elements of a given discrete information construc-
tion*.
Primary syntactic structure of a discrete information con-

struction* is a binary oriented relation linking a discrete
information construction to a graphic structure that fully
describes its configuration and which includes: (1) signs of
all those classes of syntactically equivalent elements to which
the elements of the described discrete information construction
belong, (2) signs of all elements (atomic fragments) of the
information construction described, (3) pairs describing the
incidence of the elements of the information construction
described, (4) pairs describing belonging of elements of
the information construction described to the corresponding
classes of syntactically equivalent elements of this information
construction.

Syntactic equivalence of discrete information constructions*:
Discrete information constructions T i and Tj are syntactically
equivalent if and only if there exists an isomorphism between
the construction T i and the construction Tj, in which each
element of the construction T i corresponds to a syntactically
equivalent element of the construction Tj, i.e., an element
from the same class of syntactically equivalent elements of the
construction Tj, i.e. an element belonging to the same class
of syntactically equivalent elements of discrete information
constructions. And vice versa.
Copy of a discrete information construction* is a binary

oriented relation that links a discrete information construction
with a discrete information construction which is not only
syntactically equivalent to it, but also contains information
about the form of representation of elements of this copied
information construction*

copy of a discrete information structure*
⊂ syntactic equivalence of discrete information

constructions*

Semantic equivalence of discrete information constructions*:
Information construction T i and information construction Tj
are semantically equivalent if and only if each entity (including
each relationship between entities) described in information
construction T i is also described in information construction
Tj. And vice versa.

Semantic extension of a discrete information construction*:
the information construction Tj is a semantic extension of the
information construction T i if and only if each entity described
in T i is also described in Tj, but the reverse is not true.
Syntax of an information construction* is a description of

what parts a given information construction consists of and

103

how these parts (fragments) are related to each other.
Meaning* (denotational semantics of an information con-

struction*) is a binary oriented relation, each pair of which
relates some information construction to its explicit (formal)
representation of what entities this information construction
describes and how these entities are related to each other.

Operational semantics of an information construction* is a
binary oriented relation, each pair of which connects a sign
of some information construction with a set of rules of its
transformation - a description of what rules can be used to
perform actions on transformation (processing, transformation)
of a given information construction, leaving it within the
class of syntactically and semantically correct information
constructions.

operational semantics of an information construction*
⇒ second domain*:

operational semantics of an information construction

Now let us consider mappings defined on the set of discrete
information constructions.

mapping defined on the set of discrete information
constructions
∋ mapping between the syntactic structure of the

information construction and the meaning of that
construction*
⊂ mapping*

Mapping defined on the set of discrete information construc-
tions is the set of ordered pairs, the first component of which is
an ordered pair consisting of (1) a sign of the syntactic structure
of some information construction and (2) a sign of the semantic
structure of that construction, and the second component of
which is a set of ordered pairs linking fragments of the syntactic
structure of a given information construction (which describe
either the structure of fragments of a given construction or links
between fragments of this construction) with those fragments of
the semantic structure of a given information construction that
are semantically equivalent to either syntactically represented
fragments of a given information construction or syntactically
represented links between such fragments.
Discrete information constructions have the following pa-

rameters.

parameter defined on the set of discrete information
constructions^
∋ dimensionality of discrete information constructions^

:= [typology of discrete information constructions
based on their dimensionality]

∋ linear information structure
∋ two-dimensional information structure
∋ three-dimensional information design
∋ four-dimensional information structure
∋ graph information structure

Linear information construction is a discrete information
construction, each element of which can have no more than
two incident elements (one on the left and one on the right).
Two-dimensional information construction is a discrete

information construction, each element of which can have
no more than four incident elements (left-right, top-bottom).
Three-dimensional information construction is a discrete

information construction, each element of which can have no
more than six incident elements (left-right, top-bottom, back-
to-front).
Four-dimensional information construction is a discrete

information construction, each element of which can have
no more than eight incident elements (for example, left-right,
top-bottom, front-back, earlier-later).
Graph information construction is a discrete information

construction whose set of elements is divided into two subsets
- sheaves and nodes. In this case nodes can have an unlimited
number of incident sheaves. In some graph information
constructions sheaves can have an unlimited number of other
sheaves incident to them.

parameter defined on the set of discrete information
constructions^
∋ typology of discrete information constructions, defined

by their carrier^
∋ non-computer form of representation of discrete

information constructions
⊃ audio message
⊃ an information construction presented

in sign language
⊃ information construction presented in

written form
∋ file

Representation of information constructions in the form of
files is directed at representation of discrete (!) information
constructions. Therefore "file" representation of non-discrete
information constructions (for example, various kinds of
signals) implies "discretization" of such constructions, i.e. their
transformation into discrete ones. This is how audio signals
(in particular, speech messages), images, video signals, etc. are
converted.

parameter defined on the set of discrete information
constructions^
∋ level of unification of representation of syntactically

equivalent elements of discrete information
constructions^
∋ discrete information construction with a low

level of unification of the representation of
elements
⊃ audio message
⊃ an information construction presented

in sign language
⊃ manuscript or a copy thereof

104

∋ discrete information construction with a high
level of unification of element representation
⊃ printed text
⊃ file

Level of unification of representation of syntactically equiva-
lent elements of discrete information constructions^ is the level
of "articulateness" of discrete information constructions.
The higher the level of unification of the representation of

the elements of discrete information constructions, the easier
it is to implement:

• the procedure for segmenting the elements of a discrete
information construction,

• the procedure for establishing syntactic equivalence of
these elements,

• the procedure for their recognition, i.e. the procedure of
establishing their belonging to the corresponding classes
of syntactically equivalent elements.

Having clarified the notions of sign, sign construction,
information construction, discrete information construction and
having considered the corresponding relations, we can proceed
to the formalization of the concept of "language".
Language is a class of sign constructions, for which there

are (1) general rules of their construction and (2) general rules
of their correlation with those entities and configurations of
entities, which are described (reflected) by the specified sign
constructions.

A relation defined on a set of languages^ is a relation whose
domain includes a set of all possible languages.
The text of a given language* is a binary relation linking

the language and a syntactically correct (well-formed) sign
construction of that language.

Syntactically correct sign construction for a language* is a
binary relation linking the language and a sign construction
that does not contain syntactic errors for that language.

a relation defined on the set of languages^
:= [relation, the domain of which includes the set of all

possible languages]
∋ text of a language*

= (syntactically correct sign construction for a
given language* ∩ syntactically complete sign
construction for a given language)

∋ syntactically correct sign construction for a language*
∋ syntactically complete sign construction for a

language*
∋ syntactically incorrect sign construction for a

language*
= (syntactically incorrect sign construction for a

language* ∪ syntactically incoherent sign
construction for a language*)

⊃ syntactically incorrect sign construction for a
language*

⊃ a syntactically incoherent sign construction for
a language*

∋ knowledge presented in a language*

:= [semantically correct text of a language*]
= (semantically correct text of a language* ∩

semantically complete text of a language*)
∋ semantically correct text of a language*

:= [text of a given language that does not contain
semantic errors that contradict recognized pat-
terns and facts*]

∋ semantically coherent text of a language*
:= [the text of a given language containing suffi-

cient information to establish its truth*]
∋ semantically incorrect text for a language*

= (semantically incoherent text for a language* ∪
semantically incoherent text for a language*)

⊃ semantically incorrect text for a language*
⊃ semantically incoherent text for a language*

∋ alphabet*
:= [the alphabet of a given information construction

or a given language*]
:= [family of classes of syntactically equivalent

elements (elementary fragments) of a given
information construction or information con-
structions of a given language*]

∋ language*
:= [is a theory of well-formed information con-

structions belonging to a given language*]
:= [the syntactic rules of a given language*]
:= [Binary oriented relation, each pair of which

connects a sign of some language with the de-
scription of syntactically distinguished classes
of fragments of constructions of the given
language, with the description of relations
defined on these classes and with the con-
junction of quantized statements, which are
syntactic rules of the given language, i.e. rules,
which all syntactically correct (well-formed)
constructions (texts) of the given language
should satisfy*.]

⇒ second domain*:
language syntax

∋ a description of the syntactic concepts of the language*
:= [description of syntactically distinguishable

classes of fragments of constructions of a given
language*]

⇒ second domain*:
a description of the syntactic concepts of the
language
⇐ generalized inclusion*:

language syntax
∋ syntactic rules of the language*

:= [the syntactic rules of a given language*]
⇒ second domain*:

syntactic rules of the language
∋ denotational semantics of a language*

:= [is a theory of morphisms, linking well-formed
information constructions of a given language
with described configurations of described

105

entities*]
∋ denotational semantics of language*

:= [semantic rules of a given language*]
:= [be the semantic rules of a given language*]
:= [A binary oriented relation, each pair of which

connects a sign of some language with a
description of basic semantic notions of a
given language and a conjunction of quantifier
statements, which are semantic rules of a given
language, i.e. the rules to which semantically
correct meaningful information constructions
corresponding (semantically equivalent) to syn-
tactically correct constructions (texts) of a
given language should satisfy*]

⇒ note*:
[When formulating the semantic rules of a
given language, concepts introduced in basic
ontologies (top-level ontologies) are used.]

⇒ second domain*:
denotational semantics of language

∋ description of the semantic concepts of a language*
⇒ second domain*:

description of the semantic concepts of a
language

∋ semantic rules of a language*
⇒ second domain*:

semantic rules of a language
∋ semantic equivalence of languages*

:= [be semantically equivalent languages*]
⇒ определение*:

[Language Li and language Lj will be consid-
ered semantically equivalent languages* if and
only if for every text belonging to language
Li, there is a semantically equivalent text*
belonging to language Lj and vice versa.]

∋ semantic extension of a language*
⇔ inverse relation*:

semantic reduction of a language*
⇒ definition*:

[Language Lj will be considered a semantic
extension* of language Li if and only if for
every text belonging to language Li there is
a semantically equivalent text* belonging to
language Lj, but the reverse is not true.]

∋ syntactic extension of a language*
:= [be a semantically equivalent superset of a given

language*]
⇒ definition*:

[The language Lj will be considered a syntactic
extension* of Li if and only if

□ Lj ⊃ Li (that is, all texts of
Li are also texts of Lj, but
the reverse is not true);

□ Language Lj and language
Li are semantically equiva-
lent languages*.

]
∋ syntactic core of a language*

:= [be the syntactic core of a given language*]
:= [be a semantically equivalent subset of a given

language with minimal syntactic complexity*]
∋ the direction of the syntactic extension of the kernel of

a given language*
:= [be the rule of transformation of information

constructions belonging to a given language,
which describes one of the directions of transi-
tion from the set of constructions of the core
of this language to the set of all information
constructions belonging to it*.]

∋ operational semantics of a language*
:= [A binary oriented relation, each pair of which

associates a sign of some language with a set of
rules for transforming texts of that language*.]

⇒ second domain*:
operational semantics of the language

∋ internal language*
:= [be an internal language for a given information

processing-based system or a given set of such
systems*.]

:= [be the language of the internal representation
of information in the memory of a given
information processing-based system or a given
class of such systems*.]

∋ external language*
:= [be an external language for a given information

processing-based system or a given set of such
systems*.]

:= [be a language used to exchange information of
a given information processing-based system,
or a given set of such systems, with other in-
formation processing-based systems (including
those of their own kind)*]

∋ language used*
= (internal language* ∪ external language*)
:= [the language used by a given system based on

information processing or a given set of such
systems*.]

:= [the language spoken by the system in question,
which is based on information processing]

∋ languages used*

Parameter defined on a set of languages^ is a family of
language equivalence classes, interpreted in the context of
some property (characteristic) inherent to the languages.

parameter defined in the set of languages^
∋ semantic power of language^

:= [a class of languages that are semantically
equivalent to each other]

∋ universal language
:= [a class of all possible universal lan-

guages]

106

⇒ note*:
[Obviously, all universal languages (if
they really are, and not just claim
to be) are semantically equivalent to
each other, i.e. have the same semantic
power.]

∋ the level of syntactic complexity of the representation
of the signs in the texts of the language^
∋ a language in whose texts all signs are

represented syntactically by elementary
fragments

∋ a language in whose texts signs are generally
represented by syntactically non-elementary
fragments

∋ the use of delimiters and terminators in language texts^
∋ language that does not use delimiters and

terminators in its texts
∋ language that uses delimiters and terminators

in its texts
∋ the level of complexity of the procedure for

establishing synonymy of signs in language texts^
∋ language, within each text of which there are

no synonymous signs
⇒ explanation*:

[In texts of such language, the sign of
each entity being described is present
only once.]

∋ язык, в рамках которого синонимичные
знаки представлены синтаксически
эквивалентными фрагментами текстов

∋ inflected language
:= [language, within which synonymous

signs can be represented by syntacti-
cally non-equivalent fragments, but by
fragments which are modifications of
some "kernel" of these fragments (in
the declension and conjugation of these
signs).]

∋ a language in which synonymous signs can
generally be represented by syntactically
non-equivalent text fragments whose structure
is unpredictable

∋ presence of homonymy in the texts of a language^
∋ a language whose texts contain homonymic

signs
:= [language whose texts contain syn-

tactically equivalent, non-synonymous
signs]

∋ language, in the texts of which there is no
homonymy of signs

semantically distinguishable class of discrete information
constructions
∋ syntactic structure of the information construction

⇐ second domain*:
syntax of the information construction*

⊃ primary syntactic structure of the information
structure

⊃ secondary syntactic structure of the
information structure

∋ language syntax
∋ a description of the syntactic concepts of a language
∋ syntactic rules of a language
∋ denotational semantics of a language
∋ description of the semantic concepts of a language
∋ semantic rules of a language
∋ the operational semantics of the language
∋ meaning

⇐ second domain*:
meaning*

Meaning - an explicit (formal) representation of the described
entities and the relationships between them. The explicit
representation of the described entities and the relationships
between them requires a significant simplification of the
syntactic structure of information constructions.
Ostis-system language is the language for representing

information constructions in ostis-systems.

ostis-system language
⊂ formal language
⊂ universal language
⇐ languages used*:

ostis-system
∋ SC-code

:= [Semantic Computer Code]
⇐ internal language*:

ostis-system
∈ universal language

To formally describe various kinds of languages, including
the languages we are considering (SCg-code, SCs-code, SCn-
code) a number of metalanguage notions are used.
Here are some of them: identifier, class of syntactically

equivalent identifiers, name, simple name, expression, external
identifier*, alphabet*, delimiters*, terminators*, sentences*

The syntax of knowledge representation languages in ostis-
systems can be formally described in various ways. For example,
it is possible to use Bacus-Naurus meta-language to describe
the syntax of SCs-code or its extension to describe the syntax
of SCn-code. However, it is much more logical and expedient
to describe the syntax of all forms of external sc-text mapping
using SC-code itself. This approach will allow ostis-systems
to independently understand, analyze and generate texts of
the specified languages on the basis of principles common to
any form of external representation of information, including
non-linear ones.
Alphabet* is a binary relation linking a set of texts to a

family of maximal sets of syntactically identical elementary
(atomic) text fragments belonging to a given set of texts.

Identifier is a structured sign of the corresponding (denoted)
entity, which is most often a string – the name of the

107

corresponding entity. In formal texts (including texts of SC-
code, SCg-code, SCs-code, SCn-code) the main identifiers used
should not be homonymic, i.e. they should unambiguously
correspond to the entities being identified. Consequently, each
pair of identifiers having the same structure must denote the
same entity.

identifier
⊃ sc.s-identifier

name
⊂ identifier
:= [string identifier]
:= [identifier, which is a string (chain) of characters]
⇒ action decomposition*:

{{{• simple name
:= [atomic name]
:= [a name that does not include other

names]
• expression

:= [non-atomic name]
}}}

⊃ sc.s-identifier

An external identifier* is a binary oriented relation, each
sheaf (sc-arc) of which links some element to a file, the
content of which is an external identifier (most often, a name)
corresponding to the specified element. The notion of external
identifier is a relative notion and important for ostis-systems
because internal representation of information (in the form
of SC-code texts) operates not with identifiers of described
entities, but with signs whose structure does not matter.

B. Subject domain of files, external information constructions
and external languages of ostis-systems
There are several languages for the external representation

of sc-texts [43]:
• SCn-code;
• SCs-code;
• SCg-code.
SCg-code is an external language* of ostis-systems, the texts

of which are graph structures of a general form with precisely
defined denotational semantics*.

SCg-code
∈ ostis-system language

:= [Semantic Code graphical]
⇐ external language*:

ostis-system
∈ universal language

SCs-code is an external language* of ostis-systems, the texts
of which are strings (chains) of characters.

SCs-code

∈ ostis-system language
:= [Semantic Code string]
⇐ external language*:

ostis-system
∈ universal language

SCn-code is an external language* of ostis-systems whose
texts are two-dimensional matrices of symbols, which are the
result of formatting of two-dimensional structuring of SCs-code
texts.

SCn-code
∈ ostis-system language

:= [Semantic Code natural]
⇐ external language*:

ostis-system
∈ universal language

To implement ostis-systems knowledge bases, all kinds of
languages are used: universal languages as well as specialized
languages, both formal languages and natural languages,
both internal languages that provide the representation of
information in the ostis-systems memory, as well as external
languages providing the representation of input or output
information. Natural languages are used exclusively to represent
files stored in the ostis-system memory and formally specified
within the knowledge base of that ostis-system.

In order to operate intelligent computer systems built on
the basis of SC-code, besides the method of abstract internal
representation of knowledge bases (SC-code), several methods
of external representation of abstract sc-texts will be required,
which are user-friendly and used in the design of source texts
of knowledge bases of said intelligent computer systems and
source texts of fragments of those knowledge bases, as well
as used to display various fragments of knowledge bases to
users according to user requests. The aforementioned external
ostis-system languages (SCg-code, SCs-code and SCn-code)
are proposed as such methods of external display of sc-texts.

All the main external formal languages used by ostis-systems
(SCg-code, SCs-code, SCn-code) are different variants of the
external representation of texts written in the internal language
of ostis-systems - SC-code. These languages are universal and,
therefore, semantically equivalent languages*.

Moreover, each ostis-system can acquire the ability to use any
external language (both universal and specialized, both natural
and artificial) if the syntax and denotational semantics of that
language are described in the memory of the ostis-system in
its internal language (SC-code).

C. Formalization of natural languages

As explained above, in order to utilize insights from
linguistics in the design of intelligent computer systems it is
necessary to represent linguistic knowledge in a formal way. In
this section, we propose a formalization of the basic concepts in
linguistics made in a formal knowledge representation language
– SC-code.

108

language
⇒ subdividing*:

{{{• natural language
⇒ explanation*:

[A natural language is a language that
was not created purposefully.]

• artificial language
⇒ explanation*:

[An artificial language is a language
specially designed to achieve certain
goals.]

∋ Esperanto
∋ Python
⊃ constructed language

⇒ explanation*:
[A constructed language is an
artificial language designed for
human communication.]

∋ Esperanto
}}}

⊃ international language
⇒ explanation*:

[An international language is a natural or arti-
ficial language used by people from different
countries to communicate.]

∋ English
∋ Russian

planned language
⇐ intersection*:

{{{• constructed language
• international language

}}}

language of communication
⇐ union*:

{{{• natural language
• constructed language

}}}
∋ English
∋ Russian
∋ Esperanto
⇐ union*:

{{{• isolating language
⇒ explanation*:

[An isolating language is a language
that is characterized by the complete
absence of inflection and the presence
of grammatical significance of the order
of words consisting only of the root.]

∋ Chinese
• agglutinative language

⇒ explanation*:
[An agglutinative language is character-
ized by a developed system of affixes
added to the invariable stem of the word,

which are used to express the categories
of number, case, gender, etc.]

∋ Japanese
• inflected language

⇒ explanation*:
[An inflected language is characterized
by a developed use of endings to express
the categories of gender, number, case,
a complex system of verb declension,
alternation of vowels in the root, as well
as a strict distinction between parts of
speech.]

∋ Russian
• polysynthetic languages

⇒ explanation*:
[A polysynthetic language is a language
that relies on affixes to encode all (or
almost all) grammatical meanings.]

}}}

1) Formalization of natural language lexicon: A lexeme is
a minimal unit of a language that has a semantic interpretation
and denotes a concept that reflects the view of the world of a
certain linguistic community [44].

A grammatical category is a system of oppositions between
grammatical forms with homogeneous meanings. As part of
our formalization, it is proposed to represent grammatical
categories as classes of role relations, each of which corre-
sponds to a certain grammatical meaning. We will list here
only a fragment of the ontology that describes the most basic
grammatical categories and relations.

grammatical category
∋ person

⇐ set of subsets*:
role relation

∋ first person ′

∋ second person ′

∋ third person ′

∋ number
⇐ set of subsets*:

role relation
∋ singular number ′
∋ plural number ′
∋ dual number ′
∋ trial number ′
∋ paucal number ′

∋ gender
⇐ set of subsets*:

role relation
∋ masculine gender ′
∋ neuter gender ′
∋ feminine gender ′

∋ case
⇐ set of subsets*:

role relation

109

∋ nominative case ′

∋ genitive case ′

∋ dative case ′

∋ accusative case ′

∋ instrumental case ′

∋ prepositional case ′

∋ vocative case ′

∋ absolutive case ′

∋ ergative case ′

∋ tense
⇐ set of subsets*:

role relation
∋ present tense ′

∋ past tense ′

∋ future tense ′

∋ mood
⇐ set of subsets*:

role relation
∋ indicative mood ′

∋ imperative mood ′

∋ irrealis mood ′

∋ voice
⇐ set of subsets*:

role relation
∋ active voice ′

∋ passive voice ′

∋ middle voice ′

∋ reflexive voice ′

∋ reciprocal voice ′

∋ aspect
⇐ set of subsets*:

role relation
∋ perfective aspect ′
∋ imperfective aspect ′
∋ common aspect ′
∋ progressive aspect ′
∋ perfect aspect ′

∋ degree of comparison
⇐ set of subsets*:

role relation
∋ positive degree of comparison ′

∋ comparative degree of comparison ′

∋ superlative degree of comparison ′

An example of the the way some of the above relations are
formalized in the sc.g-language is shown in Figure 1.
Part of speech is a grammatical category that represents a

class of syntactically equivalent natural language signs.

part of speech
⇐ set of subsets*:

lexeme
∋ noun
∋ adjective
∋ verb
∋ adverb

Figure 1. An example of a lexeme specification in the knowledge base

∋ preposition
∋ complementizer
∋ auxiliary
∋ determiner

Morphological paradigm* is a binary oriented relation
connecting a lexeme and a set of its word forms.

A word form – a subset of a lexeme that contains all tokens
of a lexeme that share certain grammatical meanings. Within
our ontology, a word form is understood somewhat differently
than is customary in linguistics, since all tokens of a lexeme in
the OSTIS technology are considered to be instances of files.

2) Formalization of natural language syntax: When formal-
izing the core of natural language syntax, we drew from the
framework of generative linguistics [45], [46], [47], [48].
The distribution of a sign is a subset of the syntactic

environments that the sign appears in.
A constituent is an element of the set C of subsets of the

tuple of tokens S, which contains as elements both S and all
tokens in S in such a way that any two subsets included in C
either do not intersect, or one of them is included into another.
An immediate constituent: let S be a set of constituents

such that it includes constituents A and B. B is an immediate
constituent of A if and only if B is a constituent of A and
there is no constituent C such that C is a constituent of A
and B is a constituent of C.
An ultimate constituent is an element U of a tuple of

tokens T such that U is an immediate constituent in a set
of constituents C and U itself has no immediate constituents.
A phrase is a class of constituents, which includes con-

stituents with heads of the same part of speech. Phrases are
either singletons (minimally including a single head) or an
ordered pair consisting of a head and another phrase.
A head is a constituent whose distribution is equivalent to

the distribution of the entire phrase.

110

constituent
⇒ subdividing*:

{{{• phrase
• head

}}}

phrase
⇒ subdividing*:

{{{• noun phrase
⇒ explanation*:

[A noun phrase is a phrase headed by a
noun.]

• verb phrase
⇒ explanation*:

[A verb phrase is a phrase headed by a
verb.]

• adjective phrase
⇒ explanation*:

[An adjective phrase is a phrase headed
by an adjective.]

• adverb phrase
⇒ explanation*:

[An adverb phrase is a phrase headed
by an adverb.]

• prepositional phrase
⇒ explanation*:

[A prepositional phrase is a phrase
headed by a preposition.]

• complementizer phrase
⇒ explanation*:

[A complementizer phrase is a phrase
headed by a complementizer.]

• tense phrase
⇒ explanation*:

[A tense phrase is a phrase headed by
an auxiliary or a modal verb.]

• determiner phrase
⇒ explanation*:

[A determiner phrase is a phrase headed
by a determiner.]

}}}
⇒ subdividing*:

{{{• maximal projection of a head
• intermediate projection of a head

}}}

More specific classes can be inferred as a result of inter-
section between the sets of classes listed above, e.g. maximal
projection of a determiner phrase head

maximal projection of a determiner phrase head
⇐ intersection*:

{{{• determiner phrase
• maximal projection of a head

}}}

An example of syntactic structure of a sentence, parsed using
the concepts above is shown in Figure 2.

Phrase structure is not arbitrary – elements within a phrase
can only border certain sets of elements. The possible structures
of phrases are given below. The sign "->" should be read as
"consists of". Optional elements are shown in parentheses.

Determiner phrase:
• Maximal projection of a determiner phrase head -> (Max-
imal projection of a determiner phrase head) Intermediate
projection of a determiner phrase head

• Intermediate projection of a determiner phrase head ->
Determiner phrase head (Maximal projection of a noun
phrase head)

Noun phrase:
• Maximal projection of a noun phrase head -> (Maximal
projection of a determiner phrase head) Intermediate
projection of a noun phrase head

• Intermediate projection of a noun phrase head -> (Maximal
projection of an adjective phrase head) Intermediate projec-
tion of a noun phrase head OR Intermediate projection of
a noun phrase head (Maximal projection of a prepositional
phrase head)

• Intermediate projection of a noun phrase head -> Noun
phrase head (Maximal projection of a prepositional phrase
head)

Verb phrase:
• Maximal projection of a verb phrase head -> Intermediate
projection of a verb phrase head

• Intermediate projection of a verb phrase head -> Interme-
diate projection of a verb phrase head (Maximal projection
of a prepositional phrase head) OR Intermediate projection
of a verb phrase head (Maximal projection of an adverb
phrase head)

• Intermediate projection of a verb phrase head -> Verb
phrase head (Maximal projection of a noun phrase head)

Adverb phrase:
• Maximal projection of an adverb phrase head -> Interme-
diate projection of an adverb phrase head

• Intermediate projection of an adverb phrase head -> (Max-
imal projection of an adverb phrase head) Intermediate
projection of an adverb phrase head

• Intermediate projection of an adverb phrase head ->
Adverb phrase head (Maximal projection of a prepositional
phrase head)

Adjective phrase:
• Maximal projection of an adjective phrase head -> Inter-
mediate projection of an adjective phrase head

• Intermediate projection of an adjective phrase head ->
(Maximal projection of an adverb phrase head) Interme-
diate projection of an adjective phrase head

• Intermediate projection of an adjective phrase head -> Ad-
jective phrase head (Maximal projection of a prepositional
phrase head)

Prepositional phrase:

111

Figure 2. Syntactic structure example.

• Maximal projection of a prepositional phrase head ->
Intermediate projection of a prepositional phrase head

• Intermediate projection of a prepositional phrase head ->
Intermediate projection of a prepositional phrase head
(Maximal projection of a prepositional phrase head)
OR (Maximal projection of an adverb phrase head)
Intermediate projection of a prepositional phrase head

• Intermediate projection of a prepositional phrase head ->
Prepositional phrase head (Maximal projection of a noun
phrase head)

Tense phrase:
• Maximal projection of a tense phrase head -> (Maximal
projection of a determiner phrase head) Intermediate
projection of a tense phrase head

• Intermediate projection of a tense phrase head -> Tense
phrase head (Maximal projection of a verb phrase head)

Complementizer phrase:
• Maximal projection of a complementizer phrase head ->
(Maximal projection of some phrase head) Intermediate
projection of a complementizer phrase head

• Intermediate projection of a complementizer phrase head
-> Complementizer phase head Maximal projection of a
tense phrase head

These rules can be formalized as follows (Figure 3).
A complement is a phrase that is a sister of a head. Sisters

are constituents that are in an immediate constituent relation
with the same constituent.

An adjunct is a phrase that is a daughter (immediate
constituent) of an intermediate projection and a sister of the
intermediate projection of the head of the same phrase.
A specifier is a phrase that is a daughter of a maximal

projection and a sister of an intermediate projection.
The phrase structure rules can be generalized and reduced

to three more abstract ones.
Specifier rule: XP -> (YP) X’
Adjunct rule: X’ -> X’ (ZP) | X’ -> (ZP) X’
Complement rule: X’ -> X (WP)
These rules are formalized in the same manner as in Figure

3.

112

Figure 3. Phrase structure rule example.

3) Formalization of natural language denotational seman-
tics: The denotational semantics of a language specifies the
interpretation of the syntactic elements of that language and is
a set of formulas that describe how the sign constructions of
the language are associated with the entities they denote and
the configurations of relations between these entities.
The denotational semantics of natural languages must be

compositional, i.e. the interpretation of an entire construction
must be derived from the interpretation of its individual parts.
Thus, it is necessary to provide a formal description of the
interpretation of NL syntax elements presented in the previous
section, as well as a description of the rules for combining the
interpretation of individual elements to obtain the meaning of
the entire construction.
In this article, we propose a variant of the formalization

of the denotational semantics of natural languages within the
framework of the OSTIS technology, for which the ideas of
model-theoretic formal semantics [49], [50], [51] were used.

Below are examples of rules that implement the denotational
semantics of English. The rules must be applied one after the
other and allow us to obtain the meaning of a natural language
sentence from its syntactic structure, "climbing" the syntactic
tree from heads to maximal projections.
Figure 4 shows the rule that is used to interpret heads

of noun phrases and adjective phrases. We assume that the
meaning of such heads is a class of elements (written here
in the sc.g language), e.g. the adjective "black" is associated
with a corresponding set of black objects, while the noun "cat"
is associated with a set of cats. The construction to the right
specifies that an entity X (represented by a variable sc.g-node)
is linked via a meaning* relation to some struct that includes
a class, i.e. this entity X is a class.
Figure 5 shows the rule of interpreting a noun phrase, the

maximum projection of which also includes an adjective phrase.
As mentioned above, to apply this rule, you must first apply
the rule shown in figure 4. The meaning of such constructions
is a class that is an intersection of classes obtained as a result
of interpreting the heads of the adjective and noun phrases

Figure 4. Noun phrase head and adjective phrase head semantic interpretation
rule.

separately. For example: the meaning of "black cat" is a set
of black cats, i.e. the intersection of a set of cats and a set of
black objects.
Figure 6 shows the rule according of interpreting a verb

phrase. We need to include the entire branch of the verb phrase
in the premise of the rule because this is how we can determine
the type of the verb – this rule is intended for the interpretation
of intransitive verbs. The meaning of this construction is a
class of actions.

Figure 7 shows the rule of interpreting a determiner phrase
headed by an indefinite article. The meaning of such a
construction is the existence of an element of the class that
corresponds to the meaning of the noun phrase included in
this determiner phrase.
Figure 8 shows the rule of interpreting an intermediate

projection of a tense phrase head, consisting of an auxiliary
verb and a full verb. The auxiliary verb in this case specifies

113

Figure 5. Semantic interpretation rule for maximal projections of noun phrase heads.

Figure 6. Semantic interpretation rule for maximal projections of intransitive verbs.

the class of actions with respect to time (whether it is planned,
in progress, already completed, etc.).

Figure 9 shows the rule of interpreting a maximal projection
of a tense phrase head. In this case, the maximal projection
includes the subject, represented by the determiner phrase in
the specifier position. The resulting meaning is a combination
of the meaning of the determiner phrase obtained at an earlier
stage of analysis and the meaning of a tense phrase. The
determiner phrase is interpreted as the subject of the action
denoted by the verb.

Figure 10 shows the rule of interpreting a maximal projection
of a complementizer phrase head. This rule specifies the
interpretation of a sentence with a transitive verb and is
obtained as a result of applying all previously listed rules.

IV. Conclusion

In this article the linguistic means of formal description of
syntax and denotational semantics of different languages in
intelligent computer systems of the new generation have been
described. A formal ontology of various languages has been
proposed. The treatment of such notions as language, sign,
information construction, sign construction, syntax, semantics,
meaning, value, etc. has been clarified. A formalization of
the subject domains of syntax and denotational semantics of
natural languages has been proposed.
All developed means of describing the syntax and denota-

tional semantics of languages are presented in a unified form,
which allows to ensure their compatibility and significantly

114

Figure 7. Semantic interpretation rule for maximal projections of determiner phrase heads.

Figure 8. Semantic interpretation rule for an intermediate projection of a tense phrase head.

115

Figure 9. Semantic interpretation rule for a maximal projection of a tense phrase head (with an intransitive verb).

Figure 10. Semantic interpretation rule for sentences with transitive verbs

116

reduce the overhead in the development of various systems
that use them.

As a result a fragment of the upper-level ontology has been
obtained, using which it becomes possible to formalize subject
domains of specific languages, both natural and artificial,
for their further use in natural-language interfaces of next-
generation intelligent computer systems.
The fragment of ontology provided above is by no means

complete. Given that, one of the directions of further study on
this topic is extending the ontology, which would include at
least the following:

• creating an ontology of lexical meanings in natural
languages;

• describing the mechanism of matching tokens with lex-
emes in the knowledge base.

To add the ability to process a new language by a system
designed on the basis of the approach proposed in this paper,
it is necessary to create an ontology of this language, based
on the presented upper-level ontology, which would include
the following:

• vocabulary with lexemes of that language;
• specific features of syntax and vocabulary for that lan-
guage;

• features of semantic interpretation specific to that lan-
guage.

Acknowledgment

The authors would like to thank the research teams of the
Department of Intellectual Information Technologies of BSUIR
and the Department of Theory and Practice of Translation #1
of MSLU for their help and valuable comments. This research
was partially supported by the BRFFR (BRFFR-RFFR No.
F21RM-139).

References

[1] Golenkov, V. V., “Methodological problems of the current state of works
in the field of artificial intelligence,” Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technologies for
intelligent systems], pp. 17–24, 2021.

[2] S. Pileggi, A. Lopez-Lorca, and G. Beydoun, “Ontologies in software
engineering,” 11 2018.

[3] P. Lando, A. Lapujade, G. Kassel, and F. Fürst, “Towards a general
ontology of computer programs.” 01 2007, pp. 163–170.

[4] S. Farrar, W. D. Lewis, and T. Langendoen, “A common ontology for
linguistic concepts,” 2002.

[5] C. Chiarcos, Interoperability of Corpora and Annotations. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 161–179. [Online].
Available: https://doi.org/10.1007/978-3-642-28249-2_16

[6] “Text Encoding Initiative,” Available at: https://tei-c.org/, (accessed 2022,
October).

[7] “EAGLES Recommendations for the Morphosyntactic
Annotation of Corpora,” Available at: https://home.uni-
leipzig.de/burr/Verb/htm/LinkedDocuments/annotate.pdf, (accessed 2022,
October).

[8] N. Ide and J. Pustejovsky, “What does interoperability mean , anyway
? toward an operational definition of interoperability for language
technology,” 2010.

[9] A. C. Schalley, “Ontologies and ontological methods in
linguistics,” Language and Linguistics Compass, vol. 13, no. 11,
p. e12356, 2019, e12356 LNCO-0634.R3. [Online]. Available:
https://compass.onlinelibrary.wiley.com/doi/abs/10.1111/lnc3.12356

[10] J. P. McCrae, P. Labropoulou, J. Gracia, M. Villegas, V. Rodríguez-
Doncel, and P. Cimiano, “One ontology to bind them all: The meta-share
owl ontology for the interoperability of linguistic datasets on the web,” in
The Semantic Web: ESWC 2015 Satellite Events, F. Gandon, C. Guéret,
S. Villata, J. Breslin, C. Faron-Zucker, and A. Zimmermann, Eds. Cham:
Springer International Publishing, 2015, pp. 271–282.

[11] “The General Ontology of Linguistic Description,” Available at:
http://linguistics-ontology.org/info/about, (accessed 2022, October).

[12] A. Pease, I. Niles, and J. Li, “The suggested upper merged ontology: A
large ontology for the semantic web and its applications,” 01 2002.

[13] S. Farrar and D. Langendoen, “A linguistic ontology for the semantic
web,” Glot International, vol. 7, pp. 97–100, 03 2003.

[14] C. Chiarcos, “Ontologies of linguistic annotation: Survey
and perspectives,” in Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC’12). Istanbul,
Turkey: European Language Resources Association (ELRA),
May 2012, pp. 303–310. [Online]. Available: http://www.lrec-
conf.org/proceedings/lrec2012/pdf/911_Paper.pdf

[15] “The Theoretical Status of Ontologies in Natural Language Process-
ing,” Available at: https://arxiv.org/abs/cmp-lg/9704010, (accessed 2022,
October).

[16] J. A. Bateman and G. Fabris, “The generalized upper model knowledge
base: Organization and use,” 2002.

[17] P. Buitelaar, P. Cimiano, P. Haase, and M. Sintek, “Towards linguistically
grounded ontologies,” in The Semantic Web: Research and Applications,
L. Aroyo, P. Traverso, F. Ciravegna, P. Cimiano, T. Heath, E. Hyvönen,
R. Mizoguchi, E. Oren, M. Sabou, and E. Simperl, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 111–125.

[18] T. Kostareva, S. Chuprina, and A. Nam, “Using ontology-driven methods
to develop frameworks for tackling nlp problems,” in AIST, 2016.

[19] O. Nevzorova and V. Nevzorov, “Ontology-driven processing of unstruc-
tured text,” in Artificial Intelligence, S. O. Kuznetsov and A. I. Panov,
Eds. Cham: Springer International Publishing, 2019, pp. 129–142.

[20] P. Cimiano, J. Lüker, D. Nagel, and C. Unger, “Exploiting ontology lexica
for generating natural language texts from RDF data,” in Proceedings of
the 14th European Workshop on Natural Language Generation. Sofia,
Bulgaria: Association for Computational Linguistics, Aug. 2013, pp.
10–19. [Online]. Available: https://aclanthology.org/W13-2102

[21] N. Bouayad-Agha, G. Casamayor, and L. Wanner, “Natural language
generation in the context of the semantic web,” Semantic Web, vol. 5,
pp. 493–513, 01 2014.

[22] D. Saha, A. Floratou, K. Sankaranarayanan, U. F. Minhas, A. R.
Mittal, and F. Özcan, “Athena: An ontology-driven system for
natural language querying over relational data stores,” Proc. VLDB
Endow., vol. 9, no. 12, p. 1209–1220, aug 2016. [Online]. Available:
https://doi.org/10.14778/2994509.2994536

[23] M. Shamsfard and A. A. Barforoush, “Learning ontologies from
natural language texts,” International Journal of Human-Computer
Studies, vol. 60, no. 1, pp. 17–63, 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1071581903001368

[24] J. A. Bateman, J. Hois, R. Ross, and T. Tenbrink, “A linguistic
ontology of space for natural language processing,” Artificial
Intelligence, vol. 174, no. 14, pp. 1027–1071, 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0004370210000858

[25] M. Moens and M. Steedman, “Temporal ontology in natural
language,” in Proceedings of the 25th Annual Meeting on Association
for Computational Linguistics, ser. ACL ’87. USA: Association
for Computational Linguistics, 1987, p. 1–7. [Online]. Available:
https://doi.org/10.3115/981175.981176

[26] A. Dobrov, A. Dobrova, P. Grokhovskiy, M. Smirnova, and N. Soms,
“Computer ontology of tibetan for morphosyntactic disambiguation,” in
Digital Transformation and Global Society, D. A. Alexandrov, A. V.
Boukhanovsky, A. V. Chugunov, Y. Kabanov, and O. Koltsova, Eds.
Cham: Springer International Publishing, 2018, pp. 336–349.

[27] “WordNet: A Lexical Database for English,” Available at:
https://wordnet.princeton.edu, (accessed 2022, October).

[28] “VerbNet: A Computational Lexical Resource for Verbs,” Available at:
https://verbs.colorado.edu/verbnet/, (accessed 2022, October).

[29] “FrameNet,” Available at: http://framenet.icsi.berkeley.edu, (accessed
2022, October).

[30] A. Pease and C. Fellbaum, Formal ontology as interlingua: the SUMO
and WordNet linking project and global WordNet, ser. Studies in Natural
Language Processing. Cambridge University Press, 2010, p. 25–35.

117

[31] T. Matsukawa and E. Yokota, “Development of the concept
dictionary implementation of lexical knowledge,” in Lexical
Semantics and Knowledge Representation, 1991. [Online]. Available:
https://aclanthology.org/W91-0219

[32] N. Calzolari, “Acquiring and representing semantic information in a
lexical knowledge base.” 06 1991, pp. 235–243.

[33] P. Buitelaar, T. Declerck, A. Frank, S. Racioppa, M. Kiesel, M. Sintek,
R. Engel, M. Romanelli, D. Sonntag, B. Loos, V. Micelli, R. Porzel, and
P. Cimiano, “LingInfo: Design and Applications of a Model for the
Integration of Linguistic Information in Ontologies,” 2006. [Online].
Available: http://smartweb.dfki.de/Vortraege/OntoLex2006.pdf

[34] P. Cimiano, P. Haase, M. Herold, M. Mantel, and P. Buitelaar, “Lexonto:
A model for ontology lexicons for ontology-based nlp,” 2007.

[35] P. Buitelaar, M. Sintek, and M. Kiesel, “A multilingual/multimedia lexicon
model for ontologies,” in The Semantic Web: Research and Applications,
Y. Sure and J. Domingue, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2006, pp. 502–513.

[36] J. McCrae, G. Cea, P. Buitelaar, P. Cimiano, T. Declerck, A. Gomez-
Perez, J. Gracia, L. Hollink, E. Montiel-Ponsoda, D. Spohr, and
T. Wunner, “Interchanging lexical resources on the semantic web,”
Language Resources and Evaluation, vol. 46, pp. 701–719, 12 2012.

[37] ““semantic web”: W3c’s vision of the web of linked data.” Available at:
https://www.w3.org/standards/semanticweb/, (accessed 2022, October).

[38] “RDF: a standard model for data interchange on the Web.” Available at:
https://www.w3.org/RDF/, (accessed 2022, October).

[39] “The Resource Description Framework. Abstract syntax (a data model)
which serves to link all RDF-based languages and specifications.”
Available at: https://www.w3.org/TR/rdf11-concepts/, (accessed 2022,
October).

[40] “NLTK NLP library,” Available at: https://www.nltk.org/, (accessed 2022,
October).

[41] “spaCy NLP library,” Available at: https://spacy.io/, (accessed 2022,
October).

[42] T. N. Erekhinskaya, M. Tatu, M. Balakrishna, S. Patel, D. Strebkov, and
D. I. Moldovan, “Ten ways of leveraging ontologies for rapid natural
language processing customization for multiple use cases in disjoint
domains,” Open J. Semantic Web, vol. 7, pp. 33–51, 2020.

[43] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open technology for
ontological design, production and operation of semantically compatible
hybrid intelligent computer systems, G. V.V., Ed. Minsk: Bestprint,
2021.

[44] “SIL: Glossary of Linguistic Terms,” Available at: https://glossary.sil.org,
(accessed 2022, October).

[45] D. Adger, Core Syntax: A Minimalist Approach, ser. Core
linguistics. Oxford University Press, 2003. [Online]. Available:
https://books.google.by/books?id=GMJ1QgAACAAJ

[46] R. Jackendoff and R. Jackendoff, X Syntax: A Study of Phrase Structure,
ser. Linguistic inquiry monographs. MIT Press, 1977. [Online].
Available: https://books.google.by/books?id=ALf6PgAACAAJ

[47] L. Haegeman, Introduction to Government and Binding Theory, ser.
Blackwell Textbooks in Linguistics. Wiley, 1994. [Online]. Available:
https://books.google.by/books?id=_fvUInHLUTwC

[48] A. Carnie, Syntax: A Generative Introduction, ser. Intro-
ducing Linguistics. Wiley, 2012. [Online]. Available:
https://books.google.by/books?id=MFZ1UV3YGtgC

[49] I. Heim and A. Kratzer, Semantics in Generative Grammar, ser.
Blackwell Textbooks in Linguistics. Wiley, 1998. [Online]. Available:
https://books.google.by/books?id=jAvR2DB3pPIC

[50] Y. Winter, Elements of Formal Semantics. Edinburgh: Ed-
inburgh University Press, 2016. [Online]. Available:
https://doi.org/10.1515/9780748677771

[51] P. Portner and B. Partee, Formal Semantics: The Essential Readings, ser.
Linguistics: The Essential Readings. Wiley, 2008. [Online]. Available:
https://books.google.by/books?id=ptgUWREtAkMC

Средства формального описания синтаксиса
и денотационной семантики различных

языков в интеллектуальных компьютерных
системах нового поколения
Гойло А. А., Никифоров С. А.

Статья посвящена языковым средствам формального описания
синтаксиса и денотационной семантики различных языков в
интеллектуальных компьютерных системах нового поколения.
Предложена формальная онтология различных языков. Уточнена
трактовка таких понятий как язык, знак, информационная кон-
струкция, знаковая конструкция, синтаксис, семантика, смысл,
значение и др. Формализованы предметные области синтаксиса
и денотационной семантики естественных языков. В результате
получена онтология верхнего уровня, с использованием которой
становится возможной формализация более частных предметных
областей конкретных языков как естественных, так и искусствен-
ных для их дальнейшего применения в естественно-языковых
интерфейсах интеллектуальных систем нового поколения.

Received 28.10.2022

118

Hybrid problem solvers of intelligent computer
systems of a new generation

Daniil Shunkevich
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: shunkevich@bsuir.by

Abstract—In the article, the actual problems of the current
state of technologies for the development of hybrid problem
solvers are formulated, an approach to their solution based
on the OSTIS Technology is proposed. The principles of
building a problem solver as a hierarchical system of
skills based on a multi-agent approach are formulated,
the ontologies of agents and the actions performed by
them are given. The principles of synchronization of agents’
activities are formulated, as well as the ontology of the basic
programming language for implementing agent programs
and the interpreter model of such a language are developed.

Keywords—OSTIS, problem solver, multi-agent system,
problem-solving model, ontological approach

I. INTRODUCTION

Currently, the usage of intelligent systems in a variety
of fields is becoming increasingly relevant. One of the
key components of an intelligent system that provides the
ability to solve a wide range of problems is a problem
solver. Its peculiarity in comparison with other modern
software systems is the need to solve problems in con-
ditions when the necessary information is not explicitly
localized in the knowledge base of the intelligent system
and must be found in the process of solving the problem,
based on any criteria.

In other words, if in traditional systems, when solving
a problem, it is always assumed that there are some
localized source data (“given”) and some description
of the desired result (“what is required”), then in an
intelligent system, all the information currently available
in the system acts as source data when solving a large
number of problems, that is, the entire knowledge base.
In addition, if it is impossible to solve the problem in the
current state of the knowledge base, the intelligent system
should be able to understand what exactly is missing to
continue the solution process and try to get the missing
information in the external environment (for example, to
request from the user).

To date, within various fields of artificial intelligence,
a large number of different problem-solving models have
been developed, each of which allows solving problems
of a certain class. The expansion of the application fields
for intelligent systems requires them to be able to solve

so-called complex problems, the solution of each of which
requires combining several problem-solving models, while
it is not known a priori in what order and how many times
one or another model will be used. Problem solvers, in
which several problem-solving models are combined, are
called hybrid problem solvers, and intelligent systems, in
which various types of knowledge and various problem-
solving models are combined, are called hybrid intelligent
systems [1].

Improving the efficiency of the development and
maintenance of hybrid intelligent systems requires the
unification of models for the representation of various
knowledge types and knowledge processing models,
which would simplify the integration on its basis of
components corresponding to different problem-solving
models. Such models based on a unified semantic
representation of information are proposed within an
Open semantic technology for intelligent systems design
(OSTIS Technology) [2] and are described within the
corresponding OSTIS Standard [3]. In the article [2], the
analysis of modern approaches to the development of
hybrid problem solvers is carried out and it is shown that
the approach proposed within the OSTIS Technology is
currently the only example of a comprehensive approach
to the development of hybrid problem solvers, within
which the above problems are solved.

However, there are a number of problems that remain
relevant and require solutions.

II. CURRENT PROBLEMS IN THE DEVELOPMENT OF
HYBRID PROBLEM SOLVERS

The first problem is related to the lack of a suffi-
ciently strict formalized classification of problems solved
by intelligent systems, the lack of unification in the
description of problems and classes of problems, the
description of purposes, progress, and result of solving
the problem, problem-solving methods, relations between
classes of problems and problem-solving methods of this
class. The solution of this problem, on the one hand, will
allow for the possibility of deep integration of various
problem-solving models of various classes and the ability
to simplify the process of integrating new problem-solving

119

models into an intelligent system and, on the other hand,
will become a precondition for solving other problems
described below.

The second problem is that at the moment the main
attention in the field of developing hybrid problem solvers
is paid to reducing the complexity of integrating various
components of the problem solver into an intelligent
system and realizing the possibility of accumulating
reusable solvers components, but in general it is not
said how specifically the intelligent system will use
certain components in solving problems of specific classes.
Thus, the creation of a general plan for solving a
problem, i.e. the selection of problem-solving methods,
the determination of the order of their application, and
the choice of source data (arguments) for the usage of a
particular method is actually determined by the developer
at the stage of system design or its evolution during
operation. The precondition for solving this problem
is the solution of the previously considered problem
of unifiying the representation of problems of various
classes and methods for solving them. The solution of the
problem under consideration involves the development of
a set of problem-solving strategies (or problem-solving
meta-methods) that will allow the intelligent system to
independently form a plan for solving the problem, taking
into account the problem-solving methods available in
the system and, if possible, even request the missing
components for solving the problem in the appropriate
libraries. It should be noted that attempts to develop
universal high-level approaches to solving problems
were made at the dawn of the development of artificial
intelligence, in the 1950s and 60s, but were unsuccessful
and soon be abandoned. This is largely conditioned by
the lack of unified models of knowledge representation
and processing at that time, which are currently proposed
within the OSTIS Technology.

Another urgent problem, closely related to those dis-
cussed above, is that intelligent systems are often forced
to solve problems in the conditions of so-called non-
factors, that is, when the description of the problem and
possible ways to solve it are incomplete, the fuzziness and
incorrectness of existing knowledge, as well as the lack
of criteria for evaluating the optimality of the resulting
solution, etc. take place [4]. This is especially relevant
when solving behavioral problems related to changes in
the state of objects of the environment external to the
intelligent system. To solve problems in such conditions,
an intelligent system must not only have a sufficient set
of problem solver components that implement problem-
solving models in the presence of non-factors (fuzzy logic
models, machine learning models, genetic algorithms, etc.)
but also implement problem-solving strategies that would
allow making decisions and forming a plan for solving
the problem in such conditions.

Problems considered are primarily related to the process

of solving a specific problem by an intelligent system.
At the same time, it is obvious that at every moment
of time, an intelligent system is forced to solve several
problems in parallel, which can be related both to the
direct functional purpose of the system and to ensuring
the operation and evolution of the system itself. In
the second case, the problems related to updating the
information it contains about the outside world, finding
and eliminating errors in the knowledge base, optimizing
the structure of the knowledge base and the solver of
the system, finding and eliminating information garbage,
and many others are meant. At the same time, different
problems may have different priorities, which may vary
depending on the situation, even in the process of its
solution. At the same time, in a situation where it is not
known a priori which of the possible ways to solve the
problem will be the most effective, it may be advisable
to use several approaches in parallel to solve the same
problem. Thus, the problem of organizing the control
of information processes for solving problems in an
intelligent system and the interaction of information
processes that occur in parallel, taking into account the
priority of processes, the ability to monitor the current
state of information processes, generate, suspend, and
eliminate information processes is relevant. To solve this
problem, it is advisable to borrow solutions widely used in
traditional computer systems, in particular, implemented
in modern operation systems, and adapt them to the
specifics of solving problems in intelligent systems. It
is important to note that the implementation of the
information process control model, based on the general
unified information processing models proposed within
the OSTIS Technology, will make some information
processes the object of analysis of other information
processes, which, in turn, will make it possible to analyze
the progress of solving the problem directly in the process
of solving, evaluate the effectiveness of certain problem-
solving methods, collect the most successful solutions for
its further application in solution of the similar problems,
and much more.

Solving these problems will allow developing a fun-
damentally new hierarchical model of a hybrid problem
solver, which has a number of significant advantages,
which, in turn, will have to be interpreted on any
platforms. Without unifying the requirements for the
platform of interpreting intelligent systems models and a
clear separation of the platform-independent model of the
system (and, in particular, the solver) and the platform,
it is impossible to talk about the implementation of the
solver model realizing the ideas discussed above. This will
lead to the need to duplicate the same model components
for different platforms and will significantly complicate
the integration of solver components, since it will require
taking into account the features of each platform during
such integration. In addition, a clear separation of the

120

system model level and the platform level will make
it possible to independently develop various platforms
and models of intelligent systems. Thus, it is proposed
to formulate unified requirements for the platform of
interpreting semantic models of intelligent systems, as
well as to build a general model of such a platform that
meets these requirements.

On the other hand, as already mentioned, the problem
solver is a complex system focused on working with
knowledge, not with data, unlike modern software systems
in which it is initially known where exactly the necessary
data is localized and in what form they are represented. In
this regard, the usage of modern hardware and software
platforms, focused on address access to data stored in
memory, for the development of intelligent systems is
not always effective, since when developing intelligent
systems, it is actually necessary to model nonlinear
memory based on linear one. Increasing the efficiency
of problem solving by intelligent systems requires the
development of specialized platforms, including hardware
ones, focused on unified semantic models of information
representation and processing. As a basis for such
developments, it is proposed to use the suggested within
the OSTIS Technology general concepts of a semantic
computer, semantic memory, and a basic programming
language focused on processing information in such
memory, and complement them with ideas of wave
programming languages, insertion programming, and
other approaches aimed at improving the efficiency of
knowledge processing, including at the hardware level.

The development of problem solvers, including the
problems of developing hybrid problem solvers discussed
above, are currently being considered in the context of
single (independent) intelligent systems operating in some
environment (of which the user is also a part, if there
is one). At the same time, there is an obvious tendency
of modern information technologies to move from single
systems to collectives of distributed interacting computer
systems, in particular, to distributed data storage and
distributed computing. In the case of intelligent computer
systems, as the most important property of the systems
included in such collectives, interoperability serves, that
is, the ability of the system to coordinate interaction with
other similar systems in order to solve any problems. Thus,
the transition from the development of problem solvers
of individual intelligent systems to problem solvers of
interacting interoperable intelligent systems is particularly
relevant, including the development of principles for
solving problems in such distributed collectives, taking
into account the solution of all the problems outlined
above. To solve this problem, it is proposed to apply the
ideas suggested within the theory of multi-agent systems
and reinterpreted in the context of the interaction of hybrid
intelligent systems.

In addition, the most important problem in the case of a

distributed collective of intelligent systems is not just pro-
viding the ability to solve problems by such a collective
at the current time but permanently supporting semantic
compatibility and, as a consequence, the interoperability
of systems included in such a collective throughout their
entire life cycle. It is obvious that each of the systems
included in such a collective and, accordingly, its problem
solver can evolve independently of other systems, but
at the same time, interoperability between systems must
always be maintained, otherwise solving problems in
such a collective will become impossible. The solution
of this problem involves the development of methods
for permanently analyzing semantic compatibility of a
distributed collective of interacting intelligent systems,
identification and elimination of problems.

Within this article, an approach to solving some of
the listed problems based on the OSTIS Technology is
proposed.

III. PROPOSED APPROACH

As mentioned earlier, it is proposed to solve these prob-
lems within the OSTIS Technology. Let us list the basic
principles of this technology that create preconditions for
solving these problems:

• The OSTIS Technology is based on a universal
method of semantic representation (encoding) of
information in the memory of intelligent computer
systems, called an SC-code. Texts of the SC-code (sc-
texts, sc-constructions) are unified semantic networks
with a basic set-theoretic interpretation. The elements
of such semantic networks are called sc-elements (sc-
nodes and sc-connectors, which, in turn, depending
on orientation, can be sc-arcs or sc-edges). The Al-
phabet of the SC-code consists of five main elements,
on the basis of which SC-code constructions of any
complexity are built, including more specific types
of sc-elements (for example, new concepts). The
universality and uniformity of the SC-code makes it
possible to describe on its basis any knowledge types
and any problem-solving methods, which, in turn,
greatly simplifies their integration within one system.
Systems developed based on the OSTIS Technology
are called ostis-systems;

• The basis of the knowledge base developed by
the OSTIS Technology is a hierarchical system of
semantic models of subject domains and ontologies,
among which the universal Kernel of the knowledge
base semantic models and the methodology for the
development of semantic knowledge base models are
allocated, which ensure the semantic compatibility
of the knowledge bases being developed;

• The basis of information processing within the OSTIS
Technology is the SCP Language, the program texts
of which are also written in the form of SC-code
constructions;

121

• The problem solver architecture within the OSTIS
Technology is based on a multi-agent approach, in
which agents interact with each other purely by
specifying the actions they perform within a common
semantic memory (such agents are called sc-agents).
Such an approach allows ensuring the fundamental
possibility of implementing any problem-solving
methods in the form of corresponding solver com-
ponents and providing their semantic compatibility.
Other advantages of the multi-agent approach in
general are widely known and discussed in related
publications [5]–[7].

The listed principles of the OSTIS Techology are
proposed to be supplemented with some of the ideas
underlying the solution of those problems and, taking this
into account, to develop:

• A complex ontology of actions, problems, and
methods of their solution, as well as an ontology
of hybrid problem solvers, on the basis of which to
clarify the concept of the solver and its architecture.
The first version of the Global subject domain
of actions and problems and the corresponding
ontology of methods and technologies is already
represented within the OSTIS Standard, on its basis
it is proposed to develop an ontology of actions and
problems solved by ostis-systems;

• A complex of unified generalized strategies (meta-
methods) for solving problems in intelligent systems,
which allows an intelligent system to independently
form a plan for solving a problem, taking into
account the problem-solving methods available in
the system. In addition to the experience of similar
works, it is also proposed to supplement the devel-
oped strategies with some general methodological
ideas related to the theory of behaviorism and the
ideas of its application in computer science that are
gaining popularity [8]–[10], TIPS [11], as well as
the STA-methodology proposed by the school of G.
Shchedrovitsky [12];

• An ontological model for the formation of a plan
for solving a problem and managing the process of
solving problems in hybrid problem solvers under
conditions of various non-factors and the absence
of clear criteria for evaluating the optimality of
the resulting solution. To develop this model, it is
proposed to adapt the theory of situational control
proposed by D. Pospelov [13] and implement it in
the context of the semantic theory of problem solvers
developed within the OSTIS Technology;

• An ontological model for controlling information
processes for solving problems in intelligent systems
built on the basis of unified semantic models of
information representation and processing;

• An ontological model of the platform for interpreting
unified semantic models of information representa-

tion and processing (ostis-platforms);
• A comprehensive hierarchical model of a hybrid

problem solver based on a multi-agent approach
and taking into account the need to solve problems
both within single intelligent systems and within
distributed collectives of interoperable intelligent
systems;

• A complex of methods for analyzing the quality of
hybrid problem solvers and their components;

• A complex of tools to support the design of hybrid
problem solvers.

Within the OSTIS Technology, several universal variants
of visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant). Within
this article, fragments of structured texts in the SCn code
[3] will often be used, which are simultaneously fragments
of the source texts of the knowledge base, understandable
to both human and machine. This allows making the
text more structured and formalized, while maintaining
its readability. The symbol “:=” in such texts indicates
alternative (synonymous) names of the described entity,
revealing in more detail certain of its features.

As follows from the principles of the OSTIS Technology
discussed earlier, the building of ontological models of
any entities involves the development of an appropriate
subject domain and ontology (or a family of subject
domains and ontologies), within which the properties of
this entity are clarified by a formal description of the
corresponding set of concepts, including relations.

Within this work, we will consider in more detail the
fragments of:

• The Subject domain and ontology of ostis-systems
problem solvers, which clarifies the concepts of a
problem solver, a knowledge processing machine,
as well as the classification of problem solvers and
knowledge processing machines;

• The Subject domain and ontology of actions and
problems of ostis-systems, within which the classes
of actions and problems solved in ostis-systems are
specified;

• The Subject domain and ontology of sc-agents, which
clarifies the concept of an sc-agent as a component of
the ostis-system problem solver, the typology of sc-
agents and their properties, as well as the principles
for synchronizing the activities of sc-agents;

• The Subject domain and ontology of the Basic pro-
gramming language of ostis-systems, which clarifies
the syntax, denotational semantics, and operational
semantics of the SCP Language, which is the basic
for ostis-systems.

IV. OSTIS-SYSTEMS PROBLEM SOLVERS

Within the OSTIS Technology, the ostis-system problem
solver is defined as the totality of all skills possessed by

122

the ostis-system at the current time [3], [14].
In turn, the skill is interpreted as a combination of some

method and its operational semantics, that is, information
about how this method should be interpreted.

By a method we will understand the description of
how any or almost any (with explicit exceptions) action
belonging to the corresponding action class can be
performed. Since a specific action class corresponds to
some specific problem class, we can say that the method
describes a way to solve any problems belonging to a
given class. The concept of a method can be considered
as a generalization of the concept of “program”, in
connection with which, within the OSTIS Technology,
the terms “method” and “program” are synonymous [14].

As an example of a particular method, a procedural
program in a specific programming language or a set of
logical propositions that make up a formal theory of a
given subject domain (analogous to a logical program)
can be used.

A particular case of the method is the program of
the atomic component of the ostis-system problem solver
(atomic sc-agent); in this case, a collective of lower-level
agents, interpreting the corresponding program, acts as
the operational semantics of the method (in the extreme
case, these will be agents that are part of the platform
for interpreting computer system models, including the
hardware one).

Thus, we can talk about the hierarchy of methods
and methods for interpreting other methods. Taking into
account this thesis, it is possible to clarify the concept
of a problem solver as a hierarchical system of skills.

An approach to the building of problem solvers
proposed within the OSTIS Technology allows them to
be modifiable, which, in turn, allows the ostis-system, if
necessary, to easily acquire new skills, modify (improve)
existing ones, and even get rid of some skills in order
to improve system performance. Thus, it makes sense
to talk not about a rigidly fixed problem solver, which
is developed once when creating the first version of the
system and does not change further, but about a set of
skills fixed at each current moment of time but constantly
evolving.

ostis-system problem solver
⇐ family of subsets*:

skill
:= [hierarchical system of skills possessed by the

ostis-system]
⊃ hybrid ostis-system problem solver

:= [ostis-system problem solver that imple-
ments two or more problem-solving mod-
els]

⊃ combined ostis-system problem solver
:= [complete ostis-system problem solver]
:= [integrated ostis-system problem solver]

:= [ostis-system problem solver that imple-
ments all its functionality, both basic and
auxiliary]

In general, the combined ostis-system problem solver
solves problems related to:

• providing the basic functionality of the system (for
example, solving explicitly formulated problems at
the user’s request);

• ensuring the correctness and optimization of the ostis-
system itself (permanently throughout the entire life
cycle of the ostis-system);

• providing advanced training for end users and
developers of the ostis-system;

• providing automation of the design and control of
the development of the ostis-system.

By a knowledge processing machine we will understand
the set of interpreters of all skills that make up some
problem solver. Taking into account the multi-agent
approach to information processing used within the
OSTIS Technology, the knowledge processing machine is
an sc-agent (most often – a non-atomic sc-agent), which
includes simpler sc-agents that provide interpretation of
the corresponding set of methods. Thus, the knowledge
processing machine in general is a hierarchical system
of sc-agents.

Taking into account the fact that there is a hierarchy
of methods in terms of the level of interpretation (some
methods interpret others), it is also necessary to talk about
the hierarchy of knowledge processing machines.

knowledge processing machine
⊂ sc-agent

Let us consider the classification of ostis-systems
problem solvers according to various criteria.

Classification of ostis-systems problem solvers by the
type of the corresponding ostis-system:

ostis-system problem solver
∋ Problem solver of the IMS.ostis Metasystem
⊃ problem solver of the auxiliary ostis-system

⊃ problem solver of the computer system
interface

⊃ ostis-subsystem problem solver for
supporting the design of components of a
certain class
⊃ ostis-subsystem problem solver for

supporting knowledge base design
⊃ ostis-subsystem problem solver for

supporting the design of
ostis-systems problem solvers

⊃ problem solver of the control subsystem
for the design of computer systems and
their components

123

⊃ problem solver of an independent ostis-system

problem solver of the computer system interface
⇒ subdividing*:

{{{• problem solver of the user interface of a
computer system

• problem solver of the computer system
interface with other computer systems

• problem solver of the computer system
interface with the environment

}}}

ostis-subsystem problem solver for supporting
knowledge base design
⊃ problem solver for improving the quality of the

knowledge base
⊃ problem solver for knowledge base

verification
⊃ problem solver for finding and

eliminating inaccuracies in the
knowledge base

⊃ problem solver for finding and
eliminating incompleteness

⊃ problem solver for optimizing the
structure of the knowledge base

⊃ problem solver for identifying and
eliminating information garbage

ostis-subsystem problem solver for supporting the
design of ostis-systems problem solvers
⇒ subdividing*:

{{{• ostis-subsystem problem solver for
supporting the design of knowledge
processing programs

• ostis-subsystem problem solver for
supporting the design of knowledge
processing agents

}}}

Classification of ostis-systems problem solvers by the
type of interpreted problem-solving model:

ostis-system problem solver
⊃ problem solver with stored methods

:= [solver capable of solving problems of
those classes for which the corresponding
solution method is known at a given
moment]

⊃ problem solver based on neural network
models

⊃ problem solver based on genetic
algorithms

⊃ problem solver based on imperative
programs
⊃ problem solver based on

procedural programs
⊃ problem solver based on

object-oriented programs
⊃ problem solver based on declarative

programs
⊃ problem solver based on logical

programs
⊃ problem solver based on

functional programs
⊃ problem solver in conditions when the method of

solving problems of this class is not known at the
current time
:= [solver that implements problem-solving

strategies that allow generating a problem-
solving method that is not currently
known to the ostis-system]

:= [solver that uses meta-methods for solving
problems, corresponding to more general
classes of problems in relation to a given
one]

:= [problem solver that allows generating a
method that is particular in relation to
any method known to the ostis-system
and is interpreted by the corresponding
knowledge processing machine]

⊃ solver that implements the strategy of
finding ways to solve the problem in depth

⊃ solver that implements a strategy for
finding ways to solve a problem in width

⊃ solver that implements a trial-and-error
strategy

⊃ solver that implements a strategy for
splitting a problem into subproblems

⊃ solver that implements a strategy for
solving problems by analogy

⊃ solver that implements a concept of an
intelligent software package

Separately, we will highlight the classification of
knowledge processing machines, which in general can
correspond to the same fragments of the knowledge
base but together with them form different skills and,
accordingly, different problem solvers:

knowledge processing machine
⊃ logical inference machine

⊃ deductive inference machine
⊃ direct deductive inference machine
⊃ reverse deductive inference

machine
⊃ inductive inference machine
⊃ abductive inference machine
⊃ fuzzy inference machine
⊃ inference machine based on default logic
⊃ logical inference machine with

124

consideration for the time factor

Classification of ostis-systems problem solvers by the
type of problem to be solved (purposes of solving the
problem):

ostis-system problem solver
⊃ problem solver for information search

⇒ subdividing*:
{{{• problem solver for finding

information that meets the
specified criteria

• problem solver for finding
information that does not meet the
specified criteria

}}}
⊃ solver of explicitly formulated problems

:= [problem solver for which the purpose is
explicitly formulated]

⊃ problem solver for searching or
calculating the values of a given set of
quantities

⊃ problem solver for establishing the truth
of a given logical proposition within a
given formal theory

⊃ problem solver for forming a proof of a
given proposition within a given formal
theory

⊃ machine for verifying the response to the
specified problem

⊃ machine for verifying the solution of the
specified problem
⊃ machine for verifying the proof of

a given proposition within a given
formal theory

⊃ problem solver for entity classification
⊃ machine for correlating an entity with

one of a given set of classes
⊃ machine for dividing a set of entities into

classes according to a given set of
attributes

⊃ problem solver for the synthesis of information
constructions
⊃ problem solver for the synthesis of

natural language texts
⊃ problem solver for image synthesis
⊃ problem solver for signal synthesis

⊃ problem solver for speech
synthesis

⊃ problem solver for the analysis of information
constructions
⊃ problem solver for analysis of natural

language texts
⊃ problem solver for understanding

natural language texts

⊃ problem solver for verification of
natural language texts

⊃ problem solver for image analysis
⊃ problem solver for image

segmentation
⊃ problem solver for understanding

images
⊃ problem solver for signal analysis

⊃ problem solver for speech analysis
⊃ problem solver of speech

understanding

V. GENERAL PRINCIPLES OF INFORMATION
PROCESSING IN OSTIS-SYSTEMS

The proposed approach to problem solving is based
on a number of ideas related to the concept of situational
control proposed in the work of D. Pospelov [13]. To date,
attempts to implement this concept, despite its relevance
and demand, have been reduced to particular solutions
for specific classes of problems and, unfortunately, have
not been widely distributed. To a large extent, this is
conditioned by the lack of a universal unified basis
that would make it possible to create situational control
languages based on it in application to specific subject
domains and, more importantly, reuse fragments of
descriptions in such languages.

This problem can be solved using an SC-code, proposed
within the OSTIS Technology, and a family of top-
level ontologies developed on its basis. In particular,
the implementation of the ideas of situational control
is facilitated by such principles as:

• the SC-code as a basic language for describing any
information in the knowledge base and, accordingly,
for building situational control languages based on
it;

• basic set-theoretic semantics of the SC-code, which
makes it possible to formally clarify all the concepts
used in the form of a formal set of ontologies,
which allows for compatibility of the systems being
developed and the possibility of reusage of their
components;

• an agent-oriented approach to information process-
ing, involving the reaction of agents to the occurrence
of certain situations and events in the knowledge
base.

Let us consider in more detail the basic principles of
information processing underlying the proposed approach:

• The problem solver of each ostis-system is based
on a multi-agent system whose agents interact with
each other only(!) through their shared sc-memory by
specifying in this memory the actions in sc-memory
performed by them. At the same time, users of
the ostis-system are also considered as agents of
this system. In addition, sc-agents are divided into
internal, receptor, and effector. Interaction between

125

agents via shared sc-memory is reduced to the
following types of actions:

1) usage of the part of the stored knowledge base
that is available for the corresponding group of
sc-agents;

2) formation (generation) of new fragments of the
knowledge base and/or correction (editing) of any
fragments of the available part of the knowledge
base;

3) integration (immersion) of new and/or updated
fragments into the available part of the knowledge
base.

Let us emphasize that sc-agents do not communicate
with each other directly by sending messages, as is
done in most modern approaches to building multi-
agent systems. In addition, sc-agents have access to a
common knowledge base, which guarantees semantic
compatibility (mutual understanding) between agents,
including users of ostis-systems.

• The user of the ostis-system cannot directly perform
any action in sc-memory, but via the user interface
they can initiate the construction (generation, forma-
tion in sc-memory) of sc-text, which is a specification
of the action in sc-memory performed either by one
atomic sc-agent in one act, or by one atomic sc-
agent in several acts, or by a collective of sc-agents
(non-atomic sc-agent). In the specification of each
such action in sc-memory initiated by a user, this
user is indicated as the customer of this action. Thus,
the user of the ostis-system gives instructions (tasks,
commands) to sc-agents of this system to perform
various actions specified by them in sc-memory.

• Each sc-agent, performing some action in sc-memory,
have to “remember” that sc-memory, on which it
is working, is a shared resource not only for it but
also for all others sc-agents, working on the same
sc-memory, therefore, the sc-agent must comply with
a certain ethics for behaving in a collective of such
sc-agents, which should minimize the interferences
that it creates to other sc-agents.

• The activity of each agent of the ostis-system is
discrete and represents a set of elementary actions
(acts). At the same time, when performing each act,
the agent can set several types of locks on fragments
of the knowledge base. These locks allow prohibiting
other agents from changing the specified fragment
of the knowledge base or even making it “invisible”
to other agents. The locks are set by the agent itself
during the execution of the relevant act and are
removed by it at the last stage of the execution of
this act or earlier, if possible.

• If a certain sc-agent performs some action in sc-
memory, then, for the duration of this action, it can:

1) prohibit other sc-agents from changing the state
of some sc-elements stored in sc-memory – delete

them, change the type;
2) prohibit other sc-agents from adding or deleting el-

ements of some sets denoted by the corresponding
sc-nodes;

3) prohibit other sc-agents from viewing some sc-
elements, that is, these sc-elements become com-
pletely “invisible” (completely blocked) for other
sc-agents but only for the duration of performing
the proper action.

The specified locks must be completely removed
before the completion of the corresponding action.
Let us emphasize that the number of sc-elements
blocked for the duration of some action mainly
includes atomic and non-atomic connectives and
should not include sc-nodes denoting infinite classes
of any entities and, moreover, sc-nodes denoting
various concepts (key classes of various subject
domains).
Ethical (non-selfish) behavior of the sc-agent con-
cerning blocking of sc-elements (that is, restricting
access to them to other sc-agents) implies compli-
ance with the following rules:

1) there should not be more sc-elements blocked than
is necessary to solve the problem;

2) as soon as for any sc-element the need to lock
it disappears before the completion of the corre-
sponding action, it is advisable to immediately
unlock this sc-element (remove the lock).

In order for the sc-agent to be able to work with
any random sc-element, it must either make sure
that this sc-element is not included in the knowledge
base fragment that is part of the full lock or make
sure that this lock is not set by this agent.
A special group of completely blocked sc-elements
(for the duration of the action by the sc-agent) are
auxiliary sc-elements (“scaffolds”), created only for
the duration of this action. These sc-elements should
not be unblocked at the end of the action but need
to be deleted).

• If an action in sc-memory performed by the sc-
agent has completed (i.e. has become a past entity),
then the sc-agent registers the result of this action,
specifying (1) deleted sc-elements and generated sc-
elements. This is necessary if for some reason it will
be required to rollback this action, i.e. to return to
the state of the knowledge base before performing
the specified action.

Let us list some advantages of the proposed approach
to the organization of knowledge processing in ostis-
systems:

• since processing is carried out by agents that
exchange messages only through shared memory,
adding a new agent or excluding (deactivating) one
or more existing agents usually does not lead to

126

changes in other agents, since agents do not exchange
messages directly;

• agent initiation is carried out in a decentralized
manner and most often independently of each other,
so even a significant expansion of the number
of agents within one system does not lead to a
deterioration in its performance;

• agent specifications and, as will be shown below,
their programs can be written in the same language
as the processed knowledge, which significantly
reduces the list of specialized tools developed for the
design of such agents and their collectives, as well
as their analysis, verification, and optimization, and
simplifies the development of the system by using
more universal components.

VI. ACTIONS AND PROBLEMS IN OSTIS-SYSTEMS

The building problem solvers and their components
implies the need to describe the actions they perform and
the problems they solve.

A. Concept of action in sc-memory

action in sc-memory
:= [internal action of the ostis-system]
:= [action performed in sc-memory]
:= [action performed in an abstract unified semantic

memory]
:= [action performed by the ostis-system knowledge

processing machine]
:= [action performed by an agent or a collective of

agents of the ostis-system]
:= [information process on the knowledge base stored

in sc-memory]
:= [process of solving an information problem in sc-

memory]
⊂ process in sc-memory

Each action in sc-memory denotes some transformation
performed by some sc-agent (or a collective of sc-agents)
and focused on the transformation of sc-memory. The
specification of the action after its execution can be
included in the protocol for solving some problem.

The transformation of the state of the knowledge base
includes, among other things, information search, which
assumes (1) localization of the response to the request in
the knowledge base, explicit allocation of the response
structure, and (2) translation of the response into some
external language.

The set of actions in sc-memory includes signs of
actions of various kinds, the semantics of each of which
depends on the specific context, i.e. the orientation of the
action to any specific objects and the belonging of the
action to any particular class of actions.

It should be clearly distinguished:

• each specific action in sc-memory, which is some
kind of transition process that transfers sc-memory
from one state to another;

• each type of actions in sc-memory, which is a certain
class of similar actions (in one sense or another);

• sc-node denoting some specific action in sc-memory;
• sc-node denoting a structure that is a description,

specification, task, statement of the corresponding
action.

Let us consider in more detail the classification of
actions in sc-memory:

action in sc-memory
⊃ action in sc-memory initiated by a question
⊃ action of editing the ostis-system knowledge base
⊃ action of setting the ostis-system mode
⊃ action of editing a file stored in sc-memory
⊃ action of interpreting a program stored in

sc-memory
⊃ action of scp-program interpretation

action in sc-memory initiated by a question
:= [action aimed at forming an answer to the question

posed]
⊃ action. create the specified file
⊃ action. create the specified structure

⊃ action. verify the specified structure
⊃ action. determine the truth or

falsity of the indicated logical
proposition

⊃ action. determine the correctness
or incorrectness of the specified
structure

⊃ action. create a structure
describing the inaccuracies that
exist in the specified structure

⊃ action. clarify the type of the specified
sc-element
⊃ action. determine the

positivity/negativity of the
indicated sc-arc of belonging or
non-belonging

⊃ action. create a semantic neighborhood
⊃ action. create a complete semantic

neighborhood of the specified
entity

⊃ action. create a basic semantic
neighborhood of the specified
entity

⊃ action. create a particular
semantic neighborhood of the
specified entity

⊃ action. create a structure describing the
relations between the specified entities
⊃ action. create a structure

127

describing the similarities of the
specified entities

⊃ action. create a structure
describing the differences of the
specified entities

⊃ action. create a structure describing the
way to solve the specified problem

⊃ action. create a plan for generating an
answer to the specified question

⊃ action. create a protocol for performing
the specified action

⊃ action. create a justification for the
correctness of the indicated solution

⊃ action. verify the justification of the
correctness of the specified solution

⊃ action aimed at establishing the temporal
characteristics of the specified entity

⊃ action aimed at establishing the spatial
characteristics of the specified entity

action of editing the knowledge base
⊃ action. change the direction of the specified

sc-arc
⊃ action. fix errors in the specified structure
⊃ action. transform the specified structure

according to the specified rule
⊃ action. equate two specified sc-elements
⊃ action. include a set

:= [make all elements of the Si set explicitly
belonging to the Sj set, that is, generate
the corresponding sc-arcs of belonging]

⊃ action of generating sc-elements
⊃ action of generation, one of the arguments

of which is some generalized structure
⊃ action. generate a structure

isomorphic to the specified
template

⊃ action. generate an sc-element of the
specified type
⊃ action. generate an sc-connector

of the specified type
⊃ action. generate an sc-node of the

specified type
⊃ action. generate a file with the specified

contents
⊃ action. set the specified file as the primary

identifier of the specified sc-element for
the specified external language

⊃ action. update concepts
:= [action. replace non-basic concepts with

their definition through basic concepts]
:= [action. replace some set of concepts with

another set of concepts]
⊃ action. integrate the information construction

into the current state of the knowledge base

⊃ action. integrate the contents of the
specified file into the current state of the
knowledge base
⊃ action. translate the contents of

the specified file to sc-memory
⊃ action. integrate the specified structure

into the current state of the knowledge
base

⊃ action. supplement the description of the past
state of the ostis-system
⊃ action. supplement the structure

describing the history of the ostis-system
evolution

⊃ action. supplement the structure
describing the history of ostis-system
operation

⊃ action of deleting sc-elements
⊃ action. delete the specified sc-elements

⊃ action. delete sc-elements that are
part of the specified structure and
are not the key nodes of any
sc-agents

action. equate two specified sc-elements
:= [action. combine two specified sc-elements]
:= [action. paste two specified sc-elements together]
⇒ subdividing*:

{{{• action. physically equate two specified
sc-elements

• action. logically equate two specified
sc-elements

}}}

Each action. equate two specified sc-elements can
be performed as action. physically equate two specified
sc-elements or action. logically equate two specified sc-
elements. In the case of logical equation, the action itself
is saved in the agent activity protocol with its specification,
which includes a necessary indication of which elements
were generated and which were deleted. In the case of
physical equation, the action protocol is not saved.

Each action. update concepts denotes the transition
from some group of concepts used earlier to another
group of concepts that will be used instead of the first
ones and will become basic concepts. In general, action.
update concepts consists of the following steps:

• determine the concepts to be replaced based on the
substitutive ones;

• make appropriate changes to the programs of sc-
agents, the key nodes of which are updated concepts;

• replace all constructions in the knowledge base
containing replaceable concepts, in accordance with
the definitions of these concepts through the concepts
that replace them;

• if necessary, sc-elements denoting the concepts
replaced in this way can be completely deleted from

128

the current state of the knowledge base.
The first argument (included in the action sign under

attribute 1 ′) of action. update concepts is a sign for
the set of sc-nodes denoting the replaced concepts, the
second one (included in the action sign under attribute
2 ′) is a sign for the set of sc-nodes denoting the replacing
concepts. In general, either or both of these sets can be
singletons.

action. delete the specified sc-elements
⇒ subdividing*:

{{{• action. physically delete the specified
sc-elements

• action. logically delete the specified
sc-elements

}}}

Each action. delete the specified sc-elements can
be performed as action. physically delete the specified
sc-elements or action. logically delete the specified sc-
elements. In the case of logical deletion, the action itself is
saved in the agent activity protocol with its specification,
which includes a necessary indication of which elements
were deleted, i.e., in fact, the elements are excluded from
the current state of the knowledge base. In case of physical
deletion, the action protocol is not saved.

If any sc-element is deleted, the incident connectives,
including sc-connectors, are also deleted.

To perform action. integrate the specified structure
into the current state of the knowledge base, it is
necessary to paste sc-elements included in the integrated
structure together with synonymous sc-elements included
in the current state of the knowledge base, replace unused
(for example, outdated) concepts included in the integrated
structure on used ones (i.e. replace unused concepts with
their definitions through used ones), explicitly include
all elements of the integrated structure in the number of
elements of the approved part of the knowledge base, and
explicitly include all elements of the integrated structure
in the number of elements that are part of any atomic
sections of the approved fragment of the knowledge base.

B. Problems solved in sc-memory and logically atomic
actions

problem solved in sc-memory
⊂ problem
:= [specification of the action performed in sc-

memory]
:= [structure that is such a description (formulation,

setting) of the corresponding action in sc-memory,
which has sufficient completeness to perform the
specified action]

:= [semantic neighborhood of some action in sc-
memory, providing a sufficiently complete setting
of this action]

action class
⊃ action class in sc-memory

⇐ family of subsets*:
action in sc-memory

⇒ subdividing*:
{{{• class of logically atomic actions

:= [class of autonomous actions]
⊃ class of logically atomic actions

in sc-memory
• class of logically non-atomic actions

:= [class of non-autonomous actions]
}}}

Each action belonging to some specific class of
logically atomic actions has two necessary properties:

• the execution of an action does not depend on
whether the specified action is part of the decompo-
sition of a more general action. When performing
this action, the fact that this action precedes or
follows any other actions should also not be taken
into account (which is explicitly indicated using the
sequence of actions* relation);

• the specified action should be a logically integral act
of transformation, for example, in semantic memory.
Such an action is essentially a transaction, i.e. the
result of such a transformation is a new state of
the system being transformed, and the action being
performed must either be performed completely or
not at all, partial execution is not allowed.

At the same time, logical atomicity does not prohibit
decomposing the performed action into more particular
ones, each of which, in turn, will also be logically atomic.

It is proposed to divide all activities aimed at solving
any problems by the ostis-system into logically atomic
actions. This approach will allow for the modifiability of
ostis-systems problem solvers, provided that the solver
components correspond to classes of logically atomic
actions in sc-memory. Such components are called sc-
agents.

VII. CONCEPT OF AN SC-AGENT AND ABSTRACT
SC-AGENT

sc-agent
:= [the only kind of subjects performing transforma-

tions in sc-memory]
:= [subject capable of performing actions in sc-

memory, belonging to some specific class of
logically atomic actions]

The logical atomicity of the actions performed by
the sc-agent assumes that each sc-agent reacts to the
corresponding class of situations and/or events occurring
in the sc-memory and performs a certain transformation
of the sc-text located in the semantic neighborhood of the
processed situation and/or event. At the same time, each

129

sc-agent generally does not contain information about
which other sc-agents are currently present in the system
and interacts with other sc-agents solely by forming some
constructions (usually action specifications) in the shared
sc-memory. As such a message, for example, a question
addressed to other sc-agents in the system (it is not known
in advance which one specifically) or an answer to a
question posed by other sc-agents (it is not known in
advance which one specifically) can serve. Thus, each
sc-agent at any given time controls only a fragment of
the knowledge base in the context of the problem being
solved by this agent; the state of the rest of the knowledge
base is generally unpredictable for the sc-agent.

Since it is assumed that copies of the same sc-agent
or functionally equivalent sc-agents can work in different
ostis-systems, while being physically different sc-agents,
it is advisable to consider the properties and classification
of non-sc-agents but classes of functionally equivalent
sc-agents, which we will call abstract sc-agents. Under
the abstract sc-agent is understood a certain class of
functionally equivalent sc-agents, different instances (i.e.
representatives) of which can be implemented in different
ways.

Each abstract sc-agent has a corresponding specifica-
tion. The specification of each abstract sc-agent includes:

• specifying the key sc-elements of this sc-agent,
i.e. those sc-elements stored in sc-memory that are
“support points” for this sc-agent;

• a formal description of the conditions for initiating
this sc-agent, i.e. those situation in sc-memory that
initiate the activity of this sc-agent;

• a formal description of the primary initiation con-
dition for this sc-agent, i.e. such a situation in sc-
memory, which prompts the sc-agent to switch to the
active state and start checking for its full initiation
condition (for internal abstract sc-agents);

• a strict, complete, unambiguously understood de-
scription of the activity of this sc-agent, drawn up
using any understandable, generally accepted means
that do not require special study, for example, in
natural language;

• a description of the results of executing this sc-agent.
Sc-agents can be classified according to various criteria.

Since we can talk about a hierarchy of methods (methods
of interpreting other methods) and, accordingly, a hierar-
chy of skills, there is a need to talk about a hierarchy of
sc-agents providing interpretation of a particular method.
In this context, we can talk about the hierarchy of sc-
agents in two aspects:

• an abstract sc-agent (and, accordingly, an sc-agent)
can uniquely correspond to a method (sc-agent
program) describing the activity of this sc-agent.
Such agents will be called atomic abstract sc-agents;

• sometimes, it is advisable to combine abstract sc-
agents into collectives of such agents, which can be

considered as one integral abstract sc-agent, from a
logical point of view, working on the same principles
as atomic abstract sc-agents, that is, reacting to
events in sc-memory and describing its activities
within this memory. Such an abstract sc-agent will
not correspond to any specific method stored in
sc-memory, but the rest of the specification of
the abstract sc-agent (initiation condition, initial
situation description, and the result of the operation
of the sc-agent, etc.) remains the same, like in case
of the atomic abstract sc-agent. Thus, we can say
that the concept of atomicity/non-atomicity of an
abstract sc-agent indicates how the implementation
of this abstract sc-agent is refined – by specifying a
particular method (sc-agent program) or by decom-
posing the abstract sc-agent into simpler ones. It is
important to note that non-atomic abstract sc-agents
can also be part of other, more complex non-atomic
abstract sc-agents. Thus, a hierarchical system of
abstract sc-agents is formed, in general, having a
random number of levels.

• In turn, the method corresponding to the sc-agent
must be interpreted by some other sc-agent of
a lower level and most often by a collective of
such agents, each of which is assigned its own
method describing the behavior of this agent but
at a lower level. Thus, we can say that the concept
of atomicity/non-atomicity of abstract sc-agents is
applicable within one method description language.
In turn, we can talk about the hierarchy of abstract
sc-agents from the point of view of the language
level for description of the methods corresponding
to such agents. In general, such a hierarchy can
also have an unlimited number of levels, however,
it is obvious that when lowering the level of the
method description language, sooner or later we
must approach the method description language,
which will be interpreted by agents implemented
at the level of the ostis-platform, and going even
lower – to the level of the method description
language, interpreted at the hardware level. Thus,
in order to ensure the platform independence of
ostis-systems, it is advisable to allocate a method
description language that would be interpreted at
the level of the ostis-platform and be the basis
for the development of interpreters of higher-level
languages. As such a language, an SCP Language
(Semantic Code Programming) is proposed, which
is considered as an assembler for an associative
semantic computer.

The hierarchical approach to the description of knowl-
edge processing machines and, accordingly, problem
solvers has a number of important advantages, such as
ensuring the modifiability of solvers and the convenience
of their design and debugging at different levels [2], [3].

130

Let us consider the classification of abstract sc-agents
according to various criteria. Classification of abstract
sc-agents based on atomicity:

abstract sc-agent
⇒ subdividing*:

{{{• non-atomic abstract sc-agent
• atomic abstract sc-agent

}}}

A non-atomic abstract sc-agent is understood as an
abstract sc-agent, which is decomposed into a collective
of simpler abstract sc-agents, each of which in turn can
be both an atomic abstract sc-agent and non-atomic
abstract sc-agent. At the same time, in some variant of
decomposition of an abstract sc-agent*, the child non-
atomic abstract sc-agent can become an atomic abstract
sc-agent and be implemented accordingly.

An atomic abstract sc-agent is understood as an
abstract sc-agent, for which the method of its implemen-
tation is specified, i.e. there is a corresponding connective
of the sc-agent program* relation.

The SCP Language allows setting boundaries between
the logical-semantic model of the ostis-system and the
ostis-platform. In this regard, we will consider abstract
sc-agents as platform-independent ones, implemented in
the SCP Language or higher-level languages based on it,
and abstract sc-agents – as platform-dependent ones, that
are implemented at the platform level (for example, in
order to improve their performance). At the same time,
there are a number of abstract sc-agents that cannot be
implemented in principle in the SCP Language. This is
represented in the following hierarchy:

abstract sc-agent
⇒ subdividing*:

{{{• internal abstract sc-agent
• effector abstract sc-agent
• receptor abstract sc-agent

}}}
⇒ subdividing*:

{{{• abstract sc-agent that is not implemented
in the SCP Language

• abstract sc-agent that is implemented in
the SCP Language

}}}
⇒ subdividing*:

{{{• abstract sc-agent for interpreting
scp-programs

• abstract software sc-agent
• abstract sc-meta-agent

}}}
⇒ subdividing*:

{{{• platform-dependent abstract sc-agent
⊃ abstract sc-agent that is not

implemented in the SCP Language
• platform-independent abstract sc-agent

}}}

abstract sc-agent that is not implemented in the SCP
Language
:= [abstract sc-agent that cannot be implemented at

a platform-independent level]
⇒ subdividing*:

{{{• effector abstract sc-agent
• receptor abstract sc-agent
• abstract sc-agent for interpreting

scp-programs
}}}

abstract sc-agent that is implemented in the SCP
Language
:= [abstract sc-agent that can be implemented at a

platform-independent level]
⇒ subdividing*:

{{{• abstract sc-meta-agent
• abstract software sc-agent implemented in

the SCP Language
}}}

abstract software sc-agent
⇒ subdividing*:

{{{• effector abstract sc-agent
• receptor abstract sc-agent
• abstract software sc-agent implemented in

the SCP Language
}}}

atomic abstract sc-agent
⇒ subdividing*:

{{{• platform-independent abstract sc-agent
• platform-dependent abstract sc-agent

}}}

Platform-independent abstract sc-agents include
atomic abstract sc-agents implemented in the basic
programming language of the OSTIS Technology, i.e.
in the SCP Language.

When describing platform-independent abstract sc-
agents, platform independence is understood as platform
independence from the point of view of the OSTIS Tech-
nology, i.e. implementation in a specialized programming
language focused on processing semantic networks (SCP
Language), since atomic sc-agents implemented in the
specified language can be freely transferred from one
ostis-platform to another. At the same time, programming
languages that are traditionally considered platform-
independent in this case cannot be considered as such.

There are sc-agents that fundamentally cannot be
implemented at a platform-independent level, for example,
the actual sc-agents for interpreting sc-models or receptor

131

and effector sc-agents that provide interaction with the
external environment.

Platform-dependent abstract sc-agents include atomic
abstract sc-agents implemented below the level of sc-
models, i.e. not in the SCP Language but in some other
program description language.

Each internal abstract sc-agent denotes a class of sc-
agents that react to events in sc-memory and perform
transformations exclusively within the same sc-memory.

Each effector abstract sc-agent denotes a class of sc-
agents that react to events in sc-memory and perform
transformations in an environment external to this ostis-
system.

Each receptor abstract sc-agent designates a class of
sc-agents that react to events in the environment external
to this ostis-system and perform transformations in the
memory of this system.

Each abstract sc-agent that is not implemented in
the SCP Language must be implemented at the level of
the ostis-platform, including hardware one. Such abstract
sc-agents include abstract sc-agents for interpreting scp-
programs, as well as effector and receptor abstract sc-
agents.

Each abstract sc-agent implemented in the SCP
Language can be implemented in the SCP Language, that
is, at the platform-independent level, but, if necessary,
it can also be implemented at the platform level, for
example, in order to improve performance.

Abstract sc-agents for interpreting scp-programs
include abstract sc-agents that are not implemented at
the platform-independent level, providing interpretation
of scp-programs and scp-meta-programs, including the
creation of scp-processes, the actual interpretation of
scp-operators, as well as other auxiliary actions. In fact,
agents of this class ensure the operation of sc-agents
of higher levels (software sc-agents and sc-meta-agents)
implemented in the SCP Language, in particular, ensure
that these agents comply with the general principles of
synchronization.

Abstract software sc-agents includes all abstract sc-
agents that provide the basic functionality of the system,
that is, its ability to solve certain problems. Agents of
this class should work in accordance with the general
principles of synchronizing the activities of subjects in
sc-memory.

The purpose of abstract sc-meta-agents is to coor-
dinate the activities of abstract software sc-agents, in
particular, solving the problem of interlocks. Agents of
this class can be implemented in the SCP Language,
however, other principles are used to synchronize their
activities, respectively, to implement such agents, a
different level of the SCP Language is required, the
typology of which operators is completely similar to
the typology of scp-operators, however, these operators
have different operational semantics, taking into account

differences in the principles of synchronization (work-
ing with locks*). Programs of such a language will
be called scp-meta-programs, corresponding to them
processes in sc-memory – scp-meta-processes, operators
– scp-meta-operators.

decomposition of an abstract sc-agent*
∈ decomposition relation

The decomposition of an abstract sc-agent* relation
interprets non-atomic abstract sc-agents as collectives of
simpler abstract sc-agents interacting through sc-memory.

In other words, decomposition of an abstract sc-agent*
into abstract sc-agents of a lower level clarifies one of the
possible approaches to the implementation of this abstract
sc-agent by building a collective of simpler abstract sc-
agents.

sc-agent
:= [agent on sc-memory]
⊂ subject
⇒ family of subsets*:

abstract sc-agent

An sc-agent is understood as a concrete instance (from
a set-theoretic point of view, an element) of some atomic
abstract sc-agent operating in any particular intelligent
system.

Thus, each sc-agent is a subject capable of performing
some class of similar actions either only on sc-memory
or on sc-memory and the external environment (for
effectorsc-agents). Each such action is initiated either
by a state or situation in sc-memory, or by a state or
situation in the external environment (for receptor sc-
agents-sensors) corresponding to the initiation condition
of the atomic abstract sc-agent, which instance is the
specified sc-agent. In this case, an analogy can be drawn
between the principles of object-oriented programming,
considering an atomic abstract sc-agent as a class, and a
specific sc-agent as an instance, a specific implementation
of this class.

Interaction of sc-agents is carried out only through
sc-memory. As a consequence, the result of the operation
of any sc-agent is some change in the state of sc-memory,
i.e. the deletion or generation of any sc-elements.

In general, one sc-agent can explicitly transfer control
to another sc-agent if this sc-agent is known a priori.
To do this, each sc-agent in sc-memory has an sc-node
denoting it, with which it is possible to associate a specific
situation in the current state of the knowledge base that
the initiated sc-agent must process.

However, it is not always easy to determine the sc-agent
which should take control from a given sc-agent, and
therefore the situation described above occurs extremely
rarely. Moreover, sometimes the condition for initiating

132

the sc-agent is the result of the activity of an unpredictable
group of sc-agents, as well as the same construction can
be the condition for initiating an entire group of sc-agents.

At the same time, not sc-agent programs* communicate
through sc-memory but the sc-agents themselves described
by these programs.

In the process of work, the sc-agent can generate
auxiliary sc-elements for itself, which it deletes after
completing the act of its activity (these are auxiliary
structures that are used as “information scaffolds” only
during the execution of the corresponding act of activity
and are deleted after the performance of the act).

sc-agent
⊃ active sc-agent
⇒ first domain*:

• key sc-elements of the sc-agent*
• sc-agent program*
• primary initiation condition*
• initiation condition and result*

An active sc-agent is understood as an sc-agent of the
ostis-system, which reacts to events corresponding to its
initiation condition and, as a consequence, its primary
initiation condition*. The sc-agents that are not included
in the set of active sc-agents do not respond to any events
in sc-memory.

The connectives of the key sc-elements of the sc-agent*
relation link together the sc-node, denoting an abstract
sc-agent, and the sc-node, denoting the set of sc-elements,
which are key for a given abstract sc-agent, that is, given
sc-elements are explicitly mentioned within programs
implementing this abstract sc-agent.

The connectives of the sc-agent program* relation
link together the sc-node, denoting an atomic abstract
sc-agent, and the sc-node, denoting a set of programs
implementing the specified atomic abstract sc-agent. In
the case of platform-independent abstract sc-agent, each
connective of the sc-agent program* relation connects the
sc-node denoting the specified abstract sc-agent with a set
of scp-programs describing the activities of this abstract
sc-agent. This set contains one agent scp-program and a
random number (maybe none) of scp-programs that are
necessary to execute the specified agent scp-program.

In the case of the platform-dependent abstract sc-agent,
each connective of the sc-agent* program relation links
the sc-node denoting the specified abstract sc-agent with
a set of files containing the source texts of the program
in some external programming language that implements
the activity of this abstract sc-agent.

The connectives of the primary initiation condition*
relation link together the sc-node, denoting an abstract
sc-agent, and a binary oriented pair describing the
primary initiation condition of this abstract sc-agent, i.e.
such a specification of the situations in sc-memory, the

occurrence of which prompts the sc-agent to switch to
the active state and start checking for its full initiation
condition.

The first component of this oriented pair is the sign
of some class of elementary events in sc-memory*, for
example, the event of adding an sc-arc going out of a
given sc-element*.

In the general case, the second component of this
oriented pair is a random sc-element, with which the
specified type of event in sc-memory is directly associated,
i.e., for example, the sc-element, from which the generated
or deleted sc-arc or file, the contents of which have been
changed, goes out, or in which this sc-arc or the file
come.

After an event occurs in sc-memory, all active sc-agents
are activated, the primary initiation condition* of which
corresponds to the event that occurred.

The connectives of the initiation condition and result*
relation link together the sc-node, denoting an abstract
sc-agent, and a binary oriented pair linking the initiation
condition for this abstract sc-agent and the results of
executing this instance of the given sc-agent in any
particular system.

The specified oriented pair can be considered as a
logical implication connective, while the universality
quantifier is implicitly imposed on sc-variables present in
both parts of the connective and the existence quantifier
is implicitly imposed on sc-variables present either only
in the premise or only in the conclusion.

The first component of the specified oriented pair is
a logical formula describing the initiation condition for
the described abstract sc-agent, that is, a construction
whose presence in sc-memory prompts the sc-agent to
begin work on changing the state of sc-memory. This
logical formula can be both atomic and non-atomic, in
which the usage of any logical language connectives is
allowed.

The second component of the specified oriented pair
is a logical formula describing the possible results of
the execution of the described abstract sc-agent, that is,
a description of the changes in the state of sc-memory
made by it. This logical formula can be both atomic and
non-atomic, in which the usage of any logical language
connective is allowed.

description of the behavior of an sc-agent
⊂ semantic neighborhood

The description of the behavior of an sc-agent is
a semantic neighborhood describing the activity of an
sc-agent to some degree of detail, however, such a
description must be strict, complete, and unambiguously
understood. Like any other semantic neighborhood, the
description of the behavior of an sc-agent can be
translated into any understandable, generally accepted

133

means that do not require special study, for example, into
natural language.

The described abstract sc-agent is included in the
corresponding description of the behavior of an sc-agent
under the key sc-element ′ attribute.

VIII. PRINCIPLES OF SYNCHRONIZING THE
ACTIVITIES OF SC-AGENTS

A. Clarification of the typology of processes in sc-memory,
concepts of locks and locks classification

The concepts of an action in sc-memory and a process
in sc-memory (information process performed by an agent
in semantic memory) are synonymous, since all processes
occurring in sc-memory are conscious and are performed
by some sc-agents. Nevertheless, when it comes to
synchronizing the execution of any transformations in
the memory of a computer system, it is accepted in the
literature to use the terms “process” and “interaction
of processes” [15], [16], in connection with which
we will use this term when describing the principles
of synchronizing the activities of sc-agents when they
perform parallel processes in sc-memory.

process in sc-memory
⇒ subdividing*:

{{{• process in sc-memory corresponding to a
platform-dependent sc-agent

• scp-process
⇒ subdividing*:

{{{• scp-process that is not an
scp-meta-process

• scp-meta-process
}}}

}}}

process in sc-memory corresponding to a
platform-dependent sc-agent
⇒ subdividing*:

{{{• process in sc-memory that corresponds to
a platform-dependent sc-agent and is not
an action of an abstract scp-machine

• action of an abstract scp-machine
⊃ action of scp-program

interpretation
}}}

To synchronize the execution of processes in sc-
memory, it is proposed to use a locking mechanism based
on existing algorithms for synchronizing information
processes in traditional systems [15], [16]. As a possible
direction for the development of this approach, it is
possible to indicate the ideas of lock-free algorithms
that are gaining popularity [17].

The lock* relation connects the signs of actions in
sc-memory with the signs of structures (situational ones)

that contain elements that are blocked for the duration
of performing this action or for some part of this period.
Each such structure belongs to one of the lock types.

The first component of the connective of the lock*
relation is the sign of an action in sc-memory, the second
is the sign of the blocked structure.

lock*
∈ binary relation

lock type
∋ full lock
∋ lock on any change
∋ lock on deletion

The lock type set contains all possible lock classes,
i.e. structures containing sc-elements blocked by some
sc-agent for the duration of performing some action in
sc-memory.

Each structure belonging to the full lock set contains
sc-elements, viewing and modification (deletion, addition
of incident sc-connectors, deletion of the sc-elements
themselves, changing the contents in the case of a file)
which are prohibited to all sc-agents, except for the sc-
agent itself, which performs the corresponding action in
sc-memory associated with it by the lock* relation.

In order to exclude the possibility of implementing
sc-agents, which can make changes to the constructions
describing the locks of other sc-agents, all elements of
these constructions, including the sign of the structure
containing the blocked sc-elements (belonging to both
the full lock set and any other lock type) and the
connectives of the lock* relation linking this structure
and a specific action in sc-memory are added to the full
lock, corresponding to the given action in sc-memory.
Thus, each full lock corresponds to an affiliation loop
linking its sign to itself.

Each structure belonging to the lock on any change
set contains sc-elements, modification (physical deletion,
addition of incident sc-connectors, physical deletion of
sc-elements, changing the contents in the case of a file),
which is prohibited to all sc-agents, except for the sc-
agent itself, which performs the corresponding action
in sc-memory associated with it by the lock* relation.
However, viewing (reading) of these sc-elements by any
sc-agent is not prohibited.

Each structure belonging to the lock on deletion set
contains sc-elements, the deletion of which is prohibited
to all sc-agents, except for the sc-agent, which performs
an action corresponding to this structure in sc-memory,
associated with it by the lock* relation. However, it is
not prohibited to view (read) these sc-elements by any
sc-agent, adding incident sc-connectors.

B. Principles of working with locks
Let us consider the principles of working with locks:

134

Figure 1. An example of using locks

• at any given moment, only one lock of each type
can correspond to one process in sc-memory;

• at any given time, only one lock can correspond
to one process in sc-memory, set on some specific
sc-element;

• at the end of any process execution in sc-memory,
all the locks set by it are automatically deleted;

• to increase the efficiency of the system as a whole,
each process must block the minimum required set
of sc-elements at any given time, removing the lock
from each sc-element as soon as it becomes possible
(safe);

• In the case when more particular subprocesses
are explicitly allocated within the process in sc-
memory (using the temporal part*, sub-action*,
action decomposition*, etc. relations), then each such
subprocess from the point of view of synchronizing
execution is considered as an independent process,
which can correspond to all necessary locks.
– all child processes in sc-memory have access to

the locks of the maternal process in the same way
as if they were locks corresponding to each of
such child processes;

– in turn, the maternal process does not have any
privileged access to sc-elements blocked by child
processes and works with them in the same way
as any other process in sc-memory. The exception
is sc-elements denoting the child processes them-
selves, since the maternal process must be able to

control the child one, for example, suspending or
terminating their execution;

– all child processes in relation to each other work
the same way as in relation to any other processes;

– in the case when the maternal process suspends
execution (becomes a deferred action), all of its
child processes also suspend execution. In turn,
suspending one of the child processes in general
does not explicitly initiate the stopping of the
entire maternal process and, accordingly, other
child processes.

Let us consider the principles of working with full
locks:

• if the sc-element incident to some sc-connector gets
into any full lock, then this sc-connector itself is
also considered blocked by the same lock by default.
The contrary is generally not true, since part of the
sc-connectors incident to some sc-element may be
completely blocked, while this element itself will
not be blocked. This situation is typical, for example,
for sc-nodes denoting classes of concepts;

• each process in sc-memory can freely modify or
delete any sc-elements that get into the full lock
corresponding to this process.

The principles of working with full locks, on the one
hand, are the simplest, since all processes, except for
the one who set such a lock, do not have access to the
blocked sc-elements, and conflicts cannot arise. On the
other hand, the frequent usage of locks of this type can

135

lead to the case when the system will not be able to fully
use its knowledge and give incomplete or even incorrect
answers to the questions posed.

Let us consider the principles of working with locks
on any change and locks on deletion:

• only one lock of the same type can be set on the
same sc-element at one time, but different processes
can simultaneously set two different locks types on
the same element. This concerns the case when the
first process has set a lock on deletion on some sc-
element and the second process then sets a lock on
any change. In other cases, a lock conflict occurs;

• setting a lock of any type is also considered a
change, so if a lock on any change was set on some
sc-element, then another process will not be able to
set a lock of any type on the same sc-element until
the first process deletes its own;

• if a lock on deletion is set on some sc-connector, then
by default the same lock is set on sc-elements that
are incident to this sc-connector, since deleting these
elements will lead to the deletion of this connector.

process in sc-memory
:= [action in sc-memory]
⇒ subdividing*:

Classification of processes in sc-memory in terms
of synchronizing their execution
= {{{• action of searching for sc-elements

• action of generating sc-elements
• action of deleting sc-elements
• action of setting a lock of some

type on some sc-element
• action of removing the lock from

some sc-element
}}}

In some cases, in order to ensure synchronization, it
is necessary to combine several elementary actions on
sc-memory into one indivisible action (transaction in
sc-memory), for which it is guaranteed that no third-
party process will be able to read or modify the sc-
elements involved in this action, until the action completes.
At the same time, unlike a situation with a full lock,
a process, trying to access such elements, does not
continue execution as if these elements simply did
not exist in sc-memory but waits for the transaction
to complete, after which it can perform any actions
with these elements according to the general principles
of process synchronization. The problem of ensuring
transactions cannot be solved at the SC-code level and
requires the implementation of such indivisible actions
at the level of the ostis-platform.

If an action of searching for sc-elements is performed,
all sc-elements found and saved within any process get
into the corresponding lock on any change for this process.

Thus, the integrity of the fragment of the knowledge base
with which some process is working in sc-memory is
guaranteed. In this case, the search and automatic setting
of such a lock should be implemented as a transaction
in sc-memory.

This approach also allows avoiding a situation where
one process has blocked some sc-element on any change,
and the second process is trying to generate or delete
an sc-connector incident to this sc-element. In this case,
the second process will have to first find and lock the
specified sc-element on any change, which will cause a
lock conflict (interlock*).

In the case of generation of any sc-element within
a certain process, it automatically gets into a full lock
corresponding to this process. At the same time, the
generation and automatic setting of such a lock should be
implemented as a transaction in sc-memory. If necessary,
the generated elements can be deleted (i.e. their temporary
existence will not affect the activities of other processes
at all) or unblocked when information is generated that
may have some value in the future.

If any process tries to set a lock of any type on any
sc-element already blocked by some other process, then,
on the one hand, the lock cannot be set until another
process unlocks the specified sc-element; on the other
hand, in order to provide the possibility of searching
and eliminating interlocks, it is necessary to explicitly
indicate the fact that some process wants to access some
sc-element blocked by another process. In order to be able
to specify which processes are trying to block an already
blocked sc-element, it is proposed, along with the lock*
relation, to use the planned lock* relation, completely
analogous to the lock* relation.

The described mechanism also regulates the search
processes, since the searching and saving of some sc-
element involves the setting of a lock on any change. In
addition, it should be taken into account that a lock on
any change can be set on one sc-element after the lock
on deletion corresponding to another process. In this case,
there is no need to use the planned locks* relation.

The action of checking for the presence of a lock on
some sc-element and, depending on the result of the check,
the setting of the lock or the planned lock (indicating
the priority, if necessary) should be implemented as a
transaction.

planned lock*
⊂ lock*

The process to which the planned lock* is assigned
suspends execution until the already set locks are removed,
after which the planned lock* becomes a real lock*, and
the process continues execution in accordance with the
general rules.

136

lock priority*
⇒ scope of definition*:

planned lock*

In the case when several processes are planning to set
a lock on the same sc-element at once, the lock priority*
relation is used, linking the planned lock* relation pairs.
As a rule, the lock priority is determined by which of
the processes previously tried to set a lock on the given
sc-element, although in general the priority can be set or
changed depending on additional criteria.

In the case of an attempt to delete some sc-element by
some process, deletion can be carried out only if no lock
is set (and is not planned to be set) on this sc-element
by any other process.

In other cases, it is necessary to ensure that all processes
working with this sc-element are completed correctly, and
only then delete it physically.

To implement this possibility, each process can be
matched with a set of sc-elements that are deleted by this
process.

The action of checking for locks or planned locks on
the deleted sc-element and actually deleting it or adding
it to the set of deleted sc-elements for the corresponding
process should be implemented as a transaction.

deleted sc-elements*
⇒ first domain*:

process in sc-memory

Sc-elements that have got into the set of deleted sc-
elements of some process in sc-memory are available to
processes that have already set (or plan to set) locks on
these sc-elements earlier (before attempting to delete it),
and for all other processes these sc-elements are already
considered deleted. A process trying to delete an sc-
element suspends its execution until all processes, which
have blocked and plan to block this sc-element, unlock it.
In general, one sc-element can be included in the sets of
deleted elements simultaneously for several processes, in
this case, all such processes will simultaneously continue
execution after removing all locks from this sc-element. If
the deletion is attempted by one of the processes that has
already set a lock on the specified sc-element, then the
algorithm of actions remains the same – the sc-element
is added to the set of sc-elements being deleted by this
process and will be physically deleted as soon as all other
processes that have set a lock on this sc-element remove
them.

Let us consider the algorithm for removing the lock
from some sc-element:

1) if one or more planned locks* are set on this sc-
element, then the first of them by priority (or the only
one) becomes a lock*, the corresponding process
continues execution (becomes a real entity); the
connective of the execution priority relation cor-

responding to the remote connective of the planned
lock* relation is also deleted, i.e. the priority is
shifted by one position;

2) if there are no planned locks* set on this sc-element,
but it gets into the set of deleted sc-elements for
one or more processes, then the given sc-element
is physically deleted and the processes, suspended
before its deletion, continue their execution (become
real entities);

3) if the planned locks are not set on this sc-element
and it is not included in the set of deleted ones for
any process, then the lock is simply removed without
any additional changes.

transaction in sc-memory
⇒ subdividing*:

{{{• searching for some construction in
sc-memory and automatic setting a lock
on any change to the found sc-elements

• generating some sc-element and
automatic setting of a full lock on it

• checking for the presence of a lock on
some sc-element and, depending on the
result of the check, setting a lock or a
planned lock

• checking for the presence of locks or
planned locks on the deleted sc-element
and actually deleting it or adding it to
the set of deleted sc-elements for the
corresponding process

• removing the lock from a given
sc-element and, if necessary, setting the
first in priority planned lock or deleting
this sc-element if it is included in the set
of deleted sc-elements for some process

• searching for subprocesses of a process
and adding them to a set of deferred
actions in the case of adding the process
itself to this set

• searching for subprocesses of a process
and deleting them from the set of deferred
actions if the process itself is deleted
from this set

}}}

C. Principles of synchronizing sc-agents implemented at
the platform-independent level

When implementing abstract software sc-agents in the
SCP Language, compliance with all the principles of
synchronization of processes corresponding to these sc-
agents is ensured at the level of sc-agents for interpreting
scp-programs, i.e. by means of the ostis-platform. When
implementing abstract software sc-agents at the platform
level, compliance with all synchronization principles is
assigned, firstly, directly to the agent developer and,

137

secondly, to the platform developer. For example, the
platform can provide access to elements stored in sc-
memory through some programming interface that already
takes into account the principles of working with locks,
which will save the agent developer from having to take
into account all these principles manually.

In addition, a number of specific principles of operation
of abstract software sc-agents, implemented in the SCP
Language, are highlighted:

• as a result of the appearance in sc-memory of some
construction that satisfies the condition of initiating
some abstract sc-agent implemented using the SCP
Language, an scp-process is generated and initiated
in sc-memory. As a template for generation, an agent
scp-program is used, corresponding to this abstract
sc-agent.

• each such scp-process corresponding to some agent
scp-program can be associated with a set of struc-
tures describing locks of various types. Thus, syn-
chronization of interaction of parallel scp-processes
is carried out in the same way as in the case of any
other actions in sc-memory.

• despite the fact that each scp-operator is an atomic
action in sc-memory, which is a sub-action within
the entire scp-process, locks corresponding to one
operator are not introduced to avoid the lengthiness
and excess of additional system constructions created
when executing some scp-process. Instead of it, locks
that are common to the entire scp-process are used.
Thus, agents for interpreting scp-programs work
only taking into account the locks common to the
entire interpreted scp-process.

• processes describing the activity of agents for in-
terpreting scp-programs are usually not created,
therefore, their corresponding locks are not intro-
duced. Since such agents work with a unique scp-
process and their number is limited and known, then
the usage of locks for their synchronization is not
required.

• if the scp-process is suspended (is added to the set
of deferred actions), in accordance with the general
synchronization rules, all its child processes must
also be suspended. In this regard, all scp-operators,
which at this moment are real entities, become
deferred actions.

• in order to avoid undesirable changes in the body
of the scp-process, the entire construction generated
on the basis of some scp-program (the entire sc-
text describing the decomposition of the scp-process
into scp-operators) must be added to the full lock
corresponding to this scp-process.

• if necessary, the corresponding scp-operators of the
scp-operator for lock control class are used to unlock
or lock some construction by some lock type.

• after completing the execution of some scp-process,

its text is usually deleted from sc-memory and
all blocked constructions are released (signs of
structures that denoted locks are destroyed).

• as a rule, the particular action class corresponding to
a specific scp-program is not explicitly introduced,
but the more general scp-process class is used, except
in cases when the introduction of a special action
class is necessary for some other reasons.

In general, the entire locking mechanism can be
described both at the SC-code level (to increase the
level of platform independence) and, if necessary, can
be implemented at the ostis-platform level, for example,
to improve performance. To do this, a unique table,
containing a list of blocked elements with an indication
of the lock type at each time, can be assigned to each
process executed in sc-memory at the lower level.

D. Example of the operation of the locking mechanism

Let us consider an example of using the described
mechanism.

Figure 2. An example of using planned locks

In this example, Process1 works directly with the sc-
element e1,Process2 and Process3 plan to set a lock on
any change and a lock on deletion, respectively, at the
same time, Process2 tried to set its lock before Process3,
therefore, according to the direction of the connective of
the lock priority* relation, its lock will be set earlier.
Process4 and Process5 are waiting for all locks and
planned locks to be removed, after which e1 will be
deleted, and Process1 and Process2 will continue their
execution. No other planned locks can be set anymore,
since e1 got into a set of deleted sc-elements of at least
one process and, in accordance with the rules set out
above, all other processes except Process1–Process5 can
no longer access this sc-element. The executed process
belongs to the real entity set, suspended – to the deferred
action set.

After Process1 has unlocked sc-element e1, this el-
ement will be locked by Process2, and Process2 will
continue execution. Planned lock* set by Process2,
becomes a regular lock*.

138

Figure 3. An example of using planned locks (continued)

Figure 4. An example of using a lock on deletion

After Process2 has unlocked sc-element e1, this el-
ement will be locked by Process3, and Process3 will
continue execution.

Figure 5. The sc-elements to be deleted

When all processes remove the locks from sc-element
e1, it can be physically deleted, and Process4 and
Process5 will continue execution.

Depending on the specific lock types set by parallel
processes on some sc-elements and what specific actions
with these sc-elements are supposed to be performed
further within these processes, the interlock situations
are possible when each of these processes will wait for
the second process to remove the lock from the desired
sc-element, without removing the lock set by itself from
the sc-element, access to which is required by the second
process.

In the case when at least one of the locks is a full lock,
an interlock situation cannot occur, since sc-elements that
have got into the full lock of some scp-process are not
available to other scp-processes, even for reading, and,
thus, the rest of the scp-processes will work as if the
blocked sc-elements are simply missing in the current

state of sc-memory.
In cases where none of the set locks is a full lock,

interlocks may occur.
Elimination of the interlock is impossible without the

intervention of a specialized sc-meta-agent, which has
the right to ignore the locks set by other processes.

In general, the problem of a specific interlock can be
solved by performing the following steps by a specialized
sc-meta-agent:

• rollback of several operations performed by one of
the processes involved in the interlock by as many
steps back as necessary so that the second process
gets access to the necessary sc-elements and can
continue execution;

• waiting for the execution of the second process until
it completes or removes all locks from sc-elements
that the first process needs to access;

• repeated execution of canceled operations within the
first process and continuation of its execution but
taking into account the changes in memory made by
the second process.

For sc-meta-agents, all sc-elements, including those
describing locks, planned locks, etc., are completely
equivalent to each other in terms of access to them, i.e.
any sc-meta-agent has access to any sc-elements, even
those that have got into a full lock for any other process.
This is necessary so that sc-meta-agents can identify and
fix various problems, for example, the interlock problem
described above.

Thus, the problem of synchronizing the activities of
sc-meta-agents requires the introduction of additional
rules.

We will divide this problem into two more specific
ones:

• ensuring synchronization of the activities of sc-meta-
agents among themselves;

• ensuring synchronization of the activities of sc-meta-
agents and software sc-agents.

The first problem is proposed to be solved by prohibit-
ing parallel execution of sc-meta-agents. Thus, at any
given time within one ostis-system, there can be only one
process corresponding to the sc-meta-agent and being the
real entity.

The second problem is proposed to be solved by
introducing additional privileges for sc-meta agents when
accessing any sc-element. One rule is enough for this:

If a certain sc-element has become used within a
process corresponding to the sc-meta-agent (for example,
it has become an element of at least one scp-operator
included in this process), then all processes, into the locks
corresponding to which the specified sc-element gets,
become deferred actions (suspend execution). As soon
as the specified sc-element ceases to be used within the
process corresponding to the sc-meta-agent, all processes
suspended for this reason continue execution.

139

The considered limitations do not significantly dete-
riorate the performance of the ostis-system, since sc-
meta-agents are designed to solve a fairly narrow class of
problems, which, as the experience of practical developing
prototypes of various ostis-systems has shown, arise quite
rarely.

It is worth noting that there may be a situation in which
the execution of some process in sc-memory is interrupted
due to an error. In this case, there is a possibility that
the lock set by this process will not be removed until the
sc-meta-agent that has detected a similar situation does
that. However, this problem can only be partially solved
at the sc-model level, for cases when an error occurs
during the interpretation of the scp-program, is tracked
by the scp-interpreter, and a corresponding construction
is formed in memory that reports the problem to the
sc-meta-agent. Cases where an error has occurred at the
scp-interpreter or sc-storage levels should be considered
at the ostis-platform level.

IX. BASIC PROGRAMMING LANGUAGE OF
OSTIS-SYSTEMS

The allocation of the Basic programming language for
ostis-systems allows for a clear separation of the level of
methods and, accordingly, the skills of the ostis-system,
which can be fully described at the level of the knowledge
base, and lower-level skills that provide interpretation of
these higher-level skills. In other words, the allocation of
such a language allows for the platform independence of
ostis-systems, both in the case of a software implementa-
tion of the ostis-platform and in the case of an associative
semantic computer.

As a basic language for describing programs for
processing texts of the SC-code, the SCP Language is
proposed.

The SCP Language is a graph procedural programming
language designed for efficient processing of sc-texts. The
SCP Language is a parallel asynchronous programming
language.

SCP Language
:= frequently used sc-identifier*:

[scp-program]

The data representation language for texts of the SCP
Language (scp-programs) is the SC-code and, accordingly,
any variants of its external representation. The SCP
Language is built on the basis of the SC-code, as a result
of which scp-programs can be part of the processed data
for scp-programs, including in relation to themselves.
Thus, the SCP Language provides the ability to build
reconfigurable programs. However, in order to be able
to reconfigure the program directly in the process of its
interpretation, it is necessary at the level of the interpreter
of the SCP Language (Abstract scp-machine) ensure

the uniqueness of each executable copy of the source
program. Such an executable copy generated on the basis
of the scp-program will be called an scp-process. The
inclusion of the sign of some action in sc-memory in
the set of scp-processes guarantees the fact that only
the signs of elementary actions (scp-operators) will be
present in the decomposition of this action, which can
be interpreted by the implementation of the Abstract
scp-machine (interpreter of scp-programs).

The SCP Language is considered as an assembler for
an associative semantic computer [3].

Abstract scp-machine
∈ scp-machine

⇐ generalized model*:
scp-interpreter

The basic model for processing sc-texts includes the
Subject domain of the Basic programming language of
ostis-systems, that is, a description of the syntax and
denotational semantics of the SCP Language, as well
as a description of the Abstract scp-machine that is a
model of the scp-interpreter, which should be part of
the ostis-platform (although in general there can exist
platform variants that do not contain such an interpreter,
which, however, will not allow using the advantages of
the proposed basic model).

Let us consider the key features and advantages of the
Basic model for processing sc-texts:

• The texts of the SCP Language programs are written
using the same unified semantic networks as the
processed information, so we can say that the Syntax
of the SCP Language at the basic level is the same
as the Syntax of the SC-code.

• An approach to interpreting scp-programs involves
creating a unique scp-process at each call of the
scp-program.

• Several independent sc-agents can be executed
simultaneously in shared memory, while different
copies of sc-agents can be executed on different
servers, due to the distributed implementation of the
ostis-platform. Moreover, the SCP Language allows
making parallel asynchronous calls to subprograms
with subsequent synchronization and even executing
operators in parallel within a single scp-program.

• The transfer of the sc-agent from one system to
another consists in a simple transfer of a fragment
of the knowledge base, without any additional
operations depending on the interpretation platform.

• The fact that the specifications of sc-agents and
their programs can be written in the same language
as the processed knowledge significantly reduces
the list of specialized tools intended for designing
knowledge processing machines and simplifies their
development by using more universal components.

140

• The fact that a unique scp-process is created for
the interpretation of the scp-program makes it
possible to optimize the execution plan before its
implementation and even directly during execution
without the potential danger of ruining the general
universal algorithm of the entire program. Moreover,
such an approach to the design and interpretation
of programs allows talking about the possibility of
creating self-reconfigurable programs.

A. Concept of an scp-program

scp-program
⊂ program in sc-memory
⊃ agent scp-program

Each scp-program is a generalized structure describing
one of the decomposition options for actions of some
class performed in sc-memory. The sign of the sc-variable
corresponding to a specific decomposable action is a key
sc-element ′ within the scp-program. It is also explicitly
indicated that this sign belongs to the set of scp-processes.

Thus, each scp-program describes in a generalized form
the decomposition of some scp-process into interrelated
scp-operators, indicating, if any, arguments for this scp-
process.

Agent scp-programs are a special case of scp-programs
in general, however, they deserve separate consideration,
since they are used most often. Scp-programs of this class
are implementations of programs of knowledge processing
agents and have a rigidly fixed set of parameters. Each
such program has exactly two in-parameters ′. The value
of the first parameter is the sign of a binary oriented pair,
which is the second component of the connective of the
primary initiation condition* relation for an abstract sc-
agent, the set of sc-agent programs* of which includes the
considered agent scp-program, and in fact, it describes a
class of events, to which the specified sc-agent responds.

The value of the second parameter is an sc-element,
which is directly associated with the event, as a result of
which the corresponding sc-agent was initiated, i.e., for
example, generated or deleted sc-arc or sc-edge.

Let us consider the principles of implementing abstract
sc-agents implemented in the SCP Language:

• general principles of the organization of interaction
between sc-agents and users of the ostis-system
through a shared sc-memory;

• as a result of the appearance in sc-memory of some
construction that satisfies the condition of initiating
some abstract sc-agent implemented using the SCP
Language, the scp-process is generated and initiated
in sc-memory. As a template for generation, an agent
scp-program is used, specified in the set of programs
of the corresponding abstract sc-agent;

• each such scp-process corresponding to some agent
scp-program can be associated with a set of struc-

tures describing locks of various types. Thus, syn-
chronization of interaction of parallel scp-processes
is carried out in the same way as in the case of any
other actions in sc-memory;

• Within the scp-process, child scp-processes can
be created, but synchronization between them, if
necessary, is carried out by introducing additional
internal locks. Thus, each scp-process from the point
of view of processes in sc-memory is atomic and
complete act of activity of some sc-agent;

• in order to avoid undesirable changes in the body of
the scp-process itself, the entire structure generated
on the basis of some scp-program (the entire text
of the scp-process) should be added to the full lock
corresponding to this scp-process;

• all constructions generated during the execution of
the scp-process automatically get into the full lock
corresponding to this scp-process. Additionally, it
should be noted that the sign of this structure itself
and all meta-information about it are also included
in this structure;

• if necessary, it is possible to manually unlock or
lock some construction with some lock type using
the corresponding scp-operators of the scp-operator
for lock control class;

• after completing the execution of some scp-process,
its text is usually deleted from sc-memory, and
all blocked constructions are released (signs of
structures that denoted locks are destroyed).

B. Concept of an scp-process

An scp-process is understood as some action in sc-
memory that uniquely describes a specific act of executing
some scp-program for given source data. If the scp-
program describes an algorithm for solving a problem
in a general way, then the scp-process denotes a specific
action that implements this algorithm for the specified
input parameters.

In fact, the scp-process is a unique copy created on
the basis of the scp-program, in which each sc-variable,
with the exception of scp-variables ′, corresponds to the
generated sc-constant.

Belonging of some action to a set of scp-processes
guarantees the fact that only signs of elementary actions
(scp-operators) will be present in the decomposition of
this action, which can be interpreted by the implementa-
tion of an Abstract scp-machine.

C. Concept of an scp-operator

Each scp-operator represents some elementary action
in sc-memory. The arguments of the scp-operator will be
called operands. The order of the operands is specified
using the appropriate role relations (1 ′, 2 ′, 3 ′, and so
on). The operand marked with role relation 1 ′ will be
called the first operand, marked with role relation 2 ′ –
the second operand, etc. The type and meaning of each

141

operand is also specified using various subclasses of the
scp-operand ′ relation. In general, as the operand, any
sc-element can act, including the sign of any scp-program,
including the program itself containing this operator.

Each scp-operator must have one or more operands,
as well as an indication of the scp-operator (or several)
that should be executed next. The exception to this rule
is the scp-operator for program completion, which does
not contain a single operand and after which execution
no scp-operators can be executed within this program.

Each atomic type of the scp-operator is a class of scp-
operators, which is not divided into more particular ones
and, accordingly, is interpreted by the implementation of
the Abstract scp-machine.

Let us consider the upper level of the classification of
scp-operators, which is given in more detail in [3].

scp-operator
⊂ action in sc-memory
⇐ family of subsets*:

atomic type of the scp-operator
⇒ subdividing*:

{{{• scp-operator for generating constructions
• scp-operator for associative search of

constructions
• scp-operator for deleting structures
• scp-operator for checking conditions
• scp-operator for controlling the values of

operands
• scp-operator for controlling scp-processes
• scp-operator for event control
• scp-operator for processing files contents
• scp-operator for lock control

}}}

The role relation initial operator ′ specifies those
scp-operators that should be executed first within the
decomposition of the scp-process that corresponds to the
scp-program, i.e. those with which, actually, the execution
of the scp-process begins.

D. Parameters of scp-programs

parameters of the scp-program ′

⊂ action argument ′

⇒ subdividing*:
{{{• in-parameter ′

• out-parameter ′

}}}

The role relation parameter of the scp-program ′

links the sign of the scp-process with its arguments, that
corresponds to the scp-program.

Parameters of the in-parameter ′ type, although they
correspond to variables of the scp-program ′, cannot
change the value during its interpretation. The fixed value

of the variable is set when creating a unique copy of
the scp-program (scp-process) for its interpretation, and
thus the corresponding scp-variable ′ at the time of its
interpretation becomes an scp-constant ′ within each scp-
operator in which this scp-variable ′ occurred. The usage
of in-parameters can be considered by analogy with the
usage of a variant of the value transfer mechanism in
traditional programming languages, with the condition
that the value of a local variable within a child program
cannot be changed.

Parameters of the out-parameter ′ type correspond to
variables of the scp-program ′ and have all the same
corresponding properties. Most often, it is assumed that
the value of this parameter is necessary for the maternal
scp-program containing the call operator of the current
scp-program. At the same time, at the moment of the
beginning of interpretation, a node denoting a variable
(or rather, its unique copy within the process) of the
maternal process is passed directly to the child process
as a parameter. The specified variable may, if necessary,
have a value or not. After completion and during the in-
terpretation of the child process, the maternal process can
still work with the variable passed as the out-parameter ′,
viewing or changing its value if necessary. The usage of
the out-parameter can be considered by analogy with the
usage of the link transmission mechanism in traditional
programming languages.

X. MODEL FOR THE INTERPRETER OF THE BASIC
PROGRAMMING LANGUAGE OF OSTIS-SYSTEMS

The advantages of the proposed multi-agent approach to
building knowledge processing machines and, accordingly,
problem solvers can work not only at the platform-
independent level but also at lower levels. So, in particular,
the interpreter of the Basic programming language of
ostis-systems is also proposed to be built as a non-
atomic abstract sc-agent that provides interpretation of
the methods described in the SCP Language. Thus, such
an interpreter is included in the general hierarchy of
agents that build-up the knowledge processing machine
of ostis-systems and is an abstract sc-agent that is not
implemented in the SCP Language.

In general, there may be many options for implementing
such interpreters. Within the OSTIS Standard, one of them
is offered as a standard and is called an Abstract scp-
machine.

Abstract scp-machine
∈ abstract sc-agent that is not implemented in the

SCP Language
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for creating
scp-processes

• Abstract sc-agent for interpreting
scp-operators

142

• Abstract sc-agent for synchronizing the
process of interpreting scp-programs

• Abstract sc-agent for destroying
scp-processes

• Abstract sc-event for synchronizing events
in sc-memory and its implementation
⇒ decomposition of an abstract

sc-agent*:
{{{• Abstract sc-agent for

translating the generated
event specification in
sc-memory into an internal
representation

• Abstract sc-agent for
processing an event in
sc-memory that initiates an
agent scp-program

}}}
}}}

The purpose of an Abstract sc-agent for creating scp-
processes is to create scp-processes corresponding to a
given scp-program. This sc-agent is activated when an
initiated action belonging to the action of interpreting
scp-program class appears in sc-memory. After the sc-
agent checks the initiation condition, the scp-process is
created taking into account the specific parameters of the
interpretation of the scp-program, after which the initial
operator ′of the scp-process is searched and added to the
the set of real entities.

The purpose of the an Abstract sc-agent for interpreting
scp-operators is actually the interpretation of the operators
of the scp-program, that is, the execution in sc-memory
of actions described by a specific scp-operator. This
sc-agent is activated when an scp-operator belonging
to the real entities class appears in sc-memory. After
performing the action described by the scp-operator, the
scp-operator is added to the set of past entities. In the
case when the semantics of the action described by the
scp-operator suggests the possibility of branching for
the scp-program after executing this scp-operator, then
one of the subsets of the class of performed actions –
unsuccessfully performed action or successfully performed
action is used.

The purpose of an Abstract sc-agent for synchronizing
the process of interpreting scp-programs is to provide
transitions between scp-operators within a single scp-
process. This sc-agent is activated when some scp-
operator is added to the set of past entities. Next, a
transition is made along the sc-arc belonging to the
sequence of actions* relation (or more particular relations,
if the scp-operator was added to the set of successfully
performed actions or unsuccessfully performed actions).
In this case, the next scp-operator becomes a real
entity (active scp-operator) if at least one scp-operator
associated with it by incoming sc-arcs belonging to the

sequence of actions* relation (or more particular relations)
became a past entity (or, respectively, a subset of past
entities). In the case when it is necessary to wait for
the completion of all previous operators, the operator of
the conjunction of preceding operators class is used for
synchronization.

The purpose of an Abstract sc-agent for destroying
scp-processes is the destruction of the scp-process, i.e.
the deletion from sc-memory of all sc-elements that build
it up. This sc-agent is activated when an scp-process
belonging to a set of past entities appears in sc-memory.
At the same time, the destroyed scp-process does not
necessarily have to be fully formed. The need to destroy
an incomplete scp-process may arise if, when creating the
scp-process, problems arose that did not allow continuing
the creation of the scp-process and its performance.

The purpose of an Abstract sc-agent for event synchro-
nization in sc-memory and its implementation is to ensure
the operation of non-atomic sc-agents implemented in
the SCP Language.

The purpose of an Abstract sc-agent for translating
the generated event specification in sc-memory into
the internal representation is the translation of oriented
pairs describing the primary initiation condition* of some
sc-agent into the internal representation of elementary
events at the level of sc-storage, provided that this sc-
agent is implemented at a platform-independent level
(using the SCP Language). The condition for initiating
this sc-agent is the appearance in sc-memory of a new
element of the set of active sc-agents, for which the
corresponding oriented pair will be found and translated.

The purpose of an Abstract sc-agent for event pro-
cessing in sc-memory, initiating the agent scp-program
is to search for an agent scp-program, included in the
set of sc-agent programs* for each sc-agent, the primary
initiation condition of which corresponds to an event that
occurred in sc-memory, as well as the generation and
initiation of an action aimed at interpreting this program.
As a result of the operation of this sc-agent, an initiated
action appears in sc-memory, belonging to the action of
interpreting scp-program class.

XI. CONCLUSION AND DIRECTIONS FOR FURTHER
DEVELOPMENT

In the article, the current problems in the field of
developing hybrid problem solvers are formulated and
an approach to solving some particular problems that are
part of these more general problems is proposed. Thus,
the solution of the formulated general problems is still
relevant, however, the usage of the OSTIS Technology
and the principles proposed in this work for constructing
problem solvers based on it creates preconditions for their
solution.

It is possible to formulate a number of more specific
directions for the development of the approaches proposed
in the article:

143

• Integrate ideas of situational control into the pro-
posed approach more closely and fully;

• Refine the proposed locking mechanism, in particular,
to minimize the number of lock classes, to take into
account and implement the ideas of implementing
lock-free algorithms;

• Eliminate the need to introduce sc-meta-agents and
scp-meta-programs.

• Modify the SCP Language in order to be capable
of describing the receptor and effector interaction of
ostis-systems within scp-programs.

• When developing an Abstract scp-machine, to take
into account the principles of building wave program-
ming languages [18], [19] and the ideas of insertion
programming and modeling [20], [21].

ACKNOWLEDGMENT

The author would like to thank the research group of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for its help in the work and valuable
comments.

The work was carried out with the partial financial
support of the BRFFR (BRFFR-RFFR No. F21RM-139).

REFERENCES

[1] A. Kolesnikov, Gibridnye intellektual’nye sistemy: Teoriya i
tekhnologiya razrabotki [Hybrid intelligent systems: theory and
technology of development], A. M. Yashin, Ed. SPb.: Izd-vo
SPbGTU, 2001.

[2] D. Shunkevich, “Agent-oriented models, method and tools of
compatible problem solvers development for intelligent systems,”
in Open semantic technologies for intelligent systems, V. Golenkov,
Ed. BSUIR, Minsk, 2018, pp. 119–132.

[3] V. Golenkov, N. Guliakina, and D. Shunkevich, Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva i
jekspluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’juternyh sistem [Open technology of ontological design,
production and operation of semantically compatible hybrid
intelligent computer systems], V. Golenkov, Ed. Minsk: Bestprint
[Bestprint], 2021.

[4] A. Narin’jani, “Ne-faktory: kratkoe vvedenie [non-factors: a
brief introduction],” Novosti iskusstvennogo intellekta [Artificial
intelligence news], no. 2, pp. 52–63, 2004.

[5] V. Gorodetskii, V. Samoilov, and D. Trotskii, “Bazovaya ontologiya
kollektivnogo povedeniya avtonomnykh agentov i ee rasshireniya
[Basic ontology of autonomous agents collective behavior and
its extension],” Izvestiya RAN. Teoriya i sistemy upravleniya
[Proceedings of the RAS. Theory and control systems], no. 5,
pp. 102–121, 2015, (in Russian).

[6] M. Wooldridge, An Introduction to MultiAgent Systems - Second
Edition. Wiley, 2009.

[7] V. Tarasov, Ot mnogoagentnykh sistem k intellektual’nym
organizatsiyam [From multi-agent systems to intelligent
organizations]. M.: Editorial URSS, 2002, (in Russian).

[8] L. Cao, “In-depth behavior understanding and use: The
behavior informatics approach,” Information Sciences, vol.
180, no. 17, pp. 3067–3085, Sep. 2010. [Online]. Available:
https://doi.org/10.1016/j.ins.2010.03.025

[9] L. Cao, T. Joachims, C. Wang, E. Gaussier, J. Li, Y. Ou,
D. Luo, R. Zafarani, H. Liu, G. Xu, Z. Wu, G. Pasi,
Y. Zhang, X. Yang, H. Zha, E. Serra, and V. Subrahmanian,
“Behavior informatics: A new perspective,” IEEE Intelligent
Systems, vol. 29, no. 4, pp. 62–80, Jul. 2014. [Online]. Available:
https://doi.org/10.1109/mis.2014.60

[10] M. Pavel, H. B. Jimison, I. Korhonen, C. M. Gordon, and
N. Saranummi, “Behavioral informatics and computational
modeling in support of proactive health management and
care,” IEEE Transactions on Biomedical Engineering, vol. 62,
no. 12, pp. 2763–2775, Dec. 2015. [Online]. Available:
https://doi.org/10.1109/tbme.2015.2484286

[11] G. S. Al’tshuller, Najti ideju: Vvedenie v TRIZ — teoriju reshenija
izobretatel’skih zadach, 3-e izd. [Find an idea: An introduction
to TRIZ - the theory of inventive problem solving, 3rd ed.]. M.:
Al’pina Pablisher, 2010.

[12] G. P. Shhedrovickij, Shema mysledejatel’nosti – sistemno-
strukturnoe stroenie, smysl i soderzhanie [Scheme of mental
activity – system-structural structure, meaning and content]. M.:
Shk. kul’t. pol., 1995.

[13] D. Pospelov, Situacionnoe upravlenie. Teorija i praktika
[Situational management. Theory and practice]. M.: Nauka,
1986.

[14] D. Shunkevich, “Ontological approach to the development of
hybrid problem solvers for intelligent computer systems,” in Open
semantic technologies for intelligent systems, V. Golenkov, Ed.
BSUIR, Minsk, 2021, pp. 63–74.

[15] E. W. Dijkstra, Cooperating Sequential Processes. Berlin,
Heidelberg: Springer-Verlag, 2002, pp. 65–138.

[16] C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 26, no. 1, p. 100–106, jan 1983. [Online]. Available:
https://doi.org/10.1145/357980.358021

[17] B. Chatterjee, S. Peri, M. Sa, and K. Manogna, “Non-blocking
dynamic unbounded graphs with worst-case amortized bounds.”
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. [Online].
Available: https://drops.dagstuhl.de/opus/volltexte/2022/15795/

[18] P. Sapaty, “Jazyk VOLNA-0 kak osnova navigacionnyh struktur
dlja baz znanij na osnove semanticheskih setej [WAVE-0 language
as a basis for navigational structures for knowledge bases based on
semantic networks],” Izv. AN SSSR. Tehn. kibernet. [Izv. Academy
of Sciences of the USSR. Tech. cybernet.], no. 5, pp. 198–210,
1986.

[19] D. I. Moldovan and Y.-W. Tung, “SNAP: A VLSI
architecture for artificial intelligence processing,”
Journal of Parallel and Distributed Computing, vol. 2,
no. 2, pp. 109–131, 1985. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0743731585900310

[20] A. Letichevskij, J. Kapitonova, V. Volkov, V. Vyshemirskij, and
A. Letichevskij (Jr.), “Insercionnoe programmirovanie [insertion
programming],” Kibernetika i sistemnyj analiz [Cybernetics and
systems analysis], no. 1, pp. 19–32, 2003.

[21] A. Letichevskij, “Insercionnoe modelirovanie [insertion modeling],”
Upravljajushhie sistemy i mashiny [Control systems and machines],
no. 6, pp. 3–14, 2012.

Гибридные решатели задач
интеллектуальных компьютерных систем

нового поколения
Шункевич Д.В.

В работе сформулированы актуальные проблемы текуще-
го состояния технологий разработки гибридных решателей
задач, предложен подход к их решению на основе Технологии
OSTIS. Сформулированы принципы построения решателя
задач как иерархической системы навыков, основанной на
многоагентном подходе, приведены онтологии агентов и
выполняемых ими действий. Сформулированы принципы
синхронизации деятельности агентов, а также разработана
онтология базового языка программирования для реали-
зации программ агентов и модель интерпретатора такого
языка.

Received 01 11. .20 22

144

Semantic theory of programs in next-generation
intelligent computer systems

Nikita Zotov
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: nikita.zotov.belarus@gmail.com

Abstract—Despite the active development and usage of
programming languages, currently, there is no general
theory of programs on the basis of which it would be
possible to design and develop applied systems. In this
article, the unified ontology of programming languages
and representation of programs in different programming
languages is proposed. The work demonstrates the features
of the representation of programs and key points of the
process of their interpretation.

Keywords—knowledge representation language, program-
ming language, method representation language, software
computer system, ontological approach, denotational and
operational semantics of a language, procedural program-
ming language, non-procedural programming language,
ostis-systems language

I. INTRODUCTION

For a long period of development of computer systems
(c.s.), hardware restrictions on solving various problems
have been practically removed. The remaining restrictions
are assigned to the share of the software. First of all, these
limitations are related to the current problems of software
development:

• hardware complexity outstrips mankind’s ability to
build software c.s. using the potential capabilities of
hardware;

• skills and technologies of software development
lag behind the requirements for developing pro-
grams of next-generation software development;

• the ability to use existing programs is threatened by
the poor quality of their development.

The key to solving these problems is a deep under-
standing and competent usage of existing programming
languages as the main tool for the mass creation of next-
generation software c.s.

This article focuses on achieving the following results:
• (1) set out the classical foundations, reflecting

the accumulated world experience in the field of
programming languages;

• (2) systematize the main results in this area and
represent them in the form of a unified semantic
theory of programs.

In this article, the problems of the current state in the
field of programs and programming languages that can

and should be used to develop next-generation intelligent
c.s. are described in detail. It is dedicated to the basic
concepts of the theory of programming languages, gives
an overview of the areas for applying programming
languages that are quite in demand by modern human
society, describes in detail the forms and contents of
criteria for evaluating the effectiveness of languages,
considers ways of representing and interpreting programs
of various programming languages.

II. CURRENT STATE ISSUES

In the modern era of information technologies develop-
ment, there are a huge number of programming languages,
each of which has its own important purpose in the field
of software system design. Each language demonstrates
not only its specifics but also has its own advantages and
disadvantages. The variety of programming languages [1],
[2] and solutions created on them is so great that it is very
easy to get lost in a sea of information about all aspects of
the application and design of programming languages. In
addition, the main problem is not the number of existing
solutions in the field of programming languages but the
number of forms (!) in which specific programming
languages are represented. So, declarative knowledge, i.e.
knowledge that is, for example, a specification of some
program, and procedural knowledge, i.e. knowledge that
is programs belonging to some programming language,
are represented in completely different ways, methods,
and means.

In connection with the above, the following key
problems in the field of programming languages can
be distinguished:

1) Since the number of programming languages grows
with the increase in the need for them [3], the
need for describing these programming languages
for further usage and design of applied systems
also grows. This, in turn, requires a high level of
quality in the specification of a particular language:
both a description of the syntax and semantics of
the constructions of this language, as well as a
description of the means and methods for renovating
tools that provide interpretation or translation of this

145

language. That is, with an increase in the number
of programming languages, not only the variety of
forms of knowledge representation (programming
languages) grows but also the number of software
systems based on various forms of knowledge
representation [4].

2) A wide variety of forms of knowledge representation,
as mentioned above, provides a wide range of
possibilities for designing software c.s. on each
of them. It turns out that in order to integrate
several software systems implemented in different
programming languages, it is necessary to make sure
that the systems can communicate with each other in
each of the languages in which they are implemented
[5], [6]. Thus, the striving to use existing software
components is hampered by the implementation of
the components themselves [7], since in order to
combine these components it is necessary to change
their program code [8], [9]. The presence of a variety
of forms makes it difficult to implement compatible
interoperable c.s. [10].

3) As the complexity of the program code grows, the
number of humans able to understand its meaning
decreases. Modern developers create software c.s.
without taking into account its full life cycle [11].
Systems must be constantly updated and improved
with the development of the technologies on which
it is based [12]. This should be ensured by good
documentation of implementing the components of
these systems – this reduces not only the need to
raise new resources and personnel but also helps to
reduce the reengineering of software c.s. [13], [9].

4) Full automation of designing software c.s. is impos-
sible, since the modern languages in which they are
designed do not have the property of reflexivity –
systems cannot cognize and understand themselves
[14], [15], [16] and develop almost completely on
their own. Thus, the existing intelligent c.s. are
not intelligent as such, since they do not have the
properties they require [17].

5) The key to easy and deep mastering of a specific
language as the main professional tool of a pro-
grammer is understanding the general principles of
building and using programming languages [18],
[19], described by their general theory. Until today,
a general theory of programming languages still does
not exist, which makes it difficult to develop, verify,
and use new and existing programming languages.
Without a general theory of programming languages,
everyone can develop fundamentally general methods
and tools in the way they want but not the way is
required [10] - it is necessary to agree on terms
and concepts and multiply the results by creating
next-generation interoperable computer systems [20].

6) Achieving the maximum of services and means at

a minimum of costs is possible only through a
deep understanding of the principles of building
programming languages due to the simplicity of
means and methods of knowledge representation.
The complex should be reduced to the simple and
explained in simple terms, without creating an
additional illusion of importance [8], [12], [21].

All these problems are related and are problems of
the current state of development directions in the field of
Artificial intelligence [19], [22].

So, to solve these problems, it is necessary to create
comfortable conditions for the implementation of com-
puter systems that are semantically compatible and inter-
operable with each other. In the context of programming
languages, a general theory of designing programs for
next-generation intelligent c.s. is required, which:

1) allows integrating existing solutions in the field of
designing programs for computer systems without
much effort and costs [23];

2) will combine knowledge representation forms of
declarative and procedural types;

3) will have a wide range of tools not only for describ-
ing the syntax and semantics of existing program-
ming languages but also for designing new ana-
logues;

4) will be understandable not only to human but also
to machine [4];

5) denotes the principles by which next-generation pro-
gramming languages should be designed.

The design of such general theories, strictly speaking,
must be approached with a high degree of importance.
Designed c.s. should always be able to use the properties
that they are drawn. In order for this theory to be used as
a certain system of knowledge about how to design and
use programming languages and programs in software
c.s. and how to interpret their programs, it is necessary
for this theory to be described by means and methods by
which these software c.s. are designed. We are talking
about the fact that the ontological approach [24], [4], [23],
[25], [26] is a fundamentally important approach to the
design of a general theory of programs.

To implement these ideas, it is necessary to study
and integrate the experience gained in the field of
programming languages. Therefore, the results of other
researches in the field of designing the general theory of
programming languages and programs will be considered
below.

III. EXISTING ONTOLOGIES OF PROGRAMMING
LANGUAGES

For the most part, the ideas proposed in scientific
papers on the study of programming languages are
certainly in demand and useful for designing software
c.s. Thus, the idea that programming languages and
programs implemented on them should be organized into

146

a common taxonomy of concepts is fundamental, since it
provides the highest quality environment for the design
and implementation of c.s. The general theory of programs
is needed not only to describe terms and concepts as some
kind of specification used to design software c.s. (that
is also important) but also in order to determine the
quality of programming languages and programs on such
issues as: "Is this language a programming language",
"Is this knowledge a program", "How efficient is this
program", "What is the degree of intelligence of this
software system", etc. These ideas are proposed and
discussed in the works of Raymond Turner [18], [27].

Until today, there are a large number of analogues
for ontologies of programming languages and programs.
The examples can be found in [28], [29]. It is also
worth noting the developed ontologies of programs
[14], [18], [30], [31], [32], [33], in which, strictly and
unambiguously, the system of concepts is defined in
formal languages – languages of logic and languages for
describing the grammars of formal languages. However,
none of them is such a result that could be used in the
design of software c.s. without significant problems. The
developed ontologies concentrate only a brief description
of interconnected concepts, but the general picture of
how these ontologies can be used in specific problems is
almost unseen.

Today, there are completely opposite judgments about
the purpose of programs and programming languages
[34], which contradict the formal foundations of Artificial
Intelligence [35]. There are more and more works related
to the rethinking of information processing [36]. Software
c.s. should not only be understandable to a human but
should understand themselves, their capabilities, inten-
tions, actions, and purposes, and understand cybernetic
systems that are similar to them. Only in this way
humanity and the results of its activities in the form
of some specific systems will be able to work together,
complementing each other and multiplying their results
[10].

Based on the represented works, it can be concluded
that:

• the general theory of programs and programming
languages, which could be involved in solving
any applied problem, as well as representing and
implementing computer system design tools, has not
been developed yet;

• unification of the representation of the means for
description and implementation according to these
descriptions as the main argument for operating the
semantic knowledge representation, for complete
mutual understanding between computer systems is
not considered at all;

• programs and combinations of these programs in
the form of program c.s. are implemented in most
cases on an individual basis and are poorly docu-

mented, which complicates their usage, integration
with other programs and software c.s., testing, and
improvement.

The key to solving all these problems is the general
technology for designing next-generation computer sys-
tems, on the basis of which it is possible to build a general
theory of programs (programming discipline) [37], which
will be considered further.

IV. SUGGESTED SOLUTION

Despite the vast variety of classical technologies used
by mankind, there is no general solution that allows
solving the problem in a complex. Therefore, at the
moment, the described problems can be solved only
with the help of a general and universal solution – the
OSTIS Technology. The OSTIS Technology is based
on a unified version of information encoding based on
semantic networks with a basic set-theoretic interpretation,
called an SC-code. The language of semantic knowledge
representation is based on two formalisms of discrete
mathematics: set theory – defines the semantics of the
language – and graph theory – defines the syntax of the
language [38], [39]. Any types and models of knowledge
can be described using the SC-code [40].

For the convenience of knowledge representation, there
are three external knowledge representation languages
based on the SC-code: SCg-code, with the help of which
knowledge is displayed in the form of graph structures
understandable to the average user, SCs-code, in which
knowledge is represented in the form of linear text, SCn-
code for displaying sc-constructions as hypertext. This
representation is close to natural, understandable to the
average user [40].

The OSTIS Technology is suitable for solving the listed
problem, since:

1) The Standard of the OSTIS Technology [40] already
implements the basic tools necessary for the design
and development of interoperable c.s., which are
based on the semantic knowledge representation.
This eliminates not only the need to create top-level
ontologies, which should be used in the general
theory of programs as the basis for describing the
concepts of this theory, but also helps to design
solutions consistent with other ontologies. As a result,
a common coherent world picture is formed, which
is (1) consistent, that is, agreed, (2) unambiguously
interpreted, (3) universal, and, (4) most importantly,
understandable to everyone.

2) The OSTIS Technology is designed by a single uni-
fied knowledge representation language called an SC-
code. The meaning of programs and programming
languages is understandable and unambiguous if and
only if this meaning is described in one common
language understandable to any cybernetic system.
The meaning lies not in the syntax of the signs, but

147

in the configuration of the connections between them
(!) [40], [41], [42].

3) The SC-code is syntactically minimal. The minimum
number of signs is used to describe objects and
connections between them. At the same time, the
diversity of these connections is reduced to the
diversity of sign constructions. All this is provided
by representing information in the form of graph
structures [43], [44], [45].

4) The SC-code is not just convenient for describing and
designing some complex objects – it can be used to
design and implement any knowledge representation
languages, including programs, computer systems,
and, in general, the real world.

5) Ontological [46], [26] and component [47] ap-
proaches to the design of any complex objects
ensure the fulfillment of the main principles by
which modern systems should be designed. What
is implemented and can be used, must be reused
everywhere [48], [49].

Thus, the solution to all described problems is the
general theory of programs, interpreted as an ontology
of the general system, implemented through the OSTIS
Technology.

V. GENERAL DESCRIPTION OF DESIGNED SUBJECT
DOMAINS AND ONTOLOGIES

The result of this work is a Subject domain and
ontology of methods (Subject domain and ontology of
programs), which can be used to set methods (programs),
their syntax, denotational and operational semantics. The
Subject domain and ontology of methods is a private
subject domain in relation to the Subject domain and
ontology of information constructions and languages. This
means that it inherits all the properties of the concepts
and relations studied in it.

Subject domain and ontology of information
constructions and languages
⇒ private subject domain*:

• Subject domain and ontology of
languages
⇒ private subject domain*:

• Subject domain and
ontology of natural
languages

• Subject domain and
ontology of formal
languages

Subject domain and ontology of formal languages
⇒ private subject domain*:

• Subject domain and ontology of
knowledge representation languages

⇒ private subject domain*:
• Subject domain and

ontology of methods

Subject domain and ontology of methods
⇒ private subject domain*:

• Subject domain and ontology of methods
of ostis-systems
⇒ private subject domain*:

• Subject domain and
ontology of procedural
methods of ostis-systems

∋ maximum studied object class ′:
• method

∋ non-maximum studied object class ′:
• method representation language
• method class
• meta-method
• process
• variable
• constant
• operator
• method quality

∋ explored relation ′:
• submethod*
• subprocess*
• method syntax*
• parameter’
• start operator’
• denotational semantics of the method*
• operational semantics of the method*
• method of the specified method

representation language*

VI. CONCEPT OF A METHOD (PROGRAM)

Each theory must be conceptually consistent. De-
spite the fact that there are different interpretations
for the concept of a programming language in the
literature, there should be a universal one. To do this,
instead of programming languages, we will further
talk about method representation languages and instead
of programs of these programming languages – about
methods as sign constructions of method representation
languages (m.r.l.). This decision is justified by the fact
that usually the language acts as a tool for some kind
of knowledge of a certain type, and the term of the
programming language is degenerate, since it is worth
talking not about languages in which something can be
programmed but about languages in which knowledge of a
certain type can be represented, in this case – knowledge
of a procedural kind. The terms of the programming
language and the program themselves will be considered
as non-basic identifiers for the concepts of the methods
and method representation language, respectively.

148

Formally, a method is a specification for solving a
problem of some class [40], [50]. The specification of each
class of problems includes a description of the "binding"
of the method to the initial data of a particular problem
solved with the help of this method.

method
:= [program]
:= [description of how any or almost any action

belonging to the corresponding action class can
be performed]

:= [method for solving the corresponding class of
problems that provides a solution to any or most
problems of the specified class]

:= [generalized specification for solving problems of
the corresponding class]

:= [program for solving problems of the correspond-
ing class, which can be either procedural or
declarative (non-procedural)]

:= [knowledge of how to solve problems of the
corresponding class]

⊂ knowledge
∈ knowledge type
:= [way]
⊃ problem-solving model

VII. CONCEPT OF A METHOD CLASS. GENERAL
CLASSIFICATION OF METHODS

Sometimes, it may be appropriate to allocate a certain
subset of methods (for example, a set of methods with
which a certain problem is solved), then in this case for
these methods it is possible to describe the requirements
that they must fulfill. Such sets of methods are method
classes of some m.r.l., which are associated with a
particular problem-solving model. Methods can be either
procedural or non-procedural [18].

method class
⇐ family of subclasses*:

method
:= [set of methods for which the representation

(specification) of these methods can be unified]
:= [set of various problem-solving methods that

have a common language for representing these
methods]

:= [set of methods for which the representation
language of these methods is set]

∋ procedural problem-solving method
⊃ algorithmic problem-solving method

∋ non-procedural problem-solving method
⊃ logical problem-solving method
⊃ production problem-solving method
⊃ functional problem-solving method

⊃ artificial neural network

⊃ genetic “algorithm”
:= [set of methods, which is associated with a

particular problem-solving model]

Since each method corresponds to a generalized for-
mulation of the problems solved using this method, each
method class must correspond not only to a certain m.r.l.
belonging to the specified method class but also to a spe-
cific language for representing generalized formulations
of problems for different classes of problems, solved by
methods belonging to the specified method class.

For procedural and non-procedural methods, although
it is possible to set input and output parameters, the
general denotational semantics of their logical elements
cannot be set: for procedural methods, these are operators,
for non-procedural methods – mathematical objects of
the subject domain.

VIII. CONCEPT OF METHOD REPRESENTATION
LANGUAGE (PROGRAMMING LANGUAGE)

Each specific method class corresponds one-to-one
to the m.r.l. belonging to this (specified) method class.
Thus, the specification of each method class is reduced
to the specification of the corresponding m.r.l., that is,
to the description of its syntactic, denotational, and
operational semantics. Examples of m.r.l. are all pro-
gramming languages that basically belong to the subclass
of m.r.l., but now the need to create effective formal m.r.l.
for performing actions in the external environment of
cybernetic systems is becoming increasingly important.
Without this, complex automation [51], in particular, in
the industrial sector, is impossible.

By method representation language we mean a formal
language, (1) the sign constructions of which are the
corresponding methods for which there are general build-
ing rules and (2) general rules for correlating with those
entities and relations between them that are described by
these methods.

With the help of m.r.l., messages (methods) for the
computer are generated. These messages must be un-
derstandable (semantically correct and consistent) to the
computer [52].

method representation language
:= [programming language]
⊂ knowledge representation language

⊂ formal language
:= [computer language]
:= [formal language, (1) the symbolic constructions

of which are the corresponding methods for
which there are general building rules and (2)
general rules for correlating with those entities
and relations between them that are described by
these methods]

:=

149

[mean of communication between a human (user)
and a computer (performer)]

:= [tool for producing software services]

A method belongs to a method representation language
if it is a syntactically correct, syntactically consistent,
semantically correct, and semantically consistent method
of the specified m.r.l. (!).

relation set in multiple method representation
languages^
:= [relation whose scope of definition includes many

different method representation languages]
∋ method of the specified method representation

language*
∋ syntactically correct method for the specified

method representation language*
:= [method that does not contain syntax errors

for the specified method representation
language*]

⊂ syntactically correct sign construction for
the specified language*

∋ syntactically consistent method for the specified
method representation language*
⊂ syntactically consistent sign construction

for the specified language*
∋ semantically correct method for the specified

method representation language*
:= [method that does not contain semantic

errors for the specified method represen-
tation language*]

⊂ semantically correct sign construction for
the specified language*

∋ semantically consistent method for the specified
method representation language*
⊂ semantically consistent sign construction

for the specified language*
:= [method of the specified method represen-

tation language that contains sufficient
information to determine its truth*]

method of the specified method representation
language*
:= [method belonging to the specified programming

language*]
⊂ text of the specified language*
⇒ second domain*:

method
⇐ combination*:

{{{• {{{}}}
⇐ combination*:

{{{• syntactically correct
method for the specified
method representation
language*

• syntactically consistent
method for the specified
method representation
language*

}}}
• {{{}}}

⇐ combination*:
{{{• semantically correct

method for the specified
method representation
language*

• syntactically consistent
method for the specified
method representation
language*

}}}
}}}

IX. GENERAL CLASSIFICATION OF METHOD
REPRESENTATION LANGUAGES

In the modern information society, method repre-
sentation languages (m.r.l.) are distinguished by their
paradigms: procedural, functional, logical, object-oriented
m.r.l., etc. The solution of the problem by the computer
is made in the form of a sequence of operators: in the
methods of functional m.r.l. – indication of other methods;
in logical m.r.l., operators are used; and in object-oriented
ones – objects.

method representation language
⊃ general-purpose method representation language

:= [general-purpose programming language]
⊃ subject-oriented method representation language

:= [subject-oriented programming language]
⇒ subdividing*:

method representation language paradigm^
= {{{• procedural method representation

language
• non-procedural method

representation language
}}}

Procedural method representation languages set com-
putations as a sequence of operators (commands). They
are focused on computers with von Neumann architecture.
Basic concepts of procedural m.r.l. closely related to
computer components:

• variables of various types that model computer
memory cells;

• assignment operators that model data transfers be-
tween memory areas;

• repetitions of actions in the form of iteration, which
simulate the storage of information in adjacent
memory cells;

• and more.

150

procedural method representation language
:= [imperative method representation language]
⊃ structural method representation language

∋ example ′:
• Fortran
• C
• Pascal

⊃ object-oriented method representation language
∋ example ′:

• Smalltalk
• Java
• HTML

⊃ aspect-oriented method representation
language

⊃ script method representation language
:= [patch method representation language]

Non-procedural method representation languages, in
contrast to procedural languages, set computations as a
sequence of interconnected objects. Basic concepts of
non-procedural m.r.l. usually are not related to computer
components.

non-procedural method representation language
:= [declarative method representation language]
⊃ logical method representation language

∋ example ′:
• Prolog

⊃ production method representation language
⊃ functional method representation language

:= [applicative method representation lan-
guage]

∋ example ′:
• LISP

X. REPRESENTATION OF THE SYNTAX AND
SEMANTICS OF VARIOUS METHODS

The syntax and semantics of a method represent its
specification. The semantics of a method can be viewed
from two perspectives: as a set of interrelated knowledge,
which is determined by the denotational semantics of
this method, and as knowledge that can be interpreted by
another method, which is determined by the operational
semantics of this method.

method specification*
⇒ subdividing*:

{{{• method syntax*
• denotational semantics of the method*

:= [generalized formulation of the
class of problems solved using this
method*]

⇔ semantically close sign*:

generalized formulation of the
problems of the corresponding
method class*

• operational semantics of the method*
:= [list of generalized agents provid-

ing method interpretation*]
:= [family of methods for interpreting

this method*]
:= [formal description of the specified

method interpreter*]
}}}

A. Representing the syntax of the problem-solving method

Any method consists of atomic information construc-
tions that set the order of actions in the knowledge
base, with the help of which it is required to move
from the initial state to the target one, thus solving
some specific problem. So, for example, in a procedural
method, any such operator represents some mathematical
function. Expressions and operators are used to compose
these functions into larger fragments. In turn, linear
sequences of operators and conditional branches can
also be represented by functions composed of functions
inherent in particular components of these constructions.
A cycle is easily described by a recursive function
composed of the components included in its body.

The method syntax* defines the set of its allowed
constructions. The appearance of method elements is
specified using a certain syntax. It describes such lexical
details as the location of keywords and punctuation marks.
Grammars are used to specify a particular syntax.

The syntax of m.r.l. in ostis-systems can be formally
described in various ways. So, for example, it is possible
to use the Backus-Naur meta-language to describe the
syntax of some methods of a particular m.r.l. Other equally
well-known forms of method representation are context-
free grammars, extended Backus-Naur form, syntactic
graphs [1], [53], [54].

However, it is much more logical and advisable to
describe the syntax of other languages in the universal
knowledge representation language – the SC-code. This
approach will allow ostis-systems to independently under-
stand, analyze, and generate texts of these languages on
the basis of principles common to any form of external
information representation, including non-linear ones [45].
Thus, languages written in the SC-code have the same
syntax as the SC-code.

B. Representing the denotational semantics of the method

The semantics of a method explains the meaning of the
syntactic constructions of a method. The most common
methods for describing the semantics of programming
languages are: denotational, operational, axiomatic, al-
gebraic ones [55], [56]. Based on the principles of the
OSTIS Technology, by the semantics of a method we

151

mean the combination of the denotational and operational
semantics of the method.

The description of how to "bind" a method to some
class of problems includes:

• a set of variables that are included both in the method
and in the generalized formulation of the problems
of the corresponding class and whose values are the
corresponding elements of the initial data of each
specific problem being solved;

• part of the generalized formulation of problems of
the class to which the method under consideration
corresponds, which are a description of the condi-
tions for applying this method;

• a description of the method initiation condition and
its result;

• a description of initial and target situations in sc-
memory.

"Binding" a method to a specific problem solved with
the help of this method is carried out by searching for
such a fragment in the knowledge base, that satisfies
the conditions for applying the specified method. One
of the results of such a search is the setting of a
correspondence between the above variables of the method
used and the values of these variables within a specific
problem being solved. Another option for setting the
correspondence under consideration is an explicit call
of the corresponding method (program) with an explicit
transfer of the corresponding parameters. However, this
is not always possible, since when executing the process
of solving a specific problem based on the declarative
specification for performing this action, it is not possible
to identify:

• when it is necessary to initiate a call (usage) of the
required method;

• which specific method to use;
• which parameters, corresponding to the particular

problem being initiated, must be passed in order to
“bind” the method used to this problem.

A process is understood as some action in sc-memory
that unambiguously describes a specific act of executing
a certain method for given initial data [37]. If a method
describes an algorithm for solving a problem in general
terms, then a process denotes a specific action that
implements this algorithm for given input parameters.
In fact, the process is a unique copy created on the basis
of a method in which each sc-variable corresponds to a
generated sc-constant.

relation defined on a set (process)^
:= [relation whose scope of definition includes many

possible processes]
∋ parameter’
⇒ subdividing*:

{{{• in-parameter’

• out-parameter’
}}}

∋ in-parameter’
∋ out-parameter’
∋ initial information construction’
∋ subprocess*

The process of “binding” a problem-solving method
to a specific problem solved using this method can also
be represented as a process consisting of the following
phases:

• building a copy of the used method;
• pasting the main (key) variables of the method used

together with the main parameters of a specific
problem being solved.

As a result, on the basis of the considered method used
as a sample (template), a specification of the process for
solving a specific problem is built. The description of the
process of “binding” the solution method to a specific
problem, as well as the description of the elements of
the method, is the denotational semantics of this method.

denotational semantics of the method
∋ general formulation of the class of problems*

:= [text formulation of the set of problems
solved by this method]

⊂ explanation*
∋ primary initiation condition*
∋ initiation condition and result*

⇐ Cartesian product*:
⟨⟨⟨• method class
• implication*

⟩⟩⟩
∋ condition of initial and target situations*

⇐ Cartesian product*:
⟨⟨⟨• method class
• implication*

⟩⟩⟩

An example of the part of the specification that
describes the denotational semantics of the Method for
finding the double sum of two numbers is demonstrated
in Figure 1.

The general formulation of the class of problems*
relation is a class of sc-connectives between an sc-
connective, denoting a set of methods, and an ostis-system
file, which is an explanation of which classes of problems
can be solved using a given set of methods. In some rare
cases, the presence of such an sc-connective may not be
in the specification of a method, since there is no need
to specify which classes of problems can be solved using
this method.

The connectives of the primary initiation condition*
relation connect the sc-connective, denoting a set of
methods, and the binary oriented pair, describing the
primary condition for initiating a given method, i.e. such a

152

Figure 1. The specification of a method for solving the problem of
calculating the double sum of two numbers

specification of the situation in sc-memory, the occurrence
of which prompts the meta-method-executor to transfer
the given set of methods into the active state and begin
checking for their full initiation condition.

The first component of this oriented pair is the sign
of some class of elementary events in sc-memory*, for
example, the event of adding an sc-arc going out of a
given sc-element*.

In the general case, the second component of this
oriented pair is a random sc-element, with which the
specified type of event in sc-memory is directly associated,
i.e., for example, the sc-element, from which the generated
or deleted sc-arc or file, the contents of which have been
changed, goes out, or in which this sc-arc or the file

come.
The connectives of the initiation condition and result*

relation link together the sc-connective, denoting the
set of methods, and a binary oriented pair, linking the
initiation condition for this set of methods and the results
of executing this set of methods in any particular system.
The specified oriented pair can be considered as a logical
implication connective, while the universality quantifier
is implicitly imposed on sc-variables present in both parts
of the connective and the existence quantifier is implicitly
imposed on sc-variables present either only in the premise
or only in the conclusion.

The first component of the specified oriented pair
is a logical formula that describes the condition for
initiating the described method, that is, the construction,
the presence of which in sc-memory calls a lot of methods
to start working on changing the state in sc-memory. This
logical formula can be both atomic and non-atomic, which
allows using any connectives of the logical language.

The second component of the specified oriented pair
is a logical formula that describes the possible results
of performing the described set of methods, that is, a
description of the changes in the state of sc-memory
made by it. This logical formula can be both atomic and
non-atomic, which allows using any connectives of the
logical language.

The connectives of the condition of initial and target
situation* relation connect an sc-connective, denoting a
set of methods, and a binary oriented pair, connecting
the initial and target situations in sc-memory, that is,
in short, the situation before applying the method and
the desired situation after applying the method. The
specified oriented pair can also be considered as a logical
implication connective, while on the sc-variables present
in both parts of the connective the universal quantifier
is implicitly imposed, and on the sc-variables present
either only in the premise or only in the conclusion the
existential quantifier is implicitly imposed. For the first
and second components of the specified oriented pair,
the same restrictions and properties are imposed as for
the components of the oriented pair, which is the second
component of the initiation condition and result* relation.

It should be noted that the connectives of the initiation
condition and result* relation and the condition of the
initial and target situation* relation can be represented
differently. Sometimes, it may not be necessary to create
and check the second condition of the method, which
checks for the presence of the initial situation in sc-
memory and checks for reaching the target situation in
sc-memory as a result of applying the method. If so, then
the condition of the initial and target situation* can be
specified in the logical formulas that are components in
the second component of the connective of the initiation
condition and result* relation.

Programs, depending on the way of their representation

153

in languages, will differ. This can be verified by compar-
ing examples of procedural (Fig. 2) and logical (Fig. 3)
methods for solving the same problem.

Figure 2. An example of a procedural method for solving the problem
of calculating the double sum of two numbers

With the help of the SC-code, it is also possible to
represent those languages that are not written in it. The
problem will be in the fact that the form and meaning
of the language and its methods will be separated, that
is, they will be represented in different ways. In this
case, the SC-code is a powerful tool for integrating the
specifications of various languages of external knowledge
representation. However, it should be noted that there is
no need to represent different forms of methods belonging
to different method representation languages within the
OSTIS Technology. This is explained by the following

Figure 3. An example of a logical method for solving the problem of
calculating the double sum of two numbers

facts:
1) The SC-code is a fairly universal language for

representing any kind of knowledge. This means
that different forms of the algorithm for solving
the same problem can be minimized. In the SC-
code, the foundation is a formal theory, which
provides a universal representation of various types
of declarative and procedural knowledge. Thus,
logical methods can be represented as procedural
programs, in which as operands of operators not
only logical formulas and inference rules will serve
but also other methods that provide interpretation of
these logical formulas using inference rules. Thus,
the SC-code can be called not only a language of
unified knowledge representation but also a language
in which different classes of problems can be solved
in the same way.

2) Various types of knowledge in ostis-systems, de-
signed according to the principles of the OSTIS
Technology, are deeply integrated with each other.
This provides not only simplicity for creating these
systems based on existing languages that can be
described in the SC-code but also great opportunities
for creating basic programming languages for next-
generation computer systems, such as, for example,
the basic language for representing SCP procedural
methods, the basic language for representing pro-
duction methods, etc. Modern method representation
languages are created to simplify the description of

154

some algorithm for fast and high-quality solution of
a certain class of problem [57]. In turn, the proposed
methods and models make it possible to design an
m.r.l. for next-generation computer systems with the
help of basic knowledge representation languages
in such a way that the very form of knowledge
representation does not change. Methods of different
m.r.l. must have one universal form of representation,
i.e. the same syntax, but may allow the denotational
and operational semantics of their methods to be
described and represented in different ways using
the same syntax.

3) Designing new m.r.l. should be reduced to their
full description in the minimum family of SC-code
languages: the SC-code itself, SCP, and SCL. We are
talking about designing a new method representation
language: it is enough to develop a (non-atomic)
meta-method in SCP and SCL languages, which
will interpret the methods of the languages being
designed and also describe the denotational seman-
tics of these methods. Meta-method for interpreting
m.r.l. methods can be called an interpreter of these
languages, that is, some abstract sc-machine on
which it is possible to execute methods of a certain
language for representing these methods.

C. Representing the operational semantics of the method

A complete method specification*, in addition to the
denotational semantics of this method*, must include
the operational semantics of this method*, that is, a
formal description of the interpreter of the given method.
Operational semantics of the m.r.l. describes the execution
of a method written in a given language by means of
a virtual computer. A virtual computer is defined as an
abstract automaton. The internal states of this automaton
model the states of the computational process when the
method is executed. The automaton translates the source
text of the method into a set of formally defined operations.
This set defines the transitions of the automaton from
the initial state to the sequence of intermediate states
by changing the values of the method variables. The
automaton completes its work by passing to some final
state. Thus, here we are talking about a fairly direct
abstraction of the possible usage of m.r.l. Operational
semantics describes the meaning of a method by executing
its operators on a simple automaton. The changes that
occur in the state of the machine, when a given operator
is executed, determine the meaning of that operator.

The operational semantics of a specific method is
reduced to the description of a meta-method that interprets
it, verifies, etc.

meta-method
⊂ method
:=

[method whose parameter values are other meth-
ods]

operational semantics of the method
∋ interpretation meta-method*

⇐ Cartesian product*:
⟨⟨⟨• method class
• method

⟩⟩⟩
∋ meta-method for verification and quality

assessment*
⇐ Cartesian product*:

⟨⟨⟨• method class
• method

⟩⟩⟩

The interpretation meta-method* relation is a class of
sc-connectives between an sc-connective, denoting a set
of methods, and an sc-node, denoting a method that is
capable of interpreting a given set of methods. The meta-
method of verification and quality assessment* is a class
of sc-connectives between an sc-connective, denoting a
set of methods, and an sc-node, denoting a method that
is capable of verifying and evaluating the quality of a
given set of methods.

Within the OSTIS Technology, there can be a wide
variety of such meta-methods. Each of them can consist of
many atomic and non-atomic submethods. These can be
both meta-methods that interpret the methods of certain
m.r.l. and meta-methods that verify and analyze the quality
of these methods. In addition, meta-methods can perform
operations on other meta-methods.

meta-method for methods interpreting base method
representation languages
⇒ inclusion*:

• meta-method for methods interpreting the
SCP procedural method representation
language

• meta-method for methods interpreting the
SCL logical method representation
language

• meta-method for methods interpreting the
production method representation
language

• meta-method for methods interpreting the
functional method representation
language

• meta-method for methods interpreting the
neural network representation language

• meta-method for methods interpreting the
representation language of genetic
algorithms

155

meta-method for verifying and evaluating the quality
of methods in basic method representation languages
⇒ inclusion*:

• meta-method for verifying and evaluating
the quality of methods in the SCP
procedural methods representation
language

• meta-method for verifying and evaluating
the quality of methods in the
representation language of logical SCL
methods

• meta-method for verifying and evaluating
the quality of methods in the
representation language of production
methods

• meta-method for verifying and evaluating
the quality of methods in the
representation language of functional
methods

• meta-method for verifying and evaluating
the quality of neural network
representation language methods

• meta-method for verifying and evaluating
the quality of methods for the
representation language of genetic
algorithms

The concepts of syntax, denotational and operational
semantics of method representation languages are reduced
to the concepts of syntax, denotational and operational
semantics of any language in general.

XI. REPRESENTATION OF THE SYNTAX AND
SEMANTICS OF METHOD REPRESENTATION

LANGUAGES

It is clear that in order to use the m.r.l., each language
construction should be described separately, as well as
its usage in aggregate with other constructions. There
are many different constructions in a language, the exact
definition of which is necessary both for the programmer
using the language and for the developer of the compiler
for that language. This knowledge allows the programmer
to predict the calculations performed by the method
operators. The constructions descriptions are necessary
for the developer to create a correct implementation of
the compiler.

A description of a formal model of a method repre-
sentation language can be given by its specification. The
specification contains a description of the syntax and
semantics of the m.r.l.

method representation language specification*
⊃ relation posed on a set (method representation

language)*
⇒ subdividing*:

{{{• syntax of the method representation
language*
⊂ language syntax*
:= [be a theory of well-formed in-

formation constructions belonging
to a given method representation
language]

• denotational semantics of the method
representation language*
⊂ language denotational semantics*
:= [generalized formulation of the

classes of problems solved using
this method representation lan-
guage*]

• operational semantics of the method
representation language*
⊂ language operational semantics*
:= [list of generalized agents that pro-

vide interpretation of methods of
a given method representation lan-
guage*]

:= [family of methods for interpreting
texts in a given method represen-
tation language*]

:= [formal description of the inter-
preter of the specified method
representation language*]

}}}

The syntax of m.r.l.* is a binary oriented relation,
each pair of which associates a sign of some language
with a description of syntactically allocated classes from
fragments of constructions of a given m.r.l. with a
description of relations defined on these classes and
with conjunction of quantifier propositions, which are
the syntactic rules of the given language, that is, the rules
that all syntactically correct (well-built) constructions of
the specified m.r.l. must satisfy. In the general case, the
syntax of the m.r.l.* relation is no different from the
language syntax* relation, but still there is a refinement,
since m.r.l. are languages in general, and the syntax of the
m.r.l. inherits all syntax properties of any languages. The
syntax of the m.r.l* combines the syntaxes of all methods
belonging to a given method representation language.

Denotational semantics of m.r.l.* means a binary
oriented relation, each pair of which associates a sign of
some language with the sign of some ontology, which
can be used to describe the methods of this language,
and operational semantics of m.r.l* is a description of
the meta-method for interpreting the methods of this
language.

In the context of this work, specific types of denota-
tional and operational semantics will not be considered
further.

156

XII. HELP-SYSTEM FOR DESIGN AND METHOD
DEVELOPMENT SUPPORT

The current state of the art in software design and
development suggests that developers are more eager to
automate the development of methods in specific method
representation languages than to provide training tools
for their design, including the design of new method
representation languages. This leads to the following
problems:

1) While the number of developers who understand the
code of a complex software system is decreasing,
the requirements for that system are growing faster
and faster. Often, developers of complex software
systems themselves are not able to explain the logic
of these systems. For this reason, it is necessary to
create tools that will automate the documentation of
software systems [52].

2) To train new developers in the skills of working
with software systems and their development, it is
necessary to attract the resources of development
experts who understand the principles of operation
of these software systems. The problem is solved by
developing a help system that will not only teach
the user how to design problem solving methods
and software systems based on these methods, but
also point out gaps in related disciplines necessary
to achieve high-quality results of all their activities.

3) In engineering, developers often design and develop
solutions that have already been created by other
specialists. Thus, functionally equivalent methods of
solving problems are obtained, and even software
systems that solve similar problems. The key to solv-
ing this problem is to design a semantically powerful
library of reusable problem solving methods.

Thus, the semantic theory of programs alone is not
enough. In addition to it, for a permanent and unhindered
design and development of methods of a different class,
it is necessary to develop:

1) an intelligent help system for supporting the design
and development of methods, mentioned in [58],
which will not only help the developer verify the
method being developed, but also suggest ways to
develop it;

2) a semantically powerful library of reusable com-
ponents [47] for quickly finding existing problem
solving methods and applying them to other more
complex problems [46].

The potential help system should be part of a common
development tool for next-generation intelligent computer
systems - ostis-platform [59] - and may consist of the
following components:

• the intelligent help-system on the semantic theory
of programs;

• the intelligent help system on the library of reusable
problem solving methods,

• the intelligent help-system for a set of tools for
designing methods for solving problems,

• the intelligent help-system on the methodology of
teaching the design of various methods for solving
problems.

Each component contains knowledge from the relevant
area of design and development theory of problem solving
methods. In accordance with open semantic technology,
each component must include:

• reference subsystem,
• subsystem for monitoring and analyzing the activities

of the developer of methods for solving problems,
• learning management subsystem.
Each of the subsystems interacts with other subsystems

and can also function autonomously.
The reference subsystem is an expert consultant in

the field of semantic program theory who can answer
any question from a novice or experienced user. Each
of these systems can become individual assistants in the
training of new specialists - a personal ostis-assistant. The
functions of the reference subsystem include:

• search for information at the request of the user,
including freely-designed ones;

• displaying the information found, taking into account
the user’s skill level;

• analysis of program texts and making suggestions
to improve their effectiveness;

• generation of program texts on request to the user;
• self-initiation in case of difficulties for the user or

the student.
Thus, the development of such components according

to the principles of the OSTIS Technology will confirm
the general semantic theory of programs.

XIII. QUALITY (EFFICIENCY) CRITERIA OF METHODS

The method representation language can be defined by a
set of indicators that characterize its individual properties.
The problem arises of introducing a measure to assess the
degree of suitability of the m.r.l. to the performance of the
functions assigned to it – method quality [6], [56], [60].
The quality criteria of methods are given on the basis of
particular indicators of the efficiency of these methods
(quality indicators). The method of connection between
particular indicators determines the type of efficiency
criterion.

method quality
⇒ prerequisite property*:

• ease of reading and understanding the
method

• ease of creating the method
• method cost
• total volume of problems solved using

this method class

157

• variety of types of problems solved using
this method class

• method reliability

Ease of reading and understanding the method should
make it easy to highlight the basic concepts of each part
of the method without referring to its specification.

ease of reading and understanding the method
⇒ prerequisite property*:

• m.r.l. syntax simplicity
• orthogonality of m.r.l. information

structures
• structured flow of control in a method

The method representation language should provide a
simple set of informational constructions that can be used
as basic elements when creating methods. The syntax of
the language has a strong impact on simplicity: it must
transparently reflect semantics of constructions, exclude
ambiguity and non-uniqueness of interpretation.

Orthogonality means that any possible combination of
different information constructions will be meaningful,
with no unexpected behavior resulting from the interaction
of the constructions or context of usage.

The order of control transfers between method opera-
tors, i.e. the flow of control, should be human readable
and understandable.

Ease of creating the method reflects the convenience of
the language for representing that method in a particular
subject domain.

ease of creating the method
⇒ prerequisite property*:

• m.r.l. syntax simplicity
• m.r.l. natural syntax
• orthogonality of m.r.l. information

structures
• completeness and accuracy of m.r.l.

specification
• consistency and integrity of m.r.l.

specification

The syntax of the method should facilitate an easy
and transparent display of the algorithmic structures of
the subject domain in it. The syntax of m.r.l. should
be not only simple, but also natural, and support the
orthogonality of language informational constructions.

Ease of representation of a new method is ensured by
complete and precise, consistent and integral specification
of the appropriate language. That is, it is required to have
a sufficient number of information constructions in this
language in order to represent a particular method. At the
same time, the language specification must be consistent
and integral in order to represent consistent methods.

Cost of the m.r.l. method is made up of several
components.

method cost
⇒ prerequisite property*:

• cost of method applying
• cost of method interpretation
• cost of method creating, testing, and using
• cost of method maintenance

Cost of method applying largely depends on the
structure of the m.r.l. A language that requires numerous
syntactic type checks during method application will
prevent the program from running quickly.

Cost of method interpretation depends on the capabil-
ities of the interpretation meta-method used. The more
perfect the optimization methods are, the more expensive
will be the interpretation costs. The amount of the cost
of creating, testing, and using the method depends on the
used meta-method of verification and evaluation of the
quality of this method.

Numerous studies show that a significant part of the
cost of the method used is not the cost of its develop-
ment but the cost of its maintenance [11]. Associating
method maintenance with other method characteristics,
the dependence on readability, since maintenance usually
occurs by the next generation of developers, should first
of all be highlighted.

The total volume of problems and the variety of types
of problems solved with the help of this method class
are no less important characteristics, which show the
degree of universality of the corresponding m.r.l. The
more problems can be solved on m.r.l., the more universal
it is.

Reliability of m.r.l. methods should be ensured by a
minimum of errors during the operation of a particular
method.

All of these criteria can be applied to the method
representation languages themselves.

XIV. DIRECTIONS OF DEVELOPMENT

This article is the beginning of the semantic theory of
programs for next-generation c.s. The logical development
of this work will be:

• refinement and addition of concepts of the Subject
domain and ontology of methods to achieve the
completeness of the theory;

• description of private subject domains of the Subject
domain and ontology of methods for specific types of
methods, as well as clarification of the denotational
and operational semantics of the specification of
these methods;

• description of possible ways of implementing meta-
methods for interpreting methods of various m.r.l;

• implementation of tools to support the design and
development of various methods for solving the

158

problem and the development of their respective
specifications;

• formalization of mathematical models for calculating
method efficiency estimates.

XV. CONCLUSION

The main conclusion of this work is that it is necessary
not to replenish knowledge about which programming
languages already exist and to reveal possible areas
of their application, but to develop fundamentally new
programming languages with which it was possible to
create next-generation intelligent computer systems with
high level of intelligence, semantic compatibility and
interoperability with similar computer systems, unification
of knowledge representation and processing, platform
independence from tools for their implementation, and
so on.

Such systems should be developed according to the
principles of the OSTIS Technology, and their main
development languages will be graph languages for
representing methods that are sublanguages in relation to
the basic procedural programming language SCP.

In this article, the problems of ensuring the design
of software systems are considered. A comparative
analysis of existing solutions in the field of unifying
the representation of programming languages has been
carried out. The work defines the solution of the problem
in the form of designing and developing a universal theory
of programming languages according to the principles
underlying the OSTIS Technology. This article is also a
specification of how software systems should be specified
and designed.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

REFERENCES

[1] Sebesta, R. W, Concepts of Programming Languages. 10th ed.
— Pearson/Addison-Wesley, 2012.

[2] Tourlakis, George, Computability. Springer Nature, 2022.
[3] A. Iliadis, “The tower of babel problem: making data make sense

with basic formal ontology,” Online Information Review, vol. 43,
no. 6, pp. 1021–1045, 2019.

[4] C. M. Zapata Jaramillo, G. L. Giraldo, and G. A. Urrego Giraldo,
“Ontologies in software engineering: approaching two great
knowledge areas,” Revista Ingenierías Universidad de Medellín,
vol. 9, no. 16, pp. 91–99, 2010.

[5] Golenkov, V., Guliakina, N., Davydenko, I., Eremeev, A., “Meth-
ods and tools for ensuring compatibility of computer systems,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2019, pp. 25–52.

[6] Robert Martin, Clean code. Creation, analysis and refactoring,
2021.

[7] Ryndin, Nikita and Sapegin, Sergey, “Component design of
the complex software systems, based on solutions’ multivariant
synthesis,” International Journal of Engineering Trends and
Technology, vol. 69, pp. 280–286, 12 2021.

[8] D. Posnett, A. Hindle, and P. Devanbu, “A simpler model of
software readability,” in Proceedings of the 8th working conference
on mining software repositories, 2011, pp. 73–82.

[9] S. Scalabrino, M. Linares-Vasquez, D. Poshyvanyk, and R. Oliveto,
“Improving code readability models with textual features,” in 2016
IEEE 24th International Conference on Program Comprehension
(ICPC). IEEE, 2016, pp. 1–10.

[10] Gulyakina N. A., Golenkov V. V., “Graphic-dynamic models of
parallel knowledge processing: principles of construction, imple-
mentation and design,” in Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], Golenkov V. V., Ed. BSUIR, Minsk,
2012, pp. 23–52.

[11] Brooks F., Mythical man-month, or How software systems are
created. SPb.: Symbol-Plus, 2021.

[12] G. Sellitto, E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia,
F. Palomba, and F. Ferrucci, “Toward understanding the impact
of refactoring on program comprehension,” in 29th International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2022, pp. 1–12.

[13] M. Di Penta, G. Bavota, and F. Zampetti, “On the relationship
between refactoring actions and bugs: a differentiated replication,”
in Proceedings of the 28th ACM Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 556–567.

[14] R. Turner, “Programming languages as technical artifacts,” Phi-
losophy & technology, vol. 27, no. 3, pp. 377–397, 2014.

[15] R. d. Lemos, D. Garlan, C. Ghezzi, H. Giese, J. Andersson,
M. Litoiu, B. Schmerl, D. Weyns, L. Baresi, N. Bencomo
et al., “Software engineering for self-adaptive systems: Research
challenges in the provision of assurances,” Software Engineering
for Self-Adaptive Systems III. Assurances, pp. 3–30, 2017.

[16] R. Turner, “Computational artifacts,” in Computational artifacts.
Springer, 2018, pp. 25–29.

[17] Golenkov, V. V., “Methodological problems of the current state of
works in the field of artificial intelligence,” Open Semantic Tech-
nologies for Intelligent Systems = Open Semantic Technologies for
Intelligent Systems (OSTIS-2021): collection of scientific papers /
Belarusian State University of Informatics and Radioelectronics,
pp. 17–24, 2021.

[18] R. Turner and A. H. Eden, Towards a programming language
ontology. na, 2007.

[19] C. Olteanu, “Programming, mathematical reasoning and sense-
making,” International Journal of Mathematical Education in
Science and Technology, vol. 53, no. 8, pp. 2046–2064, 2022.

[20] F. W. Neiva, J. M. N. David, R. Braga, and F. Campos, “Towards
pragmatic interoperability to support collaboration: A systematic
review and mapping of the literature,” Information and Software
Technology, vol. 72, pp. 137–150, 2016.

[21] O. Chaparro, G. Bavota, A. Marcus, and M. Di Penta, “On the
impact of refactoring operations on code quality metrics,” in 2014
IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 456–460.

[22] N. N. Skeeter, N. V. Ketko, A. B. Simonov, A. G. Gagarin, and
I. A. Tislenkova, “Artificial intelligence: Problems and prospects
of development,” in 13th International Scientific and Practical
Conference-Artificial Intelligence Anthropogenic nature Vs. Social
Origin. Springer, 2020, pp. 306–318.

[23] Golenkov V.V., Gulyakina N.A., Davydenko I.T., Shunkevich D. V.,
Eremeev A.P., “Ontological design of hybrid semantically compat-
ible intelligent systems based on the semantic representation of
knowledge,” in Ontologiya proyektirovaniya, Golenkov V.V., Ed.
Russian Federation, Samara: Samara National Research University
named after Academician S.P. Korolev, 2019, pp. 132–148.

[24] T. S. Dillon, E. Chang, and P. Wongthongtham, “Ontology-based
software engineering-software engineering 2.0,” in 19th Australian
Conference on Software Engineering (ASWEC 2008). IEEE, 2008,
pp. 13–23.

159

[25] D. C. Sales, L. B. Becker, and C. Koliver, “The systems
architecture ontology (sao): an ontology-based design method
for cyber–physical systems,” Applied Computing and Informatics,
2022.

[26] S. Elnagar, V. Yoon, and M. A. Thomas, “An automatic ontology
generation framework with an organizational perspective,” arXiv
preprint arXiv:2201.05910, 2022.

[27] A. H. Eden and R. Turner, “Problems in the ontology of computer
programs,” Applied Ontology, vol. 2, no. 1, pp. 13–36, 2007.

[28] P. Lando, A. Lapujade, G. Kassel, and F. Fürst, “Towards a general
ontology of computer programs,” in International Conference on
Software and Data Technologies, vol. 2. SCITEPRESS, 2007,
pp. 163–170.

[29] ——, “An ontological investigation in the field of computer
programs,” in Software and Data Technologies. Springer, 2007,
pp. 371–383.

[30] M. J. Jacobs, “A software development project ontology,” Master’s
thesis, University of Twente, 2022.

[31] E. Tin, V. Akman, and M. Ersan, “Towards situation-oriented
programming languages,” ACM Sigplan Notices, vol. 30, no. 1,
pp. 27–36, 1995.

[32] H. Schiitze, “The prosit language v0. 4,” Manuscript, Center
for the Study of Language and Information, Stanford University,
Stanford, CA, 1991.

[33] A. Black, “An approach to computational situation semantics,”
Ph.D. dissertation, PhD thesis, Department of Artificial Intelli-
gence, University of Edinburgh . . . , 1993.

[34] W. J. Rapaport, “Syntax, semantics, and computer programs,”
Philosophy & Technology, vol. 33, no. 2, pp. 309–321, 2020.

[35] J. Grimmelmann, “Programming languages and law: A research
agenda,” arXiv preprint arXiv:2206.14879, 2022.

[36] Tetlow, Philip and Garg, Dinesh and Chase, Leigh and Mattingley-
Scott, Mark and Bronn, Nicholas and Naidoo, Kugendran and
Reinert, Emil, “Towards a semantic information theory (introduc-
ing quantum corollas),” 2022.

[37] Dijkstra E., Programming Discipline. M.: Mir, 1978.
[38] Reinhard Diestel, Graph Theory. Hamburg, Germany: Universität

Hamburg, 2017.
[39] Kuznecov, O. P., Diskretnaya matematika dlya inzhenera: Ucheb-

nik dlya vuzov [Discrete Mathematics for an Engineer: A Textbook
for High Schools]. Moscow: Lan’, 2009.

[40] Golenkov, V. V., Gulyakina, N. A., Shunkevich, D. V., Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
Golenkov V.V., Ed. Minsk: Bestprint, 2021.

[41] X. Zhong, E. Cambria, and A. Hussain, “Does semantics aid
syntax? an empirical study on named entity recognition and
classification,” Neural Computing and Applications, vol. 34, no. 11,
pp. 8373–8384, 2022.

[42] T.-D. Bradley, J. Terilla, and Y. Vlassopoulos, “An enriched
category theory of language: from syntax to semantics,” La
Matematica, pp. 1–30, 2022.

[43] F. Zhou, Y. Li, X. Zhang, Q. Wu, X. Lei, and R. Q. Hu, “Cognitive
semantic communication systems driven by knowledge graph,”
arXiv preprint arXiv:2202.11958, 2022.

[44] Kasyanov, V. N., Evstigneev, V. A., “Graphs in programming:
processing, visualization and application,” BHV–St. Petersburg, p.
1104, 2003.

[45] Petrov, C. V., “Graphic grammars and automata (overview),”
Automation and telemechanics, pp. 116–136, 1978.

[46] N. Sales and J. Efson, “An explainable semantic parser for end-user
development,” Ph.D. dissertation, Universität Passau, 2022.

[47] Ford, Brian and Schiano-Phan, Rosa and Vallejo, Juan, Component
Design, 11 2019, pp. 160–174.

[48] V. Kabilan, “Ontology for information systems (o4is) design
methodology,” 2007.

[49] Y. I. Molorodov, “Development of information system based on
ontological design patterns,” in CEUR Workshop Proceedings,
2019, pp. 26–30.

[50] Tuzov, V. A., “On the formalization of the task concept,” M:
Science, pp. 73–83, 1986.

[51] Pospelov, D. A., “Situational management. theory and practice,”
M: Science, p. 288, 2021.

[52] K. Lu, Q. Zhou, R. Li, Z. Zhao, X. Chen, J. Wu, and H. Zhang,
“Rethinking modern communication from semantic coding to
semantic communication,” IEEE Wireless Communications, 2022.

[53] Scott, M. L., Programming Language Pragmatics. Morgan
Kaufmann publications, 2006.

[54] Scott, D., Lattice Theory, Data Types and Formal Semantics,
Formal Semantics of Programming Languages. Prentice-Hall,
Englewood Cliffs, NJ, 1972.

[55] R. Lil, H. Zhu, and R. Banach, “Denotational and algebraic
semantics for cyber-physical systems,” in 2022 26th Interna-
tional Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, 2022, pp. 123–132.

[56] Orlov, S.A., “Theory and practice of programming languages,” St.
Petersburg: Peter, 2013.

[57] Ben-Ari M., Programming languages. Practical Benchmarking.
M.: Mir, 2000.

[58] Gulyakina N.A., Pivovarchik O.V., Lazurkin D.A., “Languages and
programming technology focused on the processing of semantic
networks,” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for intelli-
gent systems]. BSUIR, Minsk, 2012, pp. 222–228.

[59] D. Shunkevich, D. Koronchik, “Ontological approach to the
development of a software model of a semantic computer based
on the traditional computer architecture,” in Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems]. BSUIR, Minsk,
2021, pp. 75–92.

[60] Donald Knuth, The art of programming. Volume 1. Basic Algo-
rithms, 2019.

Семантическая теория программ в
интеллектуальных компьютерных

системах нового поколения
Зотов Н.В.

Несмотря на активное развитие и использование язы-
ков программирования, общей теории программ, на основе
которой можно было бы проектировать и разрабатывать
прикладные системы, на данный момент не существует.
В данной работе предлагается единая онтология языков
программирования и представления программ на разных
языках программирования. Работа показывает особенности
представления программ и ключевые моменты процесса их
интерпретации.

Received 28.10.2022

160

Non-procedural problem-solving models in
next-generation intelligent computer systems

Maksim Orlov, Anastasia Vasilevskaya
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: orlovmassimo@gmail.com, vnastyap@gmail.com

Abstract—In the article, an approach to the design
of problem solvers of intelligent systems based on non-
procedural models is considered. The developed approach
makes it possible to integrate any problem-solving models,
including the principles of logical inference, to solve
problems based on a general formal model.

Keywords—Knowledge-driven systems; logical problem-
solving models; logical graph languages; production
problem-solving models; functional problem-solving models.

I. INTRODUCTION

Currently, the usage of intelligent systems in a variety
of fields is becoming increasingly relevant. Modern
Artificial Intelligence technology is a whole family of
various private technologies focused on the developing
and maintening various types of components of intelligent
computer systems that implement a variety of models
for information representation and processing, different
problem-solving models focused on the development of
various classes of intelligent computer systems [1].

Modern intelligent computer systems consist of a
knowledge base, a problem solver, and an intelligent
interface. As the analysis of such systems shows, problem
solvers do not have the proper level of semantic com-
patibility, are not able to fully coordinate their actions
when solving complex problems and, in principle, solve
problems in conditions when the problems are insuffi-
ciently formalized and the algorithm for solving them is
unknown in advance [2]. In this article, an approach to
the implementation of non-procedural problem-solving
models in next-generation intelligent computer systems,
based on ensuring compatibility between different models,
is considered. The main attention is paid to logical
problem-solving models, as an example of a procedural
model, by analogy of which an approach to the design
of any other models is implemented.

Logic solves the problems of proving the truth of
propositions, argumentation of a proposition, the problem
of generating and refuting hypotheses. When solving
problems using logical models, it is possible to clearly
trace the process of “reasoning” of the system, to obtain
a protocol for solving the problem, which is an important

knowledge. Obtaining new logic formulas based on
existing ones is carried out by logical inference.

Frequently, in modern logical inference systems, com-
ponents such as the rule base, working memory, and
the logical inference mechanism are distinguished. These
components have a strict boundary and are sometimes
implemented in different programming languages and
using different models of knowledge representation. This
approach significantly limits the compatibility level for
the subsystems of these computer systems and the level
of compatibility of computer systems with each other as
a whole.

Another problem of the current state of systems
in which logical inference is implemented is that the
semantics of the processed information is not taken into
account. The system receives a certain set of logical rules,
inference rules, and factographic statements as input and
applies these rules on a working memory model (on a set
of facts). Considering the semantics of the processed
information allows not only to increase efficiency in
solving problems using logical models but also to increase
the level of negotiability and compatibility of computer
systems.

Likewise, no problem solvers have been developed
that are able to combine different models for solving
complex problems and ensure compatibility between them.
Compatibility must be ensured not only within the same
model, for example, compatibility of different logics, but
also between different problem-solving models. When
developing such problem solvers, it is important to notice
not only the differences between different approaches,
different logical models, but also their similarities.

The purpose of this work is not to develop a new
problem-solving method or a new logic class, as well
as to negate existing achievements in this field. The
purpose of the work is to develop a model that allows
integrating any problem-solving models and principles
of logical inference for solving problems in intelligent
systems based on a general formal model. In order to
use any new or existing model, it is necessary to bring
it to the formalism proposed in this article, which will
allow integrating and synchronizing it with compatible

161

components already available in the corresponding library.

II. ANALYSIS OF EXISTING APPROACHES TO SOLVING
THE PROBLEM

At the moment, many logical inference systems have
been implemented [3], using the well-known rules of
direct conclusion and resolution in various logic types,
however, the problems of compatibility of the systems
described above and collective problem solving using
various problem-solving models remain relevant.

Each problem-solving model is defined by a language
that provides a representation of a certain class of problem-
solving methods in the memory of a cybernetic system
and by an interpreter of these methods that defines the
operational semantics of the specified language. It is
necessary to consider the languages that can be used
to set a logical problem-solving model. Such languages
are Rule Interchange Format (RIF), Semantic Web Rule
Language (SWRL), SHACL Rules, and Notation3 Rules,
which are used in Semantic Web [4], [5]. In Figure 1, an
example of rules in the SWRL language is represented.

Figure 1. Writing rules in the SWRL language

The described languages do not provide for the possi-
bility of representing formulas in various logic types, so it
is impossible to solve the described problems with them.
Rule languages are specially built to infer conclusions.
The syntax and semantics of ontology languages and rule
languages are quite different, so the question arises how
to combine them. There are several approaches, such as
homogeneous and hybrid ones.

In a homogeneous approach, ontologies and rules are
used on the same rights, i.e. a common language is
created in which the same predicates are used both
to express ontological statements and formulate rules
(in particular, rules can be used to define classes and
features of ontology). In this case, the problem of
compatibility actually disappears, since the syntax and
the interpretations become common – they only need to
be extended to the rules, which is performed in a fairly
standard way. The disadvantage of this approach is that
combining different means in one language complicates
its implementation greatly, and a homogeneous approach
is often inapplicable, since ontologies and rule systems
can be built independently by different specialists.

In a hybrid approach, the usual predicates, which
are defined by rules (they can participate both in the
conditions of rules and in their conclusions), and the
predicates of ontologies, which are used as constraints
in the conditions of rules, are strictly distinguished. The
inference occurs through the interaction of individually
implemented (existing) inference programs for rules and
ontologies. The hybrid approach separates the builders
of ontologies and rule systems from each other but also
requires additional constraints to guarantee the solvability
of the main problems for combinations of ontologies and
rule systems (with solvable problems).

Semantic networks are convenient for representing
knowledge of any kind, including logical formulas. The
usage of semantic networks for deductive inference was re-
searched by Quillian in 1966 [6]. He formally represented
the semantics of natural language words and gave several
examples of the inference technique. The deductive
capabilities of Quillian were actually determined by the
concept of “subclass” and the “modification” relation.
The concept can be defined in terms of a more general
concept and with the help of a modifying property, which
is an “attribute – attribute value” combination.

An important technique used in semantic networks is
a hierarchy, or classification system. In accordance with
this technique, objects related to the subject domain are
classified into a number of categories or classes based on
their common properties. Using a hierarchical system in
an extensive knowledge base of an intelligent system, it
is especially convenient to use logical inference, since the
inference that is valid for general concepts will be valid for
particular concepts in relation to this general one. Despite
the local success of such work, the systems remained
static, non-extensible, and unable to be compatible.

Another important technique used in logical inference
on semantic networks is knowledge localization [7]. The
essence of localization is the possibility to identify an
area of the semantic network in which subject knowledge
are located (for example, constants, instances of classes),
suitable for usage in logical inference premises. Taking
into account the hierarchy of the knowledge base, it
becomes most convenient to allocate a universe of
reasoning, exceeding the scope of which is not advisable.
Thus, the range of values of variables contained in the
premises of logical formulas is limited, which allows
reducing significantly the cost of searching in large
knowledge bases.

Fuzzy inference systems [8], [9] are quite popular at
the moment, whose semantic compatibility was also not
considered.

III. PROPOSED APPROACH

As part of this work, it is proposed to use an OSTIS
Technology [10] as a basis, the principles of which make
it possible to implement not just logical, production,

162

functional, and other problem-solving models but also to
ensure their compatibility, to implement a problem solver
capable of combining various problem-solving models,
including various logic types, to lay the foundation for
creating interoperable computer systems.

The systems developed on the basis of the OSTIS Tech-
nology are called ostis-systems. The OSTIS Technology
is based on a universal way of semantic representation
of information in the memory of intelligent computer
systems, called an SC-code. SC-code texts are unified
semantic networks with a basic set-theoretic interpretation.
The elements of such semantic networks are called sc-
elements (sc-nodes and sc-connectors, which, in turn,
depending on orientation, can be sc-arcs or sc-edges). The
Alphabet of the SC-code consists of five main elements,
on the basis of which SC-code constructions of any
complexity are built, including more specific types of sc-
elements (for example, new concepts). The memory that
stores SC-code constructions is called semantic memory,
or sc-memory.

The main advantage of using the SC-code for formaliza-
tion and processing of logical formulas is that it provides
compatibility between different problem-solving models.
Any ostis-system has a problem solver, and there are
problems for which the algorithm for solving them is
unknown in advance and for which there is no ready-made
method. The system must think and determine which
agents can be involved in solving a particular problem.

The SC-code allows describing the relations between
concepts of any form and complexity, which makes it
a suitable option for using logical inference in next-
generation intelligent computer systems, as well as using
the hierarchy technique due to the ontological approach
underlying the ostis-systems knowledge bases.

Within the technology, several universal variants of
visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant).

Within this article, fragments of structured texts in
the SCn and SCg codes [11] will often be used, which
are simultaneously fragments of the source texts of
the knowledge base, understandable to both human and
machine. This allows making the text more structured
and formalized, while maintaining its readability.

The basis of the knowledge base within the OSTIS
Technology is a hierarchical system of subject domains
and ontologies. Based on this, in order to solve the above
problems, it is proposed to implement the following
hierarchy of integrated subject domains:

Subject domain of logical formulas, propositions, and
formal theories
⇒ private subject domain*:

• Subject domain of logical languages
• Subject domain of logical inference

Subject domain of logical languages
⇒ private subject domain*:

Subject domain of the propositional logic
language

Subject domain of the propositional logic language
⇒ private subject domain*:

Subject domain of the predicate logic language

Subject domain of logical problem-solving models
⇐ private subject domain*:

• Subject domain of logical languages
• Subject domain of logical inference

Inheritance of subject domains allows using the de-
scribed logics and their components in the description
of any logics. The basic concepts allow developers of
an intelligent system to add new logics. To implement a
specific logical problem-solving model, it is necessary to
create a subject domain that will be private in relation
to the Subject domain of logical problem-solving models
and the subject domain of some logical language, for
example, the propositional logic language, the predicate
logic language, the language of fuzzy logic, and others.

The Subject domain of logical formulas, propositions,
and formal theories defines the denotational semantics of
logical formulas, propositions, and formal theories and
contains a formal specification of concepts necessary for
the formation of logical formulas and propositions of any
logics, including traditional, fuzzy, plausible, temporal,
default logics, and any others. Logical formulas and
propositions are interpreted using the concepts described
in the Subject domain of logical problem-solving models,
which includes a model and implementation of abstract
agents necessary for solving logical problems. This
subject domain includes the specification of concepts
such as logical inference, inference rules, equivalent
transformations, and axiom schemes.

Next, we will consider in more detail the fragments of
sc-models of these subject domains and ontologies.

IV. LOGICAL GRAPH SCL LANGUAGE

Modern logic studies formal languages that serve to
express logical reasoning. A logical language is a formal
language intended to reproduce logical forms of natural
language contexts, as well as to express logical laws and
ways of correct reasoning in logical theories constructed
in a given language. Logic does not study how knowledge
was obtained – it allows representing knowledge, as
well as deducing new knowledge from existing one
(that is, deducing new formulas of the same logic from
existing logic formulas), and establishing the accuracy of
reasoning.

The SCL Language is a sublanguage of the SC-code
for writing logical statements [12]. The SCL Language is
a graph-type logical language used by ostis-systems. The

163

texts of the SCL language are homogeneous semantic
networks that are texts of the SC language. The alphabet
of the SCL language is not allocated separately, since the
alphabet of the SC-code is used, in which any statements,
phenomena, regularities, programs, and any other knowl-
edge can be described. The SCL language allows writing
the texts of the propositional logic language, predicate
logic language, and any other logical languages. The SC-
code is a metalanguage for both the SCL language and for
itself, that is, it allows describing the meaning of formulas
written in SCL. Many formal languages, unlike SC, are
not extensive enough to be a metalanguage for themselves.
The specificity of the SCL language allocation is that the
texts of this language can be processed in a special way.
Logical inference inference can be made over propositions
of the SL language.

One of the important features of SCL is its ability
to represent predicate logic language texts taking into
account the semantics of these texts (propositions). The
SCL language is naturally oriented to work in the formal
system of the predicate logic language. The SC language
allows writing any relations and correspondences in a
graph representation. The predicate value from a certain
set of sc-variables corresponds to the result of a search
operation on the template of some sc-construction (found
or not found), which includes sc-constants and/or sc-
variables with the corresponding configuration of relations
between them. An approach based on the SCL language
for the representation of formulas provides an opportunity
to write generality and existence quantifiers not explicitly
(this is not prohibited but is superfluous). The existence
quantifier is an “embedded” concept in the sense that if
some sc-element is included in some sc-structure, then the
corresponding concept exists in this sc-structure. Thus,
the existence quantifier is imposed automatically (unless
another quantifier is explicitly imposed) on those sc-
variables that are included in atomic logical formulas. The
generality quantifier is imposed by default (unless another
quantifier is explicitly imposed) on variables included in
the equivalence and implication connectives in accordance
with the denotational semantics of logical languages.

Such features simplify logical inference in the predicate
logic in the SCL language, since this eliminates the need
to bring the proposition into the Skolem normal form
due to built-in quantifiers and the need for unification
procedures conditioned by the search operation of the
sc-construction by template, in which the necessary
substitutions of variables occur.

V. EXAMPLES OF FORMALIZING STATEMENTS IN THE
SCL LANGUAGE

A proposition is understood as a certain structure
(which includes sc-constants from some subject domain
and/or sc-variables) or a logical connective that can be
interpreted as true or false within any subject domain.

proposition
⇒ subdividing*:

{{{• atomic proposition
• non-atomic proposition

}}}
⇒ subdividing*:

{{{• factographic proposition
• logical formula

}}}

logical formula
⇒ subdividing*:

{{{• atomic logical formula
• non-atomic logical formula

}}}

The truth of a proposition is set by indicating whether
the sign of this proposition belongs to a formal theory
corresponding to a given subject domain. The falsity of
a proposition is set by specifying the belonging of the
negation sign of this proposition to this formal theory.

In Figure 2, an example of a logical formula that is
true within one formal theory and false within another is
represented.

Figure 2. An example of a logical formula that is true within one
formal theory and false within another

An atomic logical formula of the SCL language is
interpreted as the set of all characters of some sc-text
(sc-structure) containing at least one variable sc-element.
Variables are free and bind subject variables that are

164

intensional objects and are associated (have a value) with
some constant element from the knowledge base. Figure
3 shows an example of an atomic logical formula that
contains information about a triangle whose sine of the
inner angle is equal to one.

Figure 3. An example of formilizing an atomic logical formula

Each non-atomic logical formula of the SCL language
is interpreted as a connective belonging to a relation
corresponding to the type of non-atomic formula (con-
junction, disjunction, negation, implication, equivalence,
existence, universality) and linking the signs of the
formulas included in the specified non-atomic formula.
An example of a non-atomic logical formula is shown
in Figure 4. This formula contains information that any
triangle is either an acute triangle, or an obtuse triangle,
or a right triangle.

Figure 4. An example of formilizing a non-atomic logical formula

A statement is a semantic neighborhood of some
logical formula, which includes the full text of this
logical formula, as well as the fact that this logical
formula belongs to some formal theory. The sign of a
logical formula, the semantic neighborhood of which
is a statement, is the main key sc-element within this
statement. The signs of the concepts of the corresponding

subject domain, which are part of any subformula of the
specified logical formula, will be the key sc-elements
within this statement.

The full text of some logical formula includes:
• the sign of this logical formula;
• signs of all its subformulas;
• elements of all logical formulas whose signs are

included in this structure;
• all pairs of belonging that connect logical formulas

whose signs are included in this structure with their
components.

In Figure 5, there is an example of a statement that
shows that the corresponding angles at the intersection
of parallel lines of the secant are equal within the formal
theory of Euclidean geometry.

Figure 5. An example of the statement

A definition is a statement, the main key sc-element
of which is a connective of equivalence that uniquely
defines some concept based on other concepts. For the

165

same concept within one formal theory, there may be
several equivalence statements* that uniquely define some
concept based on others, however, only one such statement
within this formal theory can be marked as a definition.
The remaining equivalence statements* can be interpreted
as explanations of this concept.

In Figure 6, an example of a definition is given, which
shows that a rhombus is a quadrilateral with all sides
equal within the formal theory of Euclidean geometry.

Figure 6. An example of a definition

VI. MACHINE OF THE SCL LOGICAL INFERENCE

An inference in a formal system is any sequence of
formulas, so that any formula is either an axiom of this
formal system, or a direct conclusion of any previous
formulas according to one of the inference rules. The idea
of deducibility is central to logic: in any formal axiomatic
theory, a ‘theorem’ is a formula that is deduced from
axioms. The correctness of conclusions is introduced and
verified completely formally, without any connection with
the truth of the premises included in it, i.e. exclusively
from the point of view of the reasoning structure. From
a practical point of view, the most important property
of such formal correctness of reasoning is as follows: if
we have managed to prove, using the methods of formal
logic, the accuracy of the reasoning, and we know from
experience that all the premises used are true, then we
can be sure of the truth of the conclusion [13]. The truth
of the premises used is set by the state of the knowledge
base.

Various logical approaches allow designing problem
solvers for intelligent systems in different subject domains,
taking into account their specifics. The Knowledge pro-
cessing machine for each specific system largely depends
on the purpose of this system, the set of problems
to be solved, the subject domain, and other factors.
Some operations required in one subject domain will
be redundant in another. For example, in a system that
solves problems in geometry, chemistry, and other natural
sciences, the usage of deductive inference methods will be
reasonable, since the solution of problems in such subject
domains is based only on reliable rules. In systems of
medical diagnostics, for example, a situation constantly
arises when a diagnosis can only be made with a certain
degree of confidence and there can be no absolutely
reliable answer to the question posed. In this regard,
there is a need to use different knowledge processing
machines in different systems, while the composition and
capabilities of the knowledge processing machine in a
particular system is determined not only directly by the
developer but requires consultations with experts in this
subject domain. Nevertheless, the basis for all logic types
is classical logic, and its most general methods extend to
other logics with some modifications, clarifications, and
limitations.

Let us give a brief classification of existing logical
problem-solving methods:

• Classical deductive inference. Classical deductive
inference is the most popular in the building of auto-
matic problem solvers, since it always gives a reliable
result. Deductive inference includes direct, reverse,
and logical inference (the resolution principle, the
Erbran procedure, etc.) [13], all kinds of syllogisms
[14], etc. The main problem of deductive inference
is the impossibility of its usage in a number of cases
when there is no reliable knowledge.

• Inductive inference. Inductive inference provides
an opportunity to use various assumptions in the
decision process, which makes it convenient for
usage in poorly and difficultly formalizable subject
domains, for example, in the building of medical
diagnostic systems. The principles of inductive
inference are discussed in detail in [15], [16].

• Abductive inference. In artificial intelligence, an
abductive inference is usually understood as the
inference of the best abductive explanation, i.e.
the explanation of some event that has become
unexpected for the system. Moreover, the “best”
explanation is such one that satisfies special criteria
determined depending on the problem being solved
and the formalization used. The abductive inference
is discussed in detail in [17], [18].

• Fuzzy logic. The theory of fuzzy sets and, accord-
ingly, fuzzy logic is also used in systems related to
difficultly formalizable subject domains [19], [20].

166

The theory of fuzzy logic is discussed in more detail
in [9] and other publications.

• Default logic. The default logic is used, among other
things, in order to optimize the reasoning process,
supplementing the process of reliable inference
with probabilistic assumptions in cases where the
probability of error is extremely small. The default
logic is discussed in more detail in the articles [21],
[22].

• Temporal logic. The usage of temporal logic is very
relevant for non-static subject domains in which
the truth of a statement changes over time, which
significantly affects the course of solving a problem
[23], [24]. It should be noted that the knowledge
representation language used in this work provides
all the necessary capabilities for describing such
dynamic subject domains.

A formal clarification of various information processing
models in graphodynamic associative memory is abstract
graphodynamic associative machines. The models of
information processing, in particular, include models
of parallel processing of knowledge corresponding to
different logics and strategies for solving problems [25].

The advantage of using graphodynamic associative
machines as a tool for creating next-generation intelligent
computer systems is conditioned by the following aspects:

• the associative method of access to processed infor-
mation is implemented in a fundamentally simpler
way;

• it is much easier to maintain the open character of
both the machines themselves and the formal models
implemented on them;

• they are a convenient basis for the integration of
various information processing models.

The other advantages of graphodynamic associative
machines are conditioned by the advantages of graph
texts and graph languages.

An abstract scl-machine is a logical inference ma-
chine, which belongs to the class of abstract sc-machines
[12]. The internal language of the scl-machine is the
above-mentioned SCL logical graph language, its oper-
ations correspond to the rules of logical inference. The
family of specialized abstract graphodynamic knowledge
processing machines is a formal clarification of the
operational semantics of the above-mentioned specialized
graph knowledge representation languages, each of which
corresponds to one or more abstract machines.

These abstract machines correspond to different
problem-solving models, different logics, different models
of plausible reasoning. An agent from a family of logical
inference agents can represent any inference rule that
can be applied to solve a logical problem. In addition,
agents are needed to perform equivalent transformations
of a logical formula (for example, to write an equivalence
formula as a conjunction of two disjunctions) and other

agents that help apply inference rules on a set of logic
language formulas.

Abstract scl-machine
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for applying the
inference rule

• Abstract sc-agent of equivalent
transformations of a logical formula

• Abstract sc-agent of direct logical
inference

• Abstract sc-agent of reverse logical
inference

}}}

The purpose of an Abstract sc-agent for applying the
inference rule is to apply a given inference rule with
given logical formulas. This sc-agent is activated when an
initiated action belonging to the class action of applying
the inference rule appears in the sc-memory. After the
sc-agent checks the initiation condition, the process of
applying the inference rule is performed, which consists
in checking whether there are structures in the sc-memory
that correspond to the condition for applying this rule
and generating sc-constructions in accordance with the
applied rule. The Agent of applying the inference rule is
often used in the operation of direct inference and reverse
inference agents, as well as others. An example of an
inference rule can be the Modus ponens rule shown in
Figure 7.

Figure 7. Formalization of the Modus ponens inference rule

The purpose of an Abstract sc-agent of equivalent
transformations of a logical formula is to apply certain
rules that bring the logical formula into a certain form.
This sc-agent is activated when an initiated action be-
longing to the class action of equivalent transformation
of a logical formula appears in the sc-memory. After
the sc-agent checks the initiation condition, the process

167

of converting the formula from one form to another is
performed, while no new knowledge is generated in the
sc-memory from the point of view of the subject domain
under consideration. The response of this agent is a set
of formulas that are equivalent in meaning but different
in form of representation. As such forms, for example,
conjunctive normal form or disjunctive normal form can
serve. The Agent of equivalent transformation is often
called during the operation of the agent for applying the
inference rule, since logical formulas are not always in the
form that is available for applying a particular inference
rule but can be brought to the required form.

The purpose of an Abstract sc-agent of direct logical
inference is to generate new knowledge based on some
logical statements. This sc-agent is activated when an
initiated action belonging to the class direct logical
inference action appears in sc-memory. After the sc-
agent checks the initiation condition, the process of direct
logical inference is performed, which consists of cyclic
operations of applying inference rules, generating new
knowledge in sc-memory, and checking some condition,
for example, the appearance of sc-elements from the target
sc-structure in memory [26]. The input arguments of such
an agent are the target structure, a set of formulas that are
used during the inference by the agent of applying the
inference rules, a set of inference rules, an input structure,
and an output structure. As a result of performing the
action by the agent of logical inference, an sc-structure
is formed in the sc-memory, which is a decision tree.
This tree consists of a sequence of nodes representing the
applied rules that led to the appearance of the required
knowledge in the sc-memory. Such a tree may be empty
if the required structure could not be generated during
logical inference. Figure 8 shows an example of the
specification of the agent of direct logical inference.

The purpose of an Abstract sc-agent of reverse logical
inference is to test hypotheses. Some hypotheses can be
refuted, but by extracting the reasons why the hypothesis
is refuted, it is possible to change the premise of the
hypothesis so as to create a new hypothesis that can later
become a useful theorem. This sc-agent is activated when
an initiated action belonging to the class reverse logical
inference action appears in sc-memory. After the sc-agent
checks the initiation condition, the process of reverse
logical inference is performed, which is similar to the
process of direct logical inference, except that the search
for rules is based not on the premises of formulas but on
their conclusions [26]. The response of this agent will
also be an inference tree showing which rules can be
used to prove or refute the hypothesis put forward.

Abstract sc-agent of equivalent transformations of a
logical formula
⇒ decomposition of an abstract sc-agent*:

{{{

Figure 8. The specification of the agent of direct logical inference

• Abstract sc-agent of transforming a
formula into a conjunctive normal form

• Abstract sc-agent of transforming a
formula into a disjunctive normal form

• Abstract sc-agent for applying de
Morgan’s laws

• Abstract sc-agent of equivalent
transformations of a logical formula by
definition

• Abstract sc-agent of applying the
negation properties of logical formulas

• Abstract sc-agent of applying the law of
idempotence of logical formulas

• Abstract sc-agent of applying the law of
commutativity of logical formulas

• Abstract sc-agent of applying the law of
associativity of logical formulas

• Abstract sc-agent of applying the law of
absorption of logical formulas

• Abstract sc-agent of applying the law of
contradiction of logical formulas

• Abstract sc-agent of applying the law of
double negation of logical formulas

• Abstract sc-agent of applying the law of
splitting logical formulas

}}}

168

VII. EXAMPLE OF FORMAL INFERENCE IN THE SCL
LANGUAGE

With the help of resolution rules, it is possible to
effectively prove the formulas of the propositional logic
language. Any formula is equivalent to some formula in
conjunctive normal form, and therefore it is sometimes
convenient to apply the resolution rule. Using equivalent
transformations, it is also possible to obtain formulas
suitable for using the resolution rule. Figure 9 shows the
formalization of the resolution rule.

Figure 9. Formalization of the resolution rule

If any two disjuncts C1 and C2 have a pair of formulas
A and ¬A, then a new disjunct can be formed from the
remaining parts of the original disjuncts.

Let us give an example of the inference of a formula
from a set of premises using the resolution principle [13].

If team A wins a football game, then city A’ triumphs,
and if team B wins, then city B’ will triumph. Either
only city A’ or only city B’ can win. However, if team
A wins, then city B’ does not triumph, and if team B
wins, then city A’ does not triumph. Consequently, city
B’ triumphs if and only if city A’ does not triumph. The
goal is to make sure that city B’ triumphs if and only if
city A’ does not triumph.

Proving the inference of a formula is equivalent to
proving the inconsistency of the inference of the negation
for this formula. When using the resolution rule, this is
especially convenient to use.

The formalization of logical formulas corresponding
to the example is shown in Figure 10. Each non-atomic
formula in the figure belongs to some formal theory, that
is, is considered true.

Figure 10. Formalization of rules for applying the resolution rule

Structure A is an atomic logical formula that contains
the information “team A won”, structure A’ represents
the formula denoting the triumph of city A’. Accordingly,
the same is true for structures B and B’. First of all,
it is necessary to bring the implication into conjunctive
normal form according to the formula shown in Figure
11 and the equivalence by definition.

Figure 11. Formalization of rules for applying the resolution rule

169

Let us also apply negation to the formula that needs
to be derived (equivalence). As a result, we obtain the
following formulas (Fig. 12).

Figure 12. Formalization of rules for applying the resolution rule after
conversion to conjunctive normal form

Further, applying the resolution rule for transformed
formulas, we obtain an empty disjunction, which indicates
the inconsistency of the set of formulas and proves the
equivalence formula that city B’ triumphs if and only if
city A’ does not triumph (Fig. 13 and 14).

VIII. INTEGRATION OF PRODUCTION AND
FUNCTIONAL PROBLEM-SOLVING MODELS

Frequently, all the knowledge that a human operates
with and that can be stored in the memory of an intelligent
system can be divided into declarative and procedural.
Declarative knowledge contains information about some
objects, their features, properties, characteristics, the inclu-
sion of objects among themselves in certain relationships,
situations in which objects participate, the phenomena

Figure 13. Application of the resolution rule

170

Figure 14. The result of applying the resolution principle

of reality, and its basic laws. Procedural knowledge
allows the system to learn how to use certain declarative
knowledge.

One of the ways to represent knowledge is a logical
approach. Generalized knowledge about reality can be
represented in the form of a formula of some calculus.
However, even the simplest statements in natural language
are not so easy to translate into the logic language,
preserving the entire content of the text. Logical calculus
is not suitable for displaying the totality of knowledge in
intelligent systems.

Another way to describe knowledge is to use relational-
type models. In such models, information units corre-
sponding to objects, phenomena, facts, or processes are
explicitly allocated.

The third way to describe knowledge is to use
mixed-type models in which declarative and productive
components are simultaneously present. Traditionally,
this type of model includes frames and productions

working on semantic networks. The production model is a
development of the logical model. Production systems can
be shown as transition graphs, which allows them to be
represented in a natural way on the SC-code. Production
systems often use an approach based on a “bulletin board”,
which is implemented within the principles of the OSTIS
Technology.

Production systems have the following advantages [27]:
• productions describe a variety of knowledge in sim-

ple structures with a high degree of standardization;
• production systems satisfy the modularity principle

to a high degree. Any production with software
implementation can be considered as an independent
module, the addition of which to the production
system and its withdrawal from it occurs without
additional costs;

• production systems simplify the organization of
parallel processes in which all productions included
in the scope of ready-made ones can be performed
independently of each other.

Functional problem-solving models are based on the
concept of a function as a fairly general mechanism
for representing and analyzing problem solving. In this
case, the calculation model is implemented without states.
A functional program cannot change the data it already
contains but can only generate new ones. A neural network
problem-solving model is a particular case of a functional
problem-solving model. The advantages of functional
methods are:

• high reliability due to clear structuring of data and
functions;

• great capabilities for parallel computing.
The representation of functional models is also unified

using the OSTIS Technology, and such models can be
integrated with any other models when solving complex
problems.

IX. CONCLUSION

In the article, the implementation of non-procedural
problem-solving models of intelligent systems based
on the OSTIS Technology is proposed, which makes
it possible to realize compatibility between different
problem-solving models and allow intelligent systems
to solve complex problems. The hierarchy of complex
subject domains necessary to achieve the set goals is
designed.

The operational semantics of logical languages has been
clarified in the form of a specification of the corresponding
abstract sc-agents.

An example of the formalization of logical formulas,
as well as the process of logical inference using semantic
networks, is given.

The results obtained will allow structuring existing
logics and using various approaches of non-procedural
models in solving complex problems.

171

REFERENCES

[1] Akshita Rastogi, Shivam, Rekha Jain, “Risk and challenges
in intelligent systems,” Proceedings of the Third International
Conference on Information Management and Machine Intelligence,
ICIMMI 2021, 2022.

[2] Martin Molina, “What is an intelligent system?” 2022.
[3] Peter Flach, Kacper Sokol, “Simply logical – intelligent reasoning

by example (fully interactive online edition),” 2022.
[4] J. M. Giménez-García, A. Zimmermann, and P. Maret, “Ndfluents:

An ontology for annotated statements with inference preservation,”
2017.

[5] Abdur Rakib, Abba Lawan, “The Semantic Web rule language
expressiveness extensions – a survey,” Ontology-driven CropBase
knowledge system, 2019.

[6] Apatova N., Gaponov A., Smirnova O., “The possibilities of
Artificial Intelligence in teaching higher mathematics,” 2021.

[7] Vadim Moshkin, Nadejda Yarushkina, “Modified knowledge
inference method based on fuzzy ontology and base of cases,”
Creativity in Intelligent Technologies and Data Science, 2019.

[8] Stefania Tomasiello, Witold Pedrycz, Vincenzo Loia, “Fuzzy
inference systems,” Contemporary Fuzzy Logic, A Perspective
of Fuzzy Logic with Scilab, 2022.

[9] Uehara, Kiyohiko and Hirota, Kaoru, “Fuzzy inference: Its past
and prospects,” Journal of Advanced Computational Intelligence
and Intelligent Informatics, vol. 21, pp. 13–19, 01 2017.

[10] Golenkov Vladimir and Guliakina Natalia and Shunkevich Daniil,
Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
V. Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[11] (2022, September) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

[12] Golenkov V., Korolev V., “Basic transformations of SQL language
texts for the implementation of deductive inference mechanisms,”
Minsk: ITC of NAS of Belarus, 1996.

[13] Averin A.I. and Vagin V.N., “Using parallelism in deductive infer-
ence,” Journal of Computer and Systems Sciences International,
vol. 43, pp. 603–614, 07 2004.

[14] Satya Sundar Sethy. (2021) Mediate inference (syllogism).
[15] Norton John, “A demonstration of the incompleteness of calculi

of inductive inference,” The British Journal for the Philosophy of
Science, vol. 70, pp. 1119–1144, 12 2019.

[16] Yini Zhang and Yilin Wang. (2022) Missing-edge aware knowl-
edge graph inductive inference through dual graph learning and
traversing.

[17] Abdul Rahman, Safawi and Ibrahim, Zaharudin and Paiman,
Jailani and Bakar, Amzari and Mohd Amin, Zahari, “The decision
processes of abductive inference,” Advanced Science Letters,
vol. 21, pp. 1754–1757, 06 2015.

[18] Gungov, Alexander, “The ampliative leap in diagnostics: The
advantages of abductive inference in clinical reasoning,” History
of Medicine, vol. 5, pp. 233–242, 01 2018.

[19] Geramian A. and Mehregan M.R. and Garousi Mokhtarzadeh and
N. and Hemmati M. (2017) Fuzzy inference system application
for failure analyzing in automobile industry.

[20] Son L.H. and Van Viet P. and Van Hai P. (2017) Picture inference
system: a new fuzzy inference system on picture fuzzy set.

[21] Lupea, Mihaiela, “DARR–a theorem prover for constrained and
rational default logics,” vol. 1, 01 2002.

[22] Weydert, Emil, “Defaults, logic and probability – a theoretical
perspective,” KI – Künstliche Intelligenz, v.4/01, 44–49 (2001), 11
2022.

[23] Chen, Gang and Wei, Peng and Liu, Mei, “Temporal logic
inference for fault detection of switched systems with Gaussian
process dynamics,” IEEE Transactions on Automation Science
and Engineering, vol. PP, pp. 1–16, 05 2021.

[24] Rybakov, V., “Multi-agent temporal nontransitive linear logics and
the admissibility problem,” Algebra and Logic, vol. 59, 05 2020.

[25] Golenkov V., Gulyakina N., “Grapho-dynamic association models
and facilities of parallel information handling in artificial intelli-
gence systems,” BSUIR Proseedings, 2003.

[26] Gavrilova T.A., Horoshevski V.F., Knowledge bases of intelligent
systems, 2000.

[27] Kuznetsov V. E., Computer representation of informal procedures,
1989.

Непроцедурные модели решения задач в
интеллектуальных компьютерных

системах нового поколения
Орлов М.К., Василевская А.П.

В работе рассматривается подход к проектированию реша-
телей задач интеллектуальных систем на основе непроцедур-
ных моделей. Разрабатываемый подход позволяет интегри-
ровать любые модели решения задач, в том числе принципы
логического вывода, для решения задач на основе общей
формальной модели.

Received 30.10.2022

172

Convergence and integration of artificial neural
networks with knowledge bases

in next-generation intelligent computer systems
Mikhail Kovalev

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
michail.kovalev7@gmail.com

Aliaksandr Kroshchanka
Brest State Technical University

Brest, Belarus
kroschenko@gmail.com

Vladimir Golovko
Brest State Technical University

Brest, Belarus
vladimir.golovko@gmail.com

Abstract—In the article, an approach to the integra-
tion and convergence of artificial neural networks with
knowledge bases in next-generation intelligent computer
systems through the representation and interpretation of
artificial neural networks in a knowledge base is considered.
The syntax, denotational, and operational semantics of
the language for representing neural network methods in
knowledge bases are described. The stages of building of
neural network problem-solving methods with the help
of intelligent framework for designing artificial neural
networks are described.

Keywords—problem-solving model, ontological approach,
neuro-symbolic AI, artificial neural network

I. INTRODUCTION

The term of a next-generation intelligent computer
system implies that such systems, among others, have the
following capabilities [1]:

• the ability to constantly improve the quality of
problem solving;

• the ability to acquire skills for solving fundamentally
new problems;

• the ability to explain their own decisions;
• the ability to find and eliminate errors in their own

decisions (the ability to introspect).
Ensuring the above abilities is fundamentally possible

in the concept proposed by the OSTIS project [1] due
to the unification of the representation and ontological
structuring of knowledge describing problems, subject
domains within which problems are solved, and problem-
solving methods.

Representation of various problems-solving methods
in a common knowledge base ensures the semantic
compatibility of these methods. When solving a problem
using such methods, the system does not interact with
them on the principle of “inputs–outputs”. On the contrary,
a common memory allows real-time transformation of
input knowledge using any available methods, which
provides the ability to introspect and explain the decisions
of the system.

Promising and actively developing problem-solving
methods are artificial neural networks (ANN), which is
determined, on the one hand, by the evolution of the
theory of ANN and, on the other hand, by the hardware
capabilities of the machines that are used to train them.

The advantages of ANN include the ability to solve
problems with unknown patterns, as well as the ability
to solve problems without the need to develop problem-
oriented approaches.

However, most neural network models work like a
“black box” [2], which is one of the main disadvantages
of this problem-solving method. Modern problems in-
creasingly require explanation of their solution. A whole
direction of Explainable AI has appeared, within which
various attempts are made to explain the decisions of ANN
[3], [4]. Approaches that propose the integration of neural
networks with knowledge bases are being developed [5]–
[7].

As a disadvantage of ANN we can also name the heuris-
tic nature of the process of finding optimal architectures
of models and the parameters for their training, as well
as the high requirements for the scope of knowledge of
neural network models researchers.

Based on the above abilities, the presence of which
must be ensured in next-generation intelligent computer
systems, the problem of developing an approach to the
integration of ANN into the knowledge base of an intel-
ligent system arises, both as a problem-solving method
and as an object of automatic design of new methods.
The solution of this problem will allow overcoming the
above disadvantages of the neural network method.

The purpose of the research is to expand the range of
problems solved by intelligent systems by developing a set
of models, methods, and tools for representing, designing,
and processing artificial neural networks in intelligent
systems and integrating them with other problem-solving
models.

173

II. PROPOSED APPROACH

The basis of the proposed approach is the usage of the
OSTIS technology and its basic principles [8]. Intelligent
systems developed using the OSTIS technology are called
ostis-systems. Any ostis-system consists of a knowledge
base, a problem solver, and a user interface.

The problem solver performes the processing of frag-
ments of the knowledge base. At the operational level,
processing means adding, searching, editing, and deleting
sc-nodes and sc-connectors of the knowledge base. On the
semantic level, such an operation is an action performed
in the memory of an action subject, where, in the general
case, the subject is an ostis-system and the knowledge
base is its memory. An action is defined as the influence
of one entity (or some set of entities) to another entity
(or some set of other entities) according to some purpose.

Actions are performed according to the set problems. A
problem is a formal specification of some action, sufficient
to perform this action by some subject. Depending on
a particular class of problems, it is possible to describe
both the internal state of the intelligent system itself and
the required state of the external environment [9].

Similar problems are grouped into classes, for which
generalized problem formulations are described. The
following classes of problems for ANN are defined [10]:

• The classification problem. The problem of construct-
ing a classifier, i.e. a mapping c̃ : X → C, where
X ∈ Rm is the feature space of the input example,
C = C1, C2, ...Ck is a finite and usually small set
of class labels.

• The regression problem. The problem of constructing
an evaluation function by examples (xi, f(xi)),
where f(x) is an unknown function. The evaluation
function is a mapping of the form f̃ : X → R, where
X ∈ Rm is the feature space of e.a.p.

• The clustering problem. The problem of constructing
a function a : X → Y that matches any object
x ∈ X with a cluster number y ∈ Y with a certain
distance metric ρ(x, x′), where X is a set of objects,
Y is a set of cluster numbers (names, labels), x, x′ ∈
X .

• The problem of decreasing the dimensionality of
the feature space. The problem of constructing a
function h : X → Y that preserves the given
relations between points of sets X and Y, where
X ⊂ Rp, Y = h(X) ⊂ Rq , q < p.

• The control problem. The problem of constructing a
model-regulator for the state of a complex dynamic
object.

• The filtering problem. The problem of building a
model that cleans the original signal containing some
noise and reduces the influence of random errors in
the signal.

• The detection problem. It is a special case of the
classification and regression problems. The problem

of constructing a model that performs the detection
of objects of certain types in photo and video images.

• The problem with associative memory. The problem
of constructing a model that allows reconstructing
the original example based on previously saved
examples.

For classes of problems, classes of methods for their
solution are formulated. A problem-solving method is de-
fined as a problem-solving program of the corresponding
class, which can be either procedural or declarative. In
turn, a class of problem-solving methods is defined as
a set of all possible problem-solving methods having a
common language for representing these methods. The
method representation language allows describing the
syntactic, denotational, and operational semantics of this
method.

In this article, we propose to consider ANN as a
class of problem-solving methods with its own repre-
sentation language. According to the OSTIS technology,
the specification of a class of problem-solving methods is
reduced to the specification of the corresponding method
representation language, i.e. to the description of its
syntactic, denotational, and operational semantics.

To achieve semantic compatibility with other problem-
solving methods of the OSTIS technology, it is proposed
to describe neural network methods within semantic
memory, accordingly, the syntax of the representation
language of neural network problem-solving methods is
the syntax of the SC-code used in the OSTIS technology
for knowledge representation.

Thus, in order to add neural network problem-solving
methods to the stack of the OSTIS technology and thus
expand the range of problems solved by ostis-systems, it
is necessary to describe the denotational and operational
semantics of the representation language for the neural
network problem-solving method.

The denotational semantics of neural network method
representation language is described within the subject
domain and its corresponding ontology of a neural
network method. This model is described in detail in
Section III.

The operational semantics of any problem-solving
method representation language is the specification of
a family of agents providing the interpretation of any
method belonging to the corresponding method class. This
family is an interpreter of the corresponding problem-
solving method. Within the OSTIS technology, such
an interpreter is called a problem-solving model. Since
the OSTIS technology uses a multi-agent approach, the
development of a neural network problem-solving model
is reduced to the development of an agent-oriented model
of ANN interpretation. This model is described in Section
IV.

A skill is a method, the interpretation of which can
be fully carried out by a given cybernetic system, in

174

Figure 1. A fragment of the set-theoretic ontology of ANN

the memory of which the specified method is stored [9].
Thus, forming the specification for the neural network
problem-solving method and neural network problem-
solving model in the ostis-system, we can say that such
system possesses the skill of problem solving with the
help of ANN.

In Figure 1, a fragment of the ANN ontology is shown,
describing the relation of such concepts and nodes as:

• a class of problems that can be solved by ANN (for
example, the class of classification problems);

• a class of neural network problem-solving methods;
• a neural network problem-solving model;
• a skill in problem solving with the help of ANN;
• specific problems and methods of their solution (for

example, a specific trained convolutional ANN).
The usage of ANN as a problem-solving method

implies the usage of an already designed and trained
ANN. However, the presence of a neural network method
description language in ostis-system memory opens the
way for automation of the design and training ANN
processes themselves. Such automation is represented by
separate classes of problems and the corresponding skills
for their solution. The approach to such automation is
described in Section V.

III. DENOTATIONAL SEMANTICS OF THE NEURAL
NETWORK REPRESENTATION LANGUAGE

As it was already mentioned, the denotational semantics
of neural network method representation language is
described within the subject domain (SD) and its cor-
responding neural network method ontology. The SD of
neural network methods is a private SD of the method.

The maximum class of artificial neural network re-
search objects is an artificial neural network.

The SD of a neural network method and key elements
of its ontology are described in [10]. In this article, an
extension of the SD of neural network methods, described
in [10], is represented.

Let us demonstrate an updated classification of neural
network methods (the added classes are in bold):

artificial neural network
:= [neural network method]
⇐ inclusion*:

method
⇒ subdividing*:

Typology of ANN on the basis of the directivity of
connections^
= {{{
• ANN with direct connections

⇒ decomposition*:
{{{• perceptron

⇒ decomposition*:
{{{• Rosenblatt

perceptron
• autoencoder

ANN
}}}

• support vector machine
• ANN of radial basis

functions
• convolutional ANN

}}}
• ANN with inverse connections

⇒ decomposition*:
{{{• Hopfield ANN
• Hamming ANN

}}}
• recurrent ANN

⇒ decomposition*:
{{{• Jordan ANN
• Elman ANN
• multi-recurrent ANN
• LSTM-element
• GRU-element

}}}
}}}

⇒ subdividing*:
Typology of ANN on the basis of completeness of
connections^
= {{{• fully connected ANN

• weakly connected ANN
}}}

The concepts for describing metrics of neural network
methods effectiveness are also added in the SD of neural
network methods. These metrics are taken into account by
the problem solver when deciding to use one or another
neural network method.

Metrics can be classified according to the type of
problem to be solved.

175

ANN quality assessment metric
⇒ subdividing*:

Metric typology by problems^
= {{{• classification metrics

⇒ decomposition*:
{{{• ANN precision
• ANN completeness
• F1-metric

}}}
• regression metrics
⇒ decomposition*:

{{{• MAE
• MAPE
• RMSE

}}}
}}}

ANN precision
:= [precision]
:= [proportion of correctly identified positive out-

comes in the total number of outcomes that were
identified as positive]

⇒ formula*:
[

PRE =
TP

TP + FP

where TP and FP are the number of true-
positive and false-positive predictions of the
neural network, respectively]

ANN completeness
:= [recall]
:= [proportion of correctly identified positive out-

comes in the total number of positive outcomes]
⇒ formula*:

[
REC =

TP

TP + FN

where TP and FN are the number of true-
positive and false-negative predictions of the
neural network, respectively]

F1-metric
⇒ formula*:

[
F1 = 2 ∗ PRE ∗REC

PRE +REC

where PRE and REC are the accuracy and
completeness of ANN, respectively]

MAE
:= [mean absolute error]
⇒ formula*:

[1
N

∑N
i=1 |yietalon − yipredicted|, yietalon – the ref-

erence value, yipredicted – the value obtained by
the ANN, N – the size of the training dataset]

MAPE
:= [mean absolute percentage error]
⇒ formula*:

[1
N

∑N
i=1

yi
etalon−yi

predicted|
yi
etalon

∗ 100%,
yietalon – the reference value,
yipredicted – the value obtained by the ANN,
N – the size of the training dataset]

RMSE
:= [root mean squared error]
⇒ formula*:

[
√

1
N

∑N
i=1(y

i
etalon − yipredicted)

2, yietalon – the
reference value, yipredicted – the value obtained
by the ANN,
N – the size of the training dataset]

IV. OPERATIONAL SEMANTICS OF THE NEURAL
NETWORK REPRESENTATION LANGUAGE

Operational semantics of neural network representation
language is defined by the agent-oriented model of
artificial neural network interpretation and specification
of corresponding actions.

A neural network method is described in the form of
a program in some programming language, which can be
either external in relation to the ostis-system or internal (at
the moment, an SCP language). Each such programming
language corresponds to some private subject domain of
the SD of neural network methods.

Subject domain of neural network methods
:= [Subject domain of artificial neural networks]
⇒ private subject domain*:

{{{• Subject domain of neural network
methods in SCP

• Subject domain of neural network
methods in Python

• Subject domain of neural network
methods in C++

}}}

In the case of description of a neural network method
in an external language, such method is described in the
corresponding subject domain, within which the action for
interpretation of this method is also specified. This action
corresponds to an agent implemented in the corresponding
programming language.

However, to achieve convergence and integration, it
is necessary to describe neural network methods in the
internal language of the ostis-system, which is SCP [1].

An scp-program is a sequence of generalized specifica-
tions (templates) of scp-operators. Each scp-operator is
an action in ostis-system memory (sc-memory). During
interpreting an scp-program, the abstract sc-agent of
creating scp-processes creates an scp-process, taking into
account the specific scp-program interpretation parameters.

176

In many cases that means substituting arguments in the
generalized scp-operator specifications of the program and
generating specific instances of these programs (methods).
Then, the initial operator is added to the set of real entities,
and the program execution begins.

Thus, the interpretation of an scp-program comes down
to agent-based processing of actions in the scp-memory,
which are scp-operators.

The neural network method representation language
in SCP is an extension of the SCP language. It is
extended at the expense of actions, specific to the SD
of ANN. The subject domain and its corresponding
ontology of neural network methods in SCP describes the
specification of actions for interpretation of ANN within
ostis-system memory, which extend the range of standard
scp-operators. The following hierarchy of such actions
can be distinguished:

action for interpreting the ANN layer
⇒ decomposition*:

{{{• action for calculating the weighted sum
of all neurons of the layer

• action for calculating the activation
function for all neurons of the layer

• action for interpreting the convolutional
layer

• action for interpreting the pooling layer
}}}

To describe the specification of the above actions, it is
necessary to introduce the concepts of oriented number
set and matrix using which the input values of ANN,
output values of ANN, weight matrices, and so on are
specified.

Each element of an oriented number set is some number.
The numbers can be represented as sc-nodes or with a
string representation of the whole set, for which a special
relation string representation of the oriented number set*
is used. This relation was introduced in order to optimize
some implementation options of the agent interpreting
action using the concept of oriented number set.

oriented number set
:= [oriented number set]
⇐ inclusion*:

number
⇐ inclusion*:

oriented set
⇐ first domain*:

string representation of an oriented number set*

A matrix is an oriented set of oriented sets of equal
power numbers.

1. Action for calculating the weighted sum of all
neurons of the layer

The (objects’) arguments of this action are set by the

Figure 2. An example for the specification of the action for calculating
the weighted sum of all neurons of the layer

following relations:

input vector’
⇒ first domain*:

action for interpreting the ANN layer
⇒ second domain*:

oriented number set

matrix of neuron synapse weights of the layer’
⇒ first domain*:

action for processing ANN
⇒ second domain*:

matrix

The result of the (result’) action is an oriented number
set, which is the weighted sum of neurons of the
corresponding layer.

An example for the specification of the action for
calculating the weighted sum of all neurons of the layer
for a layer with two neurons and an input vector of
dimension 2 is shown in Figure 2.

2. Action for calculating the activation function for
all neurons of the layer

The arguments of this action are set by the following
relations:

vector of weighted sums of layer neurons’
⇒ first domain*:

action for processing ANN’
⇒ second domain*:

oriented number set

threshold vector of layer neurons’
⇒ first domain*:

action for processing ANN’
⇒ second domain*:

oriented number set

activation function’
⇒ first domain*:

action for processing ANN’
⇒ second domain*:

function

177

The result of the action is an oriented number set,
which are the output values of the layer neurons.

3. Action for interpreting the convolutional layer
The arguments of this action are set by the following

relations:

input matrix’
⇒ first domain*:

action for processing ANN
⇒ second domain*:

matrix

convolution kernel’
⇒ first domain*:

action for interpreting the convolutional layer
⇒ second domain*:

matrix

convolution step’
⇒ first domain*:

action for interpreting the convolutional layer
⇒ second domain*:

number

The result of the action is the matrix resulting from
the convolution of the input matrix with the convolution
kernel.

4. Action for interpreting the pooling layer
The arguments of this action are defined by the

following relations:

input matrix’
⇒ first domain*:

action for processing ANN
⇒ second domain*:

matrix

pooling window size’
⇒ first domain*:

action for interpreting the pooling layer
⇒ second domain*:

matrix

pooling window step’
⇒ first domain*:

action for interpreting the pooling layer
⇒ second domain*:

number

The result of the action is the matrix obtained as a
result of pooling the input matrix.

If it is necessary to specify different arguments for
neurons of the same layer, it is possible to specify the
corresponding actions, however, this was not used in this
work due to the poor knowledge of neural network models

Figure 3. Solving the “EXCLUSIVE OR” problem [11]

Figure 4. A scheme of a single-layer perseptron solving the “EXCLU-
SIVE OR” problem [11]

of this kind.
The specification of agents corresponding to the speci-

fied actions sets an agent-oriented model for interpreting
artificial neural networks. The implementation of this
model will be called an artificial neural network inter-
preter.

Let us consider an example of a description in the
neural network method representation language in SCP,
that solves the problem, which is formulated as follows:
calculate the result of the “EXCLUSIVE OR” logical
operation for the values of two logical variables. In Figure
3, the solution to this problem using a signal function is
shown.

In the work [11], a single-layer perseptron that solves
the problem is described. The perseptron consists of
two input neurons and one output neuron, with a given
threshold of 0.5 and a signal activation function:

F (S) =

{
1, 0 < S < 0,

0, else

The weight coefficients of the input layer synapses are
equal to 1. In Figure 4, a scheme of the perseptron is
demonstrated.

This perseptron corresponds to the method represented
in the ostis-system knowledge base in the neural network

178

Figure 5. A method that solves the “EXCLUSIVE OR” problem
represented in the neural network method representation language in
SCP

method representation language in SCP. This method is
represented in Figure 5.

The description of the method consists of a sequence
of two generalized action specifications – action for
calculating the weighted sum of all neurons of the layer
and action for calculating the activation function of all
neurons of the layer.

The signal activation function used in the perseptron is
defined in the ostis-system memory by the logic formula
shown in Figure 6.

Any agent interpreting actions with arguments given
with the activation function’ relation must use an in-
terpreter of mathematical functions that can be used as
activation functions. A classification of such functions is
shown in [10].

V. INTELLIGENT FRAMEWORK FOR BUILDING NEURAL
NETWORK METHODS

The presence of a language for representing neural
network methods and its interpreter in SCP allows for
the interpretation of the neural network method in the
ostis-system memory. The presence in a common memory
of not only instances of methods but also concepts that
describe them, creates the basis for automating the process
of building (designing and training) neural network
methods. The ostis-system memory stores knowledge
about the methods of which class can solve the problem
of a given class, but instances of this method class may
not be represented in the system. In this case, the system

Figure 6. Representation of the activation signal function in the ostis-
system memory

should be able to inform the user about the possibility of
a solution, for which, however, it is necessary to load a
certain method into the system. Since the system stores the
problem and the requirements for the method of solving
it in a common memory, it becomes possible to design
the necessary method. This requires the presence of a
design framework for the methods of the corresponding
classes. In the case of the neural network method, we
are talking about an intelligent framework for building
neural network methods.

The intelligent framework for creating neural network
methods is based on corresponding hierarchies of actions,
problems, and methods for building ANN. The presence
of such a hierarchy will make it possible to describe the
method representation language for building ANN and
develop an interpreter for that language.

Creation of the hierarchy of the corresponding actions
of building ANN should be studied by the stages of
design and training of ANN, which, in the general case,
are performed by all the developers of ANN:

1. Problem definition.
The problem definition includes a description of the

input data (images / video, time series, text), output data,
and requirements for the solution method (speed, memory
costs, etc.). It also describes additional information that
can help in constructing a problem-solving method (for

179

example, the specification of the training dataset, if it
exist). Usually, at this stage, the developer determines
the class of the problem, forms the requirements for the
training dataset, if it is not provided.

The execution of this stage by the ANN design
framework involves performing the following actions:

• Action of problem condition translation. The action
translates the description of the problem specified
using the ostis-system interface (for example, natural
language interface) into the ostis-system memory.
The action is required when the problem condition
is specified by the user. It is necessary to understand
that the problem description goes into the knowledge
base not only from the user interface. For example,
a problem can be formulated by the system itself in
the duration of its life. This action is common to
all ostis-systems, so its consideration goes beyond
the consideration of the process of building an ANN
intelligent design framework.

• Action of problem classification. The action de-
termines the class of the problem (problem of
regression, detection, clustering, etc.) based on the
description of the problem in the knowledge base.

• Action of finding a suitable training dataset. The
knowledge base can store a set of dataset specifi-
cations to which the ostis-system has access. The
action searches for datasets that can be used as a
training dataset.

• Action of generating requirements for the training
dataset. If the training dataset was not provided
and was not found, then it is necessary to form
a description of the requirements for the training
dataset, which can be translated into the user inter-
face language and request the necessary dataset from
the user.

2. Dataset preprocessing: cleanup
At this stage, features that have incorrect values are

detected (for instance, for some examples, the value of the
feature may have an undefined value, or a value that does
not match in type, or an abnormally large, or very small
value). For features that have an undefined value, various
elimination methods can be applied, for example, such
values can be replaced by the average value of this feature
calculated over all examples (for unsequential data), or
they can be replaced by average values from adjacent
examples (in the case of sequential data), or some fixed
value. A radical method for solving the problem is the
removal of examples that have undefined feature values
from the dataset. However, it is better to use it if there
are few examples with missing feature values. Similar
strategies are used for outliers and anomalies (but only
if the goal is not to predict these anomalies).

In an intelligent design framework, this stage corre-
sponds to the execution of the action of dataset cleanup,
which is performed in the case of processing a dataset that

was not previously represented in the system memory (for
example, was received from the user). The implementation
of the interpreter (agent) of this action requires the
description in memory of the classification of data
cleaning strategies and the implementation of methods
for applying these strategies.

3. Dataset preprocessing: identifying meaningful
features

Engineering of features is implemented, consisting in
the selection of features that affect the output of the
model; non-meaningful features that do not correlate with
the model output are removed. The purpose of this stage
is to reduce the dimensionality of the feature space in
order to reduce the influence of the overfitting effect on
the model.

To reduce the dimensionality of the feature space, the
methods of feature selection and feature extraction can
be used.

When selecting features, a subset from the original fea-
tures is formed (backward selection algorithm, recursive
feature elimination algorithm, algorithms using random
forests).

When extracting features from a set of features, in-
formation is extracted to build a new feature subspace
(algorithms using an autoencoder).

In an intelligent design framework, this stage cor-
responds to the execution of the action of identifying
meaningful features. The implementation of the interpreter
(agent) of this action requires the description in memory
of the classification of strategies for reducing the dimen-
sionality of the feature space and the implementation of
methods for applying these strategies.

4. Dataset preprocessing: transformation
At this stage, the data is prepared for training. Here,

special attention should be paid to the presence of
categorical features, most often specified by strings. These
features can be nominal and ordinal. To encode ordinal
features, a sequential numerical code (1, 2, 3, ...) is
most often used. For nominal coding, such a solution
is incorrect, since these features are fullright and cannot
be compared by a numerical code (for example, gender
is 0/1). For nominal features, a direct coding method
is used, which consists in creating and using fictitious
features according to the number of values of the original
one. For example, an attribute of a gender (male, female)
is converted into two new features – male and female –
with the corresponding values for the existing examples.

Feature scaling involves bringing the feature values
to one common interval – this is especially relevant
for features that have disproportionate means across
all dataset – for example, one feature has an average
value of 10.000 and another – 12. This can result in
minimizing only by feature with the highest values and
poor convergence of the training method. Most often,
scaling corresponds to performing normalization on an

180

interval (min-max normalization):

xi
norm =

xi − xmin

xmax − xmin

where xi is the value of the feature for a single example
i, xmin is the smallest value for the feature, xmax is the
largest value for the feature.

Another scaling technique is to apply feature standard-
ization:

xi
std =

xi − µ(x)

σ(x)
,

µ(x) is a sample mean of a single feature, σ(x) is the
standard deviation.

Standardization preserves useful information about
outliers in the original data and makes the learning
algorithm less sensitive to them.

Discretization is used to move from an objective feature
to an ordinal one by encoding intervals with a single value
(for example, if a feature reflects a person’s age, then
values can be discretized with the selection of certain
age groups, where each group will be encoded by one
integer).

In the intelligent design framework, this stage cor-
responds to the execution of the action of dataset
transformation. The implementation of the interpreter
(agent) of this action requires the description in memory
of the classification of methods for scaling features and the
implementation of methods for applying these strategies.

5. Dividing the common dataset into training,
validation, and test (control) datasets

The entire dataset is divided into training, test, and, in
some cases, validation datasets.

The validation set is used to evaluate the impact of
changing hyperparameters on the learning outcome and
can be used as an additional tool for this along with grid
search.

The split is carried out in a ratio of 3:1:1, in percent
(60/20/20), if the validation dataset is not used, then
80/20.

In an intelligent design framework, this stage corre-
sponds to the execution of the action of dataset splitting.

All previous steps were applied to the dataset; the
subsequent steps refer to the used ANN models.

6. Choosing a class of neural network methods in
accordance with the formulated problem

At this stage, the selection of the main ANN archi-
tecture, which will be used in training, is carried out.
However, it should be noted that this selection is relatively
conditional; the researcher is not limited to using only
one type of ANN to solve a problem (like, for example, a
convolutional network for images, since images can also
be processed with a conventional multilayer perceptron).
Rather, it is about the recommended architecture, but
this does not exclude the usage of any other variants

of architectures and their combinations within the same
model).

Examples of such recommendations are:
• images/video – convolutional neural networks;
• time series – multilayer perceptrons or recurrent

networks;
• text information – multilayer perceptrons or recurrent

networks;
• sets of characteristics of some objects (for example,

car specifications) – multilayer perceptron.
In an intelligent design framework, this stage corre-

sponds to the execution of the action of selecting a class
of neural network methods.

7. Formation of specifications for input and output
data

Additional data transformations are performed related
to changing storage structures (for example, converting
a multidimensional array to the one-dimensional array,
converting types).

In the intelligent design framework, this stage corre-
sponds to the execution of the action of forming the
specification for ANN inputs and outputs.

8. Selection of optimization method
As part of the work [10], following optimization

methods are described:
• stochastic gradient descent (SGD);
• Nesterov method;
• adaptive gradient (AdaGrad);
• adaptive moment estimation (Adam);
• root mean square spread (RMSProp).
In the intelligent design framework, this stage corre-

sponds to the execution of the action of optimizing method
selection.

9. Selection of an error function to be minimized
At this stage, the error function is set, which will

be minimized. For example, MSE is better suited for
regression and clustering problems, CE – for classification
problems. In the article [10], the classification of such
functions within the SD of ANN if described.

These functions are defined as follows:

MSE =
1

n

n∑
i=1

(Yi − Ỹi)
2

where n is the size of the dataset, Yi is the reference
value of the function, Ỹi is the output obtained by the
NN.

CE = − 1

n

n∑
i=1

(Yi log(Ỹi) + (1− Yi) log(1− Ỹi))

(case of 2-class classification)

CE = − 1

n

n∑
i=1

M∑
c=1

Y c
i log Ỹ c

i

181

(case of multi-class classification)
In the intelligent design framework, this stage corre-

sponds to the execution of the action of selecting the
error function to be minimized.

10. Initialization of neural network parameters
In the work [10], within the SD of ANN, methods of

primary initialization of ANN have already been described.
The most commonly used options for initializing neural
network weights and thresholds include:

• initialization with values from a uniform distribution
over some small interval, for example, [-0.1, 0.1];

• initialization with values from the standard normal
distribution;

• Xavier initialization [12].
It is used to prevent a sharp decrease or increase
in the output values of neurons after applying the
activation function during the direct passage of the
image through a deep neural network. In fact, ini-
tialization by this method is carried out by choosing
values from a uniform distribution on the interval
[−

√
6/

√
ni + ni+1,

√
6/

√
ni + ni+1], where ni is

the number of incoming connections to this layer and
ni is the number of outgoing connections from this
layer. Thus, initialization by this method is carried
out for different layers of the neural network from
different intervals.

• Initialization obtained from the pre-trained model.
An initialization option that involves using a pre-
trained model as a “starting” model, taken from
some repository of pre-trained models, trained by
the researcher or during the work of an intelligent
system.

• Kaiming initialization [13].
This initialization method is used to solve the
problem of “vanishing” gradient and “explod-
ing” gradient. It is performed by selecting val-
ues from a uniform distribution on the interval
[−

√
2/
√
(1 + a2)fan,

√
2/
√
(1 + a2)fan], where

a is the angle of inclination to the abscissa for the
negative part of the ReLU-type activation function
(for a common ReLU function, this parameter is 0),
fan is the operating mode parameter, which for the
forward propagation phase is equal to the number
of incoming connections (to eliminate the effect
of the “exploding” gradient), and for the backward
propagation phase, to the number of outgoing ones
(to eliminate the effect of the “vanishing” gradient).

In an intelligent design framework, this stage corre-
sponds to the execution of the action of initializing ANN.

11. Selection of ANN hyperparameters
In practice, some hyperparameters (such as the number

of layers, their types, the number of neurons in a layer) are
often determined experimentally in the process of iterative
search for the best solution to the problem. Although
there are ways to partially automate this process, they

are still designed for the presence of some preconditions
for conducting an experiment, in particular, intervals for
changing a parameter (for example, learning rate).

Hyperparameters selected at this stage include:
• ANN training parameters (learning rate, momentum

parameter, mini-batch size);
• ANN model architecture that is based on previously

formulated specifications of input and output data
(for example, the number of neurons in a particular
layer(-s) or configurations of entire layers).

Finding the optimal hyperparameters can be obtained,
for example, using the grid search method, which allows
checking the hyperparameter values taken with a certain
step or from a certain interval (tuple). Using this method,
the optimal set of hyperparameters is selected, which
gives the best results; it is used for subsequent additional
training. Otherwise, if the results obtained are acceptable,
the further learning process is not carried out at all. The
cost of this method should be noted, since, in fact, the
searching for different values of training parameters is
carried out. To reduce the amount of work, a random
search method is used.

To optimize the architecture, the types of layers of the
neural network, the number of neurons in each layer, their
characteristics are determined – the activation function,
for convolutional elements – the size of the kernel, as
well as the padding parameter and the convolution step
(stride). Here, not only the user version of the network
can be evaluated but also the pre-trained architecture. The
main rule when selecting is that the number of model
parameters should not exceed the size of the training
dataset. For pre-trained architectures, this restriction is
removed.

In an intelligent design framework, this stage corre-
sponds to the execution of the action of ANN hyperpa-
rameter selection. The action uses the classification and
specification of ANN hyperparameters (described within
the SD of ANN [10]).

12. Training the model on the dataset
The model is trained until the selected accuracy is

achieved (evaluated on the test dataset) or according
to other specified criteria (achievement of the specified
number of training epochs, invariability of accuracy over
the specified number of epochs, drop in accuracy on the
validation dataset, etc.).

Training algorithms have already been described in the
SD of ANN [10]. Let us demonstrate their classification:

method of training ANN
⊂ method
⊃ method of training with a teacher

⇒ explanation*:
[method of training with a teacher is
a method of training using the set target
variables]

182

⊃ method of backward propagation of errors
:= [MBPE]
⇒ explanation*:

[MBPE uses a certain optimiza-
tion method and a certain loss
function to implement the phase
of backward propagation of the
error and change the configurable
ANN parameters. One of the most
common optimization methods is
the method of stochastic gradient
descent.]

⇒ explanation*:
[It should also be noted that de-
spite the fact that the method is
classified as one of the methods
of training with a teacher, in the
case of using MBPE for training
autoencoders, in classical publica-
tions, it is considered as a method
of training without a teacher, since
in this case there is no marked
data.]

⊃ method of training without a teacher
⇒ explanation*:

[method of training without a teacher
is the method of training without us-
ing the set target variables (in the self-
organization mode)]

⇒ explanation*:
[When performing the algorithm of the
method of training without a teacher,
useful structural properties of the set are
revealed. Informally, it is understood as
a method for extracting information from
a distribution, the dataset for which was
not manually annotated by a human [14].
]

In the intelligent design framework, this stage corre-
sponds to the execution of the action of training ANN.
An example of formalization of this action is shown in
Figure 7

13. Evaluating the ANN effectiveness
After training, the resulting model is evaluated using

quality assessment metrics.
Further, the result of the evaluation can be visualized

with the confusion matrix and the ROC-curve.
The confusion matrix is a matrix (Fig. 8) that contains

information about the number of true positive, true
negative, false positive, and false negative classifier
predictions.

The ROC-curve is a graph in which, based on the given
threshold of the classifier solution, the shares of false
positives and true positives are calculated. Based on the
ROC-curve, the AUC-indicator (area under the curve) is

Figure 7. An example of the formalization of the action for training
the artificial neural network in the knowledge base [10]

Figure 8. A confusion matrix

calculated, which is used as a characteristic of model
quality.

In the intelligent design framework, this stage corre-
sponds to the execution of the action of ANN performance
evaluation.

Let us consider an example of performance of the
described stages by a developer for a specific problem
– classification of digits from the MNIST dataset of
handwritten digits:

1. The initial data of the problem is: a dataset of 70.000
images, pre-divided into a training (60.000 images) and
test (10.000 images) datasets. Each image is represented
by a two-dimensional array of 28X28 items from the
range [0, 255], the numbers represent a shade of gray. In
addition, each image has a class label corresponding to a
specific digit from 0 to 9.

The problem is: train a model that will take a two-
dimensional array of data as input and return a class

183

label corresponding to the recognized digit.
Thus, the type of problem to be solved is classification,

the nature of the problem data is images.
2. There are no anomalies, erroneous data, or features

with missing values in this dataset.
3. In the dataset, there are no non-content features.
4. As a method of data preprocessing we use features

scaling, min-max normalization on the interval [0, 1].
5. Let us perform the partition of the train dataset into

train and validation datasets at a ratio of 4:1 (48.000
examples in the train dataset and 12.000 examples in the
validation dataset).

6. Since the dataset includes images, we will use a
convolutional neural network.

7. Formation of specifications for input and output data
is not required.

8. We will use the stochastic gradient descent (SGD)
method as the optimization algorithm.

9. Since the classification problem is being solved, let
us select the cross-entropy loss function as the minimizing
function.

10. We will use the Kaiming initialization for the
network parameters initialization.

11. In stage 6, it was determined that a convolutional
neural network would be used to solve the problem. When
using one-hot coding, the last full-connected layer will
have 10 neurons according to the number of classes in
the problem.

For simplicity, we will use the architecture shown in
Fig. 9, which does not contain intermediate layers.

Figure 9. ANN architecture for solving the problem of digit classifica-
tion

To find the optimal set of hyperparameters, we will
apply a random search method.

Let us list the tuples from which hyperparameters will
be sampled:

• learning rate – (0.9, 0.1, 0.01, 0.001);
• number of neurons in the convolutional layer – (5,

10, 15, 20);
• size of the convolutional kernel – (3, 5, 7, 9);
• momentum parameter – (0, 0.5, 0.9);
• mini-batch size – (16, 32, 64, 128).

After determining these parameters and evaluating the
effectiveness of the algorithm, we obtain the following
table:

Table I
PROBLEM RESULTS

(ABBREVIATIONS USED: MBS – MINI-BATCH SIZE, KS – KERNEL SIZE,
LR – LEARNING RATE, CNC – CONVOLUTIONAL NEURONS COUNT,

ACC – ACCURACY, IT – ITERATIONS COUNT)

mbs ks lr momentum cnc acc it
1 128 3 0.001 0.5 10 0.9033 10
2 64 9 0.9 0 15 0.1039 1
3 32 3 0.01 0.5 20 0.9741 10
4 32 7 0.01 0.5 15 0.9794 10
5 16 9 0.001 0.5 20 0.9189 2
6 64 3 0.1 0.5 10 0.9736 10
7 64 7 0.001 0.9 15 0.9007 1
8 32 9 0.1 0.5 5 0.9806 10
9 128 5 0.1 0.5 20 0.98 10
10 32 9 0.01 0.9 5 0.9806 10
11 128 3 0.001 0.9 10 0.893 1
12 32 5 0.9 0.9 20 0.1008 1
13 16 9 0.9 0.5 20 0.0976 1
14 32 7 0.9 0.9 15 0.0932 1
15 128 5 0.01 0.5 20 0.9197 2
16 16 3 0.001 0.5 10 0.904 1
17 16 9 0.001 0 20 0.8866 1
18 128 9 0.1 0.5 5 0.9793 10
19 128 3 0.001 0 10 0.6697 1
20 16 3 0.1 0 15 0.9729 4
21 32 7 0.9 0.5 15 0.1048 1
22 128 7 0.9 0 15 0.1113 1
23 64 9 0.01 0.5 10 0.9482 2
24 16 7 0.9 0 20 0.0985 1
25 16 3 0.1 0.5 5 0.9558 2
26 64 7 0.01 0.9 15 0.9839 10
27 16 7 0.1 0 10 0.9836 10
28 16 5 0.01 0 20 0.9608 2
29 16 5 0.01 0.9 20 0.9847 10
30 32 5 0.01 0.5 15 0.9532 2

It can be noted that the best result (acc = 0.9839)
for generalization ability in the validation dataset was
obtained with the following parameters: mbs = 64, ks =
7, lr = 0.01, momentum = 0.9, cnc = 15.

12. As a stopping criterion, we selected the simplest
one on reaching a given number of epochs of training. No
pre-training was performed, and the model obtained after
the hyperparameter fitting procedure was used to estimate
the generalization ability. The generalization ability on
the test dataset was 0.9853, i.e. 98.53%.

13. By constructing a confusion matrix based on the
trained model and the test dataset, we obtain the result
illustrated in Fig. 10

The obtained matrix is diagonally dominant, so the
resulting model does relatively few errors.

Based on the analysis of the stages of constructing the
ANN that developers perform, the following classification
of actions for the construction of ANN can be derived:

184

Figure 10. A confusion matrix for the MNIST problem

action of building ANN
⇒ decomposition*:

{{{• action of dataset processing
⇒ decomposition*:

{{{• action of finding a suitable
training dataset

• action of generating requirements
for the training dataset

• action of dataset cleanup
• action of identifying meaningful

features
• action of dataset transformation
• action of dataset splitting

}}}
• action of designing ANN
⇒ decomposition*:

{{{• action of selecting a class of
neural network methods

• action of forming the specification
for ANN inputs and outputs

}}}
• action of training ANN
⇒ decomposition*:

{{{• action of optimizing method
selection

• action of selecting the error
function to be minimized

• action of initializing ANN
• action of ANN hyperparameter

selection
• action of ANN performance

evaluation
}}}

}}}

The implementation of the interpreter of actions for

building ANN considered in this section and the descrip-
tion in the knowledge base of the expert knowledge of
the ANN developers (and thus the implementation of the
intelligent ANN design framework) will automatically,
based on the problem description, generate neural network
methods in the ostis-system memory, which is one of the
key directions for development of this work.

VI. CONCLUSION

In this article, an approach to the integration and conver-
gence of artificial neural networks with knowledge bases
in next-generation intelligent computer systems through
the representation and interpretation of the artificial neural
network in the knowledge base is described.

The syntax, denotational, and operational semantics of
the neural network methods representation language are
described, which allows representing and interpreting any
ANN in the memory of the intelligent system. The exis-
tence of such language generates semantic compatibility
of neural network method with other methods represented
in the system memory, which allows analyzing the ANN
itself and its performance stages by any other methods
of the system.

The availability of neural network representation lan-
guage allows describing the expert knowledge of the
developers of the information network in the system
memory. In this article, the stages of building ANN, which
are carried out by the developers of ANN, are represented.
Based on these stages, in order to design an intelligent
framework for building neural network methods, the
actions of building the neural network methods has been
classified and described in the knowledge base.

The design and implementation of the intelligent
framework for building ANN in the knowledge base
of the system is one of two main directions for further
development of this work.

The second main direction is to develop an approach
to the processing of fragments of the knowledge base
by ANN. For this direction, it is necessary to develop
a universal algorithm of mutual-ambiguous matching of
knowledge base fragments and input vectors of ANN. A
knowledge representation language is able to represent
any knowledge. The presence of a neural network method
in the system, which is able to take knowledge fragments
on the input, will allow solving new, poorly studied classes
of problems.

ACKNOWLEDGMENT

The authors would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments, in
particular, Vladimir Golenkov and Daniil Shunkevich.

185

REFERENCES

[1] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
G. V.V., Ed. Minsk: Bestprint, 2021.

[2] D. Castelvecchi, “Can we open the black box of AI?” Nature
News, vol. 538, no. 7623, Oct 2016.

[3] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I
Trust You?: Explaining the Predictions of Any Classifier,” 2016.
[Online]. Available: https://arxiv.org/abs/1602.04938

[4] S. M. Lundberg and S.-I. Lee, “A Unified Approach
to Interpreting Model Predictions,” in Advances in Neural
Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
8a20a8621978632d76c43dfd28b67767-Paper.pdf

[5] T. R. Besold, A. d’Avila Garcez, S. Bader, H. Bowman,
P. Domingos, P. Hitzler, K.-U. Kuehnberger, L. C. Lamb,
D. Lowd, P. M. V. Lima, L. de Penning, G. Pinkas, H. Poon, and
G. Zaverucha, “Neural-symbolic learning and reasoning: A survey
and interpretation,” Nov. 2017, (accessed 2020, Jun). [Online].
Available: https://arxiv.org/pdf/1711.03902.pdf

[6] A. d’Avila Garcez, T. R. Besold, L. de Raedt, P. Földiak, P. Hitzler,
T. Icard, K.-U. Kühnberger, L. C. Lamb, R. Miikkulainen, and D. L.
Silver, “Neuralsymbolic learning and reasoning: Contributions and
challenges,” In: McCallum, A., Gabrilovich, E., Guha, R., Murphy,
K. (eds.) Proceedings of the AAAI 2015 Propositional Rule
Extraction under Background Knowledge 11 Spring Symposium on
Knowledge Representation and Reasoning: Integrating Symbolic
and Neural Approaches. AAAI Press Technical Report, vol. SS-
15-03, 2015.

[7] A. Kroshchanka, V. Golovko, E. Mikhno, M. Kovalev, V. Zahariev,
and A. Zagorskij, “A Neural-Symbolic Approach to Computer
Vision,” in Open Semantic Technologies for Intelligent Systems,
V. Golenkov, V. Krasnoproshin, V. Golovko, and D. Shunkevich,
Eds. Cham: Springer International Publishing, 2022, pp. 282–309.

[8] V. Golenkov, N. Gulyakina, I. Davydenko, and D. Shunke-
vich, “Semanticheskie tekhnologii proektirovaniya intellektual’nyh
sistem i semanticheskie associativnye komp’yutery [semantic
technologies of intelligent systems design and semantic associative
computers],” Open semantic technologies for intelligent systems,
pp. 42–50, 2019.

[9] D. Shunkevich, “Ontology-based design of hybrid problem
solvers,” in Open Semantic Technologies for Intelligent Systems,
V. Golenkov, V. Krasnoproshin, V. Golovko, and D. Shunkevich,
Eds. Cham: Springer International Publishing, 2022, pp. 101–131.

[10] M. Kovalev, “Ontology-Based Representation of an Artificial
Neural Networks,” in Open Semantic Technologies for Intelli-
gent Systems, V. Golenkov, V. Krasnoproshin, V. Golovko, and
D. Shunkevich, Eds. Cham: Springer International Publishing,
2022, pp. 132–151.

[11] V. A. Golovko and V. V. Krasnoproshin, Nejrosetevye tekhnologii
obrabotki dannyh. Minsk : Publishing House of the BSU, 2017.

[12] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings of
the Thirteenth International Conference on Artificial Intelligence
and Statistics, ser. Proceedings of Machine Learning Research,
Y. W. Teh and M. Titterington, Eds., vol. 9. Chia Laguna Resort,
Sardinia, Italy: PMLR, 13–15 May 2010, pp. 249–256. [Online].
Available: https://proceedings.mlr.press/v9/glorot10a.html

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,”
2015. [Online]. Available: https://arxiv.org/abs/1502.01852

[14] J. Goodfellow, I. Benjio, and A. Courville, Deep learning.
Moscow : DMK Press, 2017.

Конвергенция и интеграция
искусственных нейронных сетей с базами

знаний в интеллектуальных
компьютерных системах нового

поколения
Ковалёв М.В., Крощенко А.А., Головко В.А.

В статье рассмотрен подход к интеграции и конвер-
генцииискусственныхнейронных сетей с базами знаний
в интеллектуальных компьютерных системах нового
поколения с помощью представления и интерпретации
искусственных нейронных сетей в базе знаний.Описаны
синтаксис, денотационная и операционная семантика
языка представления нейросетевых методов в базах
знаний. Описаны этапы построения нейросетевых мето-
дов решения задач с помощью интеллектуальной среды
проектирования искусственных нейронных сетей.

Received 14.11.2022

186

Deep neural networks application
in next-generation intelligent computer systems

Aliaksandr Kroshchanka
Brest State Technical University

Brest, Belarus
kroschenko@gmail.com

Abstract—In the article, an approach to building hybrid
next-generation intelligent computer systems (NGICS) based
on the integration of pre-trained models of deep neural
networks and logical models developed using the OSTIS
technology is proposed. To reduce the requirements for
the size of the training dataset, the authors propose an
alternative method for pre-training deep models. To achieve
the interpretability of neural network models, the authors
used methods from the Explainable AI (XAI) field.

Keywords—Neuro-symbolic approach, OSTIS, deep neural
networks, Explainable AI, SHAP, hybrid intelligent systems

I. INTRODUCTION

The implementation of next-generation intelligent com-
puter systems is one of the most promising objectives of
the present and near future of AI science. New approaches
built at the intersection of various directions of artificial
intelligence allow eliminating or minimizing the impact of
the shortcomings of individual methods, while enhancing
the overall efficiency of intelligent systems. For example,
when combining the capabilities of logical and neural
network models in the context of implementing a neuro-
symbolic approach in AI, we benefit from each model
used. From logical models – the possibility of explaining
the results for a user of the system who is not expert in
the subject domain of the problem, from neural networks
– the possibility of solving problems that are difficult
to formalize (for example, data analysis and computer
vision) [1]. Well-known scientists and researchers in
certain fields of AI are increasingly declaring the need
for compatibility between logical and neural network
approaches (for example, [2]).

It should be noted that progress has already been made
in these separate fields of research. For example, thanks to
logical approaches in artificial intelligence (for example,
an OSTIS technology [3]), systems for automating the
work of manufacturing enterprises [4] are being developed.
On the other hand, in the last decade, there has been a
tendency towards the active usage of machine learning
methods (and neural networks) to solve various problems.
Thanks to the development of deep learning theory, new
approaches and models have solved problems, that earlier
have been solved successfully only by humans, and in
some cases even outperform them (for example, [5]).

Such tendencies definitely give grounds to further actively
explore neural network models, applying these approaches
in new, still poorly explored or high-cost fields.

The organization of the neural network training process
is the cornerstone of the achievements obtained using
these models. It should be noted that most of the research
work currently is based on the usage of so-called pre-
trained neural networks. These are networks that have
already been trained, and they have been retrained for a
new problem being solved (transfer learning [6]). Thus,
model training is put on stream, making the threshold for
entering the field lower than ever before. However, this
potentially leads to a serious commercialization of the
field of neural networks with the impossibility (primarily
via the hardware lack) for ordinary researchers to train
neural networks from the scratch. In addition, not in
all cases, the usage of pre-trained models and transfer
learning can help in solving new problems [7].

These circumstances form the need to develop new
methods for training deep neural networks that reduce the
requirements for hardware and the size of used dataset.

Despite the success of neural network models, there
remains a certain caution in their usage, mainly due to
the closed nature and non-interpretability of these models.
We see a solution to this problem in the development of
hybrid approaches.

In hybridization, a collision with the problem of
integrating different models is inevitable. In the analysis
of neural network models it is necessary to proceed from
the output data generated by the model. The direct usage
of the output data in the development of hybrid intelligent
systems is possible and gives results that allow talking
about their effectiveness [8]. However, in this case, the
neural network model is used in the “black box” mode,
without the possibility of interpreting the impact that
the input data has on the final result. A successfully
implemented interpretation would allow the integration
of models at a qualitatively new level, supplementing the
logical subsystem with new rules based on the identified
patterns. In this case, the neural network part could be
used in the process of training an intelligent system to
form rules, and then, if necessary, “disable” and generate
predictions only based on logical rules. On the other hand,

187

it is possible to use models in combination, getting the
primary result from the neural network subsystem, and
then form an interpretation for the user, which would
allow leveling the wariness in using neural networks. In
addition, it becomes possible to obtain information that
allows more accurately assessing the quality of the model
in the face of possible leaks and shifts in the data.

The authors of this article propose to implement such
integration using the results of research obtained in the
field of Explainable AI (XAI), which make it possible
to assess the influence of the values of the features on
outputs of the neural network. Such an evaluation can be
represented as a sorted list of features that most strongly
influence the result, as well as the formation of feature
change intervals, within which the features make the
greatest contribution to the results obtained at the output
of the neural network.

Within this article, a solution to the problem of
integrating neural networks and the OSTIS technology
based on Explainable AI and deep learning methods is
proposed.

The next sections are organized as follows: Section II
describes the problem definition for the development of a
next-generation intelligent computer system; Section III
provides an overview of existing and proposed approaches
in the field of training deep neural networks; Section IV
gives a brief description of the SHAP method; the main
practical results obtained by the authors are represented in
Section V; Section VI summarizes the main conclusions
of the proposed approach and describes the possibilities
for its evolution.

II. PROBLEM DEFINITION

Based on the abilities of next-generation intelligent
systems, which are given in [3], we formulated a set of
basic requirements for such systems:

• semantic compatibility with existing approaches in
the field of artificial intelligence;

• evolution of the system;
• replaceability of system components – the ability to

replace the active components of the system directly
in the process of system work, for example, in the
process of selecting a solution to a given problem;

• (self-)extensibility, simplicity in making changes to
the existing set of components with the complication
of their functionality;

• no side effects when using the system;
• ability to explain decisions;
• adaptive interface.
Semantic compatibility primarily refers to the possibil-

ity of using various AI technologies as system components
without the need for constant redesign of the system in
the face of changing theories and requirements.

The core of the next-generation system is the con-
cept of compatibility of approaches in the field of AI.

Fundamentally, this means the possibility of coexistence
of approaches developed in different fields of science
within the same system. For example, logical and fuzzy
models or logical and neural network models, etc. At
the same time, a fundamental boundary should be drawn
between systems (or approaches on the basis of which
intelligent systems were implemented) of the previous
generation, where developers used hybrid methods – for
example, neural networks, which can act as separate
individuals of a population and thus participate in the
implementation of a certain genetic algorithm. In such
cases, it was about hybrid methods, but such methods did
not include components that provide the necessary level
of reflection of the intelligent system. Next-generation
intelligent systems are able to explain the decisions they
make. For such systems, one of the main requirements
is their evolution, i.e. the ability to change not only
their state but their qualities, which is the most valuable
property. Given the presence of semantic compatibility,
such a system is able to do this in the most natural
way, and replacement of components, even if they have
different nature but solving the same problem, is not
difficult.

Extensibility in the presence of these properties is only
a matter of developer competence. The self-extensibility
of the system becomes the development of extensibility,
which is represented in the possibility of generating its
own components by the system based on the available
knowledge. This part is the most valuable and even
revolutionary, since the components offered by the system
itself are unique ways to solve problems, as well as ones
that may not have been known until now.

In addition to the listed properties, the system must be
free of side effects, that is, it must not do anything for
which it was not designed and intended. This functionality
can be considered in the context of some “stop tap”, a
set of directives of direct and unconditional action that
determine the purpose setting of the system and its internal
value system.

A property directly related to the previous one is the
ability to explain decisions. Since the NGICS evolves
and acquires the ability to create its own components,
the correct interpretation of the obtained decisions is
very important. Based on the purposes and directives
available in the system, the system should describe the
procedure for making decisions with the explaining for
each step. Thus, the components created by the system
will be documented by the system itself.

Finally, an adaptive interface forms a convenient user
access to the NGICS. Such interface is not limited to
adaptation to the user device through which the system is
accessed but also to adaptation to the users themselves, to
their physical abilities and limitations, habits and interests.
Only such an interface can be called fully adaptive.

All these requirements must be taken into account when

188

creating a model of NGICS.
The general view of the proposed model is shown in

Fig. 1.

Figure 1. A model of a hybrid system (dashed lines indicate control
actions)

Here, it is necessary to emphasize the fact that neu-
ral networks are ideally suited as component of next-
generation intelligent computer systems. This is achieved
mainly by the fact that these models are adaptive and
can be used to solve various problems. In addition, such
models support additional training during work. As the
initial version of the neural network model, a model
pre-trained on a small dataset can be used.

It should be noted that the neural network subsystem
can also be placed in the OSTIS system and interact
with the knowledge base as an agent. In this article, we
propose a simplified architecture, focusing on the idea of
interpretability of the neural network subsystem.

III. DEEP NEURAL NETWORKS TRAINING

Today, there are two main approaches to train deep
neural networks: the first involves pre-training according
to Hinton, the second involves special types of activation
functions (ReLU), a large available training dataset, and
some special regularization techniques (for example,
dropout).

At the same time, it is necessary to distinguish between
pre-training as a pre-executed procedure in accordance
with the Hinton approach based on greedy layer-wise
unsupervised learning with Restricted Boltzmann Machine
as base trained network (let us call it pre-training of type I

– Fig. 2) and pre-training as the process of preparing a pre-
trained neural network that can be retrained on a different
dataset to solve other problems using transfer learning
(pre-training of type II). In the second case, traditional
learning techniques can be used (for example, stochastic
gradient descent with ReLU activation functions).

Figure 2. Greedy layer-wise pre-training

The choice of one or another approach to training
deep neural networks depends on the size of the training
dataset. So, if the dataset is large, pre-training of type II
is applied. Otherwise, pre-training of type I is used. For
small training datasets, this method overcomes overfitting
[9].

The purpose of applying pre-training (both the first
and second types) is to achieve some “good” initial
initialization of the parameters of the neural network
model. This allows starting the retraining process with a
lower generalization error and speed it up.

In this article, a variant of the pre-training method
based on the Hinton type is used. Further, the pre-training
method proposed by Hinton will be called the classical
method.

Let us consider a model of a restricted Boltzmann
machine.

This model consists of two layers of stochastic binary
neurons, which are interconnected by bidirectional sym-
metrical connections (Fig. 3). The input layer of neurons
is called visible layer (X), and the output layer is called

189

hidden layer (Y). The restricted Boltzmann machine can
generate any discrete distribution if enough hidden layer
neurons are used [10].

X1 X2 Xn

Y1 Y2 Ym

Figure 3. A Restricted Boltzmann Machine

This network is a stochastic neural network in which the
states of visible and hidden neurons change in accordance
with the probabilistic version of the sigmoid activation
function:

p(yj |x) =
1

1 + e−Sj
, Sj =

n∑
i

wijxi + Tj

p(xi|y) =
1

1 + e−Si
, Si =

m∑
j

wijyj + Ti

where wij are the weight coefficients of the neural
network, Si, Sj are the weighted sums calculated for
the neurons of the visible and hidden layers, respectively,
Ti, Tj are the thresholds of the visible and hidden layers.

The rules for online learning of a restricted Boltzmann
machine proposed in the classical method are as follows
[11]:

wij(t+ 1) = wij(t) + α(xi(0)yj(0)− xi(1)yj(1))

Ti(t+ 1) = Ti(t) + α(xi(0)− xi(1))

Tj(t+ 1) = Tj(t) + α(yj(0)− yj(1))

where xi(0), xi(1) are the original data of the visible
layer and data, which been restored by the neural network,
yi(0), yi(1) are the original data of the hidden layer and
data, which been restored by the neural network.

The last equations are obtained using the Contrastive
Divergence algorithm with the parameter k = 1.

Rules for an arbitrary natural k can be obtained
similarly:

wij(t+ 1) = wij(t) + α(xi(0)yj(0)− xi(k)yj(k))

Ti(t+ 1) = Ti(t) + α(xi(0)− xi(k))

Tj(t+ 1) = Tj(t) + α(yj(0)− yj(k))

Rules for batch learning are as follows (case CD-1):

wij(t+1) = wij(t)+
α

L

(
L∑

l=1

(xl
i(0)y

l
j(0)−xl

i(1)y
l
j(1))

)

Ti(t+ 1) = Ti(t) +
α

L

(
L∑

l=1

(xi(0)− xi(1))

)

Tj(t+ 1) = Tj(t) +
α

L

(
L∑

l=1

(yj(0)− yj(1))

)
It should be noted that in order to obtain these rules,

Hinton was guided by the idea of maximizing the
likelihood function of the form:

P (x) =
∑
y

P (x, y)

where P (x, y) is the probability for a case of a visible
and hidden neuron in the state (x, y), determined on the
basis of the Gibbs distribution P (x, y) = e−E(x,y)

Z , Z =∑
x,y e

−E(x,y) is the probability normalization parameter,
E is the energy of the system in the state (x, y).

Finally, the function will take the form:

P (x) =
∑
y

e−E(x,y)

Z
=

∑
y e

−E(x,y)∑
x,y e

−E(x,y)

Previously, the authors proposed an approach that
generalizes the classical approach and demonstrated its
effectiveness for some problems (for example, [12]).

The rules for online learning in accordance with the
proposed approach for CD-1 are as follows:

wij(t+ 1) = wij(t)

− α((yj(1)− yj(0))F
′(Sj(1))xi(1)+

(xi(1)− xi(0))F
′(Si(1))yj(0)),

Ti(t+ 1) = Ti(t)− α(xi(1)− xi(0))F
′(Si(1)),

Tj(t+ 1) = Tj(t)− α(yj(1)− yj(0))F
′(Sj(1)).

The rules for batch learning in accordance with the
proposed approach for CD-1 are as follows:

wij(t+ 1) = wij(t)

− α

L

(
L∑

l=1

∆ylj(1)x
l
i(1)F

′(Sl
j(1))+

∆xl
i(1)y

l
j(0)F

′(Sl
i(1))

)
,

190

Tj(t+ 1) = Tj(t)−
α

L

(
L∑

l=1

∆ylj(1)F
′(Sl

j(1))

)
,

Ti(t+ 1) = Ti(t)−
α

L

(
L∑

l=1

∆xl
i(1)F

′(Sl
i(1))

)
,

where ∆ylj(1) = ylj(1)− ylj(0), ∆xl
i(1) = xl

i(1)− xl
i(0)

When obtaining these rules, the authors were guided
by the idea of minimizing the mean squared error of the
network (the case of using CD-1):

Es(1) =
1

2L

(
L∑

l=1

m∑
j=1

(∆ylj(1))
2 +

L∑
l=1

n∑
i=1

(∆xl
i(1))

2

)
where ∆ylj(1) = ylj(1)− ylj(0), ∆xl

i(1) = xl
i(1)−xl

i(0),
L – size of the training dataset.

It is possible to prove the identity of these learning
rules to the classical ones by using neurons with a linear
activation function.

Thus, the following theorem can be proved:
Theorem. Maximizing the likelihood function of data

distribution P (x) in the space of synaptic connections of a
restricted Boltzmann machine is equivalent to minimizing
the mean squared error of the network Es in the same
space using linear neurons.

IV. INTERPRETABILITY OF ANN

The problem of interpretability of machine learning
models is currently quite effectively solved by the
Explainable AI methods [13].

In XAI methods such as LIME [14] and SHAP [15],
only the data feeded to the model and the output returned
by the model are used in the analysis. This type of
methods belongs to the model-agnostic type, i.e. they
can be applied to any machine learning model.

Our hybrid intelligent system model uses the SHAP
(SHapley Additive exPlanations) approach to interpret the
results obtained by the neural network.

The SHAP method is based on an attempt to explain
changes in the predictions of the model caused by a
change in the input features or the appearance of some
information about the input feature. In this case, the
contribution of each feature to the prediction of the model
is calculated.

The SHAP method is based on the game theory. The
key quantities used in evaluating the contribution of each
feature to the overall output of the model are the Shapley
values.

In this case, the players are features (the presence of
the i-th player means the current value of the i-th feature
in the example x, the absence of the i-th player means the
undefined value of the i-th feature), and all the represented
features define a set of players, called coalition.

Denote by f : X → Y the model under study, x ∈ X
is the selected test example for which the output value of
the model is interpreted, X ∈ RN is the feature space, N

is the number of features (players), ν is a characteristic
function that assigns a number to each coalition of players
– its efficiency.

Further, assuming that some of the features in the
example x are known and some are omitted (have
undefined values), we obtain the vector xS corresponding
to the known features.

The Shapley values for each player are calculated using
the following formula:

ϕ(i) =
∑

S∈1,2,...,N

|S|!(|N | − |S| − 1)!

N !
∆(i, S)

where S defines the coalition of players and ∆(i, S) is
the efficiency gained from adding player i to the coalition
of players S:

∆(i, S) = ν(S ∪ i)− ν(S)

In the SHAP method, the conditional expectation is
used as the characteristic function for the set of features
S of the example x:

ν(S) = E[f(x)|xS]

In practice, when calculating the characteristic function
given by the last formula, simplifications are used (for
example, Kernel SHAP modification).

V. EXPERIMENTAL RESULTS

For the experimental part of the research, we chose
the well-known Fisher Irises dataset.

The size of this dataset is 150 examples, which are
divided into train (120 examples) and test (30 examples)
datasets. The examples describe the geometric shape of
the iris flower. Each example contains 4 features (sepal
length, sepal width, petal length, petal width) and a
class label (0–2). It is required to classify the example
according to the type of flower (Iris setosa, Iris virginica,
Iris versicolor).

The usage of such simple dataset made it possible, on
the one hand, to demonstrate the effect of pre-training
on a dataset of a limited size and, on the other hand,
to show the process of interpreting the model with the
construction of simple rules, for which checking their
corectness is not difficult.

For this problem, a series of experiments was carried
out with the following training options:

• no pre-training – in this case we used backward
propagation to train neural network from the scratch;

• with pre-training by the classical method;
• with REBA-based pre-training.
The training process used a model with a structure (4 –

10 – 10 – 3) with ReLU activation functions on all layers,
except for the last one.

191

Table I
PRE-TRAINING PARAMETERS

mini-batch size momentum epochs count train rate
4 0.5 5 0.01/0.04

Table II
TRAINING PARAMETERS

mini-batch size momentum epochs count train rate
4 0.9 10 0.01

Tables I and II show the main parameters of pre-training
and training stages.

A series of 100 computational experiments was carried
out, the results of which were averaged. The results are
represented in Table III.

Table III
RESULTS

pre-training method test efficiency, %
RBM 91.0
REBA 92.6

Without pre-training 83.73

During the implementation of the SHAP method,
Shapley values were obtained, on the basis of which
visualizations were drawn. In Fig. 4, 5, and 6, the
cumulative influence of individual features on irises type
classification is shown.

Figure 4. Influence of features on class 0 for identification (Iris setosa)

Figure 5. Influence of features on class 1 for identification (Iris virginica)

According to these images, it can be seen that the petal
length feature has the greatest influence on determining

Figure 6. Influence of features on class 2 for identification (Iris
versicolor)

the type of flower. This is confirmed by a more detailed
study of the values dependence from this feature on the
Shapley values (Fig. 7, 8, 9).

Figure 7. Dependences of feature values on Shapley values (class 0)

As can be seen from the represented visualizations, all
values of the petal length feature are concentrated in 3
main intervals that directly affect the class identification
([1, 2], [2, 5], [5, 6]). The boundaries of the ranges for
simplification are defined approximately. Based on these
data, rules can be formulated:

1) If the value of the petal length feature is in the range
from [1, 2], then define the class of the flower as
Iris setosa

2) If the value of the petal length feature is in the
range from [2, 5], then define the flower class as
Iris virginica

3) If the value of the feature petal length is in the
range from [5, 6], then define the flower class as
Iris versicolor

These rules take into account only the value of
one feature, in order to improve the characteristics of

192

Figure 8. Dependences of feature values on Shapley values (class 1)

Figure 9. Dependences of feature values on Shapley values (class 2)

the classifying algorithm; the number of rules can be
expanded by analyzing changes in other main features.

Finally, after forming a natural language representation
of the rules, they can be easily represented in the SC-code
or illustrated using its visual representation in SCg (Fig.
10).

VI. CONCLUSION

In the article, an approach to the implementation of
next-generation intelligent computer systems is proposed,
which allows integrating neural network and logical
models created using the OSTIS technology. The proposed

Figure 10. Representation of the rule for determining the type of flower
in SCg

approach is based on the application of deep neural
network pre-training methods and Explainable AI. The
effectiveness of the proposed approaches to the pre-
training of a deep neural network, as well as the approach
to integration, is shown on the example of solving
classification problem.

This approach can be used in the development of
next-generation intelligent computer systems, for which
the small amount of available training data and high
requirements for the interpretation of the results often
become critical factors.

As directions for further work, the authors see the
development of the proposed approach in the context
of studying the applicability to convolutional models, as
well as studying the possibilities of interpreting models
with homogeneous inputs (for example, when solving the
problem of recognizing objects in an image, where the
role of an individual pixel or superpixel is difficult to
formalize).

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments, in
particular, Vladimir Golovko, Vladimir Golenkov, and
Daniil Shunkevich.

193

The work was supported by the Belarusian Republican
Foundation for Fundamental Research BRFFR, project
F22KI-046.

REFERENCES

[1] A. Kroshchanka, V. Golovko, E. Mikhno, M. Kovalev, V. Zahariev,
and A. Zagorskij, “A Neural-Symbolic Approach to Computer
Vision,” in Open Semantic Technologies for Intelligent Systems,
V. Golenkov, V. Krasnoproshin, V. Golovko, and D. Shunkevich,
Eds. Cham: Springer International Publishing, 2022, pp. 282–309.

[2] Y. Cun, Quand la machine apprend: La révolution des neurones ar-
tificiels et de l’apprentissage profond. Odile Jacob, 2019. [Online].
Available: https://books.google.by/books?id=78m2DwAAQBAJ

[3] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
G. V.V., Ed. Minsk: Bestprint, 2021.

[4] V. Taberko, D. Ivaniuk, N. Zotov, M. Orlov, O. Pupena, and
N. Lutska, “Principles of building a system for automating the
activities of a process engineer based on an ontological approach
within the framework of the Industry 4.0 concept,” in Otkrytye
semanticheskie tekhnologii proektirovaniya intellektual’nykh sys-
tem [Open semantic technologies for intelligent systems], vol. 5,
Minsk, 2021, pp. 209–218.

[5] L. E. van Dyck, R. Kwitt, S. J. Denzler, and W. R.
Gruber, “Comparing Object Recognition in Humans and Deep
Convolutional Neural Networks—An Eye Tracking Study,”
Frontiers in Neuroscience, vol. 15, 2021. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/fnins.2021.750639

[6] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong,
and Q. He, “A comprehensive survey on transfer learning,” 2019.
[Online]. Available: https://arxiv.org/abs/1911.02685

[7] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the Limits of Transfer
Learning with a Unified Text-to-Text Transformer,” Journal of
Machine Learning Research, vol. 21, no. 140, pp. 1–67, 2020.
[Online]. Available: http://jmlr.org/papers/v21/20-074.html

[8] V. Golovko, A. Kroshchanka, M. Kovalev, V. Taberko, and
D. Ivaniuk, “Neuro-Symbolic Artificial Intelligence: Application
for Control the Quality of Product Labeling,” in Open Semantic
Technologies for Intelligent System, V. Golenkov, V. Krasnoproshin,
V. Golovko, and E. Azarov, Eds. Cham: Springer International
Publishing, 2020, pp. 81–101.

[9] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
no. 521 (7553), pp. 436–444, 2015.

[10] Y. Bengio, “Learning deep architectures for ai,” Foundations and
Trends in Machine Learning, no. 2(1), pp. 1–127, 2009.

[11] G. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning
Algorithm for Deep Belief Nets,” Neural computation, vol. 18,
pp. 1527–54, 08 2006.

[12] V. Golovko, A. Kroshchanka, and E. Mikhno, “Deep Neural
Networks: Selected Aspects of Learning and Application,” in
Pattern Recognition and Image Analysis. Cham: Springer
International Publishing, 2021, pp. 132–143.

[13] A. Thampi, Interpretable AI: Building Explainable Machine
Learning Systems. Manning, 2022. [Online]. Available:
https://books.google.by/books?id=ePN0zgEACAAJ

[14] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I
Trust You?: Explaining the Predictions of Any Classifier,” 2016.
[Online]. Available: https://arxiv.org/abs/1602.04938

[15] S. M. Lundberg and S.-I. Lee, “A Unified Approach
to Interpreting Model Predictions,” in Advances in Neural
Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.
[Online]. Available: https://proceedings.neurips.cc/paper/2017/file/
8a20a8621978632d76c43dfd28b67767-Paper.pdf

Применение глубоких нейронных сетей в
интеллектуальных компьютерных

системах нового поколения
Крощенко А. А.

Статья посвящена модели гибридной интеллектуальной
системы нового поколения, базирующейся на интеграции
предобученных глубоких нейросетевых моделей и логиче-
ских моделей технологии OSTIS. Для снижения влияния
объема обучающей выборки на процесс обучения модели
авторами предлагается альтернативный подход к предобу-
чению глубоких нейронных сетей. Для достижения цели
интерпретируемости нейросетей использовались методы из
области Explainable AI.

Received 14.11.2022

194

Automatic Construction of Classifiers by
Knowledge Ecosystem Agents

1st Viktor Krasnoproshin
Faculty of Applied Mathematics

and Computer Science
Belarussian State University

Minsk, Belarus
krasnoproshin@bsu.by

2nd Vadim Rodchenko
Faculty of Mathematics and Informatics

Yanka Kupala State University
of Grodno

Grodno, Belarus
rovar@grsu.by

3rd Anna Karkanitsa
Faculty of Mathematics and Informatics

Yanka Kupala State University
of Grodno

Grodno, Belarus
a.karkanica@grsu.by

Abstract—Digital Ecosystem (DE) is understood as a dis-
tributed, adaptive, open socio-technical system that has the
properties of self-organization, scalability and sustainability. A
high level of adaptability and self-organization of DE can only
be ensured by the Knowledge Ecosystem (KE) built on the
principle of nesting dolls.

The main purpose of KE is effective knowledge management.
This is achieved as a result of improving the interaction
environment for system participants, simplifying the decision-
making process and stimulating innovations. The base elements
of the Knowledge Ecosystem are software agents. They "live"
in the ecosystem environment: receive and analyze data about
surrounding events, interpret them and execute commands that
affect the environment.

The paper presents the process of automatic construction
of classifiers based on the interaction of knowledge ecosystem
agents. The initial information for the collaborative work of
agents is the alphabet of classes, the a priori dictionary of
features (PDF), and the data warehouse. The effectiveness of
the proposed approach is demonstrated by the example of
processing model data.

Index Terms—knowledge ecosystem, data mining, multi-
agent system, knowledge discovery, instance-based learning,
training set

I. INTRODUCTION

The concept of an ecosystem was borrowed from biology
and has been developed in the early 21th century. In the
classical sense, an ecosystem is an open system character-
ized by input and output flows of matter and energy. Any
ecosystem is a complex self-organizing, self-regulating and
self-developing system, which is an integration project with
many participants [1].

Digital Ecosystem is a digital space where variety of
services of a unified environment operate seamlessly. Such
integration allows to manage user behavior, to achieve
maximum speed and transparency of processes, to detect
issues and identify ways of improvement in different areas
of activity [2]. The development and implementation of
KE systems is one of the priorities for the information
technology development and use.

DE combines various elements of a digital platform. It
ensures their interaction and connection with the world
around [3]. The base elements of the system are a single
account, digital services for solving various problems, server
infrastructure, teams of developers and engineers, customers
and other stakeholders [4].

Currently, there are three classes of digital ecosystems:
functional ecosystem, platform ecosystem and super plat-
form ecosystem [5].

Functional Digital Ecosystems are one of the simplest
ecosystems. They are built around an existing product or
company offering and are characterized by a relatively small
number of participants (companies and partners). They tend
to focus on the internal aspect and therefore are often a
closed ecosystem.

Platform Ecosystems are characterized by a large number
of partners (can be several million) and based on the use of
a common platform that all partners use together and create
their own value.

The most complex are the Super Platform Ecosystems.
They provide the ability to connect and interact with almost
any number of partners. In this case, integration is provided
not only at the level of services, but also between platforms.

Inside the DE, according to the principle of a nesting
doll, a knowledge ecosystem (KE) is placed. KE is an
adaptive system that includes a database, a knowledge base,
and intelligent agents [6]. The base components of KE are
the technological core, critical interdependencies, knowledge
agents and performative actions [7].

The goal of the knowledge ecosystem is the effective im-
plementation of the decision-making process through high-
quality interaction between its agents and components [8].
Being inside KE, knowledge agents receive data about ongo-
ing events, interpret them, and execute commands that affect
the environment. Agents have such important properties as
autonomy, social ability, reactivity and pro-activity [9].

The paper presents an original method of automatic con-
struction of classifier based on the interaction of knowledge
ecosystem agents. The results of its practical application

195

on model data for solving the classification problem are
presented.

II. MULTI-AGENT INTERACTION

At present, working out and use of the concept of multi-
agent systems (MAS) is one of the priority direction of
information technology development.

There are a number of requirements for the knowledge
management mechanism in the KE. In particular, this mech-
anism should ensure both the development of interactions
between the exchange participants and the simplification of
the decision-making process, as well as driving innovation
due to the evolution of cooperation between agents.

An alternative to directive management methods in KE are
strategies that are based on self-organization (as a response
to external changes).

The development of multi-agent systems technology has
led to a change in the requirements for agents. Initially, an
intelligent agent was considered as a powerful subsystem
that had to have a global vision of the problem and have all
the necessary abilities, knowledge and resources to solve it
[10].

In recent years (in the field of MAS) an approach that
focuses on the narrow specialization of agents has become
a priority. Each agent must provide a solution to some
problem. The solution of a complex problem is based on
the agent’s interaction within the MAS (Fig. 1).

Figure 1. Multi-agent interaction.

Each agent is a complex object that can manipulate
other objects and has advanced tools of interacting with
the environment and its own kind. A single agent is a soft-
ware/hardware implemented system and has the following
characteristics:

- autonomy or semi-autonomy: functioning without out-
side interference and ensuring self-control over one’s actions
and internal states;

- social ability: interaction with other agents by exchang-
ing messages using communication tools;

- reactivity: the ability to perceive the state of the external
environment;

- pro-activity: the response of agents not only to incentives
coming from the environment, but also a goal-directed
manifestation of the initiative [11].

III. CLASSIFIER CONSTRUCTION BASED ON THE
INTERACTION OF THREE AGENTS

At present, one of the trends of information systems
development is the development and implementation of
intelligent digital ecosystems.

Currently, the progress on using artificial intelligence tech-
nologies is largely provided by machine learning methods.
The essence of these methods is related to the identification
of empirical patterns in the data. During the learning pro-
cess sets of positive and negative examples (related by an
unknown pattern) are analyzed and a classification algorithm
is developed (providing the separation of examples into two
classes).

In fact, machine learning provides for the construction of
decision rules that implicitly express empirical patterns. For
instance, as a result of Supervised Learning a classifier is
built, which is a “black box” since it cannot be interpreted
in terms of the subject domain.

Knowledge discovery is the process of discovering pre-
viously unknown, useful and interpretable patterns in the
initial data sets required for effective decision-making [12].

If it is possible to discover the distinctive features of the
classes analyzing the training set, then the construction of
the classifier turns into a trivial procedure.

The process of constructing a classifier can be formally
stated as follows (Fig. 2):

DW
P1−→ TD

P2−→ TS
KD−→ Ps

P4−→ Cl

where DW – data warehouse; TD – target dataset; TS
– training set; Ps – discovered regularities presented as
patterns; Cl – classifier; P1 (Procedure 1) - definition of
the classification goal and formation of the target data set;
P2 (Procedure 2) – building a training set; KD (Procedure
3) – Knowledge Discovery procedure; P4 (Procedure 4) –
classifier construction based on the detected patterns.

It is proposed to implement the process of constructing a
classifier based on the interaction of three specialized agents.

The first agent is a Training Set Builder (TSB-agent). As
a result of its actions, a training set will be formed. The
initial data for the TSB-agent are the alphabet of classes,
the set of observed features, and an a priori dictionary of
features. Based on objects of classes, agent forms a training
set.

Then control is passed to the Knowledge Discovery-agent
(KD-agent). In automatic mode, agent searches for combi-
nations (ensembles) of features from a priori dictionary of
features, which ensure a distinction between classes.

196

Figure 2. Stages of a classifier construction.

Let’s note that if the PDF includes n features, then the
number of possible combinations is 2n − 1. The KD-agent
operating algorithm is detailed in a paper [13].

The final stage of constructing a classifier is performed by
the Classifier Builder Agent (CB-agent). It receives a set of
combinations of features from the KD-agent and automati-
cally builds class patterns (in the form of cluster structures)
and forms a decision rule (on whether the observed object
belongs to a certain class).

IV. AN EXAMPLE OF CONSTRUCTING A CLASSIFIER

Let’s demonstrate the results of agents’ interaction on the
example of analyzing training set data in order to identify
hidden patterns and construct a classifier.

Example. Let the given:
• two classes of five-digit integers EOOE and OOEE,

where the numbers EOOE are such that in tens and
hundreds one digit is even and the other is odd, and
the numbers OOEE are such that in tens and hundreds
both digits are either even or odd;

• a priori dictionary of features F = {units, tens, hundreds,
thousands, tens of thousands};

• a training set of five-digit integers that contains 2000
EOOE-numbers and 2000 OOEE-numbers.

Table 1 partially presents the integers from the training
set used in the experiment.

Table 2 shows the study results of the intersection of class
patterns based on a combination of features hundreds–tens,
where

NEi = Number of EOOEi

NOi = Number of OOEEi

ai =

{
Ni +Mi, Ni = 0 ∨Mi = 0

0, Ni > 0 ∧Mi > 0

Intersection =
4000−

∑100
i=1 ai

4000
∗ 100%

Table I. Training set for the experiment

n/n Number of EOOE Number of OOEE
1 14104 79399
2 03505 51088
3 07341 64822
4 41502 72598
5 71234 12083
...

1999 40724 01027
2000 53347 20934

Table II. Experiment results

hundreds
tens

Number
EOOE

Number
OOEE

hundreds
tens

Number
EOOE

Number
OOEE

0,1 56 0 5,0 37 0
0,3 38 0 5,2 41 0
0,5 39 0 5,4 54 0
0,7 46 0 5,6 43 0
0,9 44 0 5,8 31 0
1,0 31 0 6,1 36 0
1,2 36 0 6,3 50 0
1,4 43 0 6,5 41 0
1,6 47 0 6,7 42 0
1,8 39 0 6,9 36 0
2,1 41 0 7,0 34 0
2,3 39 0 7,2 35 0
2,5 32 0 7,4 36 0
2,7 39 0 7,6 47 0
2,9 44 0 7,8 48 0
3,0 44 0 8,1 22 0
3,2 41 0 8,3 43 0
3,4 33 0 8,5 35 0
3,6 42 0 8,7 34 0
3,8 47 0 8,9 48 0
4,1 38 0 9,0 34 0
4,3 40 0 9,2 34 0
4,5 35 0 9,4 35 0
4,7 51 0 9,6 49 0
4,9 36 0 9,8 34 0
0,0 0 45 5,1 0 0
0,2 0 34 5,3 0 39
0,4 0 48 5,5 0 39
0,6 0 47 5,7 0 40
0,8 0 48 5,9 0 39
1,1 0 32 6,0 0 41
1,3 0 43 6,2 0 51
1,5 0 39 6,4 0 34
1,7 0 46 6,6 0 39
1,9 0 32 6,8 39 0
2,0 0 46 7,1 0 46
2,2 0 46 7,3 0 41
2,4 0 38 7,5 0 48
2,6 0 36 7,7 0 38
2,8 0 34 7,9 0 55
3,1 0 36 8,0 0 36
3,3 0 28 8,2 0 36
3,5 0 46 8,4 0 35
3,7 0 39 8,6 0 44
3,9 0 39 8,8 0 42
4,0 0 39 9,1 0 49
4,2 0 39 9,3 0 38
4,4 0 37 9,5 0 41
4,6 0 36 9,7 0 31
4,8 0 39 9,9 0 32

197

Table 2 shows that the numbers of the OOEE-class do
not have odd-even or even-odd combinations in hundreds-
tens, and the numbers of the EOOE-class do not have
odd-odd or even-even combinations in hundreds-tens, since
Intersection = 0%.

As a result, the classifier is constructed on the basis of
the following discovered pattern:

IF ((hundreds–tens = odd–tens) or
(hundreds–tens = tens–odd))

THEN EOOE ELSE OOEE

V. CONCLUSION

The paper presents the process of automatic construction
of a classifier based on the interaction of three agents of the
knowledge ecosystem.

Based on the class alphabet, a set of observed features,
and an a priori dictionary of features, the TSB-agent forms
a training set and passes it to the KD-agent. KD-agent
automatically discovers a set of combinations of features
ensuring distinguishing of classes and delivers it to the CB-
agent. The final construction of the classifier by the CB-
agent is also performed automatically.

The effectiveness of the proposed method for automati-
cally constructing a classifier is demonstrated on the example
of processing model data.

REFERENCES

[1] E.P. Odum, Osnovy ekologii [Fundamentals of Ecology], Moscow:
Mir, 1975, 741 p.

[2] Digital ecosystem [Electronic resource], Available at: https://en.
wikipedia.org/wiki/Digital_ecosystem (accessed 2022, May).

[3] P. Kumar, V. Jain, V. Ponnusamy, The Smart Cyber Ecosystem for
Sustainable Development, Wiley-Scrivener Publishing, 2021, 480 p.

[4] E. Curry, A. Metzger, S. Zillner, J.-C. Pazzaglia, A.C. Robles The
Elements of Big Data Value: Foundations of the Research and
Innovation Ecosystem, Springer, 2021, 411 p.

[5] ECM-Journal [Electronic resource], Available at: https:
//ecm-journal.ru/material/cifrovaja_ehkosistema_modnyjj_termin_ili_
novaja_realnost (accessed 2022, May).

[6] S. Szoniecky, Ecosystems Knowledge: Modeling and Analysis
Method for Information and Communication, Wiley, 2018, 232 p.

[7] C.W. Choo, N. Bontis, The Strategic Management of Intellectual
Capital and Organizational Knowledge, Oxford University Press,
2002, 748 p.

[8] Knowledge ecosystem [Electronic resource], Available at: https://en.
wikipedia.org/wiki/Knowledge_ecosystem (accessed 2022, May).

[9] AIportal [Electronic resource], Available at: http://www.aiportal.ru/
articles/multiagnt-systems/weak-and-strong-intelligent-agent.html
(accessed 2021, October).

[10] M. Wooldridge, An Introduction to MultiAgent Systems, John Wiley
& Sons, 2009, 488 p.

[11] V. Tarasov, Artificial Meta-Intelligence: a Key to Enterprise Reengi-
neering // Proc. of the Second Joint Conference on Knowledge Based
Software Engineering (JCKBSE’96) (Sozopol, Bulgaria, Sept. 21-22,
1996), Sofia BAIA, 1996, pp.15-24.

[12] Data mining [Electronic resource], Available at: https://en.wikipedia.
org/wiki/Data_mining (accessed 2022, May).

[13] V. Krasnoproshin, V. Rodchenko, A. Karkanitsa, "Specialezed
KD-agent for knowledge ecosystems" in Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open semantic
technologies for intelligent systems], BSUIR, Minsk, 2021, pp.59–62.

Автоматическое построение
классификаторов агентами

экосистемы знаний
Краснопрошин В.В., Родченко В.Г., Карканица А.В.

Под цифровой экосистемой понимают распределенную,
адаптивную, открытую социотехническую систему, кото-
рая обладает свойствами самоорганизации, масштабиру-
емости и устойчивости. Высокий уровень адаптивности
и самоорганизация цифровой экосистемы могут быть
обеспечены только встроенной по принципу матрешки
экосистемой знаний. Главной целью экосистемы знаний
является эффективное управление знаниями, которое
достигается в результате совершенствования среды вза-
имодействия участников системы, упрощения процесса
принятия решений и стимулирования инноваций.

Базовыми элементами экосистемы знаний являются
программные агенты. Они “живут” в среде экосистемы:
получают и анализируют данные об окружающих собы-
тиях, интерпретируют их и выполняют команды, которые
воздействуют на среду.

В работе описан процесс автоматического построения
классификаторов на основе взаимодействия агентов эко-
системы знаний. Исходной информацией для совместной
работы агентов являются алфавит классов, априорный
словарь признаков (АСП) и хранилище данных. Эф-
фективность предложенного подхода демонстрируется на
примере обработки модельных данных.

198

grakova
Received 14.11.2022

The structure of next-generation intelligent
computer system interfaces

Mikhail Sadouski
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: sadovski@bsuir.by

Abstract—This article deals with the structure of adaptive
multimodal interfaces of next-generation intelligent com-
puter systems, which provide a transition from the paradigm
of literate user to the paradigm of equal cooperation between
the user and the intelligent system, which will increase the
efficiency of human-machine interaction.

Keywords—adaptive intelligent multimodal interface, OS-
TIS, ostis-system interface, next-generation intelligent com-
puter systems

I. INTRODUCTION

The organisation of user interaction with computer
systems (including intelligent computer systems) has a
significant impact on user experience, user satisfaction,
and the effectiveness of the automation of human activity.

One of the key properties of next-generation intelligent
computer systems is their interoperability - the ability
to interact effectively. Such systems are autonomous and
self-sufficient actors on par with humans. However, at
the core of modern organization of user interaction with
a computer system is the paradigm of literate user, who
knows how to manage the system and is fully responsible
for the quality of interaction with it. The variety of forms
and types of interfaces leads to the need for the user to
adapt to each particular system and learn the principles
of interaction with it in order to solve the required tasks.

The current stage of the field of Artificial Intelligence
requires the transition from the paradigm of competent
control of the tool used to the paradigm of equivalent
cooperation, partner-like interaction of intellectual
computer system with its user to increase the efficiency of
interaction. The friendliness of the user interface should
be determined by the ability of the system to adapt to the
characteristics and qualifications of the user, its ability to
resolve any problems the user might experience during
the dialogue with the intelligent computer system, and
the way it is concerned with the improvement of the
user’s communication skills. Consequently, it is necessary
to move away from adapting the user to the system (by
teaching them how to use it) towards the adaptation of
the interface itself to the goals, tasks and characteristics
of a particular user in real time. [1]

Thus, the key problems at the current stage are:

• the necessity for the user to learn how to interact
with each particular system;

• the lack of partnership between the user and the
system (the system is controlled by the user), which
leads to the user having to be a constant initiator of
interaction;

• tha lack of a system’s adaptation to each individual
user and the environment in order to maximise the
user’s comfort while using the system.

In order to solve these problems, this article discusses
the principles of organising partner-like interaction be-
tween a user and an intelligent system, as well as the
principles of building next-generation intelligent computer
system interfaces that provide a transition to the paradigm
of equal cooperation.

II. STATE OF THE ART

An interface is a set of technical, software and method-
ological (protocols, rules, conventions) tools, which
enable the exchange of information between the user
and devices and programmes, as well as between devices
and other devices and programmes. [2]

Broadly speaking, it is a way (standard) of interacting
between objects. In technical terms, an interface defines
the parameters, procedures and characteristics of interac-
tion between objects.

Interfaces come in many varieties. They differ in
the nature of the systems that interact with each other,
implementation, and functions.

Regardless of the type of interface, the interaction of
the computer system with its environment is facilitated
by sensors and effectors.

A sensor (or receptor) of a system is a component
of a cybernetic system that generates information in
the system’s memory about the current value of a
property (characteristic, parameter) corresponding to that
component of the physical environment of the cybernetic
system that is directly adjacent to the said component.

An effector is a component of a cybernetic system that
is able to change its state in order to directly affect its
physical shell and the external environment.

It is customary to distinguish the following types of
interfaces:

199

• physical interface;
• software interface;
• user interface.

A physical interface is a device that converts signals and
transmits them from one piece of equipment to another.
A physical interface is defined by a set of electrical
connections and signal characteristics.

A software interface is a system of unified connections
designed to exchange information between components
of a computer system. The software interface defines a
set of required procedures, their parameters and how to
call them.

A user interface is the combination of hardware and
software that enables the exchange of information between
a user and a computer system. [3]

This article will focus on the user interface, although
many of the principles can be applied to other types of
interfaces. A distinction is made between the following
types of user interfaces:

• command user interface;
• WIMP interface;
• SILK interface. [4]

A command user interface is a type of interface in
which a person gives "commands" to a computer and the
computer executes them and prints the result to the person.
The command user interface is implemented in the form
of batch technology and command line technology.

A WIMP interface (graphical user interface: Window,
Image, Menu, Pointer) is an interface in which program
functions are represented by graphical screen elements.
A characteristic feature of this type of interface is
that the dialogue with the user is not with the help
of commands but with the help of graphic images -
menus, windows, and other elements. Although this
interface also gives commands to the machine, this is
done "indirectly", through graphic images. This type of
interface is implemented on two technological levels:
there can be simple graphical interfaces and "pure" WIMP
interfaces.

The features of a simple graphical interface are as
follows: highlighting screen areas; overriding keyboard
keys depending on the context; using manipulators and
keyboard keys to control the cursor. A WIMP interface
proper is characterised by the following features: all
interaction with programs, files and documents takes
place in windows; all objects are represented as icons; all
actions with objects are performed using menus; extensive
use of manipulators to point to objects.

A SILK interface (natural language interface: Speech,
Image, Language, Knowlege) is an interface in which the
user dialogs with the system in natural language. This
type of interface is closest to the usual, human form of
communication. The system finds commands for itself
by analyzing human speech and finding key phrases in

Figure 1. The context-of-use for adaptive UI

it. The result of the commands is also converted into a
human-understandable form.

Dialogues form the basis of interaction in the user
interface. Dialogue in this case is understood as a
regulated exchange of information between the user
and the system, carried out in real time and aimed at
completing a specific task collaboratively. The exchange
of information is carried out by transmission of messages.

Tasks to be solved by interfaces (interface tasks)
include:

• analysing input information;
• managing effectors.

The quality with which a cybernetic system solves tasks
is conditioned by:

• the cybernetic system’s ability to understand sensory
information;

• the cybernetic system’s ability to understand the
messages it receives;

• the ability of the cybernetic system to operate
independently in the external environment.

The interface of next-generation intelligent computer
systems must be able to interact with the user on an
equal footing, adapt to the user’s characteristics, and
accept different types of information input. This kind of
interface design is often described as adaptive, intelligent
and multimodal.

An adaptive user interface is a set of software and
hardware that allows the user to use the system in the
most efficient way by automatically adapting the interface
to the user’s needs and context. [5]

Generally, the context-of-use consists of user, platform,
and environment, as shown in Figure 1. [6]

Functionality and parameters of the interface can be
adjusted either manually by the user or automatically by

200

the system based on the information about the user. Thus a
distinction must be made between adaptive and adaptable
systems, terms that are not synonymous, although it is
quite common to see these terms used interchangeably
in the literature. [7]

In adaptive systems, any adaptation is predefined and
can be changed by users before the system starts up. In
contrast, in adaptive systems any adaptation is dynamic,
i.e. it occurs at the same time as the user interacts with
the system, and depends on the user’s behaviour. But a
system can also be adaptive and adaptive at the same
time. [8]

The disadvantage of editing the interface manually is
that the user needs to be reasonably familiar with both
the system itself and the means to modify its interface.

The term adapted interface can also be found in the
literature. Adapted user interfaces [9] are user interfaces
adapted to the end-user at design time, with no adaptation
changes occurring in run time.

Intelligent User Interface (IUI) - a user interface that
can assume what actions the user could perform next and
present information based on this assumption. [10]

An intelligent interface should perform the following
functions:

• communication function. Communication can take
place on the basis of text messages, all kinds of voice
input/output systems, graphical interaction tools, etc.

• automatic programme synthesis function. The user
message must be converted into a working pro-
gramme that the computer system can execute.

• justification function. A user who has little or no
knowledge of how a computer system converts his
task into a working program and what methods it
uses to arrive at a solution should be able to know
how the system arrived at the resulting solution. He
can ask how his task was converted into a program,
what method was used to find the solution, how this
solution was arrived at, and how it was interpreted in
the output. Thus, the justification function includes
both an explanation function and a trust function,
the purpose of which is to increase the user’s trust
in the system.

• education function. Next-generation intelligent com-
puter systems must have special means by which
the user gradually learns how to use the system and
the subtleties of successful communication with it.
[11]

As we have seen, the terms "intelligent interface" and
"adaptive interface" are different. However, in various
articles these concepts are treated as synonyms.

The term intelligent user interface is often used along
with various adapt* terms, as reported by a meta-study
conducted by Volkel et al. [12], where authors confirmed
that the studies might call an entity both “intelligent”
and “adaptive”. The concurrence can even be observed

in use of the term adaptive intelligent user interfaces.
Though this term is used infrequently, it describes user
interfaces with intelligent adaptive mechanisms capable
of monitoring the user behavior and adapting the user
interface accordingly, outside of the predefined rules.
Many intelligent interfaces can be described as adaptive
interfaces, though not all adaptive interfaces are intelligent.
IUIs can be associated with intelligent systems, i.e.,
systems that give appropriate problem-solving responses
to problem inputs, even if such inputs are new and
unexpected.

An often-made mistake is to confuse an IUI with an
intelligent system. A system exhibiting some form of
intelligence is not necessarily an intelligent interface.
There are many intelligent systems with very simple
non-intelligent interfaces and the fact that a system has
an intelligent interface does not say anything about the
intelligence of the underlying system (Figure 2).

Unfortunately, the boundary between a system and its
interface is not always very clear. Often the technology
used in an IUI is also part of the underlying system,
or the IUI may even form the entire system itself. For
example, a speech recognition system can be part of an
intelligent interface to a system, but it can also be the
complete system depending on how you look at it. If an
IUI can be regarded as a system on its own, then it is by
definition an intelligent system.

A multimodal interface is a user interface designed
to handle two or more combined modes of user input,
such as speech, pen, touch, hand gestures, gaze, etc., in
a manner coordinated with the output of a multimedia
system.

Interaction with most traditional computer systems
is done via keyboard and mouse (touchpad, stylus).
The user interface of such systems generally does not
store information about the user model, the history
of the user’s actions, and the model of the subject
domain. Traditional user interfaces also do not contain
an adaptation module. Figure 3 shows the architecture of
traditional user interfaces.

The overall architecture of an adaptive intelligent
multimodal user interface, in turn, generally looks as
shown in Figure 4.

Input coming from the keyboard, mouse, microphone,
camera, or possibly some other input device is recorded
and then (pre-)processed. Processing includes labeling
of events and other interesting input features. After each
input modality has been analyzed, the separate modalities
are fused together and evaluated. Note that in some cases
it is desirable to do the fusion of input streams before
the input processing, depending on the application and
the features that need to be detected. Once we know
what input is coming in, we can start to determine the
necessary course of action. First we have to evaluate
what to do in the current situation. If there is information

201

Figure 2. An intelligent system versus an intelligent interface

Figure 3. Traditional user interface architecture

missing or if the user has requested information (e.g. the
recorded speech contained a question from the user) this
information will be requested from the application or
some other external source. Usually there is an inference
mechanism that draws up conclusions and updates the
system’s information: the user model, his interaction
history, and information about the application domain.
Once, all the necessary information is available and
updated, the system must decide the best alternative
for action. In the figure above we have called this
adaptation, since usually some form of adaptation of
the interface is chosen. Often, evaluation and adaptation
occurs simultaneously using one inference engine for

both, making the distinction between the evaluation and
adaptation process is not quite clear. The chosen action
still has to be generated, which is being done in the output
generation part. Most IUIs can be created with or fitted
in this architecture, although often not all parts need to
be explicitly modeled. [13]

Among modern tools for creating adaptive user in-
terfaces, the following can be highlighted, as shown in
Figure 5. [14]

Regardless of the means of creating adaptive intelligent
multimodal user interfaces, such systems must effectively
store and process knowledge about the user, the interaction
with the user, and other relevant information. Most of

202

Figure 4. Intelligent user interface architecture

Figure 5. Existing tools for creating adaptive user interfaces

203

adaptive UI system use ontological models for storing the
information to tailor the UI. It is the ontological approach
that allows to:

• create the most complete unified description of the
different aspects of the user interface;

• easily integrate various aspects of the user interface;
• make it easier to reuse the interface model.
In ontological approach, it is common to distinguish

ontologies and subject domains. The knowledge base
of an adaptive intelligent multimodal interface should
include at least the following domains:

• Subject domain and ontology of user model;
• Subject domain and ontology of interface compo-

nents;
• Subject domain and ontology of interface actions;
• Subject domain and ontology of context of use.
Among already existing user model ontologies, we

can highlight the GUMO ontology [15]. This user model
ontology differentiates between:

• physiological state - can change within seconds;
• mental state - can change within minutes;
• emotional state - can change within hours;
• characteristics - can change within months;
• personality - can change within years;
• demographics - can’t normally change at all.
H. Paulheim, F. Probst [16] discusses an interface

component ontology, with the following component types
at the top level:

• presentation user interface component;
• decorative user interface component;
• interactive user interface component;
• data-input-component;
• presentation-manipulation-component;
• operation-trigger-component
• container;
• window;
• modal-window;
• non-modal-window.
An ontology can also include a class of component

properties that define the appearance of interface elements,
ranging from simple properties, such as font, colour,
element size, to composite properties, containing sets
of interface solutions. [17]

Classification of interface actions is presented in [16]
and contains the following main classes:

• mouse-action;
• speech-action;
• tangible-action;
• touch-action;
• pen-base-action.
An ontology of context usage is discussed in [18]

and describes:
• Users’ status:

– Motion (standing, sitting, walking);

– Able to listen (yes, no);
– Able to type (yes, no);
– Able to talk (yes, no);
– Able to read (yes, no);

• Natural environment:
– Lighting (bright, moderately lit, dark);
– Noise (noisy, quiet)Wind (strong, light, no wind);
– Weather (sunny, cloudy, rainy);
– Temperature (hot, warm, cold);
– Location (in an office, in an airport, on a street,

ina library, at home, at a shopping mall);
• Device features:

– Screen size (big, small);
– Type of screen (monochrome, colored);
– Keyboard (large, small, virtual).

It is common to use intelligent agents to manage user
interaction with the system.

An intelligent agent is one that is capable of flexible
autonomous action in order to meet its design objectives.
According to this definition, flexible means three things:

• Reactivity: intelligent agents are able to perceive
their environment, and respond in a timely fashion
to changes that occur in it in order to satisfy their
design objectives;

• Pro-activeness: intelligent agents are able to exhibit
goal directed behavior by taking the initiative in
order to satisfy their design objectives;

• Social ability: intelligent agents are capable of
interacting with other agents (and possibly humans)
in order to satisfy their design objectives.

Intelligent agents are directed towards a single goal,
but they possess more knowledge about reasoning within
the space of their activity. Knowing when to use other
resources (other agents), the preferences of the user or
client, constructs for negotiation deals, and other abilities
are the marks of an intelligent agent.

The following conclusions can be made, based on our
analysis:

• To move to a paradigm of equal cooperation between
user and system, interfaces need to be adaptive,
intelligent, and multimodal. Existing solutions allow
such interfaces to be designed but have a number of
shortcomings, which will be presented below.

• The structure of intelligent interfaces includes a
knowledge base, a module for managing user in-
teraction with the system.

• Ontological approach is actively used in the design of
knowledge bases and some ontologies that are used
in the design of intelligent interfaces have already
been implemented.

• The module for managing user interaction with the
system is usually implemented based on a multi-
agent approach.

Disadvantages of existing solutions include:

204

Figure 6. Intelligent system/intelligent interface architecture

• Existing solutions generally involve a question-and-
answer principle of interaction.

• Still relevant is the problem of compatibility between
the intelligent interface and the intelligent system for
which it is being created, due to different tools and
methods being used in design and implementation.

• The compatibility of the intelligent interface compo-
nents (knowledge base and interaction management
module) with each other remains a relevant problem.

III. PROPOSED APPROACH

To address the shortcomings of existing solutions, it
is proposed to use an ontological approach based on a
semantic model in the design and implementation of an
adaptive intelligent multimodal user interface. We propose
to view such an interface as a specialized subsystem
for solving user interface problems that consists of a
knowledge base and an interface problem solver. The
model of knowledge base and solver can be described on
the basis of a universal unified knowledge representation
language, which will ensure compatibility between these
components.

An intelligent system for which an intelligent interface
is to be created should have a model described using
the same unified language as the intelligent interface
itself. This will ensure that the intelligent system and its
intelligent interface are compatible.

An intelligent interface problem solver should be based
on a multi-agent approach, and the agents themselves
should be able to initiate actions and messages to the
user and other agents.

The architecture of such an intelligent system and an
intelligent interface based on the same principles would
look as follows (Figure 6).

Thus, we can formulate a list of requirements that the
technology necessary to implement this approach should
satisfy:

• the technology should support component approach
to creating semantic models;

• the technology should allow straightforward integra-
tion of various semantic models within a unified
system;

• the technology should make it possible to describe
different semantic models and various types of
knowledge therein using a single format.

As compared to other existing system design tech-
nologies, the OSTIS Technology meets all the specified
requirements. Another advantage of the technology that
can be highlighted is that it includes a basic set of
ontologies that can serve as the ground for the IUI model
being developed.

Thus, within this approach, we propose base the
implementation of a framework for building UIs on the
OSTIS Technology. This technology provides a universal
language for the semantic representation (encoding)
of information in the memory of intelligent computer
systems, called SC-code. Texts written in SC-code (sc-
texts) are unified semantic networks with a basic set-
theoretic interpretation. The elements of such semantic
networks are called sc-elements (sc-connectors and sc-
nodes, which, in turn, can be subdivided into sc-edges
or sc-arcs, depending on the directivity). The SC-code
alphabet consists of five main elements that can be used
to create SC-code constructions of any complexity as well
as to introduce more specific types of sc-elements (for
example, new concepts). The memory that stores SC-code
constructions is called semantic memory or sc-memory.
[19].

The architecture of each ostis-system includes a plat-
form for interpreting semantic models of ostis-systems as
well as a semantic model of the ostis-system described
using SC-code (sc-model of the ostis-system). In turn,
the sc-model of the ostis-system includes sc-model of the
knowledge base, sc-model of the interface, and sc-model
of the problem solver. The principles of the design and
structure of knowledge bases and problem solvers are
discussed in more detail in [20] and [21], respectively.
This article describes the sc-model of the UI, which is
included in the sc-model of the interface. Its principles
were described in the article [22], which this paper builds
upon.

The architecture of the ostis-system is shown in Figure
7.

The proposed architecture for an adaptive intelligent
multimodal user interface is shown in Figure 8.

The subject domains of user, context of use, user
interface actions, and interface components is proposed to
be formalised in the same way as the ontologies discussed
in section 2.

The subject domain of user interface is a formalised
typology of user interfaces. An example of a fragment
of this domain in a user interface knowledge base would
look as follows.

user interface

205

Figure 7. The architecture of the ostis-system

⊃ graphical user interface
⊃ WIMP interface

⊃ ostis-system user interface
⊃ command-line interface
⊃ SILK interface

⊃ natural-language interface
⊃ speech interface

Within the subject domain of interface design method-
ologies, it is proposed to formalise the various existing
interface design methods, such as:

• designing user interfaces based on ontologies
(ontology-driven user interface design);

• ergonomic design methodology;
• goal-oriented design methodology.
Within the interface design tools subject area, it is

proposed to formalise existing interface design tools such
as:

• tools to support the creation of an interface by
writing code;

• interactive tools;
• tools based on creating an interface by linking

separately created components.
[23]

The subject domain of messages is a formalised
typology of messages such as declarative, interrogative,
etc.

Within the subject domain of logical rules for interface
adaptation, it is proposed to formalise a typology of
logical rules on the basis of which interface adaptation
to the user will take place.

The subject domain of internal interface agent actions
describes the classification of possible actions in the ostis
system [3]. A fragment of the knowledge base containing
this domain is given below.

action in sc-memory
⊃ action of interpreting a program stored in

sc-memory
⊃ action of setting the mode of the ostis-system
⊃ action in sc-memory initiated by a question
⊃ action of editing a file stored in sc-memory

⊃ action of editing the ostis-system knowledge base

In [24], a problem solver model has been described.
The problem solver model should also include a user
interface adaptation and evaluation module.

Any ostis-system can integrate an intelligent interface
according to the proposed architecture. But it is also
important to clarify the concept of user interface in the
context of the OSTIS Ecosystem.

The OSTIS Ecosystem is a socio-technical network of
interactions between:

• ostis-systems themselves;
• users of the specified ostis-systems (both end-users

and developers);
• some computer systems that are not ostis-systems

(they can be used as additional information resources
or services).

The objectives of the OSTIS Ecosystem are:
• rapid implementation of all agreed upon changes in

ostis-system;
• permanent maintenance of a high-level mutual un-

derstanding between all the systems that make up
the OSTIS Ecosystem and all their users;

• corporate solution of various complex tasks requiring
the coordination of several (most often a priori
unknown) ostis-systems, and possibly some users.

The OSTIS Ecosystem has a concept of a personal
ostis-assistant, which is an ostis-system that is a personal
assistant to a member of OSTIS Ecosystem, i.e. an ostis-
system that mediates the person’s interactions with the
members of all the collectives (ostis-communities) of
which the person is himself a member.

Since user interaction with the OSTIS Ecosystem
takes place only via a personal assistant, an adaptive
intelligent multimodal user interface is required only for
ostis-systems that are personal assistants but not for all
ostis-systems.

A model of the user, their activities, etc. in this context
should only be stored within the user’s personal assistant
memory and shared with other systems as needed.

IV. CONCLUSION

The article discusses the principles of organising partne-
like interaction between a user and an intelligent system
and the principles of constructing interfaces for next-
generation intelligent computer systems that provide a
transition to the paradigm of equal cooperation between
a user and a user interface.

The following conclusions have been drawn as a result
of the analysis:

• In order to move to a paradigm of equal cooperation
between a user and a system, interfaces need to
be adaptive, intelligent, and multimodal. Existing
solutions allow such interfaces to be designed but
have a number of shortcomings, which will be
presented below.

206

Figure 8. Intelligent interface architecture

• The structure of intelligent interfaces includes a
knowledge base and a module for managing user
interaction with the system.

• Ontological approach is actively used in the design of
knowledge bases, and some ontologies have already
been implemented and utilized in the design of
intelligent interfaces.

• The module for managing user interaction with the
system is usually implemented based on a multi-
agent approach.

The following shortcomings of existing solutions have
been highlighted:

• Existing solutions generally involve a question-and-
answer principle of interaction.

• Still relevant is the problem of compatibility between
the intelligent interface and the intelligent system for
which it is being created, due to different tools and
methods being used in design and implementation.

• The compatibility of the intelligent interface compo-
nents (knowledge base and interaction management
module) with each other remains a relevant issue.

We proposed an ontological approach based on a
semantic model that can be used in the design and
implementation of an adaptive intelligent multimodal
user interface. The approach is based on the OSTIS
Technology, which will provide:

• compatibility of an intelligent interface with an
intelligent system;

• compatibility of an intelligent interface components
with each other;

• user interaction with the system through an intelli-
gent interface on the principle of equality.

The architecture of an intelligent interface was pro-
posed, its components and its application in the context
of the OSTIS Ecosystem have been discussed in detail.

V. ACKNOWLEDGMENT

The author would like to express his gratitude to the
scientific teams of the Departments of Intellectual Infor-
mation Technologies of the Belarusian State University
of Informatics and Radioelectronics, and Brest State
Technical University. This work was partially supported
by BRFFR (BRFFR-RFFR No.F21RM-139).

REFERENCES

[1] T. A. Fomina and G. M. Novikova, “Proektirovanie adaptivnogo
interfejsa is dlya podderzhki deyatel’nosti obrazovatel’nogo
uchrezhdeniya,” Vestnik Altajskoj akademii ekonomiki i prava,
vol. 6, no. 1, pp. 125–133, 2020. [Online]. Available:
https://vaael.ru/ru/article/view?id=1174

[2] A. Starostin, Tehnicheskie sredstva avtomatizacii i upravleniya.
Yekaterinburg: Ural University Press, 2015.

207

[3] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open
technology for ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
G. V.V., Ed. Minsk: Bestprint, 2021.

[4] T. Brusencova and T. Kishkurno, Proektirovanie interfeisov
polzovatelya : posobie dlya stud. vuzov. Minsk: BSTU, 2019.

[5] I. M. Ismagilova and S. Valeev, “Postroenie dinamicheskih
adaptivnih interfeisov informacionno-upravlyayuschih sistem na
osnove metodov iskusstvennogo intellekta,” Vestnik Ufimskogo
gosudarstvennogo aviacionnogo tehnicheskogo universiteta, vol. 9,
pp. 122–130, May 2018.

[6] J. Hussain, A. U. Hassan, H. Bilal, R. Ali, M. Afzal, S. Hussain,
J. Bang, O. Banos, and S. Lee, “Model-based adaptive user
interface based on context and user experience evaluation,” Journal
on Multimodal User Interfaces, vol. 12, p. 17, 02 2018.

[7] I. M. Ismagilova and S. Valeev, “Postroenie adaptivnih interfeisov
v slojnih raspredelennih tehnicheskih sistemah s primeneniem
statisticheskih metodov,” Vestnik Ufimskogo gosudarstvennogo
aviacionnogo tehnicheskogo universiteta, vol. 9, pp. 122–130,
May 2018.

[8] M. Montero and E. Gaudioso, Adaptable and Adaptive Web-
Based Educational Systems : Encyclopedia of human computer
interaction. UK: Liverpool John Moores University, 2005.

[9] E. Schlungbaum, “Individual user interfaces and model-based user
interface software tools,” in IUI ’97, 1997.

[10] S. Brdnik, T. Heričko, and B. Šumak, “Intelligent user interfaces
and their evaluation: A systematic mapping study,” Sensors, vol. 22,
no. 15, 2022. [Online]. Available: https://www.mdpi.com/1424-
8220/22/15/5830

[11] (2022, Sep) Intellektual’nye interfejsy dlya evm
novyh pokolenij. [Online]. Available: https://alllink.ru/xt3m-
327/8141776/threads.w1yuv.php

[12] S. T. Völkel, C. Schneegass, M. Eiband, and D. Buschek, “What
is "intelligent" in intelligent user interfaces? a meta-analysis of
25 years of iui,” ser. IUI ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 477–487. [Online]. Available:
https://doi.org/10.1145/3377325.3377500

[13] P. Ehlert, Intelligent User Interfaces: Introduction and Survey, 02
2003.

[14] J. Hussain, A. U. Hassan, H. Bilal, R. Ali, M. Afzal, S. Hussain,
J. Bang, O. Banos, and S. Lee, “Model-based adaptive user
interface based on context and user experience evaluation,” Journal
on Multimodal User Interfaces, vol. 12, 02 2018.

[15] D. Heckmann, E. Schwarzkopf, J. Mori, D. Dengler, and A. Kröner,
“The user model and context ontology gumo revisited for future
web 2.0 extensions,” vol. 298, 01 2007.

[16] H. Paulheim and F. Probst, UI2Ont—A Formal Ontology on User
Interfaces and Interactions, 01 2013, pp. 1–24.

[17] V. Gribova and V. Strekalev, “Ontologies for development and
generation adaptive user interfaces for knowledge base editors,”
Ontology of Designing, vol. 12, pp. 200–217, 02 2022.

[18] J. Kong, W. Zhang, N. Yu, and X. Xia, “Design of human-
centric adaptive multimodal interfaces,” Int. J. Hum.-Comput. Stud.,
vol. 69, pp. 854–869, 12 2011.

[19] V. Golenkov, N. Gulyakina, I. Davydenko, and D. Shunke-
vich, “Semanticheskie tekhnologii proektirovaniya intellektual’nyh
sistem i semanticheskie associativnye komp’yutery [Semantic
technologies of intelligent systems design and semantic associative
computers],” Otkrytye semanticheskie tehnologii proektirovanija
intellektual’nyh sistem [Open semantic technologies for intelligent
systems], pp. 42–50, 2019.

[20] I. Davydenko, “Semantic models, method and tools of knowledge
bases coordinated development based on reusable components,” in
Otkrytye semanticheskie tehnologii proektirovanija intellektual’nyh
sistem [Open semantic technologies for intelligent systems],
V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2018, pp. 99–118.

[21] D. Shunkevich, “Agentno-orientirovannye reshateli zadach
intellektual’nyh sistem [Agent-oriented models, method and
tools of compatible problem solvers development for intelligent
systems],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2018,
pp. 119–132.

[22] A. Boriskin, M. Sadouski, and D. Koronchik, “Ontology-based
design of intelligent systems user interface,” Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems], vol. 12, pp. 95–106,
02 2017.

[23] B. A. Myers, “A brief history of human computer interaction
technology,” vol. 5, pp. 44–54, 03 1998.

[24] M. Sadouski, “Semantic-based design of an adaptive user inter-
face,” in Open Semantic Technologies for Intelligent Systems,
V. Golenkov, V. Krasnoproshin, V. Golovko, and D. Shunkevich,
Eds. Cham: Springer International Publishing, 2022, pp. 165–191.

Структура интерфейсов
интеллектуальных компьютерных систем

нового поколения
Садовский М. Е.

В работе рассматривается структура адаптивных мульти-
модальных интерфейсов интеллектуальных компьютерных
систем нового поколения, обеспечивающих переход от пара-
дигмы грамотного пользователя к парадигме равноправного
сотрудничества пользователя с интеллектуальной системой,
что позволит повысить эффективность человеко-машинного
взаимодействия.

Received 10 01. .2022

208

Natural language interfaces of next-generation
intelligent computer systems

Artem Goylo
Minsk State

Linguistic University
Minsk, Belarus

Email: artemgoylo@gmail.com

Sergei Nikiforov
Belarusian State University

of Informatics and Radioelectronics
Minsk, Belarus

Email: nikiforov.sergei.al@gmail.com

Abstract—The article describes an approach to the imple-
mentation of natural language interfaces of next-generation
intelligent computer systems built using OSTIS technology, and
also proposes a dialogue context model. In this approach, all stages
of analysis, including lexical, syntactic and semantic analysis, can
be performed directly in the knowledge base of such a system.
This approach will effectively solve such problems as managing
the global and local contexts of dialogue, as well as resolving
linguistic phenomena such as anaphora, homonymy and tackling
elliptical phrases.

Keywords—Natural Language Processing, Natural Language
Understanding, ontology, context, semantic network, Open Seman-
tic Technology for Intelligent Systems (OSTIS), SC-code (Semantic
Computer Code), constituency grammar

I. Introduction
Currently, there is a large number of different interfaces of

computer systems, which complicates interoperability between
such systems and people as they need to familiarize themselves
with the interface of each new system, which is rarely intuitive.

One of the main features of next-generation intelligent
computer systems should be a user interface that can provide
effective user interaction with the system, considering that
users are often not professionally trained.
Speech is one of the most natural and convenient forms

of information transfer between people, which leads to the
increasing spread of natural language interfaces [1]. At the
present time, no one doubts that this form of human-machine
interaction plays and will continue to play a significant role in
interaction with various computer systems.
However, it should be noted that a great diversity of

languages (both natural and artificial) leads to the need to
simplify the process of creating such interfaces for each
individual language.

II. State of the art
Most approaches to natural language processing and under-

standing are based on machine learning [2], [3]. Undoubtedly,
for most widely used languages, natural language processing
models work very well and are improving every day, but despite
the success in this area, this approach has several disadvantages:

• problems when working with different domains, for
example, the meanings of words or sentences can be
different depending on the subject domain. Thus, models

for NLP may work well for a particular subject domain,
but not be suitable for general application [4];

• creating a new model requires a large amount of data,
and the quality of such data directly affects the quality
of the resulting model, which leads to high costs for its
training [5] [6];

• the model data is a "black box" because such models
do not have the means to provide a description of its
inference;

• every such model solves only a small amount of problems,
there is no general approach to natural language processing.
[4]

These shortcomings of the methods used cause some of
the shortcomings of modern systems that implement a natural
language interface. For example, despite the fact that now there
is a large number of speech assistants created by different
companies [7], [8], [9], [10], they have similar drawbacks,
namely, an exclusively distributed implementation, due to end-
user device performance being insufficient to run resource-
intensive models. This in turn leads to privacy issues [11].
The speech understanding submodule of these systems

generates a construction that reflects the meaning of the
message using a frame model. A simplified example of such a
construction is shown in figure 1.

Figure 1. Message meaning formalization example

At the same time, other formats are used to present the
results of intermediate stages of processing, the modules that
implement them do not have any single foundation and interact
through specialized software interfaces between them, which

209

leads to incompatibility of the methods for presenting results
at various stages of processing and the final result of text
processing. This incompatibility, in turn, leads to significant
overhead costs in the development of such a system and, in
particular, in its modification.
As a solution to the compatibility problem, it is proposed

to use an approach to natural language processing based on
its formal model in the form of a set of ontologies formed
using universal knowledge representation tools. This will
contribute to interoperability of the component of natural
language processing as a whole with other components of
the system, and between parts of the component itself.
The aim of the article is to design an interface model

based on an approach to natural language processing that uses
ontologies containing a formal description of natural language.

III. Suggested approach
In the suggested approach to the implementation of natural

language interfaces, it is proposed to carry out all stages of
analysis, including lexical, syntactic and semantic analysis
directly in the knowledge base of an intelligent system,
presenting the results in a single unified form.
The description of the results of lexical, syntactic and

semantic analysis is supposed to be carried out on the basis of
the concepts introduced in the following subject domains:

• Subject domain of the lexicon of natural languages;
• Subject domain of syntax of natural languages;
• Subject domain of denotational semantics of natural
languages.

However, the specification of these subject domains is not the
aim of this article.
We also suggest to introduce a set of concepts to describe

the context of the dialogue at various levels. The presence of
such contexts will allow storing and using not only the history
of the dialog (including the meaning of messages), but also
other knowledge that can be used in the course of the dialog,
including heterogeneous information about the interlocutor.
We propose to use the representation of knowledge about

different languages (including knowledge about their syntax
and semantics) in a unified form. This will significantly reduce
overhead costs in the development of various systems that use
the created ontologies.
In this arcticle it is proposed to base natural language

interfaces on OSTIS Technology [12]. This technology allows
to ensure the compatibility of heterogeneous problem solving
models, and reduce the costs of development and modification
(including adding a new problem solving model to the system).

Systems developed on the basis of the OSTIS Technology
are called ostis-systems. The OSTIS Technology is based on
a universal way of semantic representation of information
in the memory of intelligent computer systems, called SC-
code. SC-code texts are unified semantic networks with a basic
set-theoretic interpretation. The elements of such semantic
networks are called sc-elements (sc-nodes and sc-connectors,
which, in turn, depending on their directivity, can be sc-arcs
or textitsc-edges). SC-code alphabet consists of five main

elements, on the basis of which SC-code constructions of any
complexity are built, including the introduction of more specific
types of sc-elements (for example, new concepts). The memory
that stores SC-code constructions is called semantic memory
or sc-memory.
Fragments (substructures) of the subject domains and on-

tologies under consideration, as well as structures related to
the knowledge base and problem solver models, will be further
shown in the form of SC-code texts (sc-texts).

A problem solver of any ostis system (more precisely, the sc-
model of the problem solver of an ostis-system) is a hierarchical
system of knowledge processing agents in semantic memory (sc-
agents) that interact with each other exclusively by specifying
their actions in the memory [13].

A system of sc-agents over a shared memory is a collective
of sc-agents the initiation condition of which is the appearance
of a certain construction in the system’s memory. In this case,
operations interact with each other through the system memory
by generating constructions that serve as initiation conditions
for another operation.
With this approach, it becomes possible to ensure the

flexibility and extensibility of the system functionality by
adding or removing a certain set of agents from its composition,
without making changes that affect other agents.

A. Subject domain and ontology of natural language interfaces
of ostis-systems

Natural language interface – SILK-interface (Speech, Image,
Language, Knowledge) – is an interface where the exchange of
information between the computer system and the user occurs
through dialogue. The dialogue is conducted in one of the
natural languages.

natural language interface
⊃ speech interface

Speech Interface is a SILK interface where information is
exchanged through dialogue, during which the computer system
and the user communicate using speech. This type of interface
is closest to natural communication between people.
In the suggested approach, the following stages of natural

language processing can be distinguished:
• lexical analysis;
• syntactic analysis;
• message comprehension.
In turn, lexical analysis includes decomposition of the text

into tokens and their mapping to lexemes.
Understanding the message comes down to generating

message meaning variants and choosing the correct one based
on the context, as well as merging it with this context.
Provided below is the structure of the natural language

interface problem solver.

Natural language interface problem solver
⇒ abstract sc-agent decomposition*:

210

{{{• Abstract sc-agent of lexical analysis
⇒ abstract sc-agent decomposition*:

{{{• Abstract sc-agent for
decomposing text into tokens

• Abstract sc-agent for mapping
tokens to lexemes

}}}
• Abstract sc-agent of syntactic analysis
• Abstract sc-agent of message understanding

}}}

In turn, abstract sc-agent of message understanding is
decomposed into:

Message understanding agent
⇒ abstract sc-agent decomposition*:

{{{• Abstract sc-agent for generating message
meaning variants

• Abstract sc-agent for context selection and
update
⇒ abstract sc-agent decomposition*:

{{{• Abstract sc-agent of context
resolution

• Abstract sc-agent for choosing
the meaning of a message based
on the context

• Abstract sc-agent for embedding
a message into a context

}}}
}}}

The knowledge base must contain a specification of each
agent, an example of a fragment of such a specification is
shown in figure 2.

Figure 2. Agent specification example

B. Subject domain and ontology of lexical analysis of natural
language messages included in an ostis-system

action. lexical analysis of a natural language message

⇒ generalized decomposition*:
{{{• action. decomposition of text into tokens
• action. mapping tokens to lexemes

}}}

From the point of view of an ostis-system, any natural
language text is a file (i.e. an SC-node with content).
The stage of lexical analysis is the decomposition of the

text into a sequence of tokens and the mapping of lexemes
to the tokens resulting from this decomposition. It should be
noted that these tokens, if necessary, can be compared not with
lexemes, but with their subsets included in its morphological
paradigm that correspond to certain grammatical categories:
case, number, gender, etc.

A result of lexical analysis is shown in figure 3.

Figure 3. Lexical analysis result example.

To perform lexical analysis, the knowledge base of the system
must also contain a lexicon with lexemes and their various
word forms.

A lexeme is a unit of the lexicon of a language, a set of all
forms of a certain word. An example of a lexeme specification
in the knowledge base is shown in figure 4.

C. Subject domain and ontology of syntactic analysis of natural
language messages included in an ostis-system
The agent of syntactic analysis performs the translation of

the tokenized text into its syntactic structure. At the same time,
due to the impossibility of resolving structural ambiguity at
the stage of syntactic analysis, its result of syntactic analysis
will generally be a set of potential syntactic structures.

An example of a syntactic structure is shown in figure 5.

D. Subject domain and ontology of understanding natural
language messages included in an ostis-system

действие. понимание естественно-языкового
сообщения

action. natural language message understanding

211

Figure 4. Example of a lexeme in the knowledge base.

⇒ generalized decomposition*:
{{{• action. generation of message meaning variants
• action. context selection and update

⇒ generalized decomposition*:
{{{• action. context resolution
• action. selecting the meaning of

the message based on the
context

• action. embedding the message
in context

}}}
}}}

Action. message meaning variants deneration is an action
during which the formation of a strict disjunction of potentially
equivalent structures is carried out.

Potentially equivalent structure* is a binary oriented relation
that connects a structure and a set of structures that could
potentially be equivalent to it, however, additional steps are
required to reliably determine this.

At the same time, the transition from the result of syntactic
analysis to structures potentially equivalent to the message is
carried out according to the rules contained in the subject
domain of denotational semantics. An example of one of the
rules is shown in figure 6.
As a result of this action, a structure is formed in the

knowledge base that describes possible variants of the meaning
of the message, an example of such a structure based on
constituency grammar [14] is given in figure 7. The presence
of several such structures is explained by the fact that, in general,
several variants of the syntactic structure are generated at the
stage of syntactic analysis. The choice of the correct message
meaning will be made in the course of the subsequent steps.
It should be noted that, if necessary, the meaning of the

message can be generated not only on the basis of its syntactic

structure based on constituency grammar, but also on other
knowledge about this message, for example, subject-relation-
object triples extracted from the text of this message, the result
of message classification, etc.
Further steps in the message understanding process are

performed based on the context.
Context is as sc-structure containing the knowledge used

by the system during one or more dialogs. Generally, this
knowledge includes both previously provided in the knowledge
base and obtained in the course of operating sensors and / or
communicating during a dialog.

dialog context
⊂ context
⇒ subdividing*:

Typology of dialog contexts by scope^
= {{{• thematic context

• user context
• global context

}}}

Thematic context is a dialog context containing topic-specific
information (information obtained during the dialog on a certain
topic, for example, when talking about a certain set of entities).

A set of thematic contexts of a dialog* is a binary oriented
relation, a dialog with the oriented set of its thematic contexts.
User context is a dialog context that contains user-specific

information that can be used in a dialog with them on any
topic. In general, user context intersects with the approved
part of the KB (reliable information about the user previously
provided in the KB that has passed the necessary moderation),
but is not included in it entirely (the part received during the
dialog that we are not sure about). An example of intersection
of different types of contexts with an approved part of the
knowledge base is shown in figure 8.

Global context is a dialog context that contains information
that may be needed when conducting a dialog with any user.
Global context is a subset of the approved part of the knowledge
base that contains the information that may be used in the
dialogue. For example, in a dialog with a specific user, it is
unnecessary to use:

• proprietary information located in the knowledge base,
which is necessary for the system to work but not intended
for use in the dialog;

• parts of user contexts of other users.

dialog context
⇒ subdividing*:

Context typology by knowledge validity period^
= {{{• dialog context that does not change

during system operation
• dialog context that changes during

system operation
}}}

212

Figure 5. Syntactic structure example.

Dialogue context that does not change during system opera-
tion contains the knowledge necessary to ensure that the system
performs its functions, which were put into it a priori by its
developers and/or administrators and do not change during its
operation on an ongoing basis.

Dialogue context that changes during system operation
contains the knowledge necessary for the system to perform
its functions, which were obtained during its operation and/or
the validity of which is short-lived.

dialog context that changes during system operation
⇒ subdividing*:

Typology of contexts that change during system
operation knowledge source^
= {{{• dialog context containing knowledge

from external sources
• dialog context containing knowledge

gained during a dialog
}}}

⇒ subdividing*:
Typology of changing contexts according to their
validity^
= {{{• valid dialog context

• invalid dialog context
}}}

A subset of the context can be included in the approved
part of the KB, for example, if we are talking about some
biographical information previously entered in the KB - date
of birth, etc.
At a given moment, one user dialog context is associated

with a user (containing at minimum facts about them known
in advance: name, age, etc.) and several thematic contexts. A
context specification example is shown in figure 9.

Thus, action. context resolution is reduced to mapping each
meaning variant to the corresponding context. The choice is
made on the basis of the value of the function FCTD(T,C),
where T is a translation variant, C is a thematic context. A
suitable context for a translation variant is the one for which

213

Figure 6. An example of transitioning from syntactic structure to its semantics.

Figure 7. An example of a construction specifying potential meaning of a
message.

the value of this function is the highest. If a suitable context
is not found, a new one is generated. An example of the result
of this action is shown in figure 10.

Action. choosing the meaning of the message is the choice
from a set of translation options and their corresponding
contexts of one pair and its designation as a construction
equivalent to the message. In the simplest case, at this stage,
it is permissible to make a choice in accordance with the
values of the FCTD(T,C) function calculated at the previous
stage for pairs of potentially equivalent structures and their
corresponding contexts and choose the pair for which it has the
highest value, but if necessary, it is also possible to introduce
a separate function. An example of the result of this action is
shown in figure 11.
Action. embedding of a message into a context is the

embedding of the resulting meaning of a message into a

Figure 8. Relationship of contexts with the approved part of knowledge bases.

Figure 9. Context specification example.

context. In addition to the chosen meaning of the message,
other information necessary for processing the message can be
added to the context. Moreover, at this stage of the analysis,
pronoun resolution should also be performed based on the

214

Figure 10. An example of a message with context associated with all meaning
variants.

Figure 11. An example of a construction describing a structure equivalent to
a message.

information stored in the context. Examples of contexts before
and after the message is embedded in it are shown in figures
12 and 13.

Thus, relevant information is collected in a thematic context,
and by combining it with the user context and the global context
you can get a common context based on which the required
system actions should be performed, including the generation

Figure 12. An example of a context before a message is embedded.

of a system response.

IV. Conclusion
An approach has been suggested for the implementation

of natural language interfaces of next-generation intelligent
computer systems built using OSTIS technology based on a
formal model of a natural language, and a dialog context model
was introduced.

In the suggested approach, all stages of analysis, including
lexical, syntactic and semantic analysis, can be performed
directly in the knowledge base of such a system. And all the
results (both intermediate stages and the final one) are presented
in a single unified form, which helps to ensure compatibility
and reduce overhead costs for integrating a subsystem based
on this approach.

The formalization of the language used in the basis of this
approach is universal and extensible, which makes it possible
to supplement it with a formalized specification of a given
natural language to ensure the possibility of working with it.

Acknowledgment
The authors would like to thank the research teams of the

Department of Intellectual Information Technologies of BSUIR
and the Department of Theory and Practice of Translation #1
of MSLU for their help and valuable comments. This research
was partially supported by the BRFFR (BRFFR-RFFR No.
F21RM-139)..

215

Figure 13. An exaple of a context after a message has been embedded.

References
[1] “Global Voice Assistant Market By Technology, By

Application, By End User, By Region, Competi-
tion, Forecast & Opportunities, 2024,” Available at:
https://www.businesswire.com/news/home/20190916005535/en/Global-
Voice-Assistant-Market-Projected-Grow-1.2, (accessed 2019, Dec).

[2] S. Pais, J. Cordeiro, and M. L. Jamil, “Nlp-based platform as a service:
a brief review,” Journal of Big Data, vol. 9, 04 2022.

[3] D. Trajanov, V. Trajkovski, M. Dimitrieva, J. Dobreva, M. Jovanovik,
M. Klemen, A. Žagar, and M. Robnik-Sikonja, “Survey of nlp in
pharmacology: Methodology, tasks, resources, knowledge, and tools,” 08
2022.

[4] Khurana, D., Koli, A., Khatter, K. et al., “Natural language processing:
state of the art, current trends and challenges,” in Multimed Tools Appl,
2022.

[5] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy con-
siderations for deep learning in nlp,” arXiv preprint arXiv:1906.02243,
2019.

[6] “Large language models: A new moore’s law?” Available at:
https://huggingface.co/blog/large-language-models, (accessed 2022,
September).

[7] “Amazon Alexa Official Site: What Is Alexa?” Available at:
https://developer.amazon.com/alexa, (accessed 2022, September).

[8] “Siri,” Available at: https://www.apple.com/siri/, (accessed 2022, Septem-
ber).

[9] “Google Assistant, your own personal Google,” Available at:
https://assistant.google.com/, (accessed 2022, September).

[10] “Cortana helps you achieve more with less effort. Your personal productiv-
ity assistant helps you stay on top of what matters, follow through, and do
your best work.” Available at: https://www.microsoft.com/en-us/cortana,
(accessed 2022, September).

[11] M. Hoy, “Alexa, siri, cortana, and more: An introduction to voice
assistants,” Medical Reference Services Quarterly, vol. 37, pp. 81–88,
01 2018.

[12] V. V. Golenkov, N. A. Gulyakina, D. V. Shunkevich, Open technology for
ontological design, production and operation of semantically compatible
hybrid intelligent computer systems, G. V.V., Ed. Minsk: Bestprint,
2021.

[13] V. V. Golenkov, “Agent-oriented models, method and tools of compatible
problem solvers development for intelligent systems,” in Software
products and systems. Moskow, 2020, pp. 404–412.

[14] R. Jackendoff, X–bar Syntax: A Study of Phrase Structure. Cambridge:
MIT Press, 1977.

Естественно-языковые интерфейсы
интеллектуальных компьютерных систем

нового поколения
Гойло А. А. Никифоров С. А.

В данной работе рассматривается подход к реализации
естественно-языковых интерфейсов интеллектуальных компью-
терных систем нового поколения, построенных по технологии
OSTIS, а также предлагается модель контекста диалога. В данном
подходе все этапы анализа, включая лексический, синтаксический
и семантический анализ могут производиться непосредственно в
базе знаний такой системы. Такой подход позволит эффективно
решать такие задачи как управление глобальным и локальным
контекстами диалога, а также разрешение языковых явлений таких
как анафоры, омонимия и эллиптические фразы.

Received 28.10.2022

216

Ontological Approach to the development of
natural language interface for intelligent

computer systems
Longwei Qian

Department of Intelligent Information Technology
Belarusian State University of Informatics and Radioelectronics

Minsk, Belarus
qianlw1226@gmail.com

Abstract—Natural language interfaces are oriented to-
wards achievement of interaction between human users and
computer systems in the most natural way. In the process of
artificial intelligence development, natural language interface
has always been the main research direction. The paper
is dedicated to the description of the ontological approach
to the development of the natural language interface
for intelligent computer system (mainly knowledge-based
system) based on the OSTIS Technology. In the field of
the development of natural language interface the existing
approaches to solve the natural language texts processing
(natural language texts analysis and natural language texts
generation) are considered. Moreover, the ontological model
that possibly integrate different kinds of linguistic knowledge
in detail and various problem solving models oriented on
solving natural language texts processing in a semantically
compatible are described.

Keywords—OSTIS, ontology, knowledge-based system,
natural language interface, knowledge-driven, knowledge
base

I. INTRODUCTION

In the field of artificial intelligence research, recently
knowledge-based intelligent systems are widely applied in
various fields (e.g. in medical, in education, etc.). As one
of the key components of this type of intelligent systems,
intelligent user interfaces aim to enable more intelligent
interactions between human users and intelligent systems.

In traditional computer systems, the user interfaces
in general must have database access capabilities. In
accordance with the various means of interaction used
by human users, in traditional computer systems, user
interfaces usually can be divided into the following types:

• user interfaces with graphical query;
• user interfaces with formal languages query;
• user interfaces based on filling in request forms.
For user interfaces with graphical query, information is

exchanged between computer systems and human users
through the graphical components (e.g. menus, controls)
in the interfaces. For user interface with formal languages
query, information is exchanged between computer sys-
tems and human users by writing commands in formal

languages. Graphical components or commands in formal
languages are generally complex and unnatural for the
human users. Users must understand the functions of each
graphical component in interface or learn the grammar of
a certain formal language in advance. For user interfaces
based on filling in request forms information is exchanged
between computer systems and human users through the
completion of specific forms. For form-based interfaces,
users need to fill out the forms correctly according to
specific requirements. For user interfaces of traditional
computer systems, users require additional training (under-
standing graphical components, learning specific formal
language) to interact with computer systems. Therefore
human users expect to use more convenient interactive
ways without learning complex operations. The natural
language interfaces are closest to the natural form of
human communication, and can provide human users
with more natural interactive experience.

The natural language interfaces of knowledge-based
intelligent systems are oriented to achievement of informa-
tion exchange between natural language texts (especially
declarative sentences) provided by human users and
knowledge base of intelligent systems in which store
specific knowledge. The modular scheme (Figure 1)
shows automated information interaction process between
human users and intelligent systems based on the classical
architecture of modern question-answer systems based
on the knowledge base.

As can be seen from the Figure 1, the development of
the natural language interfaces of the knowledge-based
intelligent systems mainly involves the realization of the
following two components:

• conversion of input natural language handwritten
texts into knowledge base fragments of intelligent
systems;

• generation of natural language handwritten texts
from the knowledge base fragments of intelligent
systems.

Both conversion of natural language handwritten texts

217

Figure 1: Modular scheme of natural language interface of knowledge-based intelligent systems

and generation of natural language handwritten texts are
considered subtasks of natural language processing. From
the point of view of intelligent systems, these subtasks
are kinds of so-called complex problems, the solution of
which are still hot research topics. In general, solution
of these subtasks requires a combination of various types
of knowledge about linguistics and the use of various
problem solving models for natural language processing.
However in modern intelligent systems, there is a lack of a
unified basis to integrate various types of knowledge about
linguistic and problem solving models in the development
process of natural language interfaces.

II. CLASSIFICATION OF NATURAL LANGUAGE
INTERFACE

The development of natural language interfaces for
knowledge-based intelligent systems generally requires
consideration of following two aspects:

• types of processed natural language, i.e. characteris-
tics of different types of natural language;

• the range of the knowledge base of intelligent sys-
tems, i.e. the breadth of knowledge in the knowledge
base of intelligent systems.

According to statistics, on the Internet there are only
dozens of natural languages that are widely used by
human users for communication, such as Russian, English,
Chinese, etc. Each natural language has its own unique fea-
tures, for example, the writing habits of Chinese language
are almost completely different from European languages.
Therefore for processing various natural language texts, it
is necessary to take into account the corresponding char-
acteristics of different natural languages. In addition, the

range of the knowledge base also affects the complexity
of developing natural language interfaces of knowledge-
based intelligent systems. The world-wide knowledge
bases [1], [2], in which knowledge sources are oriented
to the whole Internet, i.e., commonsense knowledge [3]
is stored in the knowledge bases of intelligent systems.
The knowledge bases about specialized domain [3], [4],
in which knowledge sources are oriented to various ency-
clopedias (for example, an automobile encyclopedia, an
encyclopedia about films, an encyclopedia about various
disciplines (such as discrete mathematics, history, and
others)), i.e. in the knowledge bases of intelligent systems
stores specific industry knowledge (i.e., knowledge about
a limited domain). The commonsense knowledge base
draws attention to the breadth of stored knowledge,
emphasizes the integration of more concepts, named
entities across different domains and the relationships
between them. from another aspect, the commonsense
knowledge base will not provide high accuracy of the
knowledge stored in it. With the process of integrating
more concepts, named entities and relationships between
them in the knowledge base it will lead to higher
complexity of searching and processing fragments of
the knowledge base. Unlike the commonsense knowledge
base, knowledge bases about specialized domain draws
more attention to the depth and accuracy of the stored
knowledge that satisfies the solution of various specific
tasks in intelligent systems with lower complexity.

In accordance with the two aspects listed above, we
divide the natural language interfaces of knowledge-based
intelligent systems into the following classes:

• natural language interface that is independent of the

218

specific natural language and the specific domain.
In this case, this kind of natural language interface
can process texts of any kind of natural languages,
for example, Russian, Arabic, English, Chinese, and
so on, as well as process any complex knowledge
structure, i.e. knowledge is stored in the world-wide
knowledge bases;

• natural language interface that is dependent on the
particular natural language, but is independent of the
particular domain. In this case, the natural language
interface can only analysis texts of certain natural
language and process any complex knowledge struc-
ture;

• natural language interface that is independent of
the particular natural language, but is dependent
on the particular domain. In this case, the natural
language interface can analyze texts of any kind
of natural languages, which describe facts about
the particular domain. The knowledge bases about
specialized domains are the basis of the knowledge
base of the intellectual systems. It should be noted
that the description of facts in different domains
may special different types of sentences. Therefore
the processing of natural language texts describing
facts in different domains (for example, the historical
texts, the legal texts, the texts in different disciplines)
has the different degree of complexity;

• natural language interface that is dependent on
the particular natural language, and as well as is
dependent on the particular domains. This kind of in-
terface is considered the most basic natural language
interface in knowledge-based intelligent systems. In
this case, the natural language interface only needs to
analysis texts of certain natural language and process
the simpler knowledge structure in knowledge base
about the specialized domain.

The development of the natural language interfaces
for knowledge-based intelligent systems in a multilingual
field requires the study of the structure (in particular, in
the syntactic level and the semantic level) of the various
natural language texts. Everyone knows that development
of world-wide knowledge base is a huge undertaking. As
well as world-wide knowledge base is mainly used in
Internet-oriented searches, recommendations and question-
answer tasks. The application scenario is relatively simple.
However, the knowledge density in the knowledge base
about the specialized domain is higher, and more complex
reasoning and application scenarios can be performed in
this kind of knowledge base. The application scenarios
of knowledge bases about the specialized domains are
more extensive.

The main goal of this article is to use ontological ap-
proach as a basis to develop a unified semantic model for
natural language interface of knowledge-based intelligent
systems. This kind of natural language interface can work

in a multilingual field, as well as the knowledge base about
the specialized domain are the main components of these
intelligent systems, i.e., the natural language interface of
intelligent systems that is independent of the particular
natural language, but is dependent on the particular
domain. The proposed mechanism allows, in principle, to
potentially implement information transformation between
texts of various natural languages and the knowledge base
of intelligent systems about specialized domain, it’s just
that the complexity of construction of knowledge base
about the specific natural language that provides linguistic
knowledge of the specific natural language for natural
language text processing will be different depending on
features of a particular natural language, as well as specific
additional problem solvers will be required for solving
tasks in the specific natural language text processing.

III. REVIEW OF EXISTING APPROACHES

In the development of the natural language interfaces of
knowledge-based intelligent systems, currently two main
historically established directions [5] can be distinguished
to solve the problem of converting natural language
texts into fragments of the knowledge base of intelligent
systems, and the problem of generating natural language
texts from fragments of the knowledge base of intelligent
systems.

The first direction involves developing the systems of
logical reasoning based on rules that correspond to the
grammar of a certain natural language, formulated by
computational linguists and other linguists.

From the point of view of natural language processing,
the problem of converting natural language texts into
fragments of the knowledge base of intelligent systems is
considered as the knowledge extraction. The knowledge
extraction refers to obtaining factual information such
as concepts, named entities, relations between them, as
well as a certain type of events from natural language
texts, with the extracted results formalized in the form
of an internal knowledge representation language of the
intelligent systems (such RDF, SC-code and others). In
fact, from the point of view of construction of knowledge
base of intelligent systems, the relations between concepts
or named entities are considered as the special entities
that are extracted from natural language texts.

Nowadays knowledge extraction from natural language
texts can be divided into two directions according to the
scope of the extracted domain [6]:

• knowledge extraction from closed domains;
• knowledge extraction from open domains.
The knowledge extraction from closed domains is

focused on the processing of natural language texts
that describe a specific subject domain, for example,
football, weather, and so on. When solving the problem
of knowledge extraction from closed domains, researchers
believe that in a certain subject domain there are limited

219

types of concepts, named entities and relations between
them. Therefore knowledge extraction from closed do-
mains often requires predefined types of concepts, named
entities and relations between them. However, the goal
of knowledge extraction from open domains is to extract
various sets of concepts, named entities and relations
between them from massive and heterogeneous natural
language texts corpora without requiring a predetermined
vocabulary to define the types of concepts, named entities
and relations between them. In other words, for massive
and heterogeneous corpora of natural language texts,
the types of concepts, named entities and the relations
between them can be infinite, unknown, or even constantly
changing.

In the early stages of the development of technology for
knowledge extraction from closed domains, researchers
study the rules that exist in natural language texts and
automatically implement these rules when solving the
knowledge extraction. The knowledge extraction from
natural language texts in a standardized format has
been achieved through artificial inductive and generalized
patterns and rules. Therefore, rule-based approaches [7]
are closely related to specific natural language texts. As
soon as minor changes to the format specification of
natural language texts occur, the established rules may
not apply. The most obvious advantages of knowledge
extraction based on handwritten rules are that they do
not require a large of training corpus to train the model
and high accuracy. However the construction of rules
manually is inefficient, and the constructed rules lack
portability in other intelligent systems.

In order to solve the knowledge extraction from closed
domains, ontology-based approaches use different models
for knowledge extraction. Ontology construction is the
basis of knowledge extraction, in the processing of
ontology construction the different models are used .
The ontology can more accurately describe concepts and
relationships between them in the specific domains. In
the ontology-based approaches knowledge extraction is
often implemented by organically combining multiple
ontologies. Alexander Schutz et al. organically combined
ontologies such as DOLCE, SUMO, SpotEventOntology
to describe related concepts in the field of football and
the relationships between them, and then established
the RelExt system [8], which can automatically identify
correlated triples (a pair of concepts and a relationship
between them). However in the knowledge extraction
systems based on ontologies the the lack of general
principles for the implementation of automatic text
processing and knowledge extraction based on ontologies
in a unified framework leads to the fact that it cannot
ensure the compatibility of various components (different
ontologies, problem solving models for natural language
text processing and knowledge extraction).

With the development of the Internet, the volume

of linked electronic natural language texts is rapidly
increasing. In heterogeneous massive texts, the types of
named entities and the relationships between them are not
defined and limited. In order to meet the requirements of
practical application in this situation, more and more
researchers are beginning to study technologies for
knowledge extraction from open domains. The knowl-
edge extraction from open domains directly determines
relative words or phrases in the natural language texts
by analyzing natural language texts (particularly, natural
language sentences) to realize the extraction of named
entities and relationships between them without the need
to predetermine types of named entities and relationships
between them.

Until now some OpenIE systems (knowledge extraction
from open domains) have been developed to extract
structured knowledge (i.e. named entities and relationships
between them) represented in the internal knowledge
representation language from English sentences. As the
first generation of the OpenIE systems, TextRunner [9],
WOE [10] formulated an mode of knowledge extraction
from open domains: first, heuristic or supervised distance
learning models are used for automatic sentence labeling;
then sequence labeling models (for example, sequence
to sequence models) are used in order to learn how
to automatically extract knowledge from the labeled
sentences; finally, the sentences are entered into the
systems, and the systems identify the named entities and
the relationships between them in the sentences. With
the development of knowledge extraction technologies,
researchers have proposed the second-generation mode
of knowledge extraction system . Fader et al. developed
the ReVerb system [11], which uses a common syntax
and lexical constraints for knowledge extraction. This
system performs a comprehensive morphological and
syntactic analysis of randomly selected English sentences,
recognizes verb phrases to express as the relationships
between named entities in sentences, and the noun phrases
or other phrases in the sentences related to the verb
phrases are expressed as named entities. In order to extract
more than just verbs or verb phrases from sentences as
relations, Mausam et al. proposed the OLLIE system
[12] for extracting phrases other than verb phrases as
relations with the help of dependency parsing trees of
input sentences.

As seen, all the OpenIE systems presented above are
focused on knowledge extraction from English sentences.
For other natural languages that are very different from
English, such as Chinese, the structure of the sentences
and the grammatical features between the English and
Chinese have the huge difference. It is not known whether
these technologies and approaches work for English and
also for other natural languages. In order to extract knowl-
edge from those natural languages that differ from English,
when the development of the knowledge extraction system

220

it’s necessary to take into account the characteristics
of the specific natural languages. Tseng et al. proposed
a classical architecture for knowledge extraction from
open domains for Chinese language. Their CORE system
[13] is the first attempt to acquire knowledge from open
domains for Chinese texts. The system uses a number
of Chinese language processing technologies, such as
word segmentation, automatic morphological markup
(POS tagging) adjusted and appropriate for Chinese texts,
syntactic parsing, semantic analysis, and extraction rules
for Chinese sentences.

According to the above, when solving the problem
of knowledge extraction from open domains, it is nec-
essary to solve a number of subtasks. However, in
the existing knowledge extraction systems there is no
unified framework that ensures the consistent use of
various models to solve these subtasks. In addition,
existing knowledge extraction systems cannot provide a
single semantic framework that uses different knowledge
bases of linguistics to solve the problem of knowledge
extraction. In the unified knowledge base describes the
syntactic and semantic knowledge, as well as the logical
rules that are used to solve the subtasks in the process
of knowledge extraction.

For natural language generation there is a classic
pipeline architecture. The following three main modules
are the basis of the natural language generation systems
developed based on the pipeline architecture [14]:

• content planning: specifying what information from
the input data will be included in the generated texts,
and how it will be organized;

• micro-planning: deciding how the selected informa-
tion will be implemented in the form of natural
language sentences;

• implementation in natural language: producing gram-
matically correct natural language sentences.

At an early stage in the applied field, many natural
language generation systems were successfully developed
in the field of journalism and media research, for example,
soccer reports [15], weather or financial reports [16], [17],
[?] and others. These systems widely use templates and
grammar rules constructed by researchers to generate
natural language texts. When specific application fields
are small and changes to the specific data structures are
minimal, template-based approaches can achieve good
results for natural language generation. However, the
developed templates are highly dependent on the specific
application fields and specific natural languages, i.e. the
templates do not generalize well to different application
fields and different natural languages. In addition, manu-
ally developing templates is a laborious task (templates
construction requires a significant overhead of labor and
time), and the re-usability of templates is low.

The NaturalOWL system [19] is a classical natural lan-
guage generation system that reasonably applies templates

and linguistic rules to generate natural language texts that
describe fragments of OWL ontologies. NaturalOWL is
focused on generating natural language texts (mainly
the English texts) from fragments of OWL ontologies.
Currently, the so-called semantic reasoners that perform
logical inference on ontologies presented in the OWL
format can be developed, but most of the developed
reasoners are capable of performing only direct logical
inference based on the relations described in the ontology.
However in the NaturalOWL system, the construction
of templates and rules for generating natural language
texts does not use the OWL standard. In other words, the
semantic reasoners based on description logic cannot be
used to construct templates and linguistic rules. It can be
said that this system does not provide a model, which
allows representing various types of knowledge in a single
knowledge base, including linguistic knowledge, inference
on the ontologies of linguistics, even the templates
developed by ontologies.

The second direction, widely used in modern intelligent
systems, involves the use of various machine learning
models based on mathematical statistics and information
theory, which are aimed at modeling natural language
texts.

At present, approaches based on mathematical models
are mainly used in knowledge extraction from closed
domains. In recent years, some deep learning models
have shown significant advantages in natural language
processing. These models have also been applied in the
field of knowledge extraction, for example, pre-training
models series BERT, GPT achieve better results [20], [?].
These approaches encode the input natural language texts
into the input information (embedding information), and
then decode the input information into predefined markup
for each word of the input natural language texts. Based on
the marked-up natural language texts, the corresponding
named entities and the relationships between them can
be extracted. Statistical-based approaches reduce the
dependence of knowledge extraction systems on humans.
However, using the machine learning models or the deep
learning models always requires very large corpora that
are manually annotated by the human, hence human
intervention is required. Moreover the performance of
these models highly depends on the quality of the
annotating training samples.

For natural language generation, pre-training models
series BERT, GPT also widely applied in the natural
language generation systems [22]. For these statistics-
based approaches obtaining or constructing the high
quality datasets is one of the main key tasks of these
approaches, as well as one of the key difficulties. In
order to generate natural language texts from fragments
of knowledge base, for training these models, training
data is usually presented as a pair of inputs (fragments
of knowledge base) and outputs (natural language texts).

221

In recent years, in the WebNLG project [23], the main
task is to develop neural generators using deep learning
models. For the development of neural generators, the
project team provides training data, which consists of
Data/Text pairs, where the data are the fragments of
the knowledge base in the form of RDF extracted from
DBpedia [24], and the texts are the specific natural
language texts corresponding to the fragments of the
knowledge base. Due to the difficulty of constructing
high quality consistent training datasets, only English and
Russian datasets are currently provided in the WebNLG
project. For other natural languages, such as Chinese,
there are no high quality consistent training datasets,
although there are several well-known knowledge bases
in Chinese in the field of Chinese language processing,
for example, CN-DBpedia [25], zhishi.me [26] and others,
which can provide the fragments of the knowledge base
in the form of RDF [27], [28]. However at the same time,
high-quality consistent datasets with Data/Text pairs for
generating Chinese language texts are difficult to obtain
or construct.

In order to reasonably use different problem solving
models to solve the corresponding subtasks in the process
of generating natural language texts from the fragments of
the knowledge base, Amit Moryossef et al. systematically
proposed a text generator developed with a modular
architecture that separates the generation process into
a symbolic text planning focusing on processing of the
fragments of knowledge base [29] and a neural generator
focusing on realisation of resulted natural language texts.
As seen, the proposed hybrid approaches can improve the
performance of text generators with the help of modular
architecture. However, in the development of the text
generators, it is obvious that there is no unified formal
basis for integrating various problem solving models when
solving the complex task of generating natural language
texts from the fragments of the knowledge base.

IV. PROBLEMS, NEED TO BE SOLVED

During the development of natural language interfaces
of knowledge-based intelligent system, Whether for
converting natural language texts into fragments of the
knowledge base of intelligent systems or generating
natural language texts from fragments of the knowledge
base of intelligent systems, existing approaches only
partially solve the problems. As mentioned above the
developed knowledge extraction systems for the open
domain and the developed various generators has been
successfully applied in various fields. Nevertheless, the
following problems still need to be considered:

• In modern intelligent systems, the lack of unified ba-
sis in the process of developing the natural language
interfaces and the integrating various developed
components by different developers leads to the

impossibility of parallelization of the components
development;

• Due to the diversity of natural languages, when
solving the knowledge extraction from open domains
and natural language generation, there are their
own additional problems for the characteristics of
different natural languages, for example, according
to the writing habits of Chinese texts, Chinese
characters are written one after the other, without
natural spaces between them. Moreover the syntactic
structures and parts of speech used for English or
Russian language processing are not fully applicable
to Chinese language processing. Therefore in modern
intelligent systems the existing component or mod-
ular approaches cannot guarantee the compatibility
and flexibility of the developed components in
natural language interfaces for multilingual field;

• For converting natural language texts into the frag-
ments of knowledge base, existing ontology-based
approaches are only applicable to the knowledge
extraction from closed domains. In ontology-based
approaches, the lack of a unified principle for the
organic combination of various ontologies leads to a
large number of incompatible components in the
knowledge base. In the development of modern
extract knowledge systems from open domains, the
lack of a unified framework to integrate automatic
text processing and the logical models for knowledge
extraction leads to low compatibility of the developed
components;

• For generating natural language texts from the
fragments of knowledge base, developed generators
on the basis of the modular architectures can use
various problem solving models, but the lack of
unified principles for using various problem solving
models leads to duplication of similar solutions in
different generators. In turn, the overhead costs for
the development of generators increase;

• For knowledge extraction from open domains or
natural language generation, it is necessary to use
various levels of linguistic knowledge, including
syntactic knowledge, semantic knowledge, logical
rules for knowledge extraction, and also other rules
to solve specific subtasks. In the natural language
interfaces, generally the knowledge base of linguis-
tics provides the necessary knowledge to solve the
corresponding tasks. Among the existing various
knowledge bases related to linguistics, the lack of
unified principles of combining various types of
knowledge and knowledge representation models in
a single knowledge base, i.e. the possibility of rep-
resenting syntactic knowledge, semantic knowledge,
logical rules in a single knowledge base is difficult.
Therefore, the compatibility of developed compo-
nents of knowledge base by different developers

222

cannot be guaranteed. The low re-usability of the
developed components leads to a high labor intensity
in the development of the knowledge base.

In this paper in order to solve the above problems, it
is proposed ontological approach to develop a unified se-
mantic model that provides the unified basis to effectively
combine the knowledge base of linguistics, including
syntactic knowledge, semantic knowledge and other
various types knowledge, and various problem solving
models for developing the natural language interfaces,
solving the problem of converting natural language texts
into fragments of the knowledge base and the problem of
generating natural language texts from fragments of the
knowledge base. The principles underlying the ontological
approach to develop a unified semantic model of natural
language interfaces will be discussed below.

V. THE PROPOSED APPROACH

For the implementation of converting natural language
texts into fragments of knowledge base and generating
natural language texts from fragments of knowledge
base in the natural language interfaces of knowledge-
based intelligent systems, we propose to use ontological
approach to represent various linguistic ontologies in
a single knowledge base, including syntactic, semantic
knowledge and logical rules for texts processing and to
develop problem solvers having ability to integrate various
approaches for solving related problems in the natural
language interfaces within OSTIS Technology framework
[30]. The OSTIS technology is aimed at developing
a class of systems called knowledge-driven computer
systems. Within OSTIS Technology framework this kind
of knowledge-driven computer systems developed using
the OSTIS Technology are called ostis-systems.

Within the OSTIS Technology, as an internal formal
language for the semantic representation of knowledge
in the memory of ostis-systems, the SC-code is used,
which provides a unified version of information encoding
and a formal basis for developing model of ostis-systems.
This kind of knowledge representation model is a unified
semantic network with a set-theoretic interpretation. The
alphabet of SC-code consists of five main sc-elements,
on the basis of which it is possible to build SC-code
constructions of any complexity. Information is stored in
the memory of ostis-systems (sc-memory) as SC-code
constructions. Several universal variants of visualization
of SC-code [30], such as SCg-code (graphic variant),
SCn-code (nonlinear hypertext variant), SCs-code (linear
string variant) will be shown below.

Within OSTIS Technology framework, each ostis-
system consists of a complete model of such a system,
described using a platform-independent SC-code (sc-
model of a computer system), and an interpretation
platform for such an sc-model, which can generally be
implemented in software and hardware. From the point

of view of components, the sc-model of the computer
systems (ostis-systems) can conditionally be decomposed
into the sc-model of the knowledge base [31], [32], the
sc-model of the problem solver [33], [34], and the sc-
model of the interface [35], [36], as well as the model
of abstract semantic memory (sc-memory) [37], which
stores the constructions of the SC-code (Figure 2). The
principles of the development of knowledge bases and
problem solvers are discussed in more detail in [31]
and [33], respectively. Moreover the principles of the
development of sc-model of the user interface, which is
included in the sc-model of the interface, were desecribed
in the article [35], [36].

Figure 2: The architecture of the ostis-system

Within OSTIS Technology framework, according to
the type of interaction between the human users and the
computer systems, natural language interfaces of ostis-
systems are defined as a subclass of user interfaces [38].
Therefore the development of natural language interfaces
of ostis-system in fact is the development of sc-model of
natural language interface, which is capable of solving
related problems about natural language text processing
in the natural language interfaces.

The OSTIS Technology is used as a formal basis to
develop the sc-model of natural language interfaces of
ostis-systems, the following advantages and characteristics
are mainly considered:

• The SC-code is aimed at the sense knowledge
representation, which provides a unified semantic
model and means for generalizing various types of
knowledge and knowledge representation models
(for example, the semantic network, the frame, the
production rule representation, the logical model) in
a single knowledge base;

• The ontological and modular approaches are used to
develop the components of the intelligent systems,

223

which allow integrate various types of linguistic
knowledge and various problem solving models for
natural language processing in a semantically unified
manner. Thence these approaches ensure semantic
compatibility and re-usability of the developed
components;

• The structure of the knowledge base is developed
as a hierarchical system of selected subject domains
and their corresponding ontologies. This hierarchi-
cal structure allows describing various levels of
linguistic knowledge in detail, including syntactic
level, semantic level and others. Therefore according
to the developed sc-model of knowledge base of
the linguistics, for the specific natural language,
the structure of the knowledge base is relatively
easy to adjust to construct the knowledge base on
specific natural language processing (in general, the
specification of the syntax and semantics of the
specific natural language is only need);

• The multi-agent approach is used to develop the
sc-model of problem solver in the intelligent system.
This approach allows to consider the interpretation
of problem solvers as a hierarchical system of agents
(sc-agents) working in a unified semantic memory
(sc-memory). The sc-agents are a certain kind of
subjects that perform actions in sc-memory. In order
to solve problems at different levels on natural
language processing this approach provides a unified
basis for integrating various problem solving models
(for example, logical models and artificial neural
network models);

• The multi-agent model for development of problem
solver provides developed component oriented on
natural language processing modifiability, i.e. the
ability to extend functionality of each components
or to improve their performance.

Within OSTIS Technology framework, natural language
interfaces of the ostis-systems, as a subclass of user
interfaces, can be considered as the specialized ostis-
systems focusing on solving the problems related to
natural language interfaces (concretely, conversion of
natural language texts into fragments of knowledge base
and generation of natural language texts from fragments
of knowledge base). According to the principles to
develop the ostis-systems, the development of natural
language interface generally includes the development
of a knowledge base (mainly the knowledge base of
linguistic) and a problem solver of the natural language
interface [40]. The knowledge base of natural language
interface mainly requires the presence of an sc-model
of knowledge base of linguistic, actions for analysis of
natural language texts, as well as actions for generation
of natural language texts, as shown in Figure 3.

As can be seen from the Figure 3, due to the use of
component approach, the development of the entire natural

Figure 3: The general structure of the sc-model of the
natural language interface

language interface comes down to development and
improvement of separate specified components. Within
OSTIS Technology framework, it is assumed that each
problem solving model corresponds to some sc-agent. The
knowledge base of linguistic just provides static linguistic
knowledge to problem solving model for problem solution.
The natural language interface should have the dynamic
ability to perform some actions aimed at solving particular
related problems in the natural language interfaces.

VI. SC-MODEL OF KNOWLEDGE BASE

According to the basic principles to construct the
knowledge base using OSTIS Technology, the devel-
opment of knowledge base is to consider structure of
knowledge base as a hierarchical system of subject
domains and their corresponding ontologies. From the
point of view of OSTIS Technology, an ontology is
interpreted as a specification of the system of concepts of
the corresponding subject domain. The knowledge base
of linguistic contains a formal description of necessary
linguistic knowledge for analysis of natural language
texts and generation of natural language texts [5]. The
corresponding ontology provides a formal description of
the concepts used for the representation of such linguistic
knowledge in the different levels from basic word to
syntactic and semantic structure of natural language
texts. Linguistic theories offered by linguists provide a
theoretical basis for building knowledge base of linguis-
tics. Therefore the main hierarchy of knowledge base of
linguistics used in the natural language interfaces to solve
the particular problems related directly to conversion of
natural language texts into fragment of knowledge base
of ostis-systems and generation of natural language texts
from fragment of knowledge base of ostis-systems is
shown below in the SCn-code.

224

knowledge base of Linguistics
⇐ section decomposition*:

{{{• Section. Subject domain of lexical analysis
• Section. Subject domain of syntactic analysis
• Section. Subject domain of semantic analysis

}}}

A. subject domain of lexical analysis

The subject domain of lexical analysis includes a
series of ontology for lexical analysis, which describes
characteristics of words and syntactic function of words,
parts of speech, etc. A fragment of the ontology of the
subject domain is presented below:

natural language text
⊂ file

word
⊂ file

nominative unit
⊂ file

The word is the smallest of the natural language units,
carrying semantics, which serves to name objects, their
qualities, characteristics and interactions, as well as for
service purposes. A nominative unit is a stable string of
word combinations.

natural language text
⇒ decomposition*:

{{{• part of speech
⇒ decomposition*:

{{{• content word
• function word
• modal word

}}}
• sign of syntax alphabet

}}}

The part of speech is a category of natural language
words determined by morphological, syntactic and seman-
tic features. The signs of the syntax alphabet are auxiliary
syntactic means (at the macro level - prepositions, post-
positions, conjunctions, particles, etc., as part of service
words, at the micro level - inflections, prefixes, postfixes,
infixes, punctuation, etc.) [?].

It is important to note that these ontologies in the
respective subject domain are generally recognized in
most natural languages. In other words, due to the
diversity of natural language, the linguistic theory of
a certain natural language is not suitable for other
natural languages. Thus, when developing the knowledge
base of linguistics for a particular natural language, the
specification of subject domains must take into account
the specific characteristics of a particular natural language.

In Russian, English or other European languages, word
structure is studied within the framework of morphology.
It’s necessary to consider the relation morphological
paradigm*:

lexeme
⊂ file
⇒ explanation*:

[The lexeme is a unit of lexical meaning that
underlies a set of words that are related through
inflection.]

morphological paradigm*
∈ quasi-binary relation
⇒ first domain*:

lexeme
⇒ second domain*:

word form

As you can see, the terminology lexeme is studied only
to describe the features of the words in European lan-
guages that have the feature of morphological paradigm.

B. subject domain of syntactic analysis

The subject domain of syntactic analysis describes the
characteristics of natural language syntax, the functional
characteristics of syntactic components (such as, word,
phrase, sentence, etc.). Among them, in the filed of
natural language processing sentences have always been
considered as the smallest research units. The analysis of
sentence is an important intermediate stage, connecting
the analysis of the entire text and the analysis of individual
words. A fragment of the ontology of the subject domain
is presented below in the SCn-code:

sentence
⇒ decomposition*:

{{{• simple sentence
⇒ decomposition*:

{{{• sentence with subject and predicate
• sentence without subject and

predicate
• special sentence

}}}
• complex sentence

}}}

A sentence is considered simple if it contains one
predicative unit, if more - complex.

part of the sentence’
⇒ decomposition*:

{{{• principal part of the sentence’
⇒ decomposition*:

{{{• grammatical subject’
• grammatical predicate’
• grammatical direct object’

225

}}}
• subordinate part of the sentence’

⇒ decomposition*:
{{{• grammatical indirect object’
• grammatical attribute’
• grammatical circumstance’

}}}
}}}

A part of the sentence is a role relation that indicates
a certain of syntactic relation between the sentence and
its components (words, phrase etc.) [39].

relation of dependency*
∈ non-role relation
⇒ decomposition*:

{{{• subject*
• object*
• complement of verb*
• coordinate*
• attribute*
• adverbial*

}}}

On the basis of theory of dependency grammar, a
relation of dependency* is a relation that indicates directed
link within decomposed two components of sentence,
the components are separately called the head, which
plays the role grammatical predicate’ in the sentence,
and the depedent. Each depedent has a syntactic function
depending on the head in sentence. Hence in the syntactic
analysis of sentences, the predicate of sentence is gener-
ally considered as the structural center of the syntactic
structure of sentence. All other syntactic components
(words or phrases) are directly or indirectly connected
with the predicate through directed links (i.e., the direction
with the predicate to other syntactic components).

In the logical ontology of subject domain of the
sentence, it is possible to describe a series of logical
definitions and logical statements for the sentences. In
the form of logical statements, templates or rules about
the sentence analysis can be constructed, as well as can
be used by problem solvers to solve specific problems in
the natural language interfaces.

In the Figure 4 the logical statement in SCg indicates
that a sentence with the subject and the predicate can
consist of the noun phrase and the verb (or verb phrase),
which serve as subject and predicate in the sentence,
respectively. As shown Figure 4, all used concepts and
relations, such as “sentence with subject and the predi-
cate”, "grammatical subject’”, “grammatical predicate’”,
and others, are contained in the subject domain of the
sentence. Various type of knowledge built in the subject
domain can be used to process natural language texts.

This fragment of the knowledge base describes that
the sentence with the subject and the predicate can be
considered as a sequence of the noun phrase and the

Figure 4: The logical statement about sentence with the
subject and the predicate

verb phrase (or verb) with the corresponding attributes.
Moreover, in the process of text generation, a sentence
with the subject and the predicate can be generated
according to this given structure.

C. subject domain of semantic analysis

The subject domain of semantic analysis describes the
semantic characteristics of the words and the semantic
structure of natural language sentences, the functional
characteristics of semantic of components (words, phrase
and sentence, etc.), the semantic role, the rules for
semantic analysis, and so on. The general structure the
subject domain is presented below in the SCn-code:

The subject domain of semantic analysis at the level
of lexeme, the subject domain of semantic analysis at the
level of sentence, and the subject domain of semantic
analysis at the level of paragraph describe different
linguistic knowledge for semantic analysis at different
aspects, respectively.

The subject domain of semantic analysis at the level of
lexeme describes the semantic classifications of common
basic concepts expressed by the lexeme or the binding of
the lexeme to individual entities. The subject domain was
constructed based on various types of knowledge bases
of semantic about natural language used for semantic

226

analysis at the level of lexeme, for example, WordNet,
ConcetpNet, The Semantic Knowledge base of Modern
Chinese [41], TAPAZ-2.

semantic of lexeme
⇒ decomposition*:

{{{• semantic of verb
• semantic of noun
• semantic of adjective
• semantic of adverb

}}}

participant of the exposure*
:= [participant of the action*]
∈ non-role relation
⇒ first domain*:

individ
⇒ second domain*:

action
⇒ decomposition*:

{{{• subject*
⇒ decomposition*:

{{{• initiator*
• inspirer*
• spreader*
• creator*

}}}
}}}

An individ is a kind of the pattern as a separate entity,
which is an instance of the specific concepts.

The participant of the action* is a non-role relation
that connects the action with the individ participating in
it, to a certain extent, it can be considered as the semantic
role of the action, which generally is expressed by the
verb or the verb phrase in the sentence.

In turn, similarly the subject domain of semantic
analysis at the level of sentence describes the semantic
structure of sentences, the semantic relations between the
components (words, phrase and so on) in a sentence, and
the semantic relations between the sentences in the text.
Some open sources, for example, TAPAZ-2, PropBank
and others, served as the basis for building this subject
domain.

D. subject domain of actions for natural language inter-
face

Previously we consider the subject domains and
the corresponding ontology in the knowledge base of
linguistic, within which the various type of linguistic
knowledge is described. However, the formalization of
the linguistic knowledge is not enough for the natural
language interfaces to solve the particular problems, the
natural language interfaces should perform some actions
to implement the conversion of natural language texts

into fragments of knowledge base and the generation of
natural language texts from fragments of knowledge base.

Let us consider the hierarchy of classes of actions for
natural language interface in the SCn-code:

action for natural language interface
:= [action for processing the natural language texts]
⊂ action
⇒ decomposition*:

{{{• action for converting natural language texts
into fragments of knowledge base

• action for generating natural language texts
from fragments of knowledge base

}}}

action for converting natural language texts into
fragments of knowledge base
⊂ action for processing the natural language texts
⇒ decomposition*:

{{{• action for decomposing texts into separate
units

• action for marking up separate units
• action for syntactic analysis
• action for semantic analysis
• action for determining the knowledge structure
• action for linking knowledge structures in the

knowledge base
• action for determining contradictions
• action for resolving contradictions

}}}

action for generating natural language texts from
fragments of knowledge base
⊂ action for processing the natural language texts
⇒ decomposition*:

{{{• action for determining the converted
knowledge structures

• action for converting knowledge structures into
standard basic sc-constructions

• action for determining candidate basic
sc-constructions to be generated to texts

• action for converting sc-constructions into
message triples (subject-action-object)

• action for generating resulted texts from the
message triples

}}}

From the perspective of text generation for fragments
of knowledge base of ostis-system, it is worth noting that
message triple is a kind of ordered triple represented in
the form of <semantic subject, action, semantic object>,
where semantic subject is always the identifier of the set
of sc-node denoting concepts that are not relations or the
element of this set of sc-node; relation is the identifier
of the set of sc-node denoting role relation or no-role
relation, which points the linking (bundle) that connects

227

the semantic subject and object; semantic object is the
identifier of the set of sc-node denoting concepts that are
not relations or the element of this set of sc-node.

The message triple is considered as intermediate
conversion between the sc-structure and resulted text,
mainly because this kind of triple is easier to express as
natural language text (mostly sentence) using either rule-
template models or modern statistical models. Moreover
the message triples are easily to be converted to RDF
triples, in turn, can be generated to natural language text
using modern deep learning models. Within the framework
of OSTIS Technology, the relations defined in the IMS-
system are consider as the domain-independent relations,
in addition, there are many relations that are dependent
on the specific ostis-systems in various subject domain.
According to the category of relations, it is divided into
different set of message triples corresponding to various
types of relations in different sc-constructions.

Since as a result of the actions for converting natural
language texts into fragments of knowledge base and
the actions for generating natural language texts from
fragments of knowledge base, with the help of the natural
language interface, the mutual conversion between the nat-
ural language texts and the fragments of knowledge base
of the ostis-systems is realized, in turn the information
interaction between the human users and the ostis-systems
is completed.

VII. SC-MODEL OF PROBLEM SOLVER

Within the OSTIS Technology, in order to realize the
natural language interfaces of the ostis-systems it need
to have ability to perform the above-mentioned actions.
Within the OSTIS Technology framework, an action is
defined as a purposeful process carried out by one or
more subjects. In this case, the sc-agent is considered
as a certain subject capable of performing actions in the
sc-memory to solve problems. The multi-agent approach
is used as a basis for development of the problem solvers.
The interaction of agents will be performed exclusively in
the semantic memory (sc-memory), which stores the SC-
code constructions. Such approach provides the flexibility
and modularity of developed sc-agents, as well as provides
the ability to integrate various problem solving models
corresponding to these developed sc-agents. In the term
of implementation, the programs of each sc-agent can
implement logical reasoning based on a hierarchy of
statements comprised in the logical ontology, as well
as the data-driven algorithms (machine learning, deep
learning and so on) in various programming language.

Let us consider the general structure for problem solver
of natural language interface in the SCn-code:

Problem solver for natural language interface
⇐ decomposition*:

{{{

• Problem solver for converting natural
language texts into fragments of knowledge
base

• Problem solver for generating natural
language texts from fragments of knowledge
base

}}}

From the point of view of OSTIS Technology, the sc-
agents (the copies of the same sc-agent or functionally
equivalent sc-agents) may work in different ostis-system,
and can be considered physically different sc-agents.
Rather than considering properties and typology of sc-
agents, it’s more rational to focus on classes of func-
tionally equivalent sc-agents, which are called abstract
sc-agents. The abstract sc-agents is a certain class of
functionally equivalent sc-agents, various items of which
can be implemented in different ways to specific problems
[33].

Problem solver for converting natural language texts
into fragments of knowledge base
⇐ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent of lexical analysis
⇐ decomposition of an abstract sc-agent*:

{{{• abstract sc-agent of decomposing
texts into separate units

• abstract sc-agent of marking up
separate units

}}}• Abstract sc-agent of syntactic analysis
• Abstract sc-agent of semantic analysis
• Abstract sc-agent of extracting knowledge

structures into the knowledge base
⇐ decomposition of an abstract sc-agent*:

{{{• abstract sc-agent of determining
knowledge structure

• abstract sc-agent of linking
knowledge structure into knowledge
base abstract sc-agent of
determining contradictions

• abstract sc-agent of resolving
contradictions

}}}• Abstract sc-agent of logical inference
}}}

Problem solver for converting natural language texts
into fragments of knowledge base is a group of sc-
agents that implement the mechanisms of extracting
fragments of knowledge base from natural language texts.
In principle, this problem solver can potentially extract
structured knowledge (generally, the named entities,
relations, concepts and so on) from various types of
natural language texts into the knowledge base of the
ostis-system about a specific subject domain, but the

228

construction of the corresponding knowledge base on the
specific natural language processing, as well as within
which the rules for processing the corresponding natural
language texts and the rules for knowledge extraction
will become more complex, and also overhead costs will
increase.

Abstract sc-agent of lexical analysis – the agents that
implement the mechanisms of decomposition of input
natural language texts into separate lexical units, and
each separate unit belongs to a specific markup according
to a certain of markup standard for the specific natural
language. Components (words, phrases, sentences, and
others) of natural language input texts can be defined
according to a certain standard of a particular natural
language.

Abstract sc-agent of syntactic analysis – the agents that
implement the mechanisms of constructing the syntactic
structure of input natural language texts.

Abstract sc-agent of semantic analysis – the agents that
implement the mechanisms of constructing the semantic
structure of input natural language texts.

Abstract sc-agent of extracting knowledge structures
into the knowledge base – the agents that implement
the mechanisms that determine knowledge structures in
natural language input texts (i.e., the definition of named
entities and relationships between them), and construct
the knowledge structures in the form of SC-code into
knowledge base of the ostis-system about specific subject
domain.

In the process of constructing knowledge structures
into the knowledge base, when comparing the knowledge
structures extracted as a result of the analysis of natural
language input texts with the knowledge stored in the
knowledge base of a particular ostis-system, the abstract
sc-agent for determining contradictions implement
mechanisms for determining contradictions, for example
, for a certain named entity in the input natural language
texts, there may be several corresponding instance of
concept in the knowledge base.

Abstract sc-agent of resolving contradictions - agents
that implement mechanisms that resolves the contradic-
tions in case of detection of contradictions.

Abstract sc-agent of logical inference - agents that
implement mechanisms that use logical rules written by
means of SC-code for syntactic, semantic analysis and
also extracting knowledge structures for natural language
texts. Thus, this agent can semantically interact with the
agents of syntactic and semantic analysis and the agent
of extracting knowledge structures.

In order that the natural language interface can generate
fluent natural language texts from fragments of knowledge
base of ostis-system about specific subject domain, the
problem solver for generating natural language texts from
fragments of knowledge base is developed based on
the classical pipeline for solving the problem of natural

language generation. Although the development of this
abstract agent is based on the classical pipeline, the
development of composed sc-agents in the problem solver
can be flexible by using a multi-agent approach. For
the problem of generating texts for a particular natural
language, the compositions of the problem solver can be
easily modified accordingly.

Let us consider the general structure for problem solver
for generating natural language texts from the fragments
of knowledge base represented in SCn-language:

Problem solver for converting natural language texts
into fragments of knowledge base
⇐ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for content selection
⇐ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent determining
sc-structure

• Abstract sc-agent dividing
determined sc-structure into basic
sc-structure

• Abstract sc-agent determining the
candidate sc-structures

• Abstract sc-agent transferring
candidate sc-structures into message
triples

}}}
• Abstract sc-agent text planning

⇐ decomposition of an abstract sc-agent*:
{{{• Abstract sc-agent ordering message

triples
• Abstract sc-agent ordering entities of

a message triple
}}}

• Abstract sc-agent for micro-planning
• Abstract sc-agent for surface realization

}}}

Abstract sc-agent for determining sc-structure - the
groups of agents that provide the specific fragments
of knowledge base (i.e. content) in the form of sc-
structures, from which the interface will generate the
natural language texts.

Abstract sc-agent dividing determined sc-structures
into basic sc-structures – the agents that implement
the mechanisms of decomposition of determined sc-
structures into basic structures, which can be transferred
into message triples.

Sometime not all transferred message triples are useful
to the end user. According to specific requirements the
interface will finally select among the basic sc-structures
the ones to generate natural language texts. Abstract
sc-agent determining the candidate sc-structures im-
plements the mechanism of determining the appropriate
candidate sc-structures according to requirements.

Abstract sc-agent transferring candidate sc-structures

229

into message triples – the agents that implement the
mechanism of converting candidate sc-structures into
message triples.

The order of transferred message triples, as well as the
order of elements in each message triple will completely
influence on the resulted generated natural language texts.
Abstract sc-agent for text planning implements the
function of the ordering of elements in each message
triple and the ordering of message triples themselves.

Abstract sc-agent for miro-planning - the agents
that implement the mechanism of transferring message
triples to abstract sentence specifications that are varied
according to selected methods in the natural language
generation systems, for example, the simple text templates
with slots, syntactic structures and so on.

Abstract sc-agent for surface realization - the group sc-
agents that implement the mechanisms of concatenating
the sc-links to generate the resulted texts, i.e. filling the
sc-links corresponding to elements of message triples with
the appropriate forms (generally in European languages
there is morphology for lexical units) of lexical units
according to rules, and concatenating them.

It is worth noting that developed abstract sc-agents in
the above listed problem solvers are general according
to the general process of natural language processing,
therefore they are flexible and changeable. For develop-
ment of natural language interface, which can process
the specific natural language, it is possible to adjust and
make extensions of the already developed abstract sc-
agents. Moreover, in some cases for processing of some
specific natural languages it is even necessary to add
a new agent or remove (deactivation) of one or more
existing agents. With the help of multi-agent approach
based on OSTIS Technology to develop the sc-agents,
the one of advantages is that the development of each
agent is independent of each other, i.e. the adjustment of
agents, addition of a new agent, even removal of one or
more existing agents usually does not lead to changes in
other agents.

VIII. IMPLEMENTATION OF CHINESE LANGUAGE
INTERFACE

With the help of the previously proposed sc-models
to development of the natural language interfaces of
the ostis-systems, the specific natural language interface
of intelligent help systems for various subject domains
can be implemented. However, due to the laboriousness
and complexity of developing an intelligent help system
for a specific subject domain, within the framework
of this section, the greatest attention will be paid to
the implementation of the prototype of the Chinese
language interface of the intelligent help system for
discrete mathematics.

According to the above-mentioned sc-model of the
natural language interfaces of the ostis-systems, on the

basis of the general structure of knowledge base of
linguistic and problem solver of natural language interface,
the development of Chinese language interface requires
the development of knowledge base on Chinese language
processing, within which constructed various types of
linguistic knowledge about Chinese language processing,
as well as the development of problem solver for Chinese
language processing, consisting of a group of sc-agents,
which has possibility to integrate various problem solving
models.

In order to implement the Chinese language interface of
intelligent help system for discrete mathematics, it’s nec-
essary to implement the conversion of Chinese language
texts into fragments of knowledge base of intelligent
help system for discrete mathematics and generation of
Chinese language texts from fragments of knowledge
base of intelligent help system for discrete mathematics.
The following examples show the processing stage to
implement the two main functions in the Chinese language
interface.

A. knowledge extraction from Chinese language texts

The conversion of natural language texts into fragments
of knowledge base is considered as the problem of
knowledge extraction. In this case the conversion of
Chinese language texts into fragments of knowledge base
of intelligent help system for discrete mathematics is
mainly to extract named entities and relations between
them from Chinese language texts, and the extracted
results are stored in the form of SC-code in the intelligent
help system for discrete mathematics.

In this example several requirements are defined for
processed Chinese language texts:

• The input of Chinese language interface is a standard
written Chinese declarative sentence;

• The input Chinese declarative sentence has com-
pleted sense and fact information;

• The input doesn’t need a predefined vocabulary that
includes predefined types of named entities and
relations between them;

• The output of Chinese language interface is the sc-
structure formally represented in the knowledge base.

From the point of view of OSTIS technology, any
natural language text is a file (generally represented as
sc-node with content or so-called sc-link). Our example
will show the knowledge extraction process on analyzing
a Chinese sentence, which is represented in such a node
in Fig 5. The content of such a node demonstrates a
Chinese sentence that describes: «从结构形式化的角度
(in terms of formalization of the structure) ，(comma)
结构(structure) 可以 (can be) 划分 (divided) 为 (into)
形式化的结构 (formal structure) 和 (and) 非形式化的
结构 (informal structure) 。(full stop)».

Step 1 The Chinese sentence is decomposed into
separate segmentation units, as well as mark these seg-

230

Figure 5: The representation of natural language text in
the ostis-system

mentation units with standard part-of-speech categories in
Chinese language by agents for lexical analysis (Figure 6).

According to the features of Chinese texts, the Chinese
texts consist of a stream of hieroglyphs without natural
blanks on the written form. Moreover in Chinese language
there are no clear indicators of the categories of number,
case and gender, such as in Russian and other European
languages, the function of a word in Chinese language
becomes clear not on the basis of morphology of a word,
but due to its connection with other words. Therefore
in the process of analyzing the Chinese texts it is first
necessary to perform a lexical analysis, decomposing
the stream of hieroglyphs into separate meaningful
segmentation units.

Because of the features of Chinese texts, lexical
analysis for Chinese texts is more complicated. From point
of view of linguists, the definition of Chinese words has
always been an important theoretical problem. In order
to realize the Chinese language processing by computer,
in 1992, the project "The Principle of Segmentation in
the Processing of Modern Chinese Information" was
released [42], in which the term "segmentation unit"
was introduced and a clear criterion of segmentation was
established. Moreover in the field of Chinese language
processing, the "Modern Chinese word segmentation
standard used for information processing" was proposed.
In this standard, a word in Chinese language is represented
as a "segmentation unit". Its precise definition is "a
basic unit for Chinese language processing with certain
semantic or grammatical functions. In this case speaking
of the Chinese word in this section, we will mean the
segmentation unit of the Chinese language.

These decomposed separate units in the lexical analysis
meet the principles to be "segmentation units" of Chinese
language. Meanwhile the information describing (marking
up) these segmentation units satisfying the standards is
considered as the linguistic knowledge (e.g. part-of-speech
categories) in the lexical analysis of the Chinese texts
and is constructed as a part of knowledge base on the
Chinese language processing.

Step 2 The agents for syntactic and semantic analysis

performs the transition from the lexically marked structure
to its syntactic structure or semantic structure, then to
the semantically equivalent fragment of knowledge base
based on the rules described in the corresponding subject
domain.

The main task in this stage is to analyse the relations
(or dependency relations) between the input Chinese
sentence and separate segmentation units and between
these separate segmentation units of that input Chinese
sentence to reveal syntactic semantic structure of input
sentence. The result of syntactic and semantic analysis
is usually a constructed syntax semantic tree or graph,
such as phrase structure, dependency structure and others.
Based on the constructed syntactic and semantic structure,
it is possible to develop a collective of logical reasoning
for some applications in the field of Chinese language
processing. Therefore the syntactic semantic analysis
allows to establish a basis (i.e., a set of logical rules)
for extracting structural knowledge from the Chinese
sentences. However, the constructed syntactic semantic
structure is not conveniently processed in sc-memory.
After obtaining the result of syntactic semantic analysis, it
is necessary to convert the constructed syntactic semantic
structure into a semantically equivalent fragment of
knowledge base in the form of SC-code.

From the perspective of the knowledge base, the
relations between segmentation units and the Chinese
sentence, or the relations between segmentation units of
the Chinese sentence, are generally regarded as certain
types of linguistic knowledge included in the knowledge
base on Chinese language processing.

In the Figure 7 shows a semantically equivalent
fragment to the given input Chinese sentences with the
help of syntactic semantic structure of this sentence based
on the constructed ontologies in knowledge base on
Chinese language processing.

The advantage of implementation of transition from
input Chinese sentences to semantically equivalent frag-
ments allows to directly use logical reasoning or other
knowledge processing operations to analyze the input
Chinese sentences based on the dynamic graphical model
considered within the OSTIS Technology.

Step 3 knowledge structure is extracted from the
semantically equivalent fragment corresponding to the
syntactic semantic structure of input Chinese sentence,
and fusion of knowledge structure into the knowledge base
of intelligent help system (i.e. the construction of fragment
of knowledge base) is performed based on the logical
rules described in the corresponding subject domain.

When converting Chinese texts into fragments of
knowledge base of intelligent help system for discrete
mathematics, from the point of view of knowledge
extraction from open domain, the main task is to extract
named entities and relations between them from the
Chinese sentences without requiring predefined types of

231

Figure 6: The result of lexical analysis for the input Chinese text

232

Figure 7: The semantically equivalent fragment of the input Chinese text

233

named entities and relations, with the extracted results
stored in the form of SC code. In fact, within OSTIS
Technology, a relation is treated as a special entity that
specifies a certain relation between pairs of independent
named entities, which generally is represented respectively
as the sc-node denoting the non-role relation or the sc-
node denoting the role relation in the form of SCg-code.

In general, the pairs of independent named entities
should appear in the analyzed syntactic semantic structure
as noun phrases that belong to the nominative units.
Afterwards the connections between these noun phrases
and the input Chinese sentence, as well as the path
linking the two noun phrases through other segmentation
units, will reflect the corresponding relations between the
pairs of named entities. More precisely, the noun phrases
appearing in the analyzed syntactic semantic structure of
input Chinese sentence are represented as identifiers of
sc-nodes denoting the name of some named entities or
some concepts stored in the knowledge base of intelligent
help system for discrete mathematics.

In the Figure 8 shown the determination of named
entities, the syntactic semantic relations between them and
between named entities and the input sentence, that is, the
determination of named entities , the syntactic semantic
relations between them in the input Chinese sentence, as
well as the syntactic semantic relations between named
entities and the input Chinese sentence.

In the Figure 9 shown the resulted constructed fragment
of the knowledge base from the input Chinese sentence
in the intelligent help system for discrete mathematics
without contradiction detection.

As can be seen from the Figure 9, in this case, a frag-
ment of the knowledge base can be directly constructed
without linking the named entities mentioned in the input
source Chinese sentence with the corresponding exiting
defined entities in the knowledge base of intelligent help
system for discrete mathematics. In some cases, for a
named entity in the knowledge base, there are different
names in the natural language texts to describe this entity.
In this case, it is necessary to perform contradiction
elimination to relate different named entities (precisely
identifiers of named entities) in natural language texts
to the same named entities in the knowledge base of
ostis-systems.

B. text generation from knowledge base

The current version of the component of Chinese
texts generation from fragments of knowledge base for
the intelligent help system for discrete mathematics
is implemented in accordance with the corresponding
general text generation architecture. In knowledge base on
Chinese language processing, in addition to constructing
linguistic knowledge (e.g., rules for text processing,
extraction rules), linguistic knowledge for text generation

Figure 8: The determination of named entities and
syntactic semantic relations in the input Chinese sentence

Figure 9: The constructed fragment of knowledge base
from the input Chinese sentence

(e.g., templates for text generation) can also be constructed
in certain subject domains of knowledge base.

For fragments of knowledge base of ostis-system, the
realization of natural language generation is roughly
divided into two steps: rule-based symbolic generator

234

converting fragments (sc-structure) of knowledge base
into message triples; rule and template-based approached
or statistical generator (when high quality aligned datasets
is accessible.) translating message triples to resulted
natural language texts. As mentioned above, unfortunately,
the high quality aligned datasets is relatively difficult
to access. The example about text generation is just to
demonstrates the generation process of a simple narrative
Chinese sentence using the rule template-based approach.

Due to the complexity and diversity of text generation
tasks, in the example about text generation there are
following several constrains:

• The input fragment of knowledge base is completed
and has sense;

• The input fragment formally represented in the
knowledge base for discrete mathematics;

• The output of Chinese language interface is a simple
narrative Chinese sentence;

• The sc-nodes denoting concepts, named entities or re-
lations within the input fragment of knowledge base
have corresponding identifiers in Chinese language,
which might be used in the resulted sentence.

Step 1 The Chinese language interface is provided
with a given fragment (sc-structure) from knowledge
base of intelligent help system for discrete mathematics
represented in the form of the SC-code. For visual
representation of given fragment of knowledge base, the
fragment formally is represented in SCg (Figure 10).

Figure 10: The fragment (sc-structure) of knowledge base
for discrete mathematics

Step 2 The given fragment is divided into standard basic
sc-constructions, afterwards from which the candidate
sc-constructions are selected to be generated to the
resulted Chinese texts. The candidate sc-construction
(belong to standard basic sc-construction) is shown in
SCg (Figure 11).

Step 3 The candidate sc-construction is transferred to
the message triple, each sc-element of message triples is
a file (an sc-node with content) corresponds to a certain
lexical unit (e.g., in the Figure 12 shown the sc-node
"I_ch_graph") in the Chinese language. Specification of
lexical units that is stored in the knowledge base on

Figure 11: The determination of candidate sc-construction

Chinese language processing. As seen in the Figure 12,
the example just consider one type of the set of message
triples.

Figure 12: The message triple for candidate sc-
construction

It is important to note that action of each message triple
is the core that need to be replaced with corresponding
text fragment (e.g., verb phrases or others) in order to
generate fluent texts. Moreover, in general the subject and
object of each message triple remain the same. Unless,
in some cases of generating complex texts, they can be
replaced by pronouns in the resulted texts.

Step 4 Based on the rule-template approach, for action
of each message triple, a suitable rule or template
constructed as logical ontologies in the knowledge base
on Chinese language processing can be matched. For this
example, the specific template shown in the Figure 14
will be applied.

Step 5 The agent fills the sc-links of corresponded sc-
elements of that message triple, i.e. a certain sc-link needs
to be filled with the result of a certain inflection form
of a lexical unit. Finally the sc-links are concatenated to
generate the resulted Chinese sentence according to valid
ordering (Figure 13).

In the knowledge base there are different identifiers
for each lexical unit in natural language. For Chinese
language, there is not a certain inflection form for lexeme,
therefore a lexical unit "graph" is expressed in resulted
Chinese sentence is same as itself (Figure 13). Unlike
European languages, in the resulted generated texts the
lexical units in the sc-links require a specific inflection
form (e.g., singular or plural and other inflection form)
according to the syntax of a specific language. However

235

Figure 13: The resulted generated Chinese sentence
corresponding to sc-construction

due to the features of Chinese language, the processing
of this step is relative simpler. In this example we just
consider the generation of the simple declaration sentence,
the referring expression of the lexical unit means that the
final form of this lexical unit in the resulted text. Based on
the template, the referring expression to the lexical unit
"graph" is served as the subject. The lexical unit "critical
graph" is served as object in Chinese language. In some
cases, the template is predefined with fixed phrase, it
means that there are some sc-link in the template without
corresponding lexical unit is the fixed part [41].

When these steps are implemented, a fragment sc-
structure of knowledge base of Discrete Math domain
can be transferred into Chinese sentence with specific
sense. This natural language text is easier to access to
ordinary end-users.

IX. CONCLUSION

This article has proposed an ontological approach based
on the OSTIS Technology to develop a unified semantic
model for natural language interface of knowledge-based
intelligent system, which has ability of converting the
natural language texts into the fragments of knowledge
base and generating the natural language texts from the
fragments of knowledge base. Within the framework
of OSTIS Technology the development of semantic
model for natural language interface mainly requires
the development of sc-model of knowledge base of
linguistics, which represented in the form of described
subject domains and corresponding ontologies about
linguistic knowledge, as well as sc-model of problem
solver of natural language interface, which consists of sc-
agents developed independently each other using various
problem solving models to solve corresponding tasks in
the natural language interface. The semantic model of
natural language interface is universal and can be used for
the implementation of various natural language interface

of knowledge-based intelligent system in the specific
subject domain. Within the developed semantic model
of natural language interface, according to the features
of the specific natural language, it becomes possible to
develop knowledge base, within which includes linguistic
knowledge in various level (lexical, syntactic, semantic
and so on) about the specific natural language, and the
corresponding problem solver on the specific natural
language processing, in turn, to implement the specific
natural language interface of knowledge-based intelligent
system.

The developed semantic model of natural language
interface using ontological approach mainly offers the
following advantages:

• The component of converting the natural language
texts into the fragments of knowledge base is applied
to extract the knowledge structure represented in the
form of SC-code from the natural language texts
without predefined categories of entities and relations
(i.e. from open domains);

• The component of generating the natural language
texts from the fragments of knowledge base is
applied to generate fluent, coherent, and multi-
sentence natural language texts appropriating for end-
users. For text generation, the semantic structures
(fragments of knowledge base) that processed by
this component is more complex than simple tabular
or triples structure;

• The knowledge base of linguistics is constructed in
the form of subject domains that are as independent
of each other as possible and corresponding ontolo-
gies about linguistic knowledge. The hierarchical
structure makes it possible to consider linguistic
knowledge in various level (lexical, syntactic, se-
mantic and so on) into a single knowledge base, as
well as reduce development complexity of knowledge
base and increase the development efficiency;

• The multi-agent model to develop the problem solver
of each component in the natural language interface
is possible to integrate different approaches to extend,
modify the sc-agents to improve the performance of
interface independently, without any change in other
sc-agents;

• The modular and component approaches are con-
sidered to develop the natural language interface
underlying a unified semantic basis. It makes sure
the efficiency and semantic uniformity of each
component development in the natural language
interface of knowledge-based intelligent system.

We discussed the general structure of knowledge base
of linguistics, which provides various types of linguistic
knowledge to knowledge extraction and text generation.
In addition to general declarative knowledge, within
the constructed knowledge base includes knowledge
for logical reasoning represented in logical ontologies

236

Figure 14: The template for generating natural language text

(e.g., the rules for knowledge extraction, the rules or
templates for text generation). Relying on the sc-agents
of each component to use constructed static linguistic
knowledge to realize automatic knowledge extraction and
text generation, it makes the intelligent system to obtain
knowledge to help end-users, as well as the information of
intelligent system easier accessible not only to computer
programs, but also to end-users.

Finally the Chinese language interface of intelligent
help system for discrete mathematics is implemented in
the trial on the basis of the proposed semantic model
of natural language interface to verify the practicality
and generalization of the semantic model. In addition
to Chinese language, it would be particularly interesting
to explore the semantic model’s possibility to support
knowledge extraction and text generation for multiple
language as long as the corresponding knowledge base
on specific natural language processing (ontologies on
specific natural language processing) and suitable sc-
agents are developed.

REFERENCES

[1] Liu Y. C.: Survey on Domain Knowledge Graph Research.
Computer Systems Applications, 2020, vol. 26 No 06, pp. 1-12.

[2] Knowledge graph: the foundation for big data semantic link. Avail-
able at: http://www.cipsc.org.cn/kg2/. Date of access: 03.05.2022.

[3] Commonsense knowledge (artificial intelligence). Available
at: https://en.wikipedia.org/wiki/Commonsense_knowledge_
(artificial_intelligence)/. Date of access: 01.09.2022.

[4] Xu Z. L., Sheng Y. P., He L. R., Wang Y. F.: Review on Knowledge
Graph Techniques. Journal of University of Electronic Science
and Technology of China, 2016, vol. 45 No 04, pp. 589-606.

[5] Qian, L. W.: Ontological approach to Chinese text processing.
Doklady BGUIR, 2020, vol. 18 No 06, pp. 49-56. (In Russian).

[6] Zhao H. X., Li L., Wu X. D., He J.: Knowledge Graph Oriented
Information Extraction. Hans Journal of Data Mining, 2020, vol.
10 No 04, pp. 282-302.

[7] Li D. M., Zhang Y., Li D. Y., Lin D. Q.: Review of Entity
Relation Extraction Methods. Journal of Computer Research and
Development, 2020, vol. 57 No 07, pp. 1424-1448.

[8] Schutz A., Buitelaar P.: RelExt: A Tool for Relation Extraction
from Text in Ontology Extension. International Semantic Web
Conference, Springer, Berlin, Heidelberg, 2005, pp. 593 – 606.

[9] Banko M. J., Soderland S. Cafarella: Open Information Extraction
from the Web. Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, 6-12 January
2007, pp. 2670-2676.

[10] Wu F., Weld D. S.: Open Information Extraction Using Wikipedia.
Proceedings of Annual Meeting of the Association for Computa-
tional Linguistics, Uppsala, 11-16 July 2010, pp. 118-127.

[11] Fader A., Soderland S., Etzioni O.: Identifying Relations for Open
Information Extraction. Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing, John McIntyre
Conference Centre, Edinburgh, 27-31 July 2011, pp. 1535-1545.

[12] Schmitzm M., Bai R., Soderiand S.: Open Language Learning for
Information Extraction. Proceedings of Conference on Empirical
Methods in Natural Language Processing and Computational
Natural Language Learning, Jeju, Island, 12-14 July 2012, pp.
523-534.

[13] Tseng Y. H., Lee L. H.: Chinese Open Relation Extraction for
Knowledge Acquisition. Proceedings of the 14th Conference
of the European Chapter of the Association for Computational
Linguistics, Gothenburg, Sweden, 26-30 April 2014, pp. 12-16.

[14] Gatt A., Krahmer E.: Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation.
Journal of Artificial Intelligence Research, 2018, vol. 61, pp.
65-170.

[15] Theune M., Klabbers E., Pijper de: From data to speech: a general
approach. Natural Language Engineering, 2001, vol. 07 No 01,
pp. 47-86.

[16] Yao T. F., Zhang D. M., Wang Q.: System Demonstration

237

Multilingual Weather Forecast Generation System. In Natural
Language Generation, Niagara-on-the-Lake, Ontario, Canada,
1998, pp. 296-299.

[17] Reiter E. Sripada S., Hunter J. R.: Choosing words in computer-
generated weather forecasts. Artificial Intelligence, 2005, vol. 167
No 01-02, pp. 137-169.

[18] Plachouras V., Smiley C., Bretz H.: Interacting with financial data
using natural language. In Proc. SIGIR’16, Italy, Pisa, 2016, pp.
1121-1124.

[19] Androutsopoulos I., Lampouras G., Galanis D.: Generating Natural
Language Descriptions from OWL Ontologies: the NaturalOWL
System. Journal of Artificial Intelligence Research, 2013, vol. 48
No 01, pp. 671-715.

[20] Xia Z. T., Qu W. G., Gu Y. H., Zhou J. S., Li B.: Review of Entity
Relation Extraction based on deep learning. In Proceedings of the
19th Chinese National Conference on Computational Linguistics,
Haikou, China, Chinese Information Processing Society of China,
2020, pp. 349–362.

[21] Zhuang C. Z., Jin X. L., Zhu W. J., Liu J. W., Bai L, Cheng X.
Q.: Deep Learning Based Relation Extraction: A Survey. Journal
of Chinese Information Processing, 2019, vol. 33 No 12, pp. 1-18.

[22] Li J. Y., Tang T. Y., Zhao W. X.: Pre-trained Language Models for
Text Generation: A Survey. Thirtieth International Joint Conference
on Artificial Intelligence IJCAI-21, Montreal-themed virtual reality,
19th -26th August 2021, pp. 4492–4499.

[23] Claire G., Anastasia S., Shashi N.: The WebNLG Challenge:
Generating Text from RDF Data. In Proceedings of the 10th In-
ternational Conference on Natural Language Generation, Santiago
de Compostela, Spain, 2017, pp. 124–133.

[24] Auer S., Bizer C., Kobilarov G.: Dbpedia: A nucleus for a web
of open data. The Semantic Web, Springer, Berlin, Heidelberg,
2007, pp. 722-735.

[25] Xu B., Xu Y., Liang J.: CN-DBpedia: A never-ending Chinese
knowledge extraction system. International Conference on Indus-
trial, Engineering and Other Applications of Applied Intelligent
Systems, Springer, Cham, 2017, pp. 428-438.

[26] Niu X., Sun X. Wang H.: Zhishi.me – weaving Chinese linking
open data. International Semantic Web Conference, Springer,
Berlin, Heidelberg, 2011, pp. 205-220.

[27] Chinese General Encyclopedia Knowledge Graph (CN-DBpedia).
Available at: http://www.openkg.cn/dataset/cndbpedia/. Date of
access: 10.09.2022.

[28] Chinese Encyclopedia Knowledge Graph (Zhishi.me). Available
at: http://openkg.cn/dataset/zhishi-me-dump/. Date of access:
10.09.2022.

[29] Amit M., Yoav G., Ido D.: Step-by-Step: Separating Planning from
Realization in Neural Data-to-Text Generation. In: Proceedings
of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), USA, Minneapolis,
2019, pp. 2267-2277.

[30] Golenkov V.V. Gulyakina N.A.: Proekt otkrytoi semanticheskoi
tekhnologii komponentnogo proektirovaniya intellektual’nykh
sistem. Chast’ 1 Printsipy sozdaniya [Project of open semantic
technology of component designing of intelligent systems. Part 1
Principles of creation]. Ontologiya proektirovaniya [Ontology of
designing], 2014, No 1, pp. 42-64. (in Russian).

[31] Davydenko, I. T.: Ontology-Based Knowledge Base Design, Otkry-
tye semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems],
Belarus Minsk, 2017, pp. 57-72.

[32] Davydenko, I. T.: Semantic Models, Method and Tools of
Knowledge Bases Coordinated Development Based on Reusable
Components, Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for intelli-
gent systems], Belarus Minsk, 2018, pp. 99–118.

[33] Shunkevich D.V.: Ontology-Based Knowledge Base Design, Otkry-
tye semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems],
Belarus Minsk, 2017, pp. 73-94.

[34] Shunkevich D.V.: Ontological approach to the development of
hybrid problem solvers for intelligent computer systems, Otkrytye
semanticheskie tekhnologii proektirovaniya intellektual’nykh sys-

tem [Open semantic technologies for intelligent systems], Belarus
Minsk, 2021, pp. 63–74.

[35] Boriskin A. S., Sadouski M. E., Koronchik D. N., Zhukau
I. I., Khusainov A. F.: Ontology-Based Design of Intelligent
Systems User Interface, Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], Belarus Minsk, 2017, pp. 95–106.

[36] Sadouski M. E.: Ontological approach to the building of semantic
models of user interfaces, Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], Belarus Minsk, 2021, pp. 105–116.

[37] Shunkevich D.V.: Agent-oriented models, method and tools of
compatible problem solvers development for intelligent systems,
Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], Belarus Minsk, 2018, pp. 119–132.

[38] Qian L. W., Sadouski M. E., Li W. Z.: Ontological Approach
for Chinese Language Interface Design, Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open se-
mantic technologies for intelligent systems], Minsk, 2020, pp.
146–160.

[39] Hardzei ., Svyatoshchik ., Bobyor L., Nikiforov S.: Processing
and understanding of the natural language by an intelligent
system, Otkrytye semanticheskie tekhnologii proektirovaniya in-
tellektual’nykh system [Open semantic technologies for intelligent
systems], Belarus Minsk, 2021, pp. 123–140.

[40] Qian L. W., Li W. Z.: Ontological Approach for Generating Natural
Language Texts from Knowledge Base, Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open se-
mantic technologies for intelligent systems], Belarus Minsk, 2021,
pp. 159–168.

[41] Wang H., Zhan W. D., Yu S. W.: Structure and Application of The
Semantic Knowledge base of Modern Chinese. Applied Linguistics,
2006, No 01, pp. 134-141.

[42] Contemporary Chinese language word segmentation
specification for information processing. Available
at: http://std.samr.gov.cn/gb/search/gbDetailed?id=
71F772D78FC6D3A7E05397BE0A0AB82A/. Date of access:
01.07.2022.

Онтологический подход к разработке
естественно-языкового интерфейса

Цянь Лунвэй, Ли Вэньцзу

В статье рассматриваются существующие методы к разра-
ботке двух основных компонентов в естественно-языковом
интерфейсе интеллектуальнных систем, т.е. преобразование
текстов естественного языка во фрагменты базы знаний и
генерация текстов естественного языка из фрагментов базы
знаний. Был проведен анализ проблем, возникающих при
преобразовании текстов естественного языка во фрагменты
базы знаний и генерации текстов естественного языка из
фрагментов базы знаний в настоящее время.

На основании различных рассмотренных методов был
предложен онтологический подход к разработке естественно-
языкового интерфейса, который позволяет интегрировать
разные типы лингвистических знаний и методов в единой
семантичесской модели для анализа текстов естественного
языка и генерации текстов естетсвенного языка. Этапы реа-
лизации подхода были созданы лингвистические онтологии
и решатели для анализа и генерации текстов естественного
языка. Более того, в качестве китайского языка, функции
каждых этапов анализа текстов и генерации текстов, а также
назначение лингвистических онтологий в процессе гене-
рации проиллюстрированы, чтобы проверять практичность
модели.

238

grakova
Received 14.11.2022

Audio interface of next-generation
intelligent computer systems

Vadim Zahariev, Kuanysh Zhaksylyk, Denis Likhachov, Nick Petrovsky, Maxim Vashkevich, Elias Azarov
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

{zahariev, likhachov, nick.petrovsky, vashkevich, azarov}@bsuir.by, kuanysh.zhk@gmail.com

Abstract—The article is dedicated to the issues of creating
audio and voice interfaces for next-generation intelligent
computer systems. It is proposed to use an approach based
on ontological design and formalization of a concepts system
from the subject domain of audio interfaces using the OSTIS
Technology. The main ideas underlying this approach, as
well as their features distinguishing them from the generally
accepted ones, are outlined. It is shown that in the future,
the usage of this approach can provide the properties of
unification, semantic compatibility, and interoperability in
the development of audio and voice user interfaces, which
ultimately will significantly reduce costs when creating next-
generation intelligent computer systems for solving complex
problems.

Keywords—audio interface and voice interface of intel-
ligent computer systems; semantically compatible compo-
nents; speech processing and digital signal processing

I. INTRODUCTION

Spoken language is one of the most natural and
effective forms of information exchange between humans.
This fact explains the significant interest of researchers
in the development and application of voice interfaces
for human-machine interaction as part of modern com-
munication, multimedia, and intelligent systems [1], [2].

A more comprehensive form of interaction with the
user and the environment through the analysis and
synthesis of acoustic signals is an audio interface. This
type of interface, which acts as a maternal in relation
to voice ones, can be briefly defined as a hardware-
software complex that analyzes and synthesizes signals
in the entire available spectrum of parameters of acoustic
information carriers, for example, to solve the problems
of analyzing the situation and events occurring in the
acoustic environment of the system, synthesizing non-
speech signals (technogenic and natural sounds, warning
signals, music, etc.) [3].

The following main tendencies in the development of
this direction indicate the relevance of the direction of
developing audio and voice interfaces:

• economic indicators and forecasts for the develop-
ment of the speech technologies market, the current
average annual growth rate of which, according to

experts, is about 22%, and the total volume will be
equal to 59.6 billion US dollars by 2030 [4];

• the appearance of a wide range of products based on
the voice interface, which have gained widespread.
First of all, these are personal voice assistants,
such as Alexa (Amazon), Siri (Apple), Cortana
(Microsoft), Alice (Yandex) [5]–[7];

• interest from the scientific community, expressed in
the growth of publications in this field of research
by 15% over the past 5 years [8].

It should be noted that the basic mass of scientific
publications in this direction is dedicated to the devel-
opment of basic technologies that are components of
the voice interface, such as text-to-speech synthesis, as
well as speech-to-text transformation [9]–[11]. Recent
achievements in these fields are associated with the rapid
development of neural network models and computing
tools. They made it possible to bring the qualitative
characteristics of the usage of speech technologies to
a commercial level [12], [13].

II. PROBLEM STATEMENT

Most of the existing systems, as a rule, are designed
to solve a certain range of problems and are hardly
compatible with each other. This fact is especially acute
when designing complex systems like intelligent personal
dialog assistants (Figure 1), which require using a variety
of different types of processed information and different
problem-solving models. Such systems, in addition to
standard modules for recognition (ASR, automatic speech
recognition) and synthesis (TTS, text-to-speech), at the
audio interface level, should also contain models that
determine the presence/absence of speech in the audio
signal in a complex acoustic environment, classify envi-
ronmental sounds, recognize a speaker, etc. In addition,
elements of the voice interface must be compatible with
higher-level modules for processing natural language
information, such as modules for speech understanding
(SLU, spoken language understanding) and generation
(SLG, spoken language generation), dialog control (DM,
dialog manager) [14].

239

Figure 1. Components of a human-machine speech dialog system [14].

All this requires the development of approaches based
not only on machine learning methods and signal pro-
cessing but also on natural language processing, symbolic
methods of artificial intelligence, ontological design, and
formalization of the subject domain of the audio interface.
This will allow the creation of systems that have a full
range of knowledge in a formalized form about the
types of problems, that they must solve, and the methods
available for solving them.

A necessary condition for the creation of such next-
generation systems with improved characteristics in terms
of interoperability and flexibility is also the fact that these
systems must be built on the basis of a basic technology
that allows such a unity of the form of information
representation at all its levels.

The combination of these factors leads to the need
to create next-generation intelligent computer systems
that will include audio and voice interface modules
based on the principles of interoperability and semantic
compatibility to solve complex problems.

III. SUGGESTED APPROACH

To achieve this purpose, it would be advisable to use an
approach based on the principles underlying the “Standard
of the Open Technology for the Ontological Design,
Production, and Operation of Semantically Compatible
Hybrid Intelligent Computer Systems”, or briefly the
“Standard of the OSTIS Technology” [15].

The essence of the approach is to consider the process
of designing an audio interface as an interface subsystem
within the general process of developing an intelligent
computer system (ICS) and building its formal logical-
semantic model.

To create such a model of next-generation intelligent
computer systems, it is necessary:

• to decompose an information computer system into
components. The quality of the decomposition is
determined by the simplicity of the subsequent

synthesis of the general formal model from the
formal models of the selected components;

• to carry out the convergence of selected components
in order to build compatible (easily integrated)
formal models of these components;

• to perform the integration of the built formal models
of the selected components and obtain a common
formal model.

The general methodological principles that are the basis
for the transition to next-generation ICS are:

• convergence and unification of ICS and their com-
ponents;

• structural-system simplification of ICS (“Occam’s
Razor” principle);

• orientation to universal ICS;
• synthesis of ICS from compatible components;
• orientation towards the creation of synergetic ICS.
The following important features of the proposed ap-

proach follow from the general methodological principles,
which must be taken into account in order to achieve the
purpose:

• semantic knowledge representation;
• agent-oriented basic model for processing knowledge

bases that have a semantic representation (insertional
programming in a semantic space);

• semantic structuring of knowledge bases in the form
of a hierarchical system of subject domains and
corresponding ontologies that specify these subject
domains;

• at the same time, a next-generation ICS interface is
interpreted as a specialized intelligent information
system focused on solving interface problems of the
corresponding individual ICS and deeply integrated
(embedded) into this ICS.

As a technological basis for the implementation of the
proposed approach, the OSTIS Technology [16] will be
used. Systems built on the basis of the OSTIS Technology
are called ostis-systems, respectively, the audio interface
subsystem will be built as a reusable component, which
in the future will be built into various ostis-systems,
if necessary. As a formal basis for encoding various
information in the knowledge base, an SC-code [16] is
used, the texts of which (sc-texts) are written in the
form of semantic networks with a basic set-theoretic
interpretation. The elements of such networks are called
sc-elements (sc-nodes, sc-arcs). The focus of this work
on the OSTIS Technology is conditioned by its following
main advantages:

• within this technology, unified means of represent-
ing various types of knowledge, including meta-
knowledge, are proposed, which make it possible to
describe all the information necessary for analysis
in one knowledge base in a unified format [17];

• the formalism used within the technology allows
specifying in the knowledge base not only concepts

240

but also any files external from the point of view
of the knowledge base (for example, fragments of a
speech signal), including the syntactic structure of
such files;

• the approach proposed within the technology for
representing various types of knowledge [17] and
their processing models [18] ensures the modifiability
of ostis-systems, i.e. allows easily expanding the
functionality of the system by introducing new types
of knowledge (new concepts systems) and new
models of knowledge processing.

In this work, unlike the previous ones, which deal
with the issues of semantic analysis of voice messages
based on a formalized context [19] and the creation of
dialog assistants based on a mental lexicon model [20],
[21] or a multimodal system based on a neurosymbolic
approach [22], OSTIS technology is used to directly build
an ontology of the audio interface subsystem.

Since the next-generation ICS audio interface must
have an architecture that corresponds to the general rules
for building ostis-systems, the following main parts of it
can be distinguished and formalized:

Audio interface of next-generation intelligent computer
systems
⇒ reduction*:

[ICS audio interface]
⇒ generalized decomposition*:

{{{• knowledge base of the subsystem of the
next-generation ICS audio interface

• problem solver of the subsystem of the
next-generation ICS audio interface

• interface for interacting with other
interface subsystems of the ostis-system

}}}

Thus, it should be noted that the process of developing
an audio interface for next-generation ICS implies, first
of all, the creation of semantically structured knowledge
bases in the form of a hierarchical system of subject
domains and corresponding ontologies that specify these
subject domains. Therefore, the first step to achieve this
purpose is the phase of identifying and formalizing the
entities of the audio and voice interface in order to
immerse this information in the knowledge base of an
intelligent computer system.

From our point of view, it is possible to decompose the
subject domains and ontologies included in the knowledge
base of the audio interface into the following main
directions:

Subject domain and ontology of the audio interface of
next-generation intelligent computer systems
⇐ decomposition*:

{{{

• Subject domain and ontology of audio
interface problems

• Subject domain and ontology of signal
parametric representation models

• Subject domain and ontology of signal
parameter classification models

}}}

As it is shown, the functional approach to the decom-
position of subject domains is put at the head of the
ontology, which is quite natural because it corresponds
to the nature of the problems implemented by the audio
interface.

The principles, represented above, together allow for
the convergence and integration of components both at
the level of the audio interface subsystem and at the
level of the entire ICS as a whole, which, in turn, allows
“transfering” an intelligent information system into a class
of hybrid, interoperable, and synergistic systems.

Next, we proceed directly to the consideration of
specific subject domains and the building of an ontology
of the audio interface.

IV. SUBJECT DOMAIN AND ONTOLOGY OF AUDIO
INTERFACE PROBLEMS

The first step towards building the knowledge base
of the subsystem of the next-generation ICS audio
interface is the formalization of the top-level ontology.
This ontology is proposed to be based on a formalized
representation of the main entities of the subject domain
and their properties, as well as functional problems that
the audio and voice interface are designed to solve.

The main entities, which require formalization and
immersion into the knowledge base, include the set of
concepts represented below. One of the key concepts
requiring formalization is the basic definition of the signal
itself, as well as the main types of signals, depending
on their nature, which are of the greatest interest in
the field of audio interfaces. To make the description
process by means of the OSTIS Technology clearer, before
proceeding directly to it, we will give examples of the
main entities and concepts that require formalization and
immersion into the knowledge base:

• signal;
• acoustic signal;
• audio signal;
• speech signal.
Depending on the way of mathematical description of

the processed signal in the ostis-system, the following
classes can be allocated:

• analog signal;
• discrete signal;
• digital signal;
• periodic signal;
• aperiodic signal;
• harmonic signal;

241

Figure 2. Segmental and suprasegmental features of the speech signal [23]

• tone signal;
• noise signal;
• pulse signal.
To successfully immerse the necessary knowledge for

the operation of the audio interface, it is also necessary to
formalize the basic concepts associated with the features
of the signal itself, according to the following main
attributes:

• signal amplitude;
• signal frequency;
• signal phase;
• signal intensity;
• signal duration;
• signal power/energy;
• signal oscillogram;
• signal spectrogram;
• signal discretization interval;
• signal quantization degree.
The key concepts of the subject domain lying in the

semantic neighborhood of the subspace of the functional
purpose for audio interfaces and audio signal processing
are the following ones:

• audio signal analysis;
• audio signal synthesis;
• audio signal encoding;
• audio signal denoising;
• audio signal classification;
• environmental sound classification;
• acoustic scenes and events classification;
• anomalous sound detection;
• sound source localization.
The basic concepts of audio and voice interface are

also closely related to its main features, which can be
divided into the following main groups of concepts:

• speech signal features;
• linguistic features of the speech signal;

• paralinguistic features of the speech signal;
• extralinguistic features of the speech signal;
• segmental features of the speech signal;
• suprasegmental features of the speech signal;
• speech signal volume;
• speech signal timbre;
• speech signal rate;
• frequency of the main signal tone;
• phonemic composition of the speech signal.
The main concepts of the subject domain lying in the

semantic neighborhood of the functional purpose of the
speech and audio signal processing are the following
ones:

• speech signal analysis;
• speech signal synthesis;
• speech recognition;
• emotional speech recognition;
• text-to-speech synthesis;
• emotional text-to-speech synthesis;
• sing synthesis;
• voice activity detection;
• key words spotting;
• wake up word detection;
• speech diarization;
• speaker recognition;
• speaker classification;
• speaker verification.
It should be noted that the above concepts are often

interconnected in a complex and non-trivial way in the
process of transition from information sources to direct
physical parameters. Such a complex signal structure can
be represented as a diagram of its information structure
(Figure 3). This fact requires next-generation ICS to
formalize concepts, so that the system can automatically
interpret the interconnections between these features,
when working with audio and speech signals, and, as
a result, supply a response to the user, explaining on the

242

Figure 3. Speech signal features and their interconnections [24]

basis of what features the system came to a particular
conclusion.

Since for the building of next-generation ICS, the
focus is precisely on the problems associated with the
processing of speech signals, the solution of which is
necessary first of all to build a voice interface, we will
try to focus on the formalization features of this subject
domain.

The basis of the SC-model of the knowledge base
is a hierarchical system of subject domains and their
corresponding ontologies. The top level of the hierarchy
for the part of the knowledge base related directly to the
audio and voice interfaces is shown below.

Here is a formalized representation of some of the
above concepts:

signal
⇒ definition*:

[physical process that carries a message (informa-
tion) about some event, the state of the considered
object, or issues the control, alerts commands,
etc.]

⊃ acoustic signal
⇒ definition*:

[signal representing the propagation of
elastic waves in a gaseous, liquid, or solid
medium]

⊃ audio signal
:= [sound signal]
⇒ definition*:

[acoustic signal whose parameters are

within the range of values accessible to
human senses]

⊃ acoustic signal
⇒ note*:

[The frequency range of the audio signal
is between 20 and 20,000 Hz.]

⊃ speech signal
⇒ definition*:

[audio signal generated by the passage
of air flows through the human vocal
tract. As a result of various acoustic
transformations, the formation of various
speech sounds occurs]

∋ verbal speech
∋ speech production
⇒ note*:

[The mechanism of human speech produc-
tion is an acoustic tube with dynamically
changing cross-sectional parameters, ex-
cited either by a quasi-periodic sequence
of impulses generated by the vocal cords
or by a turbulent flow of air pushed
through constrictions in different parts
of the vocal tract.]

Formalization at the level of a top-level ontology will
be represented only for the basic concepts of the subject
domain of signal models. The varieties of models of
mathematical representation will be discussed in the
corresponding subsection below.

Depending on the model for representing the signal
itself in the ostis-system, the following descriptions of

243

the main types of signals can also be defined, the usage
of which is justified by the nature of the analyzed signal,
as well as the analysis of the problem to be solved:

signal model
⇐ combination*:

{{{• analog signal
⇒ definition*:

[signal whose parameters can be
measured at any time]

⇒ definition*:
[signal where each of the repre-
sented parameters is described by
a function of time and a continu-
ous set of possible values]

• discrete signal
⇒ definition*:

[signal for which at least one of
the represented parameters is de-
scribed by a finite set of possible
values]

⇐ combination*:
{{{• discrete in time
• discrete in amplitude

}}}
• digital signal

⇒ definition*:
[signal where each of the represent-
ing parameters is described by a
discrete time function and a finite
set of possible ones]

⇒ subdividing*:
{{{• signal discrete in time
• signal quantized (discrete)

in amplitude
}}}

• periodic signal
• aperiodic signal
• tone signal
• harmonic signal
• pulse signal
• noise signal

}}}

It should be noted that due to restrictions on the size
of the material for the features of the audio signal, we
will give only a hierarchy of their general interrelations,
since the semantics of these concepts is quite typical for
other fields of technical sciences and does not require
detailed examples and explanations.

audio signal features
⇐ combination*:

{{{• signal amplitude
• signal frequency

• signal phase
• signal intensity
• signal duration
• signal power
• signal spectrum
• signal oscillogram

⇒ definition*:
[function that fixes the dependence
of changes in signal features (first
of all, amplitude) in time]

• signal spectrogram
⇒ definition*:

[function that fixes the dependence
of the power spectral density of
an audio signal in time]

• signal discretization interval
⇒ definition*:

[value of the frequency with which
the signal was discretized over
time during the analog-digital con-
version]

⇐ typical values*:
{{{• 8000 Hz
• 16000 Hz
• 22050 Hz
• 44100 Hz
• 48000 Hz

}}}
• signal quantization degree

⇒ definition*:
[permissible number of discrete
signal levels expressed as a degree
of two and used in the process of
quantization of the signal by level
in the process of analog-digital
conversion]

⇐ typical values*:
{{{• 8 bits
• 10 bits
• 12 bits
• 16 bits
• 24 bits

}}}
}}}

The description of the subject domain of signal models
will be considered in more detail in the next subsection
of the article, so we do not consider it necessary to
demonstrate it here. We formalize the ontology of the
main features of a speech signal in the following form
[25]:

speech signal features
⇐ combination*:

{{{• communicative features

244

⇒ note*:
[encode the meaning of the trans-
mitted message and depend on the
sender’s intentions]

• informative features
⇒ note*:

[encode additional information of
the transmitted message and do
not depend on the sender’s inten-
tions]

• informative features
⇒ note*:

[encode additional information of
the transmitted message and do
not depend on the sender’s inten-
tions]

• segmental features of the speech signal
⇒ note*:

[carry information about the cur-
rent state of the source for the
duration of one or more phonetic
units]

• suprasegmental features of the speech
signal)
⇒ note*:

[carry information about the state
of the source and the transitions
between them throughout the en-
tire utterance]

}}}
⊃ linguistic features of the speech signal

∋ verbal communication means
∋ communicative features
⇒ definition*:

[features carrying information by means
of usage of the human language coding
system]

⇒ note*:
[linguistic features include both phonolog-
ical (segmental and supersegmental) and
grammatical code (morphology and syn-
tax). Linguistic communication informs
the receiver of the sender’s intentions
through explicit verbal forms]

⊃ paralinguistic features of the speech signal
∋ non-verbal communication means
∋ communicative features
⇒ definition*:

[features carrying information through ad-
ditional means of communication, not
directly related to the language]

⇒ note*:
[transmit information about the attitude
towards the subject of conversation, feel-
ings, or emotional state of the speaker]

⇐ combination*:
{{{• speech intonation

⇐ combination*:
{{{• frequency of the

main signal tone
F0

• changing the
frequency of the
main signal tone
∆F0

}}}
• speech volume
⇐ combination*:

{{{• signal amplitude
• signal intensity

}}}
• speech tempo
• pause duration

}}}
⊃ extralinguistic features of the speech signal

∋ informative features
⇒ definition*:

[features that do not directly encode the
meaning of the message but contain addi-
tional information about the sender and
the conditions of communication]

⇒ note*:
[transmit information about the attitude
towards the subject of conversation, feel-
ings, or emotional state of the speaker]

⇐ combination*:
{{{• narrator voice features

⇐ combination*:
{{{• pitch
• timbre
• volume

}}}
• acoustic environment

}}}

In Figure 4, the result of formalization of the subject
domain and the ontology of typical problems of audio
and voice interfaces for next-generation ICS by means
of the SCg language is represented.

It should be noted that in this article we will give
examples and focus only on the formalization of some of
the concepts outlined above. The second important note
is that the represented set of concepts is by no means
exhaustive, since the main results of the work on the
formalization of this subject domain will be discussed
within more voluminous works such as a monography
and the next versions of the OSTIS standard.

245

Figure 4. The top-level ontology fragment of problems of audio and voice interfaces for next-generation intelligent computer systems

V. SUBJECT DOMAIN AND ONTOLOGY OF SIGNAL
PARAMETRIC REPRESENTATION MODELS

All of the above problems are interrelated, since they
refer to the same object of research – the speech signal.
The solution of each of them directly or indirectly
depends on the effectiveness of speech modeling as
a complex phenomenon in various aspects: parametric
representation of the speech signal and allocation of its
properties, modeling the process of phonation, perception,
and interpretation of the contents of a speech message
(including phonetic, semantic, emotional ones). This
makes the creation of universal methods for processing
speech signals a promising scientific direction. In the
context of the above problems, speech modeling can be
conditionally divided into three levels:

• general signal modeling using samples in the time
or frequency domain;

• modeling of signal features that are specific to
speech and related to the phonation process (such
as frequency of the main tone, excitation sequence,
and amplitude spectrum envelope);

• modeling of high-level speech features (voice, accent,
expression, phonetic and semantic contents of a
speech message). Each next level is based on the
previous one and implies the usage of special
methods of parametric description.

The first two levels include models widely known
in digital processing of speech signals based on linear
prediction (LP), cepstral coefficients, and sinusoidal
parameters.

Among the approaches using the sinusoidal description
of the signal, currently, the most promising are mixed
(hybrid) models, which take into account the possibility of
different modes of phonation with the participation of the

vocal cords (voiced speech) and without the participation
of the vocal cords (unvoiced speech), moreover, each of
these two modes is described by the corresponding model
(Figure 5).

Voiced speech is considered as a quasi-periodic (de-
terministic) signal, while unvoiced speech is considered
as a non-periodic (stochastic) signal. The most famous
among existing models is the harmonic + noise model,
which is used to solve such complex problems as the
creation of voice interfaces, speech recognition, text-
to-speech synthesis, voice conversion, noise reduction,
increasing the intelligibility and subjective quality of
speech signals, accent correction, and so on. Its advan-
tage is the theoretical possibility of modeling vocalized
sounds in the form of continuous functions with varying
parameters, which makes it possible to obtain an effective
description of the phonation process and avoid the overlap
of adjacent fragments, phase breaks in speech synthesis.
The disadvantage of the model is the high complexity
of the analysis and synthesis algorithms due to the non-
stationarity of the speech signal [26]–[29].

Since voiced speech consists of quasi-periodic com-
ponents with varying parameters, it is necessary to use
digital filters with variable features for analysis: their
bandwidth must change in accordance with the contour
of the frequency of the main tone. This requires the
usage of special time-frequency transformations that
allow estimation of periodic components with strong
frequency modulation such as Fan-Chirp and harmonic
transformations. The accuracy of parameter estimation is
directly related to the accuracy of estimating the contour
of the frequency of the main tone, so the usage of a
reliable and accurate estimation method is a necessary
condition for the successful usage of this model [30]–[32].

Another difficult problem is the automatic separation of

246

Figure 5. Classification of common speech signal models [26]–[32]

the signal into deterministic and stochastic components,
for which special periodicity detectors are used.

Modeling a speech signal based on LP is a classic
approach that has been used in digital speech processing
for quite a long time. The main advantage of the model
is the separate description of the signal in the form of the
spectrum envelope and the excitation signal. The spectrum
envelope determines the phonetics of the pronounced
sound and characterizes the state of the vocal tract, while
the excitation signal characterizes the state of the vocal
cords and the pitch (intonation) of vocalized sounds. The
advantage of LP is also low computational complexity.

However, despite this, recently, preference has been
given to models using a sinusoidal representation of
the signal, and this primarily concerns applications that
involve the synthesis of a speech signal with modified
parameters, such as intonation change, voice conversion,
text-to-speech synthesis, and others. This fact can be
explained by the point that the LP does not provide
efficient methods for parametric processing of the excita-
tion signal and continuous synthesis of the output signal.
Each speech fragment (frame) of the signal is a separate
independent unit, and during synthesis, there is a problem
of matching adjacent frames. An inconsistent change
in the envelope of the amplitude and phase spectrum
during the transition from frame to frame causes the
appearance of audible artifacts. In addition, the estimation
of the spectrum envelope using classical LP methods is
an averaging over the entire frame, as a result of which its
accuracy is limited. The order of the predictor determines
the complexity of the model: for low-order predictors, the
spectrum envelope estimate is overly smoothed, while for
high-order predictors, the accuracy becomes selective. For

points of the spectrum corresponding to the harmonics
of the fundamental tone, the accuracy increases, and
for all other points it decreases. The optimal order of
the predictor depends on the pitch of the voice, but
even in the most favorable case, the accuracy of the
spectrum envelope estimate has an error leading to audible
distortion.

The usage of cepstral coefficients for modeling speech
signals is also a classical approach. The most well devel-
oped speech modeling system using cepstral coefficients is
TANDEM-STRAIGHT [33], [34]. Just as for the classical
methods of analysis based on LP, when estimating the
cepstral coefficients, it is assumed that the signal is
stationary over the observation interval. Estimation of the
envelope of the amplitude spectrum requires smoothing
and is also not accurate enough compared to models
based on sinusoidal parameters (Figure 6).

Due to its wide capabilities, the hybrid model based
on sinusoidal parameters is the most preferred for usage
in most practical cases. Nevertheless, to overcome its
existing limitations associated with the complexity of
estimating parameters, their interpretation in the form of
specific speech features (vocal tract parameters, excitation
sequence), the development of special modeling methods
is required.

Depending on the application, processing of a speech
signal using a particular model usually includes analysis
(determining the model parameters), modification (chang-
ing the model parameters depending on the purpose of
the application), and synthesis (forming a new signal
from the changed model parameters). Thus, to ensure the
highest practical significance, the developed modeling
methods should include tools for analysis, processing of

247

Figure 6. A conventional spectrogram (left) vs TANDEM-STRAIGHT spectrogram (right)

parameters, and synthesis.
Solving many modern applied problems requires not

only the ability to describe a speech signal or the
phonation process but also the usage of high-level speech
features that determine the speaker’s personal voice,
expression, phonetics, etc. Such problems include voice
conversion, text-to-speech synthesis, speaker verification,
and many others. High-level speech modeling is a very
complex subject domain, since it requires the usage of
intelligent models and machine learning methods. At the
moment, there is no single universal method used for
different applications.

The vast majority of high-level speech models used
in practice are problem-oriented and can only be used
to solve one, highly specialized problem. The main
mathematical tools used are statistical and probabilistic
models.

parametric signal model
⇒ definition*:

[mathematical expression used to represent signal
samples in the time or frequency domain]

⊃ parametric model of the speech signal
⇒ definition*:

[mathematical description of signal fea-
tures that are specific to speech and
associated with the phonation process
(such as frequency of the main tone, exci-
tation sequence, and amplitude spectrum
envelope)]

⇒ note*:
[The main speech signal models include:
models based on linear prediction; based
on the cepstral representation; sinusoidal
and hybrid models. Among the hybrid
models, the harmonic + noise model is

the most well known.]

VI. CONCLUSION

In the article, the ideas underlying the original approach
to designing audio interfaces of ICS based on ontological
design and formalization of a concepts system from the
relevant subject domain, using the OSTIS Technology, is
represented. The main principles underlying this approach,
as well as their distinctive features from the generally
accepted ones, are outlined.

The following main factors can be attributed to the
limitations of the proposed approach: it is obvious that
in order to achieve the purpose and implement the
problems of formalizing any subject domain, including
audio interfaces, first of all, a large number of sources of
knowledge are required to replenish them. To overcome
this problem, it is necessary to involve a large number
of experts with appropriate competencies and knowledge
in the subject or to develop mechanisms for reliable
automatic extraction of this knowledge from available
sources.

Direct access to the knowledge of experts is very
limited, since it requires significant efforts to select a
representative sample of such experts, build effective
and interoperable relationships between the parties of
the process, which often depends on a large number
of subjective factors, and, accordingly, requires a large
amount of time and material resources.

It is known that a significant amount of information
accumulated by mankind is stored in the form of natural
language texts. The process of extracting this information
and its representing in a formalized form – in the form
of knowledge – also looks non-trivial.

Based on the nature of these problems, according to
the authors, the following main directions for overcoming
them are seen and, as a result, two main strategies for
developing the proposed approach are:

248

1) Creation of specialized tools for experts working
in the domain of audio and voice interfaces for
formalizing and representing knowledge from a
given subject domain, fixing them in the form of
standards of a single form. Such tools should have
qualitatively new functionality providing a high level
of compatibility and interoperability in the process of
accumulation and standardization of knowledge, so
that the experts themselves would be interested in the
application and wide distribution of this technology
for knowledge representation. This item is one of
the key objectives of the technology and the OSTIS
standard.

2) Creation of automated and automatic means of
extracting knowledge from existing sources of infor-
mation, primarily natural language texts. The types
of documents that contain already structured and
partly formalized information are primarily standards,
protocols, request for comments (RFC), instructions,
etc. Therefore, the process of automating knowledge
extraction should be aimed primarily at formalizing
the existing industry standards for the development
of audio interfaces, systems for processing and
encoding audio information, speech signal processing
systems, such as the standards of the International
Organization for Standardization (ISO), International
Electrotechnical Commission (IEC), Institute of
Electrical and Electronics Engineers (IEEE), and
(Audio Engineering Society) AES series [35]–[39].

The implementation of the approach proposed in the
work will ensure the properties of unification, semantic
compatibility, and interoperability in the development of
audio and voice interfaces (a kind of analogue of the
OSI/ISO model in the field of designing ICS interfaces),
which ultimately will significantly reduce costs when
creating next-generation intelligent computer systems for
solving complex problems.

REFERENCES

[1] C. Pearl, Designing voice user interfaces: principles of conversa-
tional experiences. O’Reilly Media, Inc., 2016.

[2] N. Chen, C. You, and Y. Zou, “Self-supervised dialogue learning
for spoken conversational question answering,” in Proc. Inter-
speech 2021, 2021, pp. 231–235.

[3] L. Lu, H.-J. Zhang, and H. Jiang, “Content analysis for audio
classification and segmentation,” IEEE Transactions on speech
and audio processing, vol. 10, no. 7, pp. 504–516, 2002.

[4] E. Fernandes. (2022) Speech and voice recognition market
/ verified market research. [Online]. Available: https://www.
verifiedmarketresearch.com/download-sample/?rid=4077

[5] J. R. Bellegarda, “Spoken language understanding for natural
interaction: The siri experience,” Natural interaction with robots,
knowbots and smartphones, pp. 3–14, 2014.

[6] J. Lemley, S. Bazrafkan, and P. Corcoran, “Deep learning for
consumer devices and services: Pushing the limits for machine
learning, artificial intelligence, and computer vision.” IEEE
Consumer Electronics Magazine, vol. 6, no. 2, pp. 48–56, 2017.

[7] M. B. Hoy, “Alexa, Siri, Cortana, and more: an introduction to
voice assistants,” Medical reference services quarterly, vol. 37,
no. 1, pp. 81–88, 2018.

[8] S. Schoolar. Scientific papers search results by keyword "speech
technology" and data range filter 2017-2022. [Online]. Available:
https://www.semanticscholar.org/search?year%5B0%5D=2017&
year%5B1%5D=2022&q=speech%20technology&sort=relevance

[9] V. Popov, S. Kamenev, M. Kudinov, S. Repyevsky, T. Sadekova,
V. Bushaev, V. Kryzhanovskiy, and D. Parkhomenko, “Fast and
lightweight on-device tts with Tacotron2 and LPCNet,” in Proc.
Interspeech, 2020, pp. 220–224.

[10] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The Kaldi speech
recognition toolkit,” in IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Processing Society,
Dec. 2011, iEEE Catalog No.: CFP11SRW-USB.

[11] P. Deepa and R. Khilar, “A report on voice recognition system:
Techniques, methodologies and challenges using deep neural
network,” in 2021 Innovations in Power and Advanced Computing
Technologies (i-PACT), 2021, pp. 1–5.

[12] Alpha Cephei Inc. VOSK is a speech recognition toolkit. [Online].
Available: https://alphacephei.com/vosk/

[13] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak
supervision,” Tech. Rep., Technical report, OpenAI, Tech. Rep.,
2022.

[14] V. Delić, Z. Perić, M. Sečujski, N. Jakovljević, J. Nikolić,
D. Mišković, N. Simić, S. Suzić, and T. Delić, “Speech technology
progress based on new machine learning paradigm.” Computa-
tional intelligence and neuroscience, 2019.

[15] V. Golenkov, N. Guliakina, and D. Shunkevich, Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva i
jekspluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’juternyh sistem [Open technology of ontological design,
production and operation of semantically compatible hybrid
intelligent computer systems], V. Golenkov, Ed. Minsk: Bestprint
[Bestprint], 2021.

[16] V. Golenkov, N. Guliakina, I. Davydenko, and A. Eremeev,
“Methods and tools for ensuring compatibility of computer systems,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2019, pp. 25–52.

[17] I. Davydenko, “Ontologicheskoe proektirovanie baz znanij
[ontology-based knowledge base design],” in Otkrytye
semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems],
V. Golenkov, Ed. BSUIR, Minsk, 2017, pp. 57–72.

[18] D. Shunkevich, “Agentno-orientirovannye reshateli zadach
intellektual’nyh sistem [Agent-oriented models, method and
tools of compatible problem solvers development for intelligent
systems],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2018,
pp. 119–132.

[19] V. Zahariev, N. Hubarevich, and E. Azarov, “Semantic analysis
of voice messages based on a formalized context,” in Otkrytye se-
manticheskie tekhnologii proektirovaniya intellektual’nykh system
[Open semantic technologies for intelligent systems], V. Golenkov,
Ed. BSUIR, Minsk, 2019, pp. 103–112.

[20] V. Zahariev, D. Shunkevich, S. Nikiforov, and E. Azarov, “Intelli-
gent Voice Assistant Based on Open Semantic Technology,” in
Open Semantic Technologies for Intelligent System, V. Golenkov,
V. Krasnoproshin, and V. Golovko, Eds. Cham: Springer
International Publishing, 2020, pp. 121–145.

[21] V. Zahariev, S. Nikiforov, and E. Azarov, “Conversational speech
analysis based on the formalized representation of the mental
lexicon,” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for intel-
ligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2021, pp.
141–168.

[22] A. Kroshchanka, V. Golovko, E. Mikhno, M. Kovalev, V. Zahariev,
and A. Zagoskij, “A Neural-Symbolic Approach to Computer
Vision,” in Open Semantic Technologies for Intelligent System,
V. Golenkov, V. Krasnoproshin, V. Golovko, and D.Shunkevich,
Eds. Cham: Springer International Publishing, 2022, pp. 282–309.

249

https://www.verifiedmarketresearch.com/download-sample/?rid=4077
https://www.verifiedmarketresearch.com/download-sample/?rid=4077
https://www.semanticscholar.org/search?year%5B0%5D=2017&year%5B1%5D=2022&q=speech%20technology&sort=relevance
https://www.semanticscholar.org/search?year%5B0%5D=2017&year%5B1%5D=2022&q=speech%20technology&sort=relevance
https://alphacephei.com/vosk/

[23] O. Räsänen. Linguistic structure of speech. [Online]. Available:
https://wiki.aalto.fi/display/ITSP/Linguistic+structure+of+speech

[24] B. Lobanov and O. Eliseeva, Rechevoj interfejs intellektual’nyh
sistem: uchebnoe posobie [Speech User Interface for Intelligent
Systems: Tutorial]. Minsk: BSUIR, Minsk, 2006.

[25] J. Laver, Principles of phonetics. Cambridge university press,
1994.

[26] X. Serra, A system for sound analysis/transformation/synthesis
based on a deterministic plus stochastic decomposition. Stanford
University, 1990.

[27] D. W. Griffin and J. S. Lim, “Multiband excitation vocoder,” IEEE
Transactions on acoustics, speech, and signal processing, vol. 36,
no. 8, pp. 1223–1235, 1988.

[28] A. Petrovsky, E. Azarov, and A. Petrovsky, “Hybrid signal
decomposition based on instantaneous harmonic parameters and
perceptually motivated wavelet packets for scalable audio coding,”
Signal processing, vol. 91, no. 6, pp. 1489–1504, 2011.

[29] E. Azarov, M. Vashkevich, and A. A. Petrovsky, “Instantaneous
harmonic representation of speech using multicomponent sinu-
soidal excitation.” in INTERSPEECH, 2013, pp. 1697–1701.

[30] J. Laroche, Y. Stylianou, and E. Moulines, “HNS: Speech
modification based on a harmonic+ noise model,” in 1993
IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 2. IEEE, 1993, pp. 550–553.

[31] R. McAulay and T. Quatieri, “Speech analysis/synthesis based
on a sinusoidal representation,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 34, no. 4, pp. 744–754, 1986.

[32] G. Degottex, P. Lanchantin, A. Roebel, and X. Rodet, “Mixed
source model and its adapted vocal tract filter estimate for voice
transformation and synthesis,” Speech Communication, vol. 55,
no. 2, pp. 278–294, 2013.

[33] H. Kawahara, “Exploration of the other aspect of vocoder revisited:
Az straight, tandem-straight and morphing,” in Seventh ISCA
Workshop on Speech Synthesis, 2010.

[34] H. Kawahara, T. Takahashi, M. Morise, and H. Banno, “Develop-
ment of exploratory research tools based on tandem-straight,”
in Proceedings: APSIPA ASC 2009: Asia-Pacific Signal and
Information Processing Association, 2009 Annual Summit and
Conference. Asia-Pacific Signal and Information Processing
Association, 2009, 2009, pp. 111–120.

[35] “ISO/IEC 14496-3:2005. Information technology — Coding of
audio-visual objects — Part 3: Audio,” International Organization
for Standardization, Geneva, CH, Standard, 2005.

[36] “ISO/IEC 23003-3:2020 Information technology — MPEG audio
technologies — Part 3: Unified speech and audio coding,” Inter-
national Organization for Standardization, Geneva, CH, Standard,
2020.

[37] “IEEE 1857.8-2020 - IEEE Standard for Second Generation
Audio Coding,” Institute of Electrical and Electronics Engineers,
Standard, 2020.

[38] “IEC 62087-2:2015. Audio, video, and related equipment -
Determination of power consumption - Part 2: Signals and media,”
International Electrotechnical Commission, Standard, 2015.

[39] “AES Tech 3250-2004 Specification of the digital audio interface
(AES/EBU),” Audio Engineering Society, Standard, 2004.

Аудио-интерфейс интеллектуальных
компьютерных систем нового поколения
Захарьев В. А., Жаксылык К. Ж., Лихачев
Д. С., Петровский Н. А., Вашкевич М. И.,

Азаров И. С.
Работа посвящена рассмотрению вопросов создания

аудио- и речевых интерфейсов для интеллектуальных ком-
пьютерных систем нового поколения. Предлагается исполь-
зование подхода на основе онтологического проектирования
и формализации системы понятий из предметной области
аудиоинтерфейсов посредством технологии OSTIS. Изложе-
ны основные идеи, лежащие в основе данного подхода, а
также особенности, отличающие их от общепринятых.

Суть подхода заключается в рассмотрении процесса про-
ектирования аудио интерфейса как интерфейсной подсисте-
мы в рамках общего процесса разработки интеллектуальной
компьютерной системы и построении её формальной логико-
семантической модели.

Для достижения поставленной цели предлагается при-
бегнуть к подходу на основе принципов лежащих в осно-
ве "Стандарта открытой технологии онтологического про-
ектирования, производства и эксплуатации семантически
совместимых гибридных интеллектуальных компьютерных
систем"или кратко "Стандарта технологии OSTIS" [15].

Для созданияподобноймоделиинтеллектуальной компью-
терных систем нового поколения необходимо:

• произвести декомпозицию информационной компью-
терной системы на компоненты. Качество декомпозии
при этом определяется простотой последующего синте-
за общей формальной модели из формальных моделей
выделенных компонентов.

• провести конвергенцию выделенных компонентов в
целях построения совместимых формальных моделей
этих компонентов;

• провести интеграцию построенных формальных мо-
делей выделенных компонентов и получить общую
формальную модель.

Показано, что в перспективе использование данного под-
хода может обеспечить свойства унификации, семантиче-
ской совместимости и интероперабельности при разработ-
ке аудио- и речевых интерфейсов, что в итоге позволит
существенным образом сократить издержки при создании
интеллектуальных компьютерных систем нового поколения
для решения комплексных задач.

Received 30.10.2022

250

https://wiki.aalto.fi/display/ITSP/Linguistic+structure+of+speech

3D representation of objects in new generation
intelligent computer systems

Katsiaryna Halavataya
Belarusian State University

Minsk, Belarus
Email: kat.golovataya@gmail.com

Aliaksandr Halavaty
Belarusian State University

Minsk, Belarus
Email: alex.halavatyi@gmail.com

Abstract—This article is dedicated to the issues of
constructing and using a three-dimensional representation
in various tasks of applied intelligent systems, as well as
corresponding systems of spatial positioning and orientation.
The description of the representation itself, as well as the
principles of its construction, is implemented within the
knowledge base of the OSTIS system, which allows for
deep integration of various tasks and methods, and also
subsequently leads to an increased degree of convergence
of various research domains.

Keywords—3D representation, 3D reconstruction, knowl-
edge base

I. INTRODUCTION

For the interaction of an intelligent computer system
with objects of the external environment in applied tasks,
it is necessary to create an internal representation of these
objects. One of the types of such an internal representation
can be a description of objects in the form of a three-
dimensional model. At the same time, the formation
of such an internal representation belongs to the class
of tasks for analyzing sensory information and requires
determining the exact location of the object, on the basis
of which application systems can implement various
interaction scenarios. In accordance with this, systems of
spatial orientation and three-dimensional reconstruction,
capable of forming and processing such representations,
are of particular importance.

Application areas that require solving these problems
include [1]:

• Intelligent robotic systems. Examples of tasks: envi-
ronment analysis, motion trajectories building, object
three-dimensional coordinates estimation.

• Intelligent production control systems. Examples
of tasks: object deformation and structural changes
analysis, non-contact dimension measurement for ob-
jects of arbitrary scale and configuration, production
process control.

• Intelligent systems of complex medical monitoring
and service. Examples of tasks: examination result
analysis, tracking disease development dynamics,
treatment planning.

• Scientific research.
• Other applied areas (architecture, cartography, etc.).

The subject area of the three-dimensional object repre-
sentation concerns both the description of the object itself
and the methods for obtaining this description. Based on
these representations, the following classes of problems
can be solved:

• building a three-dimensional representation of an
object, group of objects or environment,

• determining the size of an object, including cal-
culation of deviations from a given template or
parameters, for example, in medical diagnostic
systems,

• carrying out additional constructions that further
refine the created generated three-dimensional repre-
sentation,

• building a movement trajectory,
• etc.
Despite the fact that some of the above tasks require

additional steps, they are all based on obtaining a three-
dimensional object representation.

Thus, the declarative formulation of the problem of
three-dimensional reconstruction is to obtain an internal
representation of an object belonging to the class of three-
dimensional representations.

II. ANALYSIS OF EXISTING APPROACHES TO 3D
RECONSTRUCTION

At the moment, there exists a large number of methods
that operate with different concepts: photogrammetric
restoration from photo / video recording, radio fre-
quency methods in different ranges, magnetic and inertial
methods, neural network analysis, etc. For example,
artificial neural networks that solve the problem of three-
dimensional reconstruction can take individual images,
image sets, panoramic and stereoscopic images, a combi-
nation of images and data from various types of sensors,
sets of key points, a voxel cloud as input. For each method,
a set of characteristics of the external environment (room,
lighting, presence of movement) and input representation
(size, type of surface) can be defined, within which this
method is correct and demonstrates the best results for one
of the target criteria. The resulting internal representation
may also differ: some of the methods allow to restore

251

the internal structure, others - only the surface (external
shape) of the object.

In addition, in the tasks of analyzing sensory informa-
tion, it is generally possible to install several different
types of sensors, but they must, firstly, be suitable for
studying this type of object, and, secondly, the information
obtained must complement each other (increase the level
of detail, resolution, accuracy, etc.) - that is, the system
must be able to adapt to a specific task and external
conditions.

All these factors impose serious restrictions on the
possibility of using various methods of three-dimensional
reconstruction in solving a specific applied problem,
which must be taken into account when designing a
system.

The problems of the existing solutions include:

• Lack of consistency of concept systems and de-
scriptions of methods in various sources. There are
different descriptions and terminologies for the same
methods and their modifications, and difficulties and
misunderstandings constantly arise because of this.

• Lack of binding and insufficient attention to the
issues of convergence of the subject area of three-
dimensional reconstruction with the subject area
of the formation of three-dimensional scenes and
environments of user interaction with the three-
dimensional environment, for example, in systems of
three-dimensional modeling, virtual and augmented
reality.

• High complexity of developing applied systems
using 3D reconstruction methods, and the need to
involve experienced and highly qualified developers
in solving relevant problems.

• Lack of integrated design technology. Despite the
abundance of algorithms and methods, the analysis
of their applicability to various types of applied
problems is extremely superficial. As a result, in
most cases the best method is chosen by enumeration
or empirically.

• Lack of means for integrating individual components,
stages of various methods, various types of data
in the description of the object and the resulting
internal representations. In addition to the variability
of individual actions, usually each method works
with its own class of internal representation (a
surface specified polygonally, a voxel cloud with
a regular grid, a set of individual coordinates in
three-dimensional space, etc.).

Thus, the systematization of knowledge in this subject
area, as well as the creation of technology for development
and automation of the design process of intelligent
systems in this area are relevant and currently unresolved
tasks.

III. SUGGESTED APPROACH

The description of the representation itself, as well
as the principles of its construction in this paper, are
implemented in the form of a knowledge base of the
OSTIS system [2]. As part of the formation of a
knowledge base and a platform for the development of
intelligent systems in this subject area, the following
stages have been identified:

• highlighting the semantic representation of three-
dimensional scenes;

• systematization of the subject area, existing ap-
proaches and establishing links with related areas;

• development of a set of agents that determine the
appropriate methods and tools for specific application
tasks;

• development of a set of agents that carry out
aggregation of different methods in order to clarify
or check the parameters of the three-dimensional
representation (position) of an object.

The sequence of the main stages of the 3D reconstruc-
tion process and their connection with the OSTIS knowl-
edge base is shown in Figure 1. Within the knowledge
base, it is proposed to highlight the following blocks:

• description of the characteristics of the observed
objects;

• description of types and principles of setting three-
dimensional representations;

• a description of the physical principles of operation
and specifications of the equipment with which
information about the object under study can be
collected;

• a set of different methods of reconstruction and
localization with limitations and solvers of specific
problems;

• methods for evaluating the results of the obtained
3D representations;

• description of the semantic representation of three-
dimensional scenes and objects.

Further, we will consider in more detail the main
indicated subject areas and onthologies.

IV. SEMANTIC REPRESENTATION OF OBJECTS AND
SCENE

An important component of intelligent systems that
use an internal three-dimensional representation is the
description of the semantics of this representation. In-
formation about individual points, surfaces, polygons or
other primitives does not allow to form a complex idea
of the semantic content of this representation, just as
individual letters do not allow to evaluate the semantic
component of text messages.

The semantic description of an object implies the
association of a set of points corresponding to some
object in three-dimensional space with some object of the
existing knowledge base. Relations in such associations

252

Figure 1. Description of the main stages of the 3D reconstruction process and their relationship with the knowledge base

253

can be represented as “object A is a three-dimensional
image of some entity B”, where object A is defined by
an internal three-dimensional representation, and entity
B is defined by some description in the knowledge base.

Some properties of entity B associated with object
A can be naturally inferred from the 3D representation
of that object — in particular, information about shape,
surface properties, coloration and texturing may already
be present in the 3D description. Thus, with the help of
additional processing, the three-dimensional representa-
tion of object A can be a source of factual information
about the related entity B.

Similarly to the semantic description of a separate
object, a semantic description of composite objects can
be introduced. It should be kept in mind that the semantic
content of individual components does not allow to fully
determine the semantics of the entire composite object as a
whole, therefore, a similar relation must also be set for the
entire population. For example, the object "bicycle" can
be decomposed into compound objects "chain", "frame",
"wheel", etc., however, the set of semantic descriptions
of three-dimensional representations of the components
separately does not allow one to form or take into account
the semantics of the entire compound object as a whole.

The semantic description of a part of an object
should contain both information about the base object
and additional context regarding the semantic content
of the part under consideration. For example, in the
videoendoscopic analysis of a section of the esophagus,
information about which part of the esophagus in the
body this section belongs to also becomes important.

The scene is a complex composition of several simple
or composite objects in some common space, supple-
mented by data of their relative position. As in the
case of composite objects, the semantic description of
scenes should include not only descriptions of individual
components, but also the semantic content of the emergent
properties of all these components in the aggregate.

Thus, the following types of main entities have been
identified within the framework of the semantic represen-
tation of three-dimensional scenes and objects:

object
:= [a set of points in space connected to each other

and having one semantic representation]

compound object
:= [object that allows decomposition into separate

individual objects]

object part
:= [a set of points in space belonging to some object,

which can be distinguished by geometric or
semantic representation]

scene
:= [set of several objects and data about their relative

position in space]

For the scene, the semantic characteristics of the visual
perception of the scene from the position of some observer
placed in it or a machine vision system are important.
In this context, the scene can be represented as a two-
dimensional projection (or a pair of two-dimensional
projections in the case of stereoscopic vision), while
the semantics of the descriptions of the original three-
dimensional objects and the corresponding parts of the
resulting projections may also differ - for example,
some objects may be out of view, or be perceived
differently by the observer due to the presence of some
optical, perspective, or psycho-physiological effects (eg,
difference in lighting, optical distortion, various illusions
of color or depth perception, eg, Ames room, etc.).

It is important for the semantic description of the
scene to include both the definition of belonging of the
individual objects of the scene to some entities of the
existing knowledge base (e.g. as suggested in [3] and [4]),
and a description of the possible relationships between
these objects, arising due to their presence in the scene,
or due to their pairwise mutual arrangement from the
position of some observer. This information can naturally
be used as reference properties of objects in the scene.
For example, if there are two identical objects of type
A and one object of type B in the scene, some logical
statement or natural language query can utilize the fact
of their relative position, for example, to identify one of
them - "the object of type A, which is located to the left
of the object of type B ".

• Information about the presence on the scene or the
projection of the scene
– The object is missing from the scene
– The object is present but not visible in the

projection
– The object is present and partially visible on the

projection
– The object is present and is fully visible on the

projection
• Information about the relative position on the stage

– By height
∗ Above another object
∗ On the same level as another object
∗ Below another object

• Information about the relative position on the scene
projection
– By depth

∗ Behind another object
∗ In front of another object

– By height
∗ Above another object

254

Figure 2. An example of a simple 3D scene rendered as a 2D projection
from a specific camera position

∗ On the same level as another object
∗ Below another object

– Location along the horizon line
∗ To the left of another object
∗ To the right of another object

• Information about the relative size of objects on the
projection
– Bigger than another object
– Same size as another object
– Less than another object

• Information about the visual similarity of objects
– Similar or not another object in shape
– Similar or not another object in colour
– Similar or not another object in size

An example of a simple three-dimensional scene, as
well as its semantic description in terms of the mutual
arrangement of objects, is shown in Figures 2 and 3.

V. 3D REPRESENTATION

Systems for positioning, recognition and visualization
of objects in the real world are based not only on the
qualitative component of the description, but also on the
relative spatial position of objects or their individual parts.
In accordance with the perception of the surrounding
world by a person, a three-dimensional representation
is the most informative, although not mandatory. The
resulting two-dimensional images used in many tasks
are projections of three-dimensional space. Therefore, in
this paper, a three-dimensional representation of objects,
including a class of descriptions containing information
about the relative position of objects or their parts in
three coordinates, is chosen as the maximum class of the
study objects.

3D representation
⇒ split*:

{{{• surface representation
⇒ includes*:

{{{• polygon meshes
• NURBS surfaces
• separation surfaces
• surfaces based on T-splines

}}}
• voxel representation

⇒ includes*:
{{{• point cloud

⊃ depth map
• structural mesh

}}}
• special representations

⇒ includes*:
{{{• video 360
}}}

}}}

VI. 3D RECONSTRUCTION

A three-dimensional reconstruction allows obtaining
a three-dimensional representation based on other data.
Three-dimensional reconstruction is the task of determin-
ing the true form of objects in three-dimensional space
based on information about these objects obtained as a
result of measurements, observations or experiments.

Each of the methods of three-dimensional reconstruc-
tion can be characterized, in addition to the physical
principle of operation, also by the resolution, the type
of input data, the size and internal structure of the
reconstructed objects, etc. The full description is a non-
hierarchical ontological model [5]. For further interaction
of agents with a given structure, all these descriptions
are mapped onto some characteristics. Characteristics
can apply both to a separate method and to a group of
methods, for example, the resolution can be common
to the entire subclass of electromagnetic wave methods.
These characteristics should be dynamically obtained by
agents from the knowledge representation itself, which
allows supplementing and modifying the overall structure.
For convenience of presentation, these characteristics can
be identified in the specification of the method, on the
basis of which the scope and possibility of its application
can be described. It makes it possible to use methods for
solving specific applied problems. Within the framework
of the specification (and, accordingly, the structure of the
representation of methods in the knowledge base), the
following can be specified:

• type of possible input parameters,
• the output representation type, in this case the

corresponding 3D representation;
• working hours;
• resolution of the method;
• distance from the object to the camera;
• type of reconstructed object;
• scene composition (separate object, group of objects,

surrounding space);
• surface type (gloss, transparency, color);
• the presence of an internal structure;
• object size.

255

Figure 3. Semantic description of some relations of mutual arrangement of objects in the scene from the position of the observer

The described specification can be interpreted as an
intermediate relation for each method. With such a
description for the intermediate steps, this approach also
allows to combine methods. For example, radio frequency
methods do not make it possible to build a depth map,
but allow to get the position of the camera in the global
coordinate system at a specific point in time. [6].

3D reconstruction methods
⇒ includes*:

{{{• methods of photogrammetric
reconstruction
⇒ divided by the relative position of

the object and the camera into*:
{{{• mobile systems
• macrophotogrammetry
• satellite photogrammetry
• aerophotogrammetry
• terrestrial photogrammetry
• near photogrammetry

}}}
⇒ divided according to the type of

input information into*:
{{{• single image
• stereo images
• multiframe

}}}
• methods of tomographic reconstruction

⇒ includes*:
{{{• reconstruction based on

Fourier projections
• back projection algorithm
• iterative reconstruction

algorithm
⇒ includes*:

{{{• ART

• SART
• SAMV

}}}
• conical beam

reconstruction
• reconstruction based on

deep learning methods
}}}

• structured highlighting methods
⇒ includes*:

{{{• methods based on light
sections

• methods based on band
projections

• methods based on phase
shift

}}}
• methods for estimating the reflected signal

⇒ includes*:
{{{• distance measurement by

optical modulation
methods

• pulse modulation
}}}

• focus evaluation methods
⇒ includes*:

{{{• evaluation methods from
focus

• defocus evaluation methods
}}}

• methods based on the Fourier projection
theorem

• neural network models
}}}

Many 3D reconstruction systems are based on solving
the problem of local positioning. It should be noted that,
in general, the problem of local positioning is wider in

256

scope; however, it is usually considered relative to the
observer, and not to the object.

Characteristics of positioning systems:
• positioning accuracy,
• positioning authenticity,
• polling frequency,
• reliability,
• size.
An ontological description of positioning methods can

be obtained on the basis of a subdivision, both according
to the physical principle of obtaining initial data, and
according to the calculation method.

VII. ONTOLOGY OF DOMAIN ACTIONS

At a higher level, any 3D reconstruction method can
be represented as procedural knowledge, such as a series
of steps that transform the 3D reconstruction input into a
final 3D representation.

A common feature of many methods of three-
dimensional reconstruction is the use of an intermediate
(or final) representation of the objects of the surrounding
world in three coordinates. In other words, the 3D
reconstruction method can be represented as a sequence
of actions to form a set of elements characterized by
coordinates in a common 3D space, which, if necessary,
can be further built up to surfaces, combined with
2D representations, etc. to form the desired output
representation:

r : Im(R3) → O (1)

where I is the input data, R3 is the common three-
dimensional Cartesian space, m(R3) is the description of
the element in the coordinate system of the common three-
dimensional space, O is the output three-dimensional
representation. Most often, individual points of three-
dimensional space act as elements of an intermediate
representation - in this case, such a representation is
called a point cloud.

Curve segments, analytically defined surfaces, polygons
and other types of objects can also act as elements.

The sources of data on three-dimensional coordinates
for the intermediate representation can be:

• Direct absolute values of three-dimensional coordi-
nates of points, i.e. in this case the input I is a set of
points R3. This is typical for all methods that allow
building a scene depth map, because representation
in the form of a depth map with known coordinates
of the position of the observer and the focal length
of the map allows to determine three-dimensional
coordinates of any point on it.

• Data from which, with the help of some additional
processing, the values of the three-dimensional
coordinates of individual points can be obtained.
Such representations tend to be much more common
and easier to obtain.

It should be noted that different data sources can be
used together when forming an intermediate representa-
tion, if each of the sources has some binding to a common
coordinate system.

A. Actions for generating an intermediate 3D representa-
tion

Many remote sensing methods rely on the availability
of a priori information about the three-dimensional
coordinates of the object under study, from which a point
cloud can be built for an intermediate three-dimensional
representation. These include methods that allow you to
estimate the distance from the measuring device to the
object. However, the use of these methods requires more
sophisticated equipment, which can be difficult to apply
in some scenarios.

In this regard, it’s possible to isolate a separate category
of research methods - group of methods for forming
an intermediate representation as a point cloud, based
on more traditional types of information. These include
methods for generating from a single image, a stereopair,
a set of images, or a video sequence, which can also use
information about the optical system of the camera that
was used to obtain the image.

Thus, the following types of input data can be consid-
ered:

• A static image or set of static images;
• Video sequence (a set of static images with a

timestamp);
• Stereopair (2 static images with optical system

parameters) or a set of stereopairs;
• Stereo video sequence (a set of stereopairs with a

timestamp).
• Information about the optical system of the camera.
In this case, a sparse point cloud of three-dimensional

space acts as an output representation, with each of the
points of this space bound to one or more points of the
original input images.

The formation of a sparse point cloud includes the
following steps, for each of which the specified parameters
that can be determined:

• Preprocessing
• Keypoint detection

– detector algorithm
• Keypoint matching

– descriptor algorithm or optical flow algorithm
– thinning

• Evaluation of camera positions
– projection model
– bundle evaluation algorithm

• Postprocessing
Detection and matching of key points allows to deter-

mine the points belonging to the same object of the studied
three-dimensional space, if there are a sufficient number

257

of images. At the stage of estimating the position of the
camera, a mathematical projection model is used that
specifies the relationship between the two-dimensional
coordinates of a point in the image and the corresponding
three-dimensional coordinates in the modeling space;
at the same stage, empirical depth estimation can be
carried out, for example, using neural network methods.
Each keypoint match, described mathematically using the
projection model, is further used in the pose estimation
algorithm in order to restore the camera positions in
three-dimensional space for each of the analyzed images,
and also to determine the distances from the cameras to
the points, based on some criterion for minimizing the
back-projection error.

For example, the classical Structure from Motion three-
dimensional reconstruction method from several input
images within the presented pipeline can be described by
the following characteristics:

• Preprocessing – conversion to grayscale;
• Detector algorithm - SIFT, SURF, FAST;
• Descriptor algorithm - SIFT, SURF, ORB;
• Thinning - RANSAC;
• Projection model – central projection;
• Pose estimation algorithm - global bundle adjustment

method with Levenberg-Marquardt optimization.

As another example, consider the ORB-SLAM method
of simultaneous localization and mapping [7], using a
video sequence as an input representation:

• Preprocessing - frame thinning;
• Detector algorithm - FAST;
• Descriptor algorithm – ORB + Lucas-Kanade optical

flow method;
• Thinning – RANSAC, motion invariant thinning;
• Projection model – central projection;
• Pose estimation algorithm - incremental bundle

adjustment with a fixed camera position and a fixed
position of key points between frames, mapping
method;

• Post-processing - trajectory refinement and loop
detection.

An ontological description of the presented sequence
of actions, as well as an example of a specific algorithm
implemented according to this sequence of actions, are
presented in the figures.

Since each of the proposed stages is described as
a functional mapping, it is assumed that stages are
added, removed or modified during processing if the
correspondence between the types of input and output
representations is observed in the context of the problem
being solved.

B. Actions for generating the final 3D representation

As already mentioned, in some problems a sparse
point cloud in three-dimensional space can be a sufficient

representation, and can be considered the result of a three-
dimensional reconstruction algorithm. Also quite popular
is the representation in the form of a dense colored point
cloud.

However, in many problems such a representation is not
enough, so it is possible to distinguish a class of actions
when generating a more complex three-dimensional repre-
sentation, depending on the type of output representation
required. The input representation for this stage is a
sparse point cloud, as well as additional information
about the relationship of specific points in the cloud with
the original representations.

The description of the methods for generating the
final three-dimensional representation can be represented
as a combination of the following stages, with the
corresponding parameters:

• Point cloud density increase
– algorithm for density increase
– link to source data

• Surface Shaping
– surface type
– surface generation algorithm

• Refine surfaces
– surface refinement algorithm
– link to source data

• Surface texturing
– texture method
– link to source data
– conflict resolution

At the point cloud density increase stage, information
about the relationship between the 3D coordinates of
the sparse cloud points and the source data is used
to transfer additional points directly from the source
representation to the 3D model. Next, by analyzing the
obtained dense point cloud and the initial data, a rough
estimate of the final three-dimensional surface is formed
in the form of some three-dimensional primitive, usually
by forming a polygonal mesh by combining the nearest
points into triangles. At the stage of refinement of surfaces,
smoothing, thinning and merging of primitives obtained at
the previous stage can occur, based on some information
from the source data. Finally, at the texturing stage, the
original representation is transferred to the constructed
3D model to ensure its realism; also at this stage, conflicts
are resolved to select the correct texturing strategy in the
presence of several conflicting sources of information
about the texture.

For example, the surface reconstruction algorithm
proposed in the framework of the currently most popular
implementation of bundle adjustment method can be
described as the following set of parameters:

• cloud density increase algorithm - transfer of neigh-
borhing keypoints

• surface type - polygonal with rectangular polygons

258

Figure 4. Ontological description of the sequence of actions for constructing an intermediate three-dimensional representation in the form of a
sparse point cloud

Figure 5. An example of an algorithm for constructing a sparse point cloud based on the presented description

• surface generation algorithm – estimation of camera
translations using Delaunay triangulation, estimation
of planar camera translations, interpolation between
camera positions, manual adjustment

• surface refinement algorithm - missing
• texturing method - direct transfer from source images
• method of resolving texture conflicts - alpha-

blending proportional to the distance to the point.

C. Actions for the selecting stages and generation of the
algorithm

A detailed description of the structure of the methods
is not sufficient for the direct implementation of a three-
dimensional reconstruction according to some algorithm.
Since there exists a large number of implementations for
each of the stages of the final pipeline, the problem also

arises of the optimal choice from the set of implementa-
tions of each of the stages for the most effective solution
of the task.

An agent-based approach to information processing can
be used both to select the stages of the 3D reconstruction
algorithm and to directly implement it [8]. Agents
communicate by accessing a common representation
in the knowledge base, which generates a number of
questions that specify further actions.

As the main questions on the basis of which the
generation of the algorithm can be carried out, the
following can be distinguished:

• What input will be used for the reconstruction?
– Is it possible to determine the distance to a point

in three-dimensional space from the input data, or
directly its three-dimensional coordinates?

259

– Will images be used as data?
∗ Are the optical parameters of the camera

known?
∗ Are the positions or orientations of the camera

in space known for each image?
∗ Is the set of images a continuous video

sequence at a known frame rate?
– If there are several sources of input data, is there

information about binding the data they describe
to a common coordinate system?

• What type of 3D model should be generated from
this data?
– Is reconstruction of 3D surfaces required?

∗ Can the source data be used to form surface
textures?

Based on the proposed approach, both the selection
of a method that meets the requirements of the problem
and the selection of individual stages of the algorithm
can be carried out, for example, by choosing the most
optimal keypoint detector and descriptor algorithm [9].
In addition, it is possible to combine 3D representations
obtained by different methods [10].

VIII. CONCLUSION

The article considers an ontological description of the
subject area of three-dimensional reconstruction of objects
and actions for their processing in knowledge bases based
on OSTIS technology. The description is presented in
the form of the domain area of the scenes themselves,
the methods for obtaining them, and the corresponding
actions for processing them.

The advantages of using OSTIS technology for the
considered tasks are:

• Introduction of a common system of concepts and
descriptions of methods in a unified and consistent
form.

• Possibility of convergence of the subject area of 3D
reconstruction with the subject area of 3D scene and
environment building and adjacent areas.

• Simplification of the development of applied systems
using 3D reconstruction methods.

• Ability to build a complex design technology us-
ing intelligent agents that consume the proposed
description.

• Ability to create integration tools for individual
components, stages of various methods and resulting
internal representations.

Using the proposed approach, it becomes possible to
create intelligent systems that can receive and operate a
three-dimensional representation for further processing in
applied problems.

ACKNOWLEDGMENT

The authors would like to thank the scientific team of
the Department of Intelligent Information Technologies

of the Belarusian State University of Informatics and
Radioelectronics for their help in the work and valuable
comments.

REFERENCES

[1] T. Luhmann, S. Robson, S. Kyle, and J. Böhm, Close-Range
Photogrammetry and 3D Imaging: 2nd Edition. Berlin: De
Gruyter, 2018.

[2] V. Golenkov, “Ontology-based design of intelligent systems,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2017, pp. 37–56.

[3] T. Homburg, A. Cramer, L. Raddatz, and H. Mara, “Metadata
schema and ontology for capturing and processing of 3d cultural
heritage objects,” Heritage Science, vol. 9, no. 91, pp. 2050–7445,
Jul. 2021. [Online]. Available: https://doi.org/10.1186/s40494-021-
00561-w

[4] C. Cruz, F. Marzani, and F. Boochs, “Ontology-driven 3d recon-
struction of architectural objects.” SciTePress, 2007, pp. 47–54.
[Online]. Available: https://doi.org/10.5220/0002047300470054

[5] D. Shunkevich, “Ontological approach to the development of
hybrid problem solvers for intelligent computer systems,” in Otkry-
tye semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems],
V. Golenkov, Ed. BSUIR, Minsk, 2021, pp. 63–74.

[6] J. Albertz and M. Wiggenhagen, Guide for Photogrammetry and
Remote Sensing. Hiedelberg: Wichmann, 2009.

[7] R. Mur-Artal, J. Montiel, and J. Tardos, “Orb-slam: a versatile
and accurate monocular slam system.” Institute of Electrical
and Electronics Engineers, 2015, pp. 1147 – 1163. [Online].
Available: https://doi.org/10.1109/TRO.2015.2463671

[8] D. Shunkevich, “Agentno-orientirovannye reshateli zadach
intellektual’nyh sistem [Agent-oriented models, method and
tools of compatible problem solvers development for intelligent
systems],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2018,
pp. 119–132.

[9] K. Halavataya, “Local feature descriptor indexing for image
matching and object detection in real-time applications,” in Pattern
Recognition and Information Processing, M. Lukashevich, Ed.
BSUIR, Minsk, 2018, pp. 302–305.

[10] K. Halavataya, K. Kozadaev, and V. Sadau, “Adjusting
videoendoscopic 3d reconstruction results using tomographic
data,” Computer Optics, vol. 46, no. 2, pp. 246–251, Mar. 2022.
[Online]. Available: https://doi.org/10.18287/2412-6179-CO-910

3D-представление объектов в
интеллектуальных компьютерных

системах нового поколения
Головатая Е.А., Головатый А.И.

Данная статья посвящена рассмотрению вопросов по-
строения и использования трехмерного представления в
различных задачах прикладных интеллектуальных систем,
а также соответствующих систем позиционирования и ори-
ентации в пространстве. Описание самого представления, а
также принципов его построения осуществляется на основе
базы знаний OSTIS-системы, что позволяет проводить глу-
бокую интеграцию различных задач и методов, а также в
последствии приводит к повышению степени конвергенции
различных направлений.

Received 14.11.2022

260

Comprehensive library of reusable semantically
compatible components of next-generation

intelligent computer systems
Maksim Orlov

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: orlovmassimo@gmail.com

Abstract—The most important stage in the evolution
of any technology is the transition to the component
design based on a constantly augmented library of reusable
components. In the article, an approach to the design of
knowledge-driven systems is considered, focused on the
usage of compatible reusable components, which significantly
reduces the complexity of developing such systems.

Keywords—Component design of intelligent computer
systems; reusable semantically compatible components;
knowledge-driven systems; semantic networks, ontology
design.

I. INTRODUCTION

As the analysis of modern information technologies
shows, along with achievements, they have a number of
serious disadvantages associated with the complexity of
their development and maintenance. In particular, such
disadvantages include the following ones [1], [2], [3]:

• there is no general unified solution to the problem
of the semantic compatibility of computer systems,
which causes a high complexity of creating complex
integrated computer systems;

• there is a variety of semantically equivalent imple-
mentations of problem-solving models, duplication
of knowledge base and user interface components
that differ not in the essence of these components
but in the form of representation of the processed
information;

• the degree of dependence of computer system
architectures on the platforms on which they are
implemented is high, which causes the complexity
of transferring computer systems to new platforms;

• modern information technologies are not oriented
to a wide range of developers of applied computer
systems;

• there is a lack of a unified approach to the alloca-
tion of reusable components and the formation of
libraries of such components, which leads to a high
complexity of reusage and integration of previously
developed components in new computer systems.

Most of the existing systems are created as self-
contained software products that cannot be used as
components of other systems. It is necessary to use either
the whole system or nothing. A small number of systems
support a component-oriented architecture capable of
integrating with other systems [4], [5]. However, their
integration is possible if the same technologies are used
and only when designed by one development team [6].

Repeated re-development of existing technical solutions
is conditioned either by the fact that known technical
solutions are hardly integrated into the system being
developed or by the fact that these technical solutions
are difficult to find [7]. This problem is relevant both
in general in the field of computer systems development
and in the field of knowledge-based systems development,
since in systems of this kind the degree of consistency of
various knowledge types affects the ability of the system
to solve non-trivial problems [8].

To solve these problems, it is proposed to implement
a comprehensive library of reusable semantically compat-
ible components of next-generation intelligent computer
systems.

The development technology should allow components
to be reused, integrated with other components built using
both this and other technologies. It should also be open to
allow using components by different development teams.

Reusage of ready-made components is widely used in
many industries related to the design of various kinds
of systems, since it allows reducing the complexity of
development and its cost (by minimizing the amount
of work due to the absence of the need to develop any
component), improving the quality of the created content,
and reducing professional requirements for computer
system developers [9], [10]. Thus, the transition is made
from programming components or entire systems to their
design based on ready-made components. The usage
of ready-made components assumes that the distributed
component is verified, tested, evaluated, and documented,
and possible limitations are eliminated or specified and

261

known.
The following problems exist in the implementation of

the component approach to the design of next-generation
intelligent computer systems [11]:

• incompatibility of components developed within
different projects due to the lack of unification
in the principles of representing different types of
knowledge within the same knowledge base and,
as a consequence, the lack of unification in the
principles of allocation and specification of reusable
components;

• the inability to automatically integrate components
into the system without manual user intervention;

• testing, verification, and analysis of the components
quality are not carried out; advantages, disadvantages,
limitations of components are not identified;

• the development of standards that ensure the com-
patibility of these components is not being carried
out;

• many components use the language of the developer
for identification (usually English), and it is assumed
that all users will use the same language. However,
for many applications, this is unacceptable – identi-
fiers that are understandable only to the developer
should be hidden from end users, who should be
able to choose the language for the identifiers they
see;

• the lack of tools to search for components that meet
the specified criteria [12].

The purpose of the work is to create conditions for
effective, meaningful, and mass design of next-generation
intelligent computer systems and their components by
creating an environment for the collection and sharing
of components of these systems. Such conditions are
realized by unlimited expansion of constantly evolving
semantically compatible intelligent computer systems and
their components. The spheres where the technology of
component design of semantically compatible intelligent
systems is applied in practice have no limits.

II. ANALYSIS OF EXISTING APPROACHES TO SOLVING
THE PROBLEM

At the moment, there is no comprehensive library of
reusable semantically compatible components of computer
systems in general, aside from intelligent ones. There are
some attempts to create libraries of typical methods for
traditional computer systems, but such libraries do not
solve the above problems.

Traditional solutions include package managers of
programming languages and operating systems, as well as
separate systems and platforms with built-in components
and tools for saving created components.

Library components can be implemented in different
programming languages and can also be located in
different places, which leads to the fact that a tool is

needed in the library to find components and install them
[13].

Modern package managers such as npm, pip, apt,
maven, poetry, and others have the advantage of being able
to resolve conflicts when installing dependent components,
but they do not take into account the semantics of
components but only install components by identifier
[14]. Libraries of such components are only a storage
of components, which does not take into account the
purpose of components, their advantages and disadvan-
tages, scope of application, hierarchy of components, and
other information necessary for the intellectualization of
component design of computer systems. This storages are
realized as some kind of repository, that is not compatible
together [15]. There is no single interacting system to
store, analyze and supply reusable components. Similarly,
a significant disadvantage of the modern approach is the
platform dependency of components. Modern component
libraries are focused only on a specific programming
language, operating system, or platform.

Based on the Modelica language, a large number of
freely available component libraries have been developed,
one of which is the Modelica_StateGraph2 library, which
includes components for modeling discrete events, reac-
tive and hybrid systems using hierarchical state diagrams
[16]. The main disadvantage of Modelica-based systems
is the lack of component compatibility and sufficient
documentation.

Microsoft Power Apps is a set of applications, services,
and connectors, as well as a data platform that provides a
development environment for efficiently creating user
applications for business. The Power Apps platform
provides tools for creating a library of reusable graph-
ical interface components, as well as pre-created text
recognition models (reading visiting cards or cheques)
and an object detection tool that can be connected to
the application being developed [17]. The Power Apps
component library is a set of user-created components
that can be used in any application. The advantage of the
library is that components can configure default properties
that can be flexibly edited in any applications that use
the components. The disadvantage lies in the lack of
semantic compatibility of components, the specification of
components; the problem of the presence of semantically
equivalent components has not been solved; there is no
hierarchy of components and means of searching for these
components.

WebProtege is a multi-user web interface that allows
editing and storing ontologies in the OWL format in a
collaborative environment [18]. This project allows not
only creating new ontologies but also loading existing
ontologies that are stored on the Stanford University
server. The advantage of this project is the automatic
error checking in the process of creating ontology objects.
This project is an example of an attempt to solve the

262

problem of accumulation, systematization, and reusage
of existing solutions, however, the disadvantage of this
solution is the isolation of the ontologies being developed.
Each developed component has its own hierarchy of
concepts, an approach to the allocation of classes and
entities that depend on the developers of these ontologies,
since within this approach, there is no universal model of
knowledge representation, as well as formal specification
of components represented in the form of ontologies
[19]. Consequently, there is a problem of their semantic
incompatibility, which, in turn, leads to the impossibility
of reusage of the developed ontologies in the knowledge
bases design. This fact is confirmed by the presence on
the Stanford University server of a variety of different
ontologies on the same topics [20].

The IACPaaS platform is designed to support the
development, management, and remote usage of applied
and instrumental multi-agent cloud services (primarily
intelligent) and their components for various subject
domains [21]. The platform provides access to:

• application users (specialists in various subject
domains) – to applied services;

• developers of applied and instrumental services and
their components – to instrumental services;

• intelligent services managers and management ser-
vices.

The IACPaaS platform supports:
• the basic technology for the development of applied

and specialized instrumental (intelligent) services
using the basic instrumental services of the platform
that support this technology;

• a variety of specialized technologies for the de-
velopment of applied and specialized instrumental
(intelligent) services, using specialized platform tool
services that support these technologies.

The IACPaaS platform also does not contain the
means for a unified representation of the components
of intelligent computer systems and the means for their
specification and automatic integration.

III. PROPOSED APPROACH

Within this article, it is proposed to take an OSTIS
Technology [22] as a basis, the principles of which
make it possible to implement a library of semantically
compatible components of intelligent computer systems
and, accordingly, provide the ability to quickly create
knowledge-driven systems using ready-made compatible
components.

The systems developed on the basis of the OSTIS Tech-
nology are called ostis-systems. The OSTIS Technology is
based on a universal method of semantic representation
(encoding) of information in the memory of intelligent
computer systems, called an SC-code. Texts of the SC-
code (sc-texts) are unified semantic networks with a
basic set-theoretic interpretation, which allows solving the

problem of compatibility of various knowledge types. The
elements of such semantic networks are called sc-elements
(sc-nodes and sc-connectors, which, in turn, depending on
orientation, can be sc-arcs or sc-edges). The Alphabet of
the SC-code consists of five main elements, on the basis
of which SC-code constructions of any complexity are
built, including more specific types of sc-elements (for
example, new concepts). The memory that stores SC-code
constructions is called semantic memory, or sc-memory.

Within the technology, several universal variants of
visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant).

Within this article, fragments of structured texts in the
SCn code [23] will often be used, which are simulta-
neously fragments of the source texts of the knowledge
base, understandable to both human and machine. This
allows making the text more structured and formalized,
while maintaining its readability. The symbol “:=” in
such texts indicates alternative (synonymous) names of
the described entity, revealing in more detail certain of
its features.

The basis of the knowledge base within the OSTIS
Technology is a hierarchical system of subject domains
and ontologies. Based on this, in order to solve the
problems set within this article, it is proposed to develop
the following system of subject domains and ontologies:

Subject domain of reusable ostis-systems components
⇒ private subject domain*:

Subject domain and ontology of a comprehensive
library of reusable semantically compatible
ostis-systems components

Subject domain and ontology of a comprehensive
library of reusable semantically compatible
ostis-systems components
⇒ private subject domain*:

• Subject domain and ontology of the
library of reusable components of
ostis-systems knowledge bases

• Subject domain and ontology of the
library of reusable components of
ostis-systems problem solvers

• Subject domain and ontology of the
library of reusable components of
ostis-systems interfaces

In the subject domain and ontology of the library of
reusable semantically compatible ostis-systems compo-
nents, the concepts and principles most common to all
child subject domains are described, which are valid for
any library of reusable components.

The idea of a component library is not new, but the
semantic potency of the OSTIS Library is significantly

263

higher than for analogues due to the fact that the vast
majority of library components are knowledge base com-
ponents represented in a unified knowledge representation
language (SC-code). Thus, the OSTIS Library provides
a high level of semantic compatibility of components,
which leads to a high level of semantic compatibility of
ostis-systems using the library of reusable ostis-systems
components.

Next, we will consider in more detail the fragments of
sc-models of the specified subject domain and ontology.

IV. CONCEPT OF A LIBRARY OF REUSABLE
OSTIS-SYSTEMS COMPONENTS

The basis for the implementation of the component
approach within the OSTIS Technology is the OSTIS
Library. The OSTIS Metasystem is focused on the de-
velopment and practical implementation of methods and
tools for component design of semantically compatible
intelligent systems, which provides an opportunity to
quickly create intelligent systems for various purposes.
The OSTIS Metasystem includes the OSTIS Metasystem
Library.

library of reusable ostis-systems components
⇒ abbreviation*:

[library of ostis-systems components]
:= [library of reusable OSTIS components]
∋ typical example ′:

OSTIS Library
:= [Library of reusable ostis-systems compo-

nents as part of the OSTIS Metasystem]
:= [OSTIS Metasystem Library]

⇐ combination*:
{{{• library of typical subsystems of

ostis-systems
• library of templates for typical

ostis-systems components
• library of ostis-platforms
• library of reusable knowledge base

components
• library of reusable problem solver

components
• library of reusable user interface

components
}}}

The constantly expanding OSTIS Library significantly
reduces the time for the development of new intelligent
computer systems. The library of ostis-systems allows
getting rid of duplication of semantically equivalent
information components as well as from the variety of
forms for the technical implementation of the problem-
solving models used.

Currently, a large number of knowledge bases in a vari-
ety of subject domains have been developed. However, in

most cases, each knowledge base is developed separately
and independently of the others in the absence of a single
unified formal basis for the knowledge representation, as
well as common principles for the formation of concept
systems for the described subject domain. In this regard,
the developed bases are, as a rule, incompatible with
each other and are not suitable for reusage. A component-
based approach to the development of intelligent computer
systems, implemented in the form of a library of reusable
ostis-systems components, allows solving the described
problems. In the field of development of problem solvers,
there are also a large number of specific implementations,
however, problems of compatibility of different solvers
when solving a single problem are hardly considered.
Hypothetically, the existence of a universal problem
solver combining all known problem-solving methods and
ways is possible. However, the usage of such a solver
for applied purposes is not advisable. Thus, the most
acceptable option is to create a library of compatible
components, from which a solver that meets the necessary
requirements can later be compiled.

Functionality of the library of reusable ostis-systems
components:

• Storing reusable ostis-systems components and their
specifications. At the same time, some of the compo-
nents specified within the library may be physically
stored in another place due to the peculiarities of
their technical implementation (for example, the
source texts of the ostis-platform may be physically
stored in a separate repository but be specified as a
component in the corresponding library). In this case,
the specification of the component within the library
has to contain the description of (1) the location of
the component and (2) the scenario of its automatic
installation in a child ostis-system.

• Viewing available components and their specifi-
cations, as well as searching for components by
fragments of their specification.

• Storing information about which of the library
components and which version are used (have been
downloaded) in particular consumer ostis-systems.
This is necessary at least to take into account the
demand for a particular component, to assess its
importance and popularity.

• Systematization of reusable ostis-systems compo-
nents.

• Providing versioning of reusable ostis-systems com-
ponents.

• Searching for dependencies between reusable com-
ponents within the library of components.

• Ensuring automatic updating of components bor-
rowed into the child ostis-systems. This function can
be turned on and off upon request of the developers
of the child ostis-system. Simultaneous updating of
the same components in all systems using it should

264

not lead to inconsistency between these systems
in any context. This requirement may be quite
complicated but is essential for the operation of
the OSTIS Ecosystem.

library of reusable ostis-systems components
⇒ generalized decomposition*:

{{{• knowledge base of the library of reusable
ostis-systems components

• problem solver of the library of reusable
ostis-systems components

• interface of the library of reusable
ostis-systems components

}}}

A knowledge base of the library of reusable ostis-
systems components is a hierarchy of reusable ostis-
systems components and their specifications, as well
as a system of concepts necessary for the specification,
installation, and search of components.

A problem solver of the library of reusable ostis-
systems components implements the functionality of the
ostis-systems library described above.

An interface of the ostis-systems library provides access
to reusable components and features of the ostis-systems
library for the user and other systems. The interface
allows the manager of reusable ostis-systems components,
which is part of a child ostis-system, to connect to
the library of reusable ostis-systems components and
use its functionality, that is, for example, to access
the specification of components and install selected
components in a child ostis-system, get information about
the available versions of the component, its dependencies,
etc.

V. PLACE OF THE OSTIS LIBRARY IN THE
ARCHITECTURE OF THE OSTIS ECOSYSTEM

Developers of any ostis-system can include a library
in its structure, which will allow them to accumulate
and distribute the results of their activities among other
participants of the OSTIS Ecosystem in the form of
reusable components. The decision to include the com-
ponent in the library is made by the expert community
of developers responsible for the quality of this library.
Component verification can be automated. Within the
OSTIS Ecosystem, there are many libraries of reusable
ostis-systems components that are subsystems of the
corresponding maternal ostis-systems. The main library of
reusable ostis-systems components is the OSTIS Metasys-
tem Library. The OSTIS Metasystem acts as a maternal
system for all ostis-systems being developed, since it
contains all the basic components (Figure 1). The maternal
system is responsible for some class of components
and is a SAD for this class, contains methods for the
development of such components, their classification,

detailed explanations for all subclasses of components.
Thus, a hierarchy of maternal ostis-systems is formed. The
maternal ostis-system, in turn, can be a child ostis-system
for some other ostis-system, borrowing components from
the library that is part of this other ostis-system.

Publishing a component to a certified library requires
additional effort from the developer to ensure the quality
of the component specification and description of its
relationship with other components, however, provides
the following benefits of using the OSTIS Ecosystem
infrastructure.

• Downloads of components registered in a certified
library are captured and tracked. the quality and
importance of the component is automatically proven
by the number of its downloads, this is visible to all
members of the community. Thus, the rating of the
developer is formed, it becomes more popular and
in demand. Registering a component in the library
is automatically a “quality mark”, showing other
developers that the component has been verified and
the risk of problems when using it is significantly
reduced.

• Creating proprietary components that can be dis-
tributed under a paid license.

ostis-system
⊃ maternal ostis-system

:= [ostis-system that includes a library of
reusable components]

∋ OSTIS Metasystem
⊃ child ostis-system

:= [ostis-system that contains a component
borrowed from a library of reusable com-
ponents]

Integration of reusable ostis-systems components is
reduced to bonding key nodes by identifiers and eliminat-
ing possible duplications and contradictions based on the
specification of the component and its content. Integration
of any ostis-systems components occurs automatically,
without the intervention of the developer. This is achieved
through the usage of the SC-code and its advantages, the
unification of the specifications of reusable components,
and the thorough selection of components in libraries by
the expert community responsible for this library.

VI. CONCEPT OF A REUSABLE OSTIS-SYSTEMS
COMPONENT

A reusable ostis-systems component is understood as a
component of some ostis-system that can be used within
another ostis-system. This is a component of the ostis-
system that can be used in other ostis-systems (child
ostis-systems) and contains all those and only those sc-
elements that are necessary for the functioning of the
component in the child ostis-system. In other words, it is

265

Figure 1. Architecture of the OSTIS Ecosystem

a component of some maternal ostis-system, which can
be used in some child ostis-system. Reusable components
must have a unified specification and hierarchy to support
compatibility with other components. The compatibility
of reusable components leads the system to a new quality,
to an additional expansion of the set of problems to be
solved when integrating components.

reusable ostis-systems component
:= [reusable OSTIS component]
:= frequently used sc-identifier*:

[reusable component]
⊂ ostis-system component

The ostis-system component is an integral part of
the ostis-system, which contains all those (and only
those) sc-elements that are necessary for its func-
tioning in the ostis-system. The difference between
a reusable ostis-systems component and an ostis-
system component is that a reusable component has
a specification sufficient to install this component in a
child ostis-system. The specification is part in the knowl-
edge base of the library of reusable components for the
corresponding maternal ostis-system.

Necessary requirements for reusable ostis-systems
components:

• there is a technical possibility to embed a reusable
component into a child ostis-system;

• completeness of a reusable component: the compo-
nent has to fully perform its functions, correspond
to its purpose;

• coherence of a reusable component: a component

should logically perform only one task from the
subject domain for which it is intended. A reusable
component has to perform its functions in the most
general way so that the range of possible systems
in which it can be embedded is the widest;

• compatibility of a reusable component: the com-
ponent should strive to increase the level of
negotiability of the ostis-systems in which it is
embedded and have an ability to be integrated
automatically into other systems;

• self-sufficiency of the components (or groups of
components) of the technology, i.e. their ability to
function separately from other components without
losing the reasonableness of their usage.

VII. CLASSIFICATION OF REUSABLE OSTIS-SYSTEMS
COMPONENTS

Let us consider the classification of reusable ostis-
systems components. The class of a reusable ostis-
systems component is an important part of the component
specification, which allows better understanding of the
purpose and application scope of this component, as well
as the class of a reusable component is the most important
criterion for searching for components in the ostis-systems
library. The main feature of the classification of reusable
components is the attribute of the subject domain to which
the component belongs. Here the structure can be quite
extensive in accordance with the hierarchy of areas of
human activity. The following list is not full, it is a short
example.

reusable ostis-systems component

266

⊃ reusable component of subject domain of
medicine

⊃ reusable component of subject domain of
mathematics

⊃ reusable component of subject domain of
economics

⊃ reusable component of subject domain of art
⊃ reusable component of subject domain of

computer systems
⊃ reusable component of subject domain of plants

reusable ostis-systems component
⇒ subdividing*:

{{{• reusable knowledge base component
⊃ semantic neighborhood
⊃ subject domain and ontology
⊃ knowledge base
⊃ template of a typical ostis-systems

component
∋ Template for the subject

domain description
∋ Template for the relation

description
• reusable problem solver component

⊃ atomic knowledge processing
agent

⊃ knowledge processing program
• reusable interface component

⊃ reusable user interface component
for display

⊃ interactive reusable user interface
component

}}}

For knowledge base components, the most important
feature of the classification of reusable components is
the type of knowledge used. For the components of the
problem solver, there is a problem-solving model, for
interface components – the type of interface in accordance
with the classification of user interface components.

reusable ostis-systems component
⇒ subdividing*:

{{{• atomic reusable ostis-systems component
∋ semantic neighborhood of set
∋ sc-agent of set power calculating

• non-atomic reusable ostis-systems
component
∋ abstract sc-agent of logical

inference
∋ knowledge base of geometry

}}}

The typology of the ostis-systems components by
atomicity. An atomic reusable ostis-systems component is

a component that in the current state of the ostis-systems
library is considered as indivisible, that is, does not
contain other components in its structure. The belonging
of a reusable ostis-systems component to a class of
atomic components depends on its specification and on
the currently existing components in the library. A non-
atomic reusable component in the current state of the
ostis-systems library contains other atomic or non-atomic
components in its structure and does not depend on its
parts. Without any part of the non-atomic component,
its purpose restricts. In general, an atomic component
can become non-atomic if it is decided to allocate some
of its parts as a separate component. All of the above,
however, does not mean that even in the case of its
platform independence, the atomic component is always
stored in sc-memory as a formed sc-structure.

For example, a platform-independent implementation
of the sc-agent will always be represented by a set of
scp programs but will be an atomic reusable OSTIS
component if none of these programs will be of interest
as an independent component. In general, a non-atomic
component can become atomic if it is decided for some
reason to exclude all its parts from consideration as
separate components. It should be noted that a non-atomic
component does not necessarily have to be composed
entirely of other components – it may also include parts
that are not independent components. For example, an
agent implemented in the SCP language, which is a
non-atomic reusable component, may include both scp
programs that may (or may not) be reusable components,
as well as an agent scp program that does not make sense
as a reusable component.

reusable ostis-systems component
⇒ subdividing*:

{{{• dependent reusable ostis-systems
component
∋ chemistry visualizer
∋ subject domain of artificial neural

networks
• independent reusable ostis-systems

component
∋ semantic neighborhood of set
∋ interface button component

}}}

The typology of ostis-systems components by depen-
dency. A dependent reusable ostis-systems component
depends on at least one other component of the ostis-
systems library, i.e. it cannot be embedded in a child
ostis-system without the components on which it depends.
The independent component does not depend on any other
component of the ostis-systems library.

reusable ostis-systems component

267

⇒ subdividing*:
{{{• reusable ostis-systems component stored

as external files
• reusable ostis-systems component stored

as an sc-structure
}}}

reusable ostis-systems component stored as external
files
⇒ subdividing*:

{{{• reusable ostis-systems component stored
as source files

• reusable ostis-systems component stored
as compiled files

}}}

The typology of ostis-systems components by their
storage method. At this stage of development of the OSTIS
Technology, it is more convenient to store components in
the form of source texts.

reusable ostis-systems component
⇒ subdividing*:

{{{• platform-dependent reusable ostis-systems
component
⊃ ostis-platform
⊃ abstract sc-agent that is not

implemented in the SCP Language
• platform-independent reusable

ostis-systems component
⊃ reusable knowledge base

component
⊃ SCP agent
⊃ SCP program

}}}

The typology of ostis-systems components depending on
the ostis-platform. A platform-dependent reusable ostis-
systems component is a component partially or fully
implemented with the help of any third-party means
from the point of view of the OSTIS Technology. The
disadvantage of such components is that the integration
of such components into intelligent systems may be
accompanied by additional difficulties depending on the
specific means of implementing the component. As a
potential advantage of platform-dependent reusable ostis-
systems components, it is possible to allocate their, as a
rule, higher performance due to their implementation at
a level closer to the platform. In general, a platform-
dependent reusable ostis-systems component can be
supplied either as a set of source codes or compiled.
The process of integrating a platform-dependent reusable
ostis-systems component into a child system developed
using the OSTIS Technology strongly depends on the
implementation technologies of this component and in

each case may consist of various stages. Each platform-
dependent reusable ostis-systems component must have
the appropriate detailed, correct, and understandable
instructions for its installation and implementation in
the child system. A platform-independent reusable ostis-
systems component is a component that is entirely
represented in the SC-code. In the case of a non-atomic
reusable component, this means that all the simpler
components that are part of it must also be platform-
independent reusable ostis-systems components. The
process of integrating a platform-dependent reusable
ostis-systems component into a child system developed
using the OSTIS Technology is significantly simplified
by using a common unified formal basis for knowledge
representation and processing.

The most valuable are platform-independent reusable
ostis-systems components.

reusable ostis-systems component
⇒ subdividing*:

{{{• dynamically installed reusable
ostis-systems component
:= [reusable component, the installa-

tion of which does not require a
restart of the system]

• reusable component, the installation of
which requires a restart of the system

}}}

dynamically installed reusable ostis-systems component
⇒ decomposition*:

{{{• reusable component stored as compiled
files

• reusable knowledge base component
}}}

The typology of ostis-systems components according
to the dynamics of their installation. The process of
integrating components of different types at different
stages of the ostis-systems life cycle can be different. The
most valuable components are those that can be integrated
into a working system without stopping its functioning.
Some systems, especially control ones, cannot be stopped,
but components need to be installed and updated.

reusable ostis-systems component
⊃ typical subsystem of ostis-systems

∋ Environment for the collective
development of ostis-systems knowledge
bases

∋ Visual web-oriented editor of sc.g-texts

For storing reusable ostis-systems components, some
storage is required. Such storage can be either an ostis-
system or a third-party storage, for example, a cloud

268

service. In addition to the external files of the component,
its specification must be located in the storage.

VIII. SPECIFICATION OF REUSABLE OSTIS-SYSTEMS
COMPONENTS

Each reusable ostis-systems component must be speci-
fied within the library. The specification includes basic
knowledge about the component, which allows ensuring
the building of a complete hierarchy of components
and their dependencies, and also provides unrestricted
integration of components into child ostis-systems. Both
relations and component classes are used for component
specification.

In order for a reusable component to be accepted into
the library, it is required to specify it using a relation,
necessary for installation, that specifies a reusable ostis-
systems component. At the same time, a relation, optional
for installation, that specifies a reusable ostis-systems
component helps to better understand the essence of the
component, simplifies the search, but is not necessary for
the installation of the component in the ostis-system.

relation specifying a reusable ostis-systems
component^
:= [relation that is used in the specification of a

reusable ostis-systems component]
⇒ subdividing*:

{{{• relation, necessary for installation, that
specifies the reusable ostis-systems
component
∋ installation method*
∋ storage address*
∋ component dependencies*

• relation, optional for installation, that
specifies a reusable ostis-systems
component
∋ related component*
∋ change history*
∋ authors*
∋ note*
∋ explanation*
∋ identifier*
∋ key sc-element*
∋ purpose*

}}}

The installation method allows the user to install the
component manually and the component manager –
automatically. Two main methods of installing reusable
components are the method of installing a dynamically in-
stalled reusable ostis-systems component and the method
of installing a reusable component, when installing which
the system requires a restart. With a dynamic installation,
it is only necessary to download the component – and it
immediately works in the system.

Figure 2. The method of installation of a dynamically installed reusable
ostis-systems component

When installing a component, during the installation
of which the system requires a restart, it is necessary
to translate it into the system memory in addition to
downloading the component.

The connectives of the storage address* relation link
a reusable component stored as external files and a
file containing the URL of a reusable ostis-systems
component. Such a file can be a file containing the URL
on GitHub of a reusable ostis-systems component, a file
containing the URL on Google Drive of a reusable ostis-
systems component, a file containing the URL on Docker
Hub of a reusable ostis-systems component, and others.

The connectives of the component dependencies*
relation link a reusable component and a set of compo-
nents, without which the installed component cannot be
embedded in a child ostis-system. This components must
be successfully installed before the installation of the
dependent component.

In some cases, it may turn out that in order to use
one reusable OSTIS component, it is advisable or even
necessary to additionally use several other reusable OSTIS

269

Figure 3. The method of installing a dynamically installed reusable
component, during the installation of which the system requires a restart

components. For example, it may be advisable to use
the appropriate interface command combined with any
sc-agent of information search, which is represented
by a separate component and will allow the user to
ask a question for the specified sc-agent through the
system interface. In such cases, the related component*
relation is used to link components. The presence of such
links makes it possible to eliminate possible problems of
incomplete knowledge and skills in the child system, due
to which any of the components may not perform their
functions. The connectives of the related component*
relation link reusable ostis-systems components that it
is advisable to use in a child system together. Each
such connective can additionally be provided with a sc-
comment or sc-explanation reflecting the essence of the
specified dependency.

IX. MANAGER OF REUSABLE OSTIS-SYSTEMS
COMPONENTS

The manager of reusable ostis-systems components is
a subsystem of the ostis-system, through which interac-
tion with the library of ostis-systems components takes
place. The manager of reusable ostis-systems components
should be implemented using as few dependencies (ostis-
platform components dependencies as well as external
dependencies) as possible to provide the maximum level
of configurability of developed ostis-sistems.

manager of reusable ostis-systems components
:= frequently used sc-identifier*:

Figure 4. An example of a specification of a reusable ostis-systems
component

270

[manager of reusable components]
:= frequently used sc-identifier*:

[manager of components]
⇒ generalized decomposition*:

{{{• knowledge base of the manager of
reusable ostis-systems components

• problem solver of the manager of
reusable ostis-systems components

• interface of the manager of reusable
ostis-systems components

}}}

The knowledge base of the manager of components
contains all the knowledge that is necessary to install
a reusable component in a child ostis-system. Such
knowledge includes knowledge about the specification of
reusable components, methods of installing components,
knowledge about the ostis-systems libraries with which
interaction takes place. The problem solver of the manager
of components interacts with the ostis-systems library
and allows installing and integrating reusable components
into a child ostis-system, as well as searching, updating,
publishing, and deleting components. The interface of
the manager of reusable components provides convenient
usage of the manager of components for the user and
other systems.

The functionality of the manager of ostis-systems
components is as follows:

• Search for reusable ostis-systems components.
The set of possible search criteria corresponds to the
specification of reusable components. Such criteria
can be component classes, its authors, identifier,
fragment of a note, purpose, belonging to a subject
domain, type of component knowledge, and others.

• Installation of a reusable ostis-systems compo-
nent. The installation of a reusable component
takes place regardless of the typology, installation
method, and location of the component. A necessary
condition for the possibility of installing a reusable
component is the availability of the specification
of a reusable ostis-systems component. Before
installing a reusable component in a child system, it
is necessary to resolve all dependencies by installing
dependent components. After successful installation
of the component, an information construction is
generated in the knowledge base of the child system,
indicating the fact of installing the component into
the system using the installed components* relation.
After installing the component in the ostis-system,
contradictions may arise in the knowledge base,
which are eliminated by means of detecting and
analyzing errors and contradictions in the ostis-
system knowledge base.

• Publishing a reusable ostis-systems component
to the ostis-systems library. When a component
is published to the ostis-systems library, verification

takes place based on the component specification. It
is also possible to update the version of the published
component by the community of its developers.

• Updating an installed reusable ostis-systems com-
ponent.

• Deleting an installed reusable component. As in
the case of installation, after deleting a reusable
component from the ostis-system, the fact of deleting
the component is established in the knowledge base
of the system. This information is an important part
of the operational history of the ostis-system.

• Adding and deleting libraries tracked by the
ostis-system. The manager of components contains
information about a variety of sources for installing
components, the list of which can be supplemented
manually. By default, the manager of components
tracks the OSTIS Metasystem Library, however, it
is possible to create and add extra ostis-systems
libraries.

X. CONCLUSION

In the article, the implementation of a library of
reusable compatible components of intelligent computer
systems based on the OSTIS Technology is proposed,
which makes it possible to use a component-based
approach to the design of intelligent systems and reduce
the time and complexity of system development, as well
as increase the level of compatibility of systems using
reusable ostis-systems components.

The classification and specification of reusable ostis-
systems components are clarified, the concepts of a
components library and manager are considered.

An example for the specification of a component that
can be found in the library of compatible ostis-systems
components is given. The architecture of the ecosystem
of intelligent computer systems is considered from the
point of view of using a library of reusable components.

The results obtained will improve the design efficiency
of intelligent systems and automation tools for the
development of such systems, as well as provide an
opportunity not only for the developer but also for the
intelligent system to automatically supplement the system
with new knowledge and skills.

REFERENCES

[1] Natalia N. Skeeter, Natalia V. Ketko, Aleksey B. Simonov, Aleksey
G. Gagarin, Irina Tislenkova, “Artificial intelligence: Problems and
prospects of development,” Artificial Intelligence: Anthropogenic
Nature vs. Social Origin, 2020.

[2] Olena Yara, Anatoliy Brazheyev, Liudmyla Golovko, Liudmyla
Golovko, Viktoriia Bashkatova, “Legal regulation of the use
of artificial intelligence: Problems and development prospects,”
European Journal of Sustainable Development, 2021.

[3] Golenkov, V. V., “Methodological problems of the current state of
works in the field of artificial intelligence,” Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems], pp. 17–24, 2021.

[4] Iyengar, Ashvin, Component Design for Relational Databases, 12
2021, pp. 143–156.

271

[5] Ford, Brian and Schiano-Phan, Rosa and Vallejo, Juan, Component
Design, 11 2019, pp. 160–174.

[6] Donatis, Antonio, OOP in Component Design, 01 2006.
[7] Nazia Bibi, Tauseef Rana , Ayesha Maqbool, Tamim Alkhalifah,

Wazir Zada Khan, Ali Kashif Bashir, Yousaf Bin Zikria, “Reusable
component retrieval: A semantic search approach for low resource
languages,” ACM Transactions on Asian and Low-Resource
Language Information Processing, 2022.

[8] Bukhari, S. A. C., Krauthammer, M. & Baker, C. J. O., “An
architecture for biomedical image discovery, interoperability and
reusability based on semantic enrichment,” SWAT4LS(Citeseer,
2014), 2014.

[9] Ryndin, Nikita and Sapegin, Sergey, “Component design of
the complex software systems, based on solutions’ multivariant
synthesis,” International Journal of Engineering Trends and
Technology, vol. 69, pp. 280–286, 12 2021.

[10] L. Cafaro, R. Francese, C. Palumbo, M. Risi, and G. Tortora, “An
agile process supporting software reuse: An industrial experience,”
in Proceedings of the 33rd Annual ACM Symposium on Applied
Computing, 2018, pp. 1544–1551.

[11] Shunkevich D.V., Davydenko I.T., Koronchik D.N., Zukov
I.I., Parkalov A.V., “Support tools knowledge-based systems
component design,” Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], pp. 79–88, 2015. [Online]. Available:
http://proc.ostis.net/proc/Proceedings%20OSTIS-2015.pdf

[12] X. Qu, X. Feng, Y. Zhang, S. Wang, L. Sun, P. Hua, and Y. Wang,
“Research on component retrieval and matching methods,” in 2022
International Seminar on Computer Science and Engineering
Technology (SCSET), 2022, pp. 358–362.

[13] T. Diamantopoulos and A. L. Symeonidis, “Mining source code
for component reuse,” in Mining Software Engineering Data for
Software Reuse. Springer, 2020, pp. 133–174.

[14] Blähser, Jannik and Göller, Tim and Böhmer, Matthias, “Thine
— approach for a fault tolerant distributed packet manager based
on hypercore protocol,” in 2021 IEEE 45th Annual Computers,
Software, and Applications Conference (COMPSAC), 2021, pp.
1778–1782.

[15] V. A. Buregio, E. S. Almeida, D. Lucredio, and S. L. Meira,
“Specification, design and implementation of a reuse repository,”
in 31st Annual International Computer Software and Applications
Conference (COMPSAC 2007), vol. 1, 2007, pp. 579–582.

[16] Fritzson, Peter, Modelica Library Overview, 2015, pp. 909–975.
[17] Prakash Pradhan, Sanjaya, Working with Microsoft Power Apps.

Berkeley, CA: Apress, 2022, pp. 79–131. [Online]. Available:
https://doi.org/10.1007/978-1-4842-8600-5_3

[18] Memduhoğlu, Abdulkadir and Basaraner, Melih, “Possible con-
tributions of spatial semantic methods and technologies to multi-
representation spatial database paradigm,” International Journal
of Engineering and Geosciences, vol. 3, pp. 108–118, 10 2018.

[19] M. Atzeni and M. Atzori, “Codeontology: Rdf-ization of source
code,” in International Semantic Web Conference. Springer, 2017,
pp. 20–28.

[20] B. Antunes, P. Gomes, and N. Seco, “Srs: A software reuse system
based on the semantic web,” in 3rd International Workshop on
Semantic Web Enabled Software Engineering (SWESE), 2007.

[21] V. Gribova,L. Fedorischev, P. Moskalenko, V. Timchenko, “Inter-
action of cloud services with external software and its implemen-
tation on the IACPaaS platform,” pp. 1–11, 2021.

[22] Vladimir Golenkov and Natalia Guliakina and Daniil Shunkevich,
Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
V. Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[23] (2022, September) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

Комплексная библиотека многократно
используемых семантически совместимых

компонентов интеллектуальных
компьютерных систем нового поколения

Орлов М.К.
Важнейшим этапом эволюции любой технологии является

переход к компонентному проектированию на основе посто-
янно пополняемый библиотеки многократно используемых
компонентов. В работе рассматривается подход к проекти-
рованию систем, управляемых знаниями, ориентированный
на использование совместимых многократно используемых
компонентов, что существенно сокращает трудоемкость раз-
работки таких систем.

Received 30.10.2022

272

Methods and tools for designing and analyzing
the quality of knowledge bases of

next-generation intelligent computer systems
Stanislau Butrin

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: stas.butrin1331@gmail.com

Abstract—In the article, an ontological approach to the
design of knowledge bases of next-generation intelligent
computer systems is considered. It is based on the usage of
a multi-agent approach to ensure the consistency of tools for
knowledge base quality analysis. The results will improve
the efficiency of designing knowledge bases of intelligent
computer systems.

Keywords—knowledge base, ontology, subject domain,
knowledge base verification, knowledge base quality analysis

I. INTRODUCTION

An important phase in the development of any system
is quality control, since the degree of liveness and
effectiveness of the system are determined at this stage.

It is believed that the quality of intelligent computer
systems is largely determined by the quality of their
knowledge bases [1].

Currently, tools for creating knowledge bases of intelli-
gent computer systems are rapidly developing. However,
the development of knowledge bases is a collaborative
process, which is characterized by the occurence of
contradictions and misunderstandings. Therefore, special
attention should be paid to the means of checking and
verification of knowledge operated by intelligent systems.

In the real world, contradictions and errors are in-
evitable, since humans, like the systems created by them,
will be limited to a certain picture of the world, within
which some knowledge will be considered as true and
others as false. Nevertheless, the system must be able to
adapt, adjust its picture of the world and its concept of
certain information, in order to effectively perform the
tasks for which it was created.

II. ANALYSIS OF EXISTING APPROACHES TO SOLVING
THE PROBLEM

Verification is a type of quality analysis and part of
the development process. It consists in checking the
information for correctness and accuracy. Its purpose
is to identify errors, various defects, and shortcomings in
order to eliminate them in time.

Currently existing verification methods are well-
developed, as well as a large number of different verifica-
tion models using extended decision tables, Petri nets [2],
various logics, such as logics with vector semantics [3],
[4], and other models. Moreover, specialized ontologies
are formed to describe a variety of means and models
of knowledge base verification [5]. However, there is
no mechanism for interaction of the tools using these
methods.

Most of the work in the field of verification focus on a
particular approach or model, although the most effective
approach to verification is a combination of different
methods.

Therefore, knowledge base verification tools that cur-
rently exist have a number of problems such as [6]:

• dependence on the format of information represen-
tation, because of what it is necessary to spend
additional time on converting information;

• the problem of impossibility to be reused, since the
tools are usually created taking into account the
specifics of a particular system;

• problem of lack of mechanism for interaction be-
tween means of verification and knowledge analysis;

• high role of the human in the verification pro-
cess, because the most common way of verifying
databases is a manual check of the database by an
expert; a human acts as an administrator, making an
unanimous decision, imposing their opinion on the
system;

• modern tools do not take into account and do
not consider the process of verification within the
interaction of systems with each other.

These problems could be solved if:
• developers used a unified and convenient knowledge

representation format;
• systems were created using a common methodology

and were compatible with each other;
• experts thought over and implemented a mechanism

that allows the system to try to make a decision

273

about its state and presence of problems and errors;
the system may not always make the right decisions,
but those should be its mistakes, not those of experts
and developers.

Having analyzed the works carried out in this area, it is
possible to notice a decline of interest in the verification of
knowledge bases. A possible reason for this is that in the
absence of a unified methodology for the development of
intelligent computer systems and their knowledge bases, it
is inappropriate to develop a methodology for the design
of tools for knowledge base quality analysis.

Thus, at the moment, the problem of complex analysis
and verification is relevant because of the lack of
methodology for the design of analysis and verification
tools that can effectively interact with each other to solve
the problem.

III. PROPOSED APPROACH

Within this article, an OSTIS Technology is used as
the proposed approach. This technology is a complex of
models, tools, and methods designed for the development
of next-generation intelligent computer systems.

The advantages of the OSTIS Technology within the
verification problem are:

• availability of a common methodology for the design
of intelligent systems, which allows solving the
problem of compatibility of systems during their
interaction;

• all knowledge is represented in a unified form, which
allows effectively processing them, reducing the cost
of converting to a minimum;

• means by which contradictions are detected, ana-
lyzed, and resolved are described in the knowledge
base, and their specification is represented in the
system knowledge base, thereby making it easy to
expand them and let the system know what tools it
contains;

• absence of semantic equivalent fragments, which
ensures that corrections are made locally and elim-
inates the need to make corrections repeatedly in
different places;

• multi-agent approach, which allows considering
means of analysis and verification of knowledge
bases as a collective of agents, capable of interacting
with each other and then making a joint decision
about the state of the knowledge base.

Within the OSTIS Technology, works related to ver-
ification have already been conducted [7] but did not
touch on the subject of verification in sufficient detail, in
particular, there is no description of the approach to the
design of verification means and a mechanism that would
ensure their compatibility, while other works considered
more special cases, such as verification during knowledge
integration [8]. However, the verification of the knowledge
base and intelligent system is not limited to this.

The OSTIS Technology uses subject domains to for-
malize knowledge, allowing allocating only a certain class
of entities under study from the diversity of the World,
focusing attention only on something specific. Ontologies
are used to specify subject domains. By ontology, the
semantic specification of any knowledge, which has a
rather complex structure, is meant.

The OSTIS Technology is based on the usage of unified
semantic networks with a basic set-theoretic interpretation
of their elements as a method of knowledge representation.
This way of knowledge representation is called an SC-
code, and the semantic networks, represented in the SC-
code, are called sc-graphs (sc-texts, or texts of the SC-
code). The elements of such semantic networks are called
sc-elements (sc-nodes and sc-connectors, which, in turn,
can be sc-arcs or sc-edges depending on their orientation).
The Alphabet of the SC-code consists of five basic
elements, on the basis of which SC-code constructions
of any complexity are built, including the introduction of
more particular kinds of sc-elements (e.g., new concepts).
The memory storing SC-code constructions is called
semantic memory, or sc-memory.

The technology also offers several universal options
for visualizing SC-code constructions, such as SCg-
code (graphical variant), SCn-code (nonlinear hypertext
variant), SCs-code (linear string variant).

The OSTIS Technology uses a multi-agent approach,
which allows conveniently solving the problem of in-
teraction of verification means, since in this case, the
verification means should be considered as a collective
of agents.

Thus, the proposed approach comes down to the
development of:

• specialized subject domain and ontology, which
would contain all the necessary knowledge about
the possible types of problem fragments of the
knowledge base and ways to fix them;

• an algorithm that would allow the system to identify
problem fragments in itself and eliminate them, while
ensuring the consistency of the means of the system;

• a specialized problem solver, containing the neces-
sary agents to identify and eliminate the problem
fragments.

IV. ANALYSIS OF KNOWLEDGE BASE QUALITY

The quality of the knowledge base is largely determined
by the level of presence/absence of non-factors [9] in the
knowledge base.

non-factor
:= [group of semantic properties that determine the

quality of information stored in the memory of
a cybernetic system]

= {{{

274

• correctness/incorrectness of the
information stored in the memory of a
cybernetic system

• uniqueness/uniqueness of the information
stored in the memory of a cybernetic
system

• integrity/unintegrity of information stored
in the memory of a cybernetic system

• compliance/incompliance of information
stored in the memory of a cybernetic
system

• reliability/unreliability of information
stored in the memory of a cybernetic
system

• accuracy/inaccuracy of information stored
in the memory of a cybernetic system

• certainty/uncertainty of information stored
in the memory of a cybernetic system

• determinacy/undeterminacy of information
stored in the memory of a cybernetic
system

}}}

In this article, the focus is on such non-factors
as:consistency, incompleteness, incompliance.

consistency/inconsistency of the information stored in
the memory of a cybernetic system
:= [level of presence of various kinds of contra-

dictions and, in particular, errors in the stored
information]

contradiction*
:= [pair of contradictory fragments of information

stored in the memory of a cybernetic system*]
⇒ note*:

[The most common contradictory fragments of
information are:

□ some regularity (rule), explicitly repre-
sented in memory

□ information fragment that does not cor-
respond (contradict) to this regularity

]

completeness/incompleteness of information stored in
the memory of a cybernetic system
:= [extent to which the information stored in the

memory of a cybernetic system describes that
system environment of existence and the problem-
solving methods it uses (in sufficient detail) for
the cybernetic system to actually be able to solve
all the set of problems corresponding to it]

compliance/incompliance of information stored in the
memory of a cybernetic system

:= [variety of forms and total amount of information
garbage included in the information stored in the
memory of a cybernetic system]

The process of creating and editing the ostis-system
knowledge base is reduced to the formation of proposals
by developers to edit a particular section of the knowledge
base. Subsequently, these proposals are considered by the
administrators of the knowledge base. The scheme of the
knowledge base with proposals is shown in Figure 1.

Figure 1. A knowledge base scheme with proposals made

The main reason of increasing the level of non-factors
in the knowledge base is the occurence of new information
or changes in existing one.

Examples of such changes are cases where:
• the user creates or modifies a fragment of the

knowledge base;
• the system obtains new information by merging

knowledge bases or by using tools to automatically
provide the knowledge base with data from various
sources;

• changes occur in the system during the work of the
agents.

In the proposed approach, the structures in the knowl-
edge base, which increase the level of non-factors in the
system, must be localized and described, so that they can
be fixed in the future. It is important that the mechanism
of localization and description itself should be universal.
This implies that the processing of such structures should
not depend on their type.

V. SUBJECT DOMAIN OF PROBLEM STRUCTURES

Therefore, there is a need to develop a specialized
Subject domain, which would describe this kind of
structures. For this purpose, the concept of a problem
structure is introduced.

problem structure
:= [structure describing a unsatisfactory knowledge

base fragment]
⇐ combination*:

{{{• incorrect structure

275

:= [structure containing fragments that
contradict any rules or patterns
described in the knowledge base]

• structure describing incompleteness in the
knowledge base
:= [structure in which there is incom-

pleteness (i.e., there are a number
of information holes)]

⇒ note*:
[A structure describing an incom-
pleteness in the knowledge base is
a structure containing a fragment
of the knowledge base in which
some information is missing that
is necessary (or at least desirable)
for an unambiguous and complete
understanding of the meaning of
the fragment.]

• information garbage
:= [structure whose removal would

not significantly complicate the
system]

:= [structure containing a fragment
of the knowledge base that, for
whatever reason, has become un-
necessary and requires deletion]

}}}

In addition to the problem structure itself, the Subject
domain addresses its more special cases and related
concepts.

incorrect structure
⇐ inclusion*:

{{{• duplication of system identifiers
• mismatch of connective elements to

relation domains
• cycle in relation order
• structure that contradicts the singularity

property
}}}

structure describing incompleteness in the knowledge
base
⇐ inclusion*:

{{{• no maximum class of research subjects of
the subject domain specified

• for the entity, the system identifier is
specified, but no main identifiers are
specified for all external languages

• no relation domains specified
• concept is not associated with any subject

domain
}}}

VI. ALGORITHM FOR KNOWLEDGE BASE FRAGMENT
VERIFICATION

To ensure the compatibility of verification tools it is
required to develop an algorithm that allows eliminating
problem structures in the knowledge base of an intelligent
system in a unified way.

The process of verification and correction of the
structure in this algorithm should be considered as an
iterative process, in which, after proposing any changes,
the following should be checked:

• if it has ceased to be problematic;
• whether changes have created new problem struc-

tures.
If it is not possible to propose changes to fix it, the

structure must be reverted to its original state.
Taking into account the features mentioned above, the

general algorithm for working with problem structures in
the knowledge base should include the following steps:

• identifying problem structures;
• fixing the state of the problem structure;
• proposing changes to correct the problem structure;
• applying the proposed changes;
• checking the changed structure;
• rolling back in case of impossibility to correct the

structure;
• fixing the non-corrected structure.

VII. PROBLEM SOLVER OF KNOWLEDGE BASE
VERIFICATION

The tools for quality analysis within the OSTIS
Technology are agents. At a minimum, agent interactions
should include the ability for an agent to initiate other
agents and to access the results of their work.

The organization of the mechanism for interaction of
the corresponding means of the verification process can
be carried out by the corresponding agents. An example
of such a system is a system in which an agent monitors
the state of a knowledge base and, in the case of new
information arrival, initiates the appropriate verification
means. The initiated means will analyze the received
information and record its state in the base. If necessary,
the means of correction will propose the appropriate
changes and apply them.

The system of such verification tools will be a problem
solver, an example of the possible structure of which is
represented below.

Problem solver of means for identifying and
eliminating contradictions
⇐ decomposition of an abstract sc-agent*:

{{{• non-atomic agent for contradiction
detection
:= [Set of agents providing contradic-

tion retrieval and fixation in the
structure]

276

• Non-atomic agent for contradiction
elimination
:= [Set of agents creating proposals

to fix contradictions]
• Agent applying proposals to fix

contradictions
• Non-atomic agent for structure

verification
}}}

VIII. VERSION CONTROL MODEL

For the coordinated interaction of agents of an intel-
ligent system, only their specifications are not enough,
but also a format for describing the structures with which
they will work is required. Such a format is a version
control model, which must take into account the changes
made to the structure in the process of fixing it, while
being convenient for the work of the agents.

It is supposed that correction agents do not apply
the changes immediately but only make proposals for
changes.

Thus, the corrected structure is only a modified version
of the original structure.

This is done, among other things, to avoid providing
the knowledge base with copies of the initial structure.

An example of a version control model [10] that can
be used is shown in Figure 2.

Figure 2. An example of versioning model

IX. DESCRIPTION OF PROBLEM SOLVER AGENTS

Verification agents can be divided into:

• agents detecting problem structures;
• agents correcting/removing problem structures.

The stage of problem structure detection implies the
initiation of agents for problem structure detection. This
can be carried out by some agent which has knowledge
of what search agents are in the system, or agents can be
initiated, for example, when new information is added to
the knowledge base. The problem of agents for problem
structure detection is to find in the knowledge base
the fragments causing problems, describe, and record
information about them, so that later the correction agents
could make appropriate changes to them. The result of the
work of such agents in the general case is the immersion
of the problem fragment in the structure belonging to the
corresponding classes of problem structures. An example
of the result of the agent for problem structure detection
is shown in Figure 3.

Figure 3. An example of the result of the agent for problem structure
detection

The stage of fixing the state of the problem structure
implies the usage of the version control model to fix the
state of the structure. For the initial state, the elements
belonging to the structure must be marked.

The stage of proposing changes to fix the structure
involves the work of the agents forming proposals to
change the structure. These agents can be called either by
the supra-agent-coordinator on the basis of what kinds of
problem structures they can fix, or they can respond to an
event themselves, for example, on adding the belonging of
the structure to the appropriate class of problem structures.
The result of the work of such agents is sets of elements
that should be removed or added to the structure so that
it ceases to be problematic.

277

An example of the result of the agent for structure
change proposal is shown in Figure 4

Figure 4. An example of the result of the agent for structure change
proposal

Further, the stage of applying the changes proposed
by the agents takes place, after which the state of the
knowledge base is checked. This is necessary to make
sure that:

• structure is fixed and is no longer problematic;
• fixes over the problem structure have not generated

new problem structures that the system cannot fix.
In the case where the system is unable to propose

changes capable of fixing the problem fragment, the
structure should be returned to its original state. It is
important to fix the fact that the system at the moment is
not able to fix the problem structure on its own. This is
necessary to avoid further unnecessary attempts to fix this
structure, as well as to indicate that the solution to this
problem may require the help of an expert or developer.

X. CONCLUSION

In the article, an approach to the design of tools
for analyzing the quality of knowledge bases of next-
generation intelligent computer systems is proposed. It is
based on the usage of a multi-agent approach to ensure the
consistency of tools for knowledge base quality analysis.

The subject domain of problem structures is allocated,
as well as the algorithm of interaction between agents for
verification of knowledge bases, which allows describing
the problem fragments of the knowledge base and
designing tools that can consistently analyze and improve
the quality of the knowledge base.

The obtained results allow increasing the efficiency
of the development of tools for analyzing the quality of
knowledge bases, in particular, the means of verification,
which ultimately allows improving the quality of the
knowledge bases themselves.

REFERENCES

[1] C. Gavrilova, Gavrilova T.A. Knowledge Bases of Intelligent
Systems / T.A. Gavrilova, V.F. Khoroshevsky. - SPb: Peter, 2000,
2000.

[2] L. Martin and A. Romanovsky, “Stochastic activity networks for
the verification of knowledge bases,” 08 2017, pp. 37–44.

[3] L. Arshinskiy, A. Ermakov, and M. Nitezhuk, “Logic with vector
semantic as a means of knowledge bases verification,” Ontology
of designing, vol. 9, pp. 111–122, 12 2019.

[4] ——, “Complex verification of rule-based knowledge bases using
VTF-logic,” Ontology of designing, vol. 10, pp. 112–120, 04 2020.

[5] G. Rybina and V. Smirnov, “Methods and algorithms of knowledge
base verification in integrated expert systems / G.V. Rybina, V.V.
Smirnov // Izvestia RAN. Theory and Control Systems 2007,”
vol. 4, pp. 91–102, 11 2005.

[6] D. Zhang, “Knowledge base verification: issues and approaches,”
10 2022.

[7] I. Davydenko, “Semantic models, method and tools of knowledge
bases coordinated development based on reusable components,” in
Open semantic technologies for intelligent systems, V. Golenkov,
Ed., BSUIR. Minsk , BSUIR, 2018, pp. 99–118.

[8] V. Ivashenko, “Modeli i algoritmy integratsii znanii na osnove
odnorodnykh semanticheskikh setei [Models and algorithms of
knowledge integration based on homogeneous semantic networks],”
avtoref. dis. . . kand. tekhn. nauk: 05.13.17, V.P. Ivashenko ;
Uchrezhdenie obrazovaniya «Belorusskii gosudarstvennyi univer-
sitet informatiki i radioelektroniki», Minsk, 2014.

[9] A. Narin’jani, “Ne-faktory: kratkoe vvedenie [Non-factors: a
brief introduction],” Novosti iskusstvennogo intellekta [Artificial
intelligence news], no. 2, pp. 52–63, 2004.

[10] N. Zotov and K. Bantsevich, “Principi obespechenya version-
nosti fragmentov baz znaniy intellectalnich sistem [Principles
of providing versioning of fragments of knowledge bases of
intelligent systems],” Information technology and management :
proceedings of the 58th scientific conference of graduate students,
undergraduates and students, p. 69, 2022.

Методика и средства проектирования и
анализа качества баз знаний

интеллектуальных компьютерных систем
нового поколения

Бутрин С.В.
В работе рассмотрен подход к проектированию средств

анализа качества баз знаний интеллектуальных компьютер-
ных систем нового поколения. Он основан на использовании
многоагентного подхода для обеспечения согласованности
средств анализа качества баз знаний.

Полученные результаты позволяют повысить эффектив-
ность разработки средств анализа качества баз знаний, в
частности, средств верификации, что в конечном итоге
позволяет повысить качество самих баз знаний.

Received 01 11. .20 22

278

Methodology and tools for component interface
design of next-generation intelligent computer

systems
Mikhail Sadouski, Alexandra Zhmyrko

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: sadovski@bsuir.by, aleksashazh@gmail.com

Abstract—In the article, the methodology of designing in-
terfaces for next-generation computer systems is considered.
The stages of designing adaptive intelligent multimodal user
interfaces and the usage of these stages in the context of
the OSTIS Technology are described.

Keywords—interface design methodology, adaptive in-
telligent multimodal user interface, OSTIS, ostis-system
interface, next-generation intelligent computer systems

I. INTRODUCTION

Interface design is one of the most important stages in
the development of any system.

Design of the interface is often thought of as art rather
than science and suffers from lack of formalisms, models,
tools, and methodical design approaches. Slowly, the
design process is becoming more structured, and more
formal tools are becoming available [1].

The user interface is a set of software and hardware
tools that ensures the interaction between the user and
the system.

The user, when dealing with the interface, must imagine
what information about the problem he has and in what
state are the means by which they will solve this problem.
The effectiveness of the user and their interest is ensured
by a properly formulated methodology of development
and design of the user interface.

Currently, the organization of user interaction with
the computer system is the paradigm of a competent
user, who knows how to manage the system and is fully
responsible for the quality of interaction with it. The
variety of forms and types of interfaces leads to the need
for the user to adapt to each specific system, to learn the
principles of interaction with it for solving the problems
they need.

Friendliness of the user interface should consist in
the adaptability of the system to the characteristics
and qualifications of the user, the exclusion of any
problems for the user in the dialog with the intelligent
computer system, in a permanent care to improve the
communication skills of the user. Consequently, it is

necessary to move away from the usual user adaptation
to the system (by learning to use it) in the direction of
adapting the interface itself to the purposes, problems,
and characteristics of a particular user in real time [2].

The interface of next-generation intelligent computer
systems should provide interaction with the user on an
equal basis, be able to adapt to its characteristics, as well
as to perceive different types of information input. The
terms of adaptive, intelligent, and multimodal interface
are often used to organize such interaction.

The interfaces to be designed must comply with the
following aspects:

• Uniformity is one of the main principles of user
interface design. In the modern world, users are
familiar with using different systems. Comparing
systems with each other, it is possible to notice some
similarities in their design (for example: search is
located at the top of the page, navigation menu is
located on the left, etc.). When using the system,
the user develops a pattern of thinking.
A pattern of thinking is knowledge about the system
and how it works. When a user operates a system
that is new to them, they apply this model to new
situations. Accordingly, using a new system provides
a lower cognitive load, i.e., users spend less time
acquiring the interface. In this case, users can spend
more energy to achieving their purposes.
This suggests that when designing user interfaces,
it is necessary to consider general interface design
rules that build around existing patterns of thinking,
without first having to learn the specifics of how
the system works. Designing an interface that meets
expectations allows users to apply their knowledge
based on previous experience, and some similarity
of the new system to the old system allows them to
focus on the things that are important to them.

• Ease of usage – interaction with the interface and
movement through it should be easy and simple
for users, i.e. requiring minimal effort. The time

279

required for a user to move to and interact with an
interactive interface element is a critical parameter.
It is important to properly set the size and position
of interactive interface elements so that they are easy
to find and so that the clickable area for selecting
the element meets the user expectations. Currently,
there are various ways of selecting elements, such
as mouse, finger, stylus, etc. Such elements have
different accuracy, which consequently complicates
the design of interfaces.

• Simplification. Simplifying an interface or process
helps reduce the cognitive load on users and in-
creases the possibility that they will complete their
task and achieve their purpose. But it is also worth
considering that simplification can affect the user
experience negatively – when we simplify everything
to the point of meaninglessness and it is no longer
clear, what interface actions are available, what the
next steps might be, and where to find the correct
information.

By adhering to these aspects, it is possible to minimize
the complexity of the interaction between users and
systems.

At the moment, the following problems in the design
of user interfaces are relevant:

• the lack of common methods and tools for designing
user interfaces limits the reusage of already devel-
oped components and increases the time required
to teach the user new user interfaces, which also
increases the development time and cost of designing
and maintaining user interfaces;

• the extensibility of the interface components is not
supported;

• the ability to transfer user interfaces from one
implementation platform to another is difficult;

• most systems do not allow modifying the user
interface during operation;

• the tools of helping the user to interact with the
system interface are usually designed separately from
the design of the interface itself;

• interface design tools and the system for which it
is intended, as a rule, differ significantly, making it
difficult to integrate the interface into the system;

• most systems do not have an ability to flexibly adapt
the user interface to the needs of a particular user.

To solve these problems, in the article, an approach
to designing user interfaces based on a unified logical-
semantic model is proposed.

The design of user interfaces includes a number of
sequential stages. Within this article, the design stages
of traditional user interfaces and the design stages of
adaptive intelligent multimodal user interfaces will be
considered.

II. STATE OF ART

Adaptive user interface is a set of software and
hardware tools that allows the user to use the system
most effectively by automatically adjusting the interface
to the specific user with respect to their needs and context
[3].

Configuration of functionality and interface parameters
can be performed either manually by the user or automat-
ically by the system based on the available information
about the user. Thus, it is necessary to distinguish between
adaptive and adaptable systems – these terms are not
synonymous, although in the literature, it is often possible
to find a substitution of these concepts [4].

In adaptable systems, any adaptation is predefined and
can be changed by users before the system runs. In
contrast, in adaptive systems, any adaptation is dynamic,
that is, it occurs at the same time as the user interacts with
the system, and depends on the user behavior. However,
the system can also be adaptable and adaptive at the same
time [5].

In the literature, it is also possible to find the term
’adapted interface’. Adapted user interfaces are user
interfaces adapted to the end-user at designing time, with
no adaptation changes occurring in running time [6].

An Intelligent User Interface (IUI) is a user interface
that can assume further user actions and provide infor-
mation based on that assumption [7].

Next, we consider the stages of designing adaptive
intelligent multimodal user interfaces.

A. Design methodology for adaptive intelligent multi-
modal user interfaces

The author of [8] identifies 4 main stages of design.
The first step is the Analysis of users, system, and

environment.
The analysis phase is probably the most important

phase in any design process, but even more so in IUI
design. In the design process of a normal non-intelligent
interface it is necessary to analyze who is the average
user, what problems the interface should support, and on
what system they will be performed. With an IUI there
often is no average user. Ideally, an IUI should be able
to adapt to any user in any environment. Therefore, the
used adaptation technique should be designed in such a
way that it can support all types of users. In practice, this
is hard to achieve so we simply focus on certain user
types. David Benyon [9] has identified five interrelated
analysis activities for designing adaptive systems:

• Functional analysis: what are the main functions of
the system?

• Data analysis: what is the meaning and structure of
data in the application?

• Problem knowledge analysis: which cognitive ca-
pabilities do the users need to have, for example,
the assumed mental model, known search strategies,

280

level of cognitive loading, etc? This analysis does
require some design to have been completed before
it can be performed.

• User analysis: what types of users are there and
what are their capabilities, intelligence, and cognitive
abilities?

• Environment analysis: in which environment is the
system to operate?

The result of the analysis phase is a specification of the
users purposes and information they need, as well as the
functions and information that is required by the system. A
problem that is often encountered in the analysis process
of IUIs is the ’paradox of change’. Since there are hardly
any common, functional IUIs, it is difficult to analyze
how users will interact with them. On the other hand, if
these interfaces are developed and become widely used,
there is the risk that those systems will influence the
analysis process. Wizard of Oz studies can be carried
out to overcome this problem. In this kind of study, data
is collected from a user who is led to believe that they
are working on a fully functional and automatic system
while, in fact, the system is being controlled by another
human.

The second step is development and implementation.
The process of developing new interaction techniques

and metaphors is mainly one of creativity. The best way is
just to go out and try new concepts and ideas. Of course,
there are many general guidelines for interface design that
it is necessary to keep in mind. [10] Unfortunately, most
of these guidelines were developed for DM-interfaces
and are difficult to apply to IUIs. Some DM guidelines,
such as consistency and user control, are violated by
IUIs. This is also the reason that many DM-interface
designers heavily criticized some IUIs concepts. On the
other hand, other guidelines are better served by IUIs than
by DM interfaces. For example, using natural language,
IUIs can ’speak the user’s language’ much better than
DM systems. Also, many IUIs try to reduce the short-
term memory load of users by taking over problems. The
result of the development and implementation process is a
user interface that has a ’look-and-feel’ that the designer
thinks will suit the users and fulfill the requirements of
the analysis phase.

The third step is evaluation.
In the evaluation stage of the design process we return

to the questions of the analysis phase. The requirements
that were drawn up in the analysis phase should be met,
and the effectiveness of the prototype system has to be
investigated. To determine this effectiveness, usability
measures should be specified. These measures may
include the number of errors, task completion time, the
user’s attitude towards the interface, etc. A very important
but subjective usability criteria is user satisfaction. Since
the user needs to work with the interface they have to
say about whether it is a good design and is pleasant to

work with.
The fourth step is Refinement and tools.
Based on the problems encountered in the evaluation

stage, a number of design improvements will be made
to the current prototype. Then, a new round of design,
implementation, and evaluation is started. This iterative
process will run until the result is satisfactory. If proven
successful the final interface technique of metaphor can
be incorporated into existing user interface design tools.

Kong et al. [11] proposed an approach to develop
adaptive multimodal interfaces. The approach quantifies
the user preference of each modality. The framework takes
the specification of interaction contexts (user, device, and
environment), the modality space, the requirements of
each modality, and a mapping between modality space
and preference space as inputs. The approach proposes
the following steps to design the interface:

• to analyze problems and design the modality space
(available input/output modalities) — to elicit user
requirements and identify problems;

• to determine interaction contexts — to create inter-
action scenarios and determine interaction contexts
(user, device, and environment);

• to assess the preference score of a modality under
an interaction context — to evaluate and quantify
(using a formula) the preference score of a modality.

A framework for user interface adaptation is
proposed for the development of context-sensitive user
interfaces [12]. It includes six steps:

• user interface modeling (description of the abstract
user interface);

• default user interface design (default version of a
concrete user interface);

• supplemental user interface1 design (extend or re-
place the default user interface) — this step is
omitted when the system generate the default user
interface automatically;

• context of usage instantiation (identification and
instantiation of the context of usage — user model,
device model, and environment model -– by the
platform);

• user interface accommodation — system-drive -–
(adaption of the user interface at runtime to match
a particular context of usage);

• user interface customization — user-drive — (cus-
tomization of the user interface by user operations).

For each step, the authors represent a description and
examples of methods and techniques that can be used
through the user interface development.

Based on the analysis of existing design techniques
for adaptive intelligent multimodal interfaces, we can
conclude that there are no generally accepted methods
and design tools, while it is possible to identify common
stages that are proposed by all authors:

• analysis of the context of usage and user problems;

281

• interface design and development;
• evaluating the quality of the designed interface.
Disadvantages when designing user interfaces are:
• the knowledge on each stage of design is held

by different specialists in an unformalized, non-
uniformized form;

• the absence of a formalized documentation phase of
the design steps leads in the future to the need to
create separate help-systems for users, developers,
etc.;

• lack of comprehensive automation of the interface
design process.

III. PROPOSED APPROACH

To eliminate the disadvantages of existing solutions,
it is proposed to use the ontological approach based on
a semantic model in the design and implementation of
an adaptive intelligent multimodal user interface. Such
an interface is proposed to consider as a specialized
subsystem for solving user interface problems, consisting
of a knowledge base and a problem solver of interface
problems. It is proposed to describe the model of knowl-
edge base and problem solver on the basis of a universal
unified language of knowledge representation, which will
ensure compatibility between these components.

The architecture of the interface of such a system
was considered in [13]. The proposed methodology for
designing adaptive intelligent multimodal user interfaces
will include:

• analysis of the user, their needs and purposes, and
the context of usage;

• analysis of user interface requirements;
• user interface modeling;
• default user interface design;
• development of the user interface;
• analysis of the user interface and its adaptation.
Since knowledge about a particular stage is usually held

by different experts, a feature of the proposed approach is
the necessary formalized documentation of knowledge in
a unified form and the usage of the component approach
at each of the stages.

A library of reusable components of the knowledge
base, problem solver, and interface is proposed for the
component approach.

Thus, results of the first stage, such as the model of a
particular user, their needs and the context of system usage
(device, environment) should be formalized within the
appropriate knowledge base ontologies of the intelligent
interface. In this process of formalization, if necessary,
components of the knowledge base should be reused from
the library of reusable components and new components
can be added to the same library.

Results of the second step are the final requirements
for the interface, which must be formulated with respect to
the user model and its purpose, as well as with respect to

the context of usage. The results should also be formalized,
and existing knowledge base components from a reusable
component library can be used in the execution process.

In accordance with the requirements for the user
interface, a model of an adaptive intelligent multimodal
user interface is constructed, which is the result of the
third stage. Such a model will include a formalized
model of the knowledge base and the problem solver.

The result of the fourth step is a model-based
designed user interface. Interface, knowledge base, and
problem solver components can be used in the design.
Such components will be written in a unified form, which
will ensure their automatic compatibility.

The result of the fifth step is the implementation of
the designed user interface. In this case it is necessary
to use ready interface components from the library of
reusable interface components.

At the stage of user interface analysis and adaptation,
ready-made components of the problem solver are used.

This will form a knowledge base of the designed
interface, which can automatically be used as a help-
system for users, developers, etc.

Thus, based on the above, the following demands can
be made to the technology, on the ground of which this
approach can be implemented:

• the technology should support a component approach
to creating semantic models;

• the technology should allow the simple integration
of various semantic models within a unified system;

• the technology should provide an opportunity to
describe different semantic models and their com-
ponents of various types of knowledge in a single
format.

Among the existing system design technologies, the
OSTIS Technology meets the specified requirements,
among the advantages of which it is also possible to
additionally highlight the presence of a basic set of
ontologies that can serve as the ground for the IUI model
being developed.

Thus, within this approach, in the article, an option for
implementing a framework for building UIs is proposed,
which is based on the OSTIS Technology, providing
a universal language for the semantic representation
(encoding) of information in the memory of intelligent
computer systems, called an SC-code. Texts of the SC-
code (sc-texts) are unified semantic networks with a
basic set-theoretic interpretation. The elements of such
semantic networks are called sc-elements (sc-connectors
and sc-nodes, which, in turn, can be sc-edges or sc-
arcs, depending on the orientation). The Alphabet of the
SC-code consists of five main elements, on the ground
of which SC-code constructions of any complexity are
built, as well as more particular types of sc-elements are
introduced (for example, new concepts). The memory that

282

Figure 1. The architecture of the ostis-system

stores SC-code constructions is called semantic memory,
or sc-memory [14].

The architecture of each ostis-system includes a plat-
form for interpreting semantic models of ostis-systems as
well as a semantic model of the ostis-system described
using the SC-code (sc-model of the ostis-system). In turn,
the sc-model of the ostis-system includes the sc-model of
the KB, the sc-model of the interface, and the sc-model
of the problem solver. The principles of the design and
structure of KBs and problem solvers are discussed in
more detail in [15] and [16], respectively. Within this
article, the sc-model of the UI will be considered, which
is included in the sc-model of the interface. Its principles
were described in the article [17], the development of
which is this work.

The architecture of the ostis-system is shown in Figure
1.

A library of reusable ostis-system components already
exists within the OSTIS Technology.

It is important to note that all of its components are
compatible with each other and stored in a single form
of representation.

Within library of reusable ostis-system components
there is the following hierarchy of components.

reusable ostis-systems component
⇒ subdividing*:

{{{• reusable knowledge base component
⊃ semantic neighborhood
⊃ subject domain and ontology
⊃ knowledge base
⊃ template of a typical ostis-systems

component
∋ Template for the subject

domain description
∋ Template for the relation

description
• reusable problem solver component

⊃ atomic knowledge processing
agent

⊃ knowledge processing program
• reusable interface component

⊃ reusable user interface component
for display

⊃ interactive reusable user interface
component

}}}

Any ostis-system can integrate an intelligent interface
according to the proposed architecture. But it is also
important to clarify the concept of user interface in the
context of the OSTIS Ecosystem.

Within the OSTIS Ecosystem, there is the concept of a
personal ostis-assistant, an ostis-system that is a personal
assistant to the appropriate human who is a part of the
OSTIS Ecosystem, i.e. an ostis-system that mediates the
human interactions with the members of all the collectives
(ostis-communities) of which the human is a member.

Since user interaction with the OSTIS Ecosystem only
takes place via a personal assistant, an adaptive intelligent
multimodal user interface is required not for all ostis-
systems but only for ostis-systems that are personal
assistants.

A model of the user, their activities, etc. in this context
should only be stored within the user’s personal assistant
and shared with other systems as needed.

The personal assistant must be able to retrieve the
interface model of other ostis-systems and display it to
the user.

Proposed approach will allow:
• unifying the methods and tools for designing user

interfaces, providing the ability to reuse already
developed components;

• ensuring the extensibility of the interface compo-
nents;

• designing tools to help the user to interact with the
interface of the system in connection with the design
phase of the interface itself;

• ensuring that interface design tools and the system
for which it is designed will be compatible, providing
effective integration of any interface into any system;

• using the help system, which is an intermediary in
communicating with the system.

IV. CONCLUSION

In the article, the methods of designing interfaces of
next-generation intelligent computer systems are consid-
ered.

As a result for the analysis of existing methods of
designing adaptive intelligent multimodal user interfaces,
it was concluded that there are no generally accepted
methods and means of designing user interfaces, however,
there are the following general stages of design:

• analysis of the context of usage and user problems;
• interface design and development;
• evaluating the quality of the designed interface.

283

Among the disadvantages of the reviewed methodolo-
gies for the design of user interfaces were the following:

• the knowledge on each stage of design is held
by different specialists in an unformalized, non-
uniformized form;

• the absence of a formalized documentation phase of
the design steps leads in the future to the need to
create separate help-systems for users, developers,
etc.

• lack of comprehensive automation of the interface
design process.

To address these disadvantages, within the article, it is
proposed to introduce a necessary stage of the formalized
documentation of knowledge in a unified form, as well
as an ontological approach based on a semantic model in
the design and implementation of an adaptive intelligent
multimodal user interface based on the OSTIS Technology
is considered, which will allow:

• unifying the methods and tools for designing user
interfaces, providing the ability to reuse already
developed components;

• ensuring the extensibility of the interface compo-
nents;

• designing tools to help the user to interact with the
interface of the system in connection with the design
phase of the interface itself;

• ensuring that interface design tools and the system
for which it is designed will be compatible, providing
effective integration of any interface into any system;

• using the help system, which is an intermediary in
communicating with the system.

V. ACKNOWLEDGMENT

The authors would like to thank the research group of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for its help in the work and valuable
comments.

REFERENCES

[1] J. Foley, W. Chul, S. Kovacevic, and K. Murray, “The user interface
design environment,” ACM SIGCHI Bulletin, vol. 20, pp. 77–78,
07 1988.

[2] T. A. Fomina and G. M. Novikova, “Proektirovanie adaptivnogo
interfejsa is dlya podderzhki deyatel’nosti obrazovatel’nogo
uchrezhdeniya,” Vestnik Altajskoj akademii ekonomiki i prava,
vol. 6, no. 1, pp. 125–133, 2020.

[3] I. M. Ismagilova and S. Valeev, “Postroenie dinamicheskih
adaptivnih interfeisov informacionno-upravlyayuschih sistem na
osnove metodov iskusstvennogo intellekta,” Vestnik Ufimskogo
gosudarstvennogo aviacionnogo tehnicheskogo universiteta, vol. 9,
pp. 122–130, May 2018.

[4] S. Valeev, “Postroenie adaptivnih interfeisov v slojnih raspredelen-
nih tehnicheskih sistemah s primeneniem statisticheskih metodov,”
Vestnik Ufimskogo gosudarstvennogo aviacionnogo tehnicheskogo
universiteta, vol. 9, pp. 140–150, May 2018.

[5] M. Montero and E. Gaudioso, Adaptable and Adaptive Web-
Based Educational Systems : Encyclopedia of human computer
interaction. UK: Liverpool John Moores University, 2005.

[6] E. Schlungbaum, “Individual user interfaces and model-based user
interface software tools,” in IUI ’97, 1997.

[7] S. Brdnik, T. Heričko, and B. Šumak, “Intelligent user interfaces
and their evaluation: A systematic mapping study,” Sensors, vol. 22,
no. 15, 2022. [Online]. Available: https://www.mdpi.com/1424-
8220/22/15/5830

[8] P. Ehlert, Intelligent User Interfaces: Introduction and Survey, 02
2003.

[9] D. Benyon, “Adaptive systems: A solution to usability problems,”
User Modeling and User-Adapted Interaction, vol. 3, pp. 65–87,
1993.

[10] H. C. Lu, “Designing the user interface: Strategies for effective
human computer interaction (3rd ed.) by ben shneiderman 1998,
639 pages, $47.29 reading, ma: Addison-wesley isbn 0-201-69497-
2,” Ergonomics in Design, vol. 6, no. 4, pp. 31–32, 1998.

[11] J. Kong, W. Zhang, N. Yu, and X. Xia, “Design of human-
centric adaptive multimodal interfaces,” Int. J. Hum.-Comput. Stud.,
vol. 69, pp. 854–869, 12 2011.

[12] G. Zimmermann, G. Vanderheiden, and C. Strobbe, “Towards deep
adaptivity – a framework for the development of fully context-
sensitive user interfaces,” 06 2014, pp. 299–310.

[13] M. E. Sadouski, “Ontological approach to the building of semantic
models of user interfaces,” Otkrytye semanticheskie tehnologii
proektirovanija intellektual’nyh sistem [Open semantic technolo-
gies for intelligent systems], pp. 105–116, 2021.

[14] V. Golenkov, N. Gulyakina, I. Davydenko, and D. Shunke-
vich, “Semanticheskie tekhnologii proektirovaniya intellektual’nyh
sistem i semanticheskie associativnye komp’yutery [Semantic
technologies of intelligent systems design and semantic associative
computers],” Otkrytye semanticheskie tehnologii proektirovanija
intellektual’nyh sistem [Open semantic technologies for intelligent
systems], pp. 42–50, 2019.

[15] I. Davydenko, “Semantic models, method and tools of knowledge
bases coordinated development based on reusable components,” in
Otkrytye semanticheskie tehnologii proektirovanija intellektual’nyh
sistem [Open semantic technologies for intelligent systems],
V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2018, pp. 99–118.

[16] D. Shunkevich, “Agentno-orientirovannye reshateli zadach
intellektual’nyh sistem [Agent-oriented models, method and
tools of compatible problem solvers development for intelligent
systems],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2018,
pp. 119–132.

[17] A. Boriskin, M. Sadouski, and D. Koronchik, “Ontology-based
design of intelligent systems user interface,” vol. 12, pp. 95–106,
02 2017.

Методика и средства компонентного
проектирования интерфейсов

интеллектуальных компьютерных систем
нового поколения

Садовский М.Е., Жмырко А.В.
В статье рассматривается методика проектирования ин-

терфейсов компьютерных систем нового поколения. Опи-
саны этапы проектирования адаптивных интеллектуальных
мультимодальных пользовательских интерфейсов и приме-
нение этих этапов в контексте Технологии OSTIS.

Received 28.10.2022

284

Universal model of interpreting logical-semantic
models of intelligent computer systems of a new

generation
Daniil Shunkevich

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: shunkevich@bsuir.by

Abstract—In the article, an approach to solving the
problem of the platform independence of computer systems
is considered, which assumes unification of the principles
for the implementation of such systems and ensuring their
semantic compatibility based on the OSTIS Technology.
The formalized system of concepts is given, that defines the
principles of the implementation of this approach, including
the principles for the implementation of the hardware
platform for the implementation of systems built on the
basis of the OSTIS Technology – an associative semantic
computer.

Keywords—OSTIS Technology, platform independence,
ontology, associative semantic computer.

I. INTRODUCTION

In general, the development of any artificial system,
in particular, an intelligent computer system, involves the
execution of two stages:

• the design stage, that is, the building of a formal
model of the system, sufficient to understand the
principles of its configuration and perform the
subsequent stage of its implementation;

• the implementation stage, that is, the direct re-
alization of the developed model using specific
means (tools, materials, components, etc.). In the
case of computer systems, the execution of this
stage usually involves the selection of particular
programming languages, libraries, third-party tools
such as DBMS and various services, etc., as well
as the programming and debugging of the system
using the chosen means.

For each of these stages, distinct methods as well as
automation tools for the corresponding processes may
exist.

If the design stage of a computer system usually
requires the participation of highly qualified specialists
and experts in the subject domains in which automation
is carried out, then the implementation stage, on the one
hand, is usually simpler (in case of high-quality execution
of the design stage) and, on the other hand, requires
significant resources. One of the reasons for this is the

need for a computer system to work on various platforms
(devices), each of which, in general, may have its own
features and limitations that need to be taken into account
at the implementation stage. The solution to this problem
is to ensure the platform independence (or cross-platform
compatibility) of the computer systems being developed.

II. ANALYSIS OF MODERN APPROACHES TO ENSURING
THE PLATFORM INDEPENDENCE

The idea of ensuring the platform independence is
widely used in modern computer systems for a long time.
This problem is usually considered at two levels:

• the problem of enabling the work of the software
system in different operation systems;

• the problem of ensuring the compatibility of the
operation system with various hardware architectures.
To solve this problem, different builds of the opera-
tion system kernel may exist for various hardware
architectures, which is typical for Linux operation
systems. At the same time, it is essential to note
that in the vast majority of cases this entails not
fundamentally different architectures but options for
implementing the basic von Neumann architecture.

In the case when the computer system being developed
is designed at a lower level than the operation system
as such (for example, when programming controllers for
managing various devices), the problem of ensuring the
platform independence is significantly aggravated and can
most often be solved only for a set of hardware of a certain
class for which the access interface is standardized, that
is, a set of low-level information processing commands.

Thus, it can be said that much attention in the design
of modern computer systems is currently being paid to
the first of the listed levels of the platform independence,
that is, ensuring the operation of the software system
on different operation systems. This can be achieved in
different ways:

• The usage of cross-platform programming languages,
which, in turn, can be divided into “fully” inter-

285

preted languages (Python, JavaScript and languages
based on it, PHP, and others) and languages using
compilation into the platform-independent low-level
bytecode with its possible subsequent compilation
into the machine code directly during execution (Just-
in-time compilation, or JIT compilation). Languages
of the second class include, for example, Java and
C#. The implementation of this approach requires the
installation of the appropriate programming language
or bytecode on the target computer with the operation
system of the interpreter.
Despite its popularity, this option has a number of
limitations:
– on average, the performance of interpreted pro-

grams is lower than compiled ones. One of
the approaches to solving this problem is JIT
compilation;

– strictly speaking, cross-platform compatibility
with this option is provided not for all operation
systems but for a class of operation systems
and the corresponding class of devices, for ex-
ample, operation systems designed for personal
computers. For example, an application for a per-
sonal computer written in Java cannot be directly
transferred to a mobile device, because when
developing mobile applications, other principles
of user interaction with the system interface, the
absence of multiwindowing, and much more are
taken into account.

• The implementation of the system in the form of a
web application, which is operated through a web
browser and whose interface is thus implemented
on the basis of generally accepted standards of the
World Wide Web (HTML, CSS, JavaScript and
languages and libraries based on it). This option
provides the ability to work with the application
from any device that has a web browser, including a
mobile one. The disadvantages of this option include:
– as a rule, high demands on the performance of

the end device. A modern web browser is one of
the most resource-intensive applications on almost
any device;

– the problem of ensuring the platform independence
of the server part of the web application remains
behind the scenes, which should be solved in some
other way;

– despite standardization, developers often have to
take into account the specifics of particular web
browsers and test the performance of applications
for each of them;

– potentially, the same web application can be used
on any device, however, to ensure convenience
and clarity, as a rule, it is necessary to develop
separate versions of the web application adapted
to different devices, having, for example, different

screen sizes.
• Virtualization (containerization, emulation). The

listed terms are not completely synonymous but
generally denote an approach in which an isolated
local environment (virtual machine, container, emu-
lation environment) is created within the operation
system, containing all the settings necessary for the
work of an application and guaranteeing its work
on any operation systems and devices where the
corresponding virtual machine or container can be
interpreted. Accordingly, the running of such envi-
ronments requires the installation of an appropriate
interpreter or emulator on the end device.
This approach is rapidly developing and gaining
popularity at the moment, since it allows not only
solving the problem of cross-platform compatibility
but also saving the consumer from installing a
large number of dependencies and configuring the
application on the end device.
Among the popular tools implementing this ap-
proach, tools for virtualization (VirtualBox, DOSBox,
VMware Workstation), containerization (Docker),
emulation of Android applications for desktop op-
eration systems (Genymotion, Bluestacks, Anbox),
and many others can be specified.
The disadvantages of this approach include its
resource intensity and reduced performance, as
well as limited usage (as a rule, the corresponding
interpreters are developed only for the most popular
and demanded operation systems). In addition, there
is a next-level problem associated with dependence
on the selected virtualization (containerization) tool.

It is also important to note that even for interpreted
programming languages, there is a problem of application
dependence on the set of libraries and frameworks used.
So, when developing an interface of a web application,
the popular AngularJS and Reactos frameworks can be
used, while after selecting one of them, it is impossible
to quickly transfer the application to another framework.

Thus, it can be concluded that a lot of attention is paid
to the problem of ensuring the platform independence
in modern computer systems, but it has not been fully
solved. At the same time, there are a large number
of successful private solutions, which, however, have
serious limitations, primarily due to the lack of unification
of modern approaches to the development of computer
systems.

The problem of ensuring the platform independence
becomes even more urgent in the context of the develop-
ment of intelligent computer systems. This is conditioned
by the following features of such systems:

• a much more complex structure of the represented
information in comparison with traditional computer
systems and, accordingly, the variety of forms of its
representation, storage and processing of which on

286

different platforms can be organized in completely
different ways;

• high performance requirements for some classes of
systems, in particular, systems that use machine
learning, which leads to the creation of specialized
hardware architectures, such as, for example, neuro-
computers [1], [2];

• a variety of problem-solving models that are gener-
ally implemented differently in various systems;

• the relevance of the development of hybrid intel-
ligent systems [3], within which various types of
knowledge and various problem-solving models are
integrated. Due to the lack of a generally accepted
unified foundation for their integration at the moment,
such systems are created mainly with a focus on a
specific platform and can hardly be transferred to
other platforms.

Thus, we can say that the problem of ensuring the plat-
form independence for intelligent systems is largely con-
ditioned by the deficiency in the semantic compatibility
of components of such systems with each other, which,
in turn, creates obstacles even for the implementation
of approaches to ensuring the platform independence,
implemented in the development of traditional computer
systems.

III. PROPOSED APPROACH TO ENSURING THE
PLATFORM INDEPENDENCE OF INTELLIGENT

COMPUTER SYSTEMS

To solve the problem of ensuring the platform indepen-
dence of intelligent systems, as it was mentioned earlier,
it is necessary first to ensure the semantic compatibility of
the components of such systems with each other, which,
in turn, assumes:

• unifying the representation of various kinds of
information stored in the knowledge bases of such
systems;

• unifying the basic models of processing information
stored in the knowledge bases of such systems, that
is, the allocation of a universal low-level program-
ming language that allows processing the stored
information in a unified form;

• unifying the principles of implementing various
problem-solving models and, as a result, the possi-
bility of their integration within hybrid intelligent
systems;

• unifying the principles of developing computer
system interfaces, which would make it possible to
carry out within one intelligent system the interaction
with other systems and users of such systems in
different external languages, including natural ones.

These principles are implemented within the Open
Semantic Technology of Intelligent Systems Design
(OSTIS Technology) [4], which is proposed to be the
basis for solving the problem of ensuring the semantic

compatibility of components of intelligent computer
systems and ensuring the platform independence of such
systems. In particular, within the OSTIS Technology,
the following key principles from the point of view of
ensuring the platform independence are implemented:

• the OSTIS Technology is based on a universal
method of semantic representation (encoding) of
information in the memory of intelligent computer
systems, called an SC-code. Texts of the SC-code
(sc-texts, sc-constructions) are unified semantic net-
works with a basic set-theoretic interpretation. The
elements of such semantic networks are called sc-
elements (sc-nodes and sc-connectors, which, in
turn, depending on orientation, can be sc-arcs or
sc-edges). The Alphabet of the SC-code consists of
five main elements, on the basis of which SC-code
constructions of any complexity are built, including
more specific types of sc-elements (for example,
new concepts). Universality and uniformity of the
SC-code makes it possible to describe on its basis
any types of knowledge and any problem-solving
methods, which, in turn, significantly simplifies their
integration within a single system;

• the basis of the knowledge base developed by
the OSTIS Technology is a hierarchical system of
semantic models of subject domains and ontologies,
among which the universal Kernel of the knowledge
base semantic models and the methodology for the
development of semantic knowledge base models are
allocated, which ensure the semantic compatibility
of the knowledge bases being developed;

• the basis of information processing within the OSTIS
Technology is the SCP Language, the program texts
of which are also written in the form of SC-code
constructions;

• the problem solver architecture within the OSTIS
Technology is based on a multi-agent approach, in
which agents interact with each other purely by
specifying the actions they perform within a common
semantic memory (such agents are called sc-agents).
Such an approach allows ensuring the fundamental
possibility of implementing any problem-solving
methods in the form of corresponding solver com-
ponents and ensuring their semantic compatibility;

• the interface of the ostis-system is interpreted as
a specialized subsystem that is built on the same
principles as any other ostis-system (that is, it has its
own knowledge base and problem solver) and solves
problems related to the interaction of the system
with the external environment;

• all of these principles together make it possible to
ensure the semantic compatibility and simplify the
integration of both various components of computer
systems and such systems themselves.

The listed principles allow concluding that the OSTIS

287

Technology provides a fundamental possibility of imple-
menting the platform independence of computer systems
developed on its basis (ostis-systems). On the other hand,
thanks to its universality, the OSTIS Technology allows
transforming any modern computer system into the ostis-
system, which will be functionally equivalent to the
original computer system but at the same time will have
all the above features that create preconditions for solving
the problem of the platform independence.

To solve this problem at the level of the OSTIS
Technology it is proposed to use an ontological approach
involving the building of a family of ontologies, providing
clarification of concepts such as ostis-system, ostis-
platform, their structure, typology, and the requirements
imposed on them.

As for the above-mentioned problem of the dependence
of computer systems on specific frameworks, a similar
problem may arise with the further development of the
OSTIS Technology, in a situation where the corresponding
libraries will contain a sufficiently large number of
functionally equivalent components. However, thanks
to the principles underlying the OSTIS Technology, in
particular, the semantic representation of information and
semantic compatibility of components, this problem will
be much less acute, since:

• the number of functionally equivalent components
will be significantly lower than in traditional infor-
mation technologies; it is not necessary to create
syntactically different components: the differences
will be only at the semantic level;

• independently, the components will be more univer-
sal, that is, they can be used in a much larger number
of systems;

• there is an opportunity to automatically identify close
components, their similarities, differences, potential
conflicts, and dependencies of components;

• it is possible to build fairly simple (compared to
traditional technologies) procedures for the transition
from one framework to another, since all components
and frameworks have a common formal semantic
basis of a level that is higher than in traditional
technologies.

Within the OSTIS Technology, several universal variants
of visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant). Within
this article, fragments of structured texts in the SCn code
[4] will often be used, which are simultaneously fragments
of the source texts of the knowledge base, understandable
to both human and machine. This allows making the
text more structured and formalized, while maintaining
its readability. The symbol “:=” in such texts indicates
alternative (synonymous) names of the described entity,
revealing in more detail certain of its features.

IV. ARCHITECTURE AND PRINCIPLES FOR THE
OSTIS-SYSTEMS IMPLEMENTATION

Let us consider the proposed approach to organizing
the implementation of ostis-systems. One of the key
principles of the OSTIS Technology is to ensure the
platform independence of ostis-systems, that is, a strict
separation of the logical-semantic model of the cybernetic
system (sc-models of the cybernetic system) and the
interpretation platform of the sc-models of the cybernetic
system (ostis-platform). The advantages of such a strict
separation are quite obvious:

• the transfer of the ostis-system from one platform to
another (for example, a newer and more efficient or
focused on a certain class of devices) is performed
with minimum overhead costs (in the ideal case, it
generally comes down to loading the sc-model of a
cybernetic system onto the platform);

• the components of ostis-systems become universal,
that is, they can be used in any ostis-systems where
their usage is appropriate;

• the development of the platform and the development
of sc-models of systems can be carried out in parallel
and independently of each other, in general, by
separate independent teams of developers according
to their own rules and methods.

Let us consider in more detail the concept of the logical-
semantic model of a cybernetic system.

logical-semantic model of a cybernetic system
:= [formal model (formal description) of the func-

tioning of a cybernetic system, consisting of
(1) a formal model of information stored in
the memory of a cybernetic system and (2) a
formal model of a group of agents processing
the specified information]

⊃ sc-model of a cybernetic system
:= [logical-semantic model of a cybernetic

system, represented in an SC-code]
:= [logical-semantic model of an ostis-system,

which, in particular, can be a functionally
equivalent model of some cybernetic sys-
tem that is not an ostis-system]

cybernetic system
⊃ computer system

:= [artificial cybernetic system]
⊃ ostis-system

:= [computer system built using the
OSTIS Technology based on the
interpretation of the designed
logical-semantic sc-model of this
system]

288

ostis-system
⊂ subject
⇒ generalized decomposition*:

{{{• sc-model of a cybernetic system
• ostis-platform

}}}

sc-model of a cybernetic system
⇒ generalized decomposition*:

{{{• sc-memory
• sc-model of the knowledge base
• sc-model of the problem solver
• sc-model of the cybernetic system

interface
}}}

sc-memory
:= [abstract sc-memory]
:= [sc-storage]
:= [semantic memory storing SC-code constructions]
:= [storage of SC-code constructions]

The sc-memory is, on the one hand, a common
environment for storing the knowledge base and, on the
other hand, an environment for interaction of sc-agents.
At the same time, each sc-agent relies on some known
sc-elements stored in the sc-memory (key sc-elements of
this sc-agent).

In general, the sc-memory implements the following
functions:

• storage of SC-code constructions;
• storage of information constructions (files) external

to the SC-code. In general, file storage can be
implemented in a way different from storing sc-
constructions;

• access to SC-code constructions (reading, creat-
ing, deleting), implemented through the appropriate
software or hardware interface. Such an interface
is essentially a microprogramming language that
allows implementing more complex procedures for
processing stored constructions based on it, including
the operators of the SCP Language, the set of
which determines the list of commands of such a
microprogramming language. The sc-memory itself
is passive in this regard and only executes commands
initiated from the outside by any subjects.

Note that the separation of the storage and access
functions is rather conditional, since it seems impractical
to implement the function of storing constructions without
the possibility of accessing them at least at the lowest
level, because it will be impossible to use such storage.

The terms “sc-memory” and “abstract sc-memory” are
synonyms in the way that mentioning the sc-memory we
mean some abstraction for which its maximum volume
is not specified (the maximum number of sc-elements,
that can be stored in this memory simultaneously), a

particular method of storing sc-elements, means for
ensuring the storage reliability, etc. All these features are
specified at the level of the sc-memory implementation in
a hardware version or a software model based on some
other architecture.

The explicit allocation of the sc-model of the knowledge
base, sc-model of the problem solver, and sc-model of
the cybernetic system interface within the sc-model of
the cybernetic system is to a certain extent conditional,
since to ensure the platform independence, sc-models of
a cybernetic system, the problem solver, and the system
interface are described by means of the SC-code and, thus,
are also part of the knowledge base. Such an explicit
allocation of these components is conditioned by the
convenience of designing and maintaining the system.

Thus, on condition of strict separation of the sc-model
of the cybernetic system and ostis-platform, as well as
ensuring the universality of the ostis-platform, that is, the
ability to interpret any sc-model of the cybernetic system
on any variant of the ostis-platform, the implementation
stage of the ostis-system actually comes down to loading
the sc-model of a cybernetic system on the selected variant
of the ostis-platform.

It is important to note that the universality of a
particular implementation option of the ostis-platform
is obviously limited by the physical (hardware) part of
this implementation. For example, if the hardware of
the selected platform option is a conventional personal
computer, then without the addition of extra hardware
components, the system will not be able to solve problems
related to the physical movement of itself and other
objects in space, even if the software part of the system is
able to perform the necessary calculations. In other words,
any ostis-platform will always be limited in solving be-
havioral problems of any classes, no matter how powerful
physical resources it possesses. Thus, it is more correct
to talk about the universality of the ostis-platform in the
context of solving information problems, that is, the abil-
ity to interpret any sc-models of cybernetic systems
regardless of what kind of information problems these
systems solve.

Based on this, it is possible to formulate a key
requirement for the sc-model of a cybernetic system –
at none of the stages of solving any information problem
in this system the features of the platform on which the
specified sc-model will be interpreted in the future should
be taken into account. Similarly, the key requirement for
the ostis-platform is to provide an interface for accessing
(searching and converting) information stored in the sc-
memory in some universal way, independent from the
specifics of the implementation of a particular platform.
Thus, the most important problem to ensure the platform
independence of ostis-systems is a clear specification of
the requirements for each implementation of the ostis-
platform, that is, standardization of ostis-platforms. It

289

is important to note that such standardization should
not depend on the form in which the ostis-platform
is implemented and, accordingly, be suitable for the
hardware version of the implementation.

To clarify the requirements for the ostis-platform, we
introduce the concept of an sc-machine, which is an
analogue of such models as the Post Machine and the
Turing Machine [5], the von Neumann Machine [6].

sc-machine
:= [abstract sc-machine]
:= [generalization of various implementations of

ostis-platforms, for which general functional
requirements are set]

:= [generalized model describing the functioning of
any ostis-platform, regardless of the way it is
implemented]

:= [generalized model that defines the general pat-
terns of any ostis-platform, regardless of the way
it is implemented]

:= [generalized information image of the ostis-
platform]

⇐ generalized model*:
ostis-platform

⇒ generalized decomposition*:
{{{• sc-memory

⇐ generalized model*:
implementation of the sc-memory

• abstract machine of knowledge processing
⊂ abstract sc-agent

}}}
⊃ scp-machine

⇐ generalized model*:
scp-interpreter

:= [sc-machine that provides interpretation
of the ostis-systems basic programming
language]

:= [generalized model of the interpreter of
the ostis-systems basic programming lan-
guage]

:= [generalized model defining the general
principles for the interpretation of the
ostis-systems basic programming lan-
guage]

:= [generalized model of operational seman-
tics of the ostis-systems basic program-
ming language]

Potentially, we can talk about several possible function-
ally equivalent variants of the scp-machine, which will
correspond to different variants of the basic programming
language. Within the current version of the OSTIS
Technology, both the denotational semantics of the SCP
Language and its operational semantics, implemented in
the form of an abstract scp-machine, are fixed [4].

It is important to emphasize that despite the advan-
tages of the platform-independent implementation of
ostis-systems, it sometimes turns out to be advisable
to implement some components of ostis-systems (for
example, specific sc-agents or user interface components)
at the level of the ostis-platform. In the case of such an
implementation of the sc-agents programs, an analogy can
be drawn with the implementation of any subprograms at
the level of microprogramming languages for modern
computers. Most often, the reasonableness of such a
solution is conditioned by an increase in the performance
of such components and the system as a whole, since the
implementation of the component, taking into account the
features of the platform, is generally more productive. At
the same time, let us note that the latter statement is not
always true, since when implementing a component at the
level of a logical-semantic model, for example, parallel
information processing models can be implemented,
which are not always easily and clearly implemented
at the platform level.

Thus, when designing each specific ostis-system, the
developer needs to make a decision about the implemen-
tation of certain components at a platform or platform-
independent level. At the same time, it is obvious that
from the point of view of technology development and the
accumulation of project experience, the implementation
of ostis-systems components at a platform-independent
level is a higher priority.

Based on the above, we can assume the existence of
ostis-systems in which all sc-agents are implemented at
the platform level, which in this case is essentially “cut
out” for a specific ostis-system and can be considered
as an analogue of a specialized computer focused on
solving problems of only a certain limited class. Let
us call such an option for the implementation of ostis-
systems the minimum ostis-system configuration. In order
for minimum ostis-system configuration to be considered
an ostis-system at all, that is, a system that is built in
accordance with the principles of the OSTIS Technology,
it must meet the following minimum set of requirements:

• the usage of the SC-code as a basic language for
encoding information in the knowledge base and,
accordingly, the presence of memory storing SC-code
constructions;

• the presence of the knowledge base defining the
denotational semantics of the concepts used by the
system;

• the presence of at least one internal sc-agent per-
forming knowledge processing in the memory of
the ostis-system. This sc-agent can be implemented
at the platform level, accordingly, the knowledge
base of such a system may not contain procedural
knowledge (methods).

Such a variant of minimum ostis-system configuration
has only an internal sc-agent and, accordingly, has no

290

ability to communicate with the external world (we can
say that such an ostis-system does not have “sense or-
gans”). In order for the system to be able to communicate
with the external world, it is necessary to add at least
one receptor sc-agent and at least one effector sc-agent
to the minimum ostis-system configuration.

It is important to note that, as can be seen from the
description of the minimum ostis-system configuration, in
general, the ostis-system does not have to be an intelligent
system by default. Usage of the OSTIS Technology for the
development of computer systems does not automatically
make them intelligent – it allows ensuring the possibility
of subsequent unlimited intellectualization of such sys-
tems with minimum overhead costs, provided that all the
principles of the OSTIS Technology are satisfied during
their development.

V. CLARIFICATION OF THE OSTIS-PLATFORM CONCEPT

ostis-platform
:= [platform for interpreting sc-models of computer

systems]
:= [interpreter of sc-models of cybernetic systems]
:= [interpreter of unified logical-semantic models of

computer systems]
:= [family of platforms for interpreting sc-models of

computer systems]
:= [platform for implementing sc-models of computer

systems]
:= [embedded empty ostis-system]
:= [sc-machine implementation]
⊂ embedded ostis-system
⊂ platform-dependent reusable component of

ostis-systems

The implementation of the ostis-platform (interpreter of
sc-models of cybernetic systems) can have a large number
of variants – both software and hardware implemented.
If necessary, any components of problem solvers or
knowledge bases can be included in the ostis-platform in
advance at the platform-dependent level, for example,
in order to simplify the creation of the first version
of an applied ostis-system. The implementation of the
ostis-platform can be carried out on the basis of an
undefined set of existing technologies, including the
hardware implementation of any of its parts. From the
point of view of the component approach, any ostis-
platform is a platform-dependent reusable component
of ostis-systems.

ostis-platform
⇒ subdividing*:

{{{• basic ostis-platform
:= [basic interpreter of logical-

semantic models of ostis-systems]

:= [minimum universal ostis-platform
that provides interpretation of the
sc-model of any ostis-system and
includes an interpreter of the ostis-
systems basic programming lan-
guage (SCP Language)]

:= [universal interpreter of sc-models
of ostis-systems]

:= [universal basic ostis-system that
provides an imitation of any
ostis-system by interpreting the
sc-model of the imitated ostis-
system]

• extended ostis-platform
:= [ostis-platform containing addi-

tional components implemented at
the platform level]

:= [basic ostis-platform and many
components implemented at the
platform level]

• specialized ostis-platform
:= [ostis-platform that does not con-

tain an implementation of the SCP
language interpreter]

:= [non-universal ostis-platform]
}}}

The concept of a basic ostis-platform is key from the
point of view of ensuring the platform independence of
ostis-systems. The universality of the basic ostis-platform
implies the possibility of interpreting any sc-model of a
cybernetic system based on it. This is accomplished by
the presence of means within the OSTIS Technology, that
allow describing the knowledge base, problem solver,
and cybernetic system interface at the level of the
sc-model, as well as by the availability of a Basic
universal programming language for ostis-systems (SCP
Language). In this case, the SCP Language acts as a
basic low-level standard (assembler) for processing SC-
code constructions, guaranteeing completeness from the
point of view of processing, that is, providing the ability
to perform any transformation of any fragment of the
SC-code on condition that the syntactic correctness of
this fragment is maintained. It should be noted that in
general there may be several such functionally equivalent
assemblers (and, as a consequence, corresponding scp-
machines), but to ensure compatibility within the OSTIS
Technology one of these options is selected as a standard
and described in the corresponding section of the OSTIS
Standard [4].

Thus, the main and only requirement imposed on all
basic ostis-platforms to ensure their universality is the
need to provide interpretation of the SCP Language
standardized within the OSTIS Technology. It is im-
portant to note that all basic ostis-platforms must be
functionally equivalent, since they interpret the same

291

standard of the SCP Language.
Each basic ostis-platform contains:

• implementation of the means for storing SC-code
constructions (sc-memory), including the implemen-
tation of file memory;

• implementation of tools for processing SC-code
constructions – an scp-interpreter;

• implementation of a basic set of receptor sc-agents
and effector sc-agents, providing the minimum
necessary information exchange between the ostis-
system and the external environment. The specific
list of such agents requires clarification, however,
we can say that in general they can be implemented
as part of the scp-interpreter (in this case, they will
correspond to certain classes of scp-operators) or
separately from it as part of the platform;

• implementation of a set of sc-agents that provide
the basic functions of the ostis-system, related to
ensuring its operation, which in principle cannot be
implemented at a platform-independent level. Such
functions include, for example, starting the system,
loading the knowledge base into the system memory,
starting the scp-interpreter, etc.

More formally, the model of the basic ostis-platform
can be written as follows:

basic ostis-platform
⇒ generalized decomposition*:

{{{• sc-memory implementation
⇒ generalized part*:

implementation of the sc-machine
file memory

• scp-interpreter
• basic subsystem for interaction of the

ostis-system with the external environment
• subsystem for ensuring the operation of

the ostis-system
}}}

An extended ostis-platform is a basic ostis-platform
supplemented with any set of components (at least one)
implemented at the platform level, provided that all the
features of the basic ostis-platform are maintained. Thus,
an extended ostis-platform is essentially a basic ostis-
platform adapted to more efficiently solve problems of
certain classes within a specific class of ostis-systems. A
component implemented at the platform level becomes
part of this platform and thus transforms the basic ostis-
platform into the extended ostis-platform.

Introduction of the concept of the extended ostis-
platform allows formulating a number of additional
principles for the implementation of ostis-systems:

• there may be an undefined number of ostis-systems,
each of which will have its own unique extended

ostis-platform, but they will all be based on the same
variant of the basic ostis-platform;

• for each variant of the basic ostis-platform, there
may be its own library of reusable ostis-platform
components compatible with this variant of the basic
ostis-platform and that allows composing various
variants of the extended ostis-platform based on the
basic ostis-platform.

A specialized ostis-platform is a bounded implemen-
tation of the ostis-platform that does not contain an
scp-interpreter. Thus, all sc-agents, within the ostis-
system based on the specialized ostis-platform, must be
implemented at the platform-dependent level. Such a
specialized ostis-platform is an analogue of a specialized
computer implemented for a specific computer system.
Thus, in general, each ostis-system implemented on the
specialized ostis-platform will have its unique specialized
ostis-platform.

The specialized ostis-platform can be obtained from the
basic ostis-platform by excluding the implementation of
the scp-interpreter from it and implementing all necessary
sc-agents at the platform level (or borrowing all or part
of the agents from a library of reusable ostis-platform
components, that corresponds to the given variant of the
basic ostis-platform).

specialized ostis-platform
⇒ generalized decomposition*:

{{{• sc-memory implementation
⇒ generalized part*:

implementation of the sc-machine
file memory

• basic subsystem for interaction of the
ostis-system with the external environment

• subsystem for ensuring the operation of
the ostis-system

• specialized platform-dependent knowledge
processing machine
:= [sc-agent, as a rule, a non-atomic

one, providing the performance
of all the functions of some spe-
cialized ostis-platform related to
knowledge processing]

⊂ platform-dependent sc-agent
}}}

The concept of the minimum ostis-system configuration
introduced earlier can be clarified taking into account the
concept of the specialized ostis-platform.

minimum ostis-system configuration
⇒ generalized decomposition*:

{{{• sc-model of the knowledge base
• specialized ostis-platform

}}}

292

The usage of specialized ostis-platforms may be rea-
sonable at the initial stage of the development of the
OSTIS Technology, as well as in order to improve the
performance of particular ostis-systems that are most
highly loaded, however, the active development of such
specialized ostis-platforms and their components from
the point of view of the OSTIS Technology is impractical,
since:

• if any component is designed with a focus on a
specific platform, then there are no guarantees that
it can be reused in other ostis-platform implemen-
tations options (at least, components developed for
the ostis-platform software implementation will not
be able to be used within the associative semantic
computer);

• the availability of a large number of platform-
dependent components requires the development and
maintenance of a separate library infrastructure for
storing and reusing such components. The greater
the number of platform-dependent components and
the more variants of ostis-platforms exist, the more
complex and lengthy such an infrastructure will be.
At a minimum, it will be necessary to monitor the
compatibility of components with different versions
of various ostis-platforms implementation options;

• changes in the specialized ostis-platform, for exam-
ple, related to the transition to a newer and more
efficient version of the basic ostis-platform, on the
basis of which this specialized ostis-platform is built,
in general, may lead to the need in making changes
to components that depend on this ostis-platform
implementation option. The more such platform-
dependent components exist, the more potential
changes may be required and, accordingly, the
more difficult the evolution of the platform will
be, provided that the operability of the ostis-systems
in which it is used is preserved.

The above theses are also true for extended ostis-
platforms, however, in the case of extended ostis-platform,
problems associated with the transition to a newer
version of the platform and changes in the corresponding
components can always be solved by temporarily replac-
ing platform-dependent components with their platform-
independent versions with a corresponding decreased
performance but maintaining the functional integrity of
the system.

ostis-platform
⇒ subdividing*:

{{{• single-user ostis-platform
:= [option for implementing a plat-

form for interpreting sc-models
of computer systems, designed
for the case when only one user

(owner) interacts with a particular
ostis-system]

• multi-user ostis-platform
:= [option for implementing the plat-

form for interpreting sc-models of
computer systems, designed for
the case when different users can
interact with a particular ostis-
system at the same time or at
different times, generally having
different rights, areas of respon-
sibility, level of experience and
having their own confidential part
of the information stored in the
knowledge base]

}}}

With a single-user platform implementation, it turns out
to be impossible to implement some important principles
of the OSTIS Technology, for example, the collective
coordinated development of the knowledge base of the
system during its operation. At the same time, various
third-party tools can be used, for example, for developing
a knowledge base at the level of source texts.

ostis-platform
⇒ subdividing*:

{{{• software version of the ostis-platform
:= [platform for interpreting sc-

models of ostis-systems,
implemented as a software
system based on traditional
computer architecture]

:= [software platform for interpreting
sc-models of ostis-systems]

:= [software interpreter of sc-models
of ostis-systems]

• associative semantic computer
:= [hardware platform for interpreting

sc-models of ostis-systems]
:= [hardware implemented basic in-

terpreter of sc-models of ostis-
systems]

}}}

It is important to note that in any ostis-platform
implementation option, both software and hardware are
always present. So, any software version of the ostis-
platform assumes its subsequent interpretation on some
hardware basis, for example, on a personal computer
with a traditional architecture. At the same time, the
development of the ostis-platform in the form of an
associative semantic computer involves the development
of a set of micro-programs implementing basic operations
of searching and converting sc-constructions stored in the
sc-memory.

293

Thus, the separation of the set of possible ostis-platform
implementations into software and hardware variants
rather reflects the variant of the hardware architecture
on which one or another variant of the platform imple-
mentation is ultimately oriented – either the traditional
von Neumann architecture or the specialized architecture
of the associative semantic computer with structurally
reconfigurable (graphodynamic) memory. In fact, the
software version of the ostis-platform is a model (virtual
machine) of the associative semantic computer, built on
the basis of the traditional von Neumann architecture, and
the SCP Language acts as an assembler for the associative
semantic computer and can also be interpreted both within
the hardware implementation of such a computer and
within its software model.

The appropriateness of developing ostis-platform soft-
ware options at the moment is conditioned by the
obvious prevalence of the von Neumann architecture
and, accordingly, the need to implement ostis-systems
on modern computers of various types. At the same
time, it is obvious that the development of specialized
associative semantic computers will significantly increase
the efficiency of ostis-systems, and a clear separation of
the sc-model of a cybernetic system and its interpretation
platform will allow the translation of already working
ostis-systems from traditional architectures on associative
semantic computers with minimum overhead costs.

Each specific ostis-system uniquely corresponds to a
particular ostis-platform, which can relate to a different
set of classes of ostis-platforms. At the same time, it is
obvious that at the stage of platform development, some
variant of the ostis-platform is designed and implemented,
which is then replicated into different ostis-systems.
Subsequently, changes can be made to this variant of
the ostis-platform in each ostis-system, but in general, in
a large number of ostis-systems, fully equivalent ostis-
platforms can be used. Thus, it is advisable to talk about
typical ostis-platforms, which:

• are the object of development for developers of ostis-
platforms;

• are a reusable component of ostis-systems and are
specified within the appropriate libraries;

• are a sample for replication (copying) when creating
new ostis-systems.

VI. ASSOCIATIVE SEMANTIC COMPUTERS FOR
OSTIS-SYSTEMS

The usage of modern hardware and software platforms
focused on address access to data stored in memory for the
development of ostis-systems is not always efficient, since
when developing intelligent systems, it is actually neces-
sary to model nonlinear memory based on the linear one.
Improving the efficiency of problem solving by intelligent
systems requires the development of specialized platforms,
including hardware ones, focused on unified semantic

models of information representation and processing.
Thus, the main purpose of creating associative semantic
computers is to increase the performance of ostis-systems.

Let us consider in more detail the features for the
logical organization of the traditional architecture of
computer systems, which significantly complicate the
effective implementation of ostis-systems based on it:

• low level of memory access, i.e. complexity and
lengthiness of performing the procedure of associa-
tive search for the necessary knowledge fragment;

• linear memory organization and an extremely sim-
ple view of constructive objects directly stored in
memory. This leads to the fact that in intelligent
systems built on the basis of modern computers,
the manipulation of knowledge is carried out with
great difficulty. Firstly, it is necessary to operate
not with the structures themselves but with their
lengthy linear representations (lists, adjacency matri-
ces, incidence matrices); secondly, the linearization
of complex structures destroys the locality of their
transformations;

• the information representation in the memory of
modern computers has a level that is very far from
the semantic one, which makes the processing of
knowledge rather lengthy, requiring consideration
of a large number of details concerning not the
meaning of the processed information but the way
it is represented in memory;

• in modern computers, there is a low level of
hardware-implemented operations on non-numeric
data and there is no hardware support for logical
operations on knowledge fragments with a complex
structure, which makes manipulating such fragments
complicated.

The listed features, in fact, are not eliminated either in
the approaches to build non-traditional high-performance
computers (for example, computers designed for training
and interpretation of artificial neural networks [1], [2])
currently being developed, because, basically, all these
approaches (even if they deviate far enough from the basic
principles of the organization of computing machines,
proposed by von Neumann) implicitly preserve the point
of view of the computer as a large arithmometer and
thereby preserve its orientation to numerical tasks.

There are a number of articles [7]–[14] and patents [15]–
[17] aimed at developing hardware architectures designed
to process information represented in more complex forms
than in traditional architectures, but they have not gained
widespread distribution and application, due, firstly, to the
particular solutions offered and, secondly, due to the lack
of a common universal and unified coding language for
any information, in the role of which, within the OSTIS
Technology, the SC-code acts.

The SC-code, which is the formal basis of the OSTIS
Technology was originally developed as a language for

294

encoding information in memory of associative semantic
computers, so it originally laid down such principles as
universality (the ability to represent knowledge of any
kind) and unification (uniformity) of representation, as
well as minimization of the Alphabet of the SC-code,
which, in turn, makes it easier to create a hardware
platform that allows storing and processing texts of the
SC-code.

associative semantic computer
:= [hardware implemented interpreter of semantic

models (sc-models) of computer systems]
:= [semantic associative computer controlled by

knowledge]
:= [computer with a nonlinear structurally config-

urable (graphodynamic) associative memory, the
processing of information in which is reduced not
to a change in the state of memory elements but to
a change in the configuration of the connections
between them]

:= [sc-computer]
:= [scp-computer]
:= [new generation universal computer specially

designed for the implementation of semantically
compatible hybrid intelligent computer systems]

:= [new generation universal computer focused on
hardware interpretation of logical-semantic mod-
els of intelligent computer systems]

:= [new generation universal computer focused on
hardware interpretation of ostis-systems]

:= [ostis-computer]
:= [computer for the implementation of ostis-

systems]
:= [computer controlled by the knowledge repre-

sented in the SC-code]
:= [computer focused on SC-code text processing]

Let us consider the principles underlying the imple-
mentation of associative semantic computers:

• nonlinear memory – each elementary fragment of
a text stored in memory can be incident to an
unlimited number of other elementary fragments
of this text. Thus, memory cells, unlike ordinary
memory, are connected not by fixed conditional
connections that specify a fixed sequence (order)
of cells in memory but by actually (physically)
conducted connections of undefined configuration.
These connections correspond to arcs, edges, hyper-
edges of the graph (sc-text) recorded in memory;

• structurally tunable (reconfigurable) memory – the
procedure of processing information stored in mem-
ory is reduced not only to changing the state of
elements but also to reconfiguring the connections
between them. That is, during the processing of
information in structurally-tunable memory, the

changes concern not only and not even so much
the states of memory cells, as in ordinary memory,
as the configuration of the connections between these
cells. I.e., in structurally-tunable memory, during the
processing of information, not only the labels on
the vertices of the graph recorded in memory are
redistributed, but the structure of this graph itself is
also changing;

• as an internal way of encoding knowledge stored in
the memory of the associative semantic computer,
a universal (!) method of nonlinear (graph-like)
semantic representation of knowledge – SC-code
– is used;

• information processing is carried out by a group of
agents working on shared memory. Each of them re-
acts to a corresponding situation or event in memory
(a computer controlled by stored knowledge);

• there are software-implemented agents whose behav-
ior is described by agent-oriented programs stored in
memory, which are interpreted by the corresponding
groups of agents;

• there are basic agents that cannot be software
implemented (in particular, these are agents of
interpretation of agent programs, basic receptor
agents-sensors, basic effector agents);

• all agents work on shared memory at the same time.
Moreover, if several conditions of its usage arise
for an agent at some point in time in different
parts of memory, different information processes
corresponding to the specified agent in different parts
of memory can be performed simultaneously;

• in order for the agents’ information processes run-
ning in parallel in shared memory not to “interfere”
with each other, the current state is recorded and
constantly updated in memory for each information
process. That is, each information process informs
others about its intentions and wishes, which other
information processes should not interfere with. The
implementation of this approach can be carried out,
for example, on the basis of the mechanism of
locking elements of semantic memory [4];

• the processor and memory of the associative se-
mantic computer are deeply integrated and form
a single processor-memory. The processor of the
associative semantic computer is evenly “distributed”
over its memory so that the processor elements
are simultaneously computer memory elements.
That is, each cell is supplemented by a functional
(processor) element, and the tunable connections
between the cells become switched communication
channels between the functional elements. At the
same time, each functional element has its own
special internal register memory, reflecting aspects of
the current state of performing elementary operations
of the internal language, that are important for this

295

functional element.
Information processing in the associative semantic
computer is reduced to reconfiguration of communi-
cation channels between processor elements, there-
fore the memory of such a computer is nothing but
a switchboard (!) of these communication channels.
Thus, the current state of the configuration of these
communication channels is the current state of the
information being processed. This principle provides
a significant acceleration of information processing
by eliminating the stages of transferring information
from memory to the processor and back, but it is paid
for at the cost of a large redundancy of functional
(processor) means evenly distributed over memory.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

The work was carried out with the partial financial
support of the BRFFR (BRFFR-RFFR No. F21RM-139).

REFERENCES

[1] L. G. Komarcova and A. V. Maksimov, Neurocomputers: A
Textbook for Universities. - 2nd ed., revised and enlarged, ser.
Informatics at the Technical University. Moscow: Bauman
Moscow State Technical University, 2004, (In Russ).

[2] (2021, Jun) USB Accelerator | Coral. [Online]. Available:
https://coral.ai/products/accelerator/

[3] A. Kolesnikov, Gibridnye intellektual’nye sistemy: Teoriya i
tekhnologiya razrabotki [Hybrid intelligent systems: theory and
technology of development], A. M. Yashin, Ed. SPb.: SPbGTU,
2001.

[4] V. Golenkov, N. Guliakina, and D. Shunkevich, Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva i
jekspluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’juternyh sistem [Open technology of ontological design,
production and operation of semantically compatible hybrid
intelligent computer systems], V. Golenkov, Ed. Minsk: Bestprint
[Bestprint], 2021.

[5] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
automata theory, languages, and computation, 2nd ed. Upper
Saddle River, NJ: Pearson, Nov. 2000.

[6] M. Godfrey and D. Hendry, “The computer as von
Neumann planned it,” IEEE Annals of the History of Computing,
vol. 15, no. 1, pp. 11–21, 1993. [Online]. Available:
https://doi.org/10.1109/85.194088

[7] H.-N. Tran and E. Cambria, “A survey of graph processing
on graphics processing units,” The Journal of Supercomputing,
vol. 74, no. 5, pp. 2086–2115, Jan. 2018. [Online]. Available:
https://doi.org/10.1007/s11227-017-2225-1

[8] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and Q.-S.
Hua, “Graph processing on GPUs,” ACM Computing Surveys,
vol. 50, no. 6, pp. 1–35, Nov. 2018. [Online]. Available:
https://doi.org/10.1145/3128571

[9] Y. Lü, H. Guo, L. Huang, Q. Yu, L. Shen, N. Xiao, and
Z. Wang, “GraphPEG,” ACM Transactions on Architecture and
Code Optimization, vol. 18, no. 3, pp. 1–24, Sep. 2021. [Online].
Available: https://doi.org/10.1145/3450440

[10] I. V. Afanasyev, V. V. Voevodin, K. Komatsu, and H. Kobayashi,
“VGL: a high-performance graph processing framework for the
NEC SX-aurora TSUBASA vector architecture,” The Journal
of Supercomputing, vol. 77, no. 8, pp. 8694–8715, Jan. 2021.
[Online]. Available: https://doi.org/10.1007/s11227-020-03564-9

[11] J. Zhang, S. Khoram, and J. J. Li, “Boosting the Performance of
FPGA-based Graph Processor using Hybrid Memory Cube: A Case
for Breadth First Search,” Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
2017.

[12] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “GraphLily: Acceler-
ating Graph Linear Algebra on HBM-Equipped FPGAs,” 2021
IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pp. 1–9, 2021.

[13] L. Minati, V. Movsisyan, M. Mccormick, K. Gyozalyan, T. Pa-
pazyan, H. Makaryan, S. Aldrigo, T. Harutyunyan, H. T. Ghal-
taghchyan, C. Mccormick, and M. L. Fandrich, “iFLEX: A
Fully Open-Source, High-Density Field-Programmable Gate Array
(FPGA)-Based Hardware Co-Processor for Vector Similarity
Searching,” IEEE Access, vol. 7, pp. 112 269–112 283, 2019.

[14] W. S. Song, V. Gleyzer, A. Lomakin, and J. Kepner,
“Novel graph processor architecture, prototype system, and
results,” in 2016 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, Sep. 2016. [Online]. Available:
https://doi.org/10.1109/hpec.2016.7761635

[15] S. Somsubhra, “Reconfigurable semantic processor,” Oct 2006.
[16] J. D. Allen, J. Philip, and L. Butler, “Parallel machine architecture

for production rule systems,” Jun 1989.
[17] M. Moussa, A. Savich, and S. Areibi, “Architecture, system and

method for artificial neural network implementation,” Jun 2013.

Универсальная модель интерпретации
логико-семантических моделей

интеллектуальных компьютерных систем
нового поколения
Шункевич Д.В.

В работе рассматривается подход к решению пробле-
мы платформенной независимости компьютерных систем,
предполагающий унификацию принципов реализации таких
систем и обеспечения их семантической совместимости на
основе Технологии OSTIS. Приводится формализованная
система понятий, определяющая принципы реализации дан-
ного подхода, включая прицнипы реализации аппаратной
платформы для реализации систем, построенных на основе
Технологии OSTIS, – ассоциативного семантического ком-
пьютера.

Received 30.10.2022

296

Software platform for next-generation intelligent
computer systems

Nikita Zotov
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: nikita.zotov.belarus@gmail.com

Abstract—This paper describes the methodology of design-
ing semantically compatible computer systems and ensuring
their independence from the implementation of platforms
for designing such systems. The article demonstrates the
significance of designing and implementing next-generation
platforms, and also proposes the solution to the problem in
the form of designing and developing universal interpreters
of logical-semantic models of systems according to the
principles of the OSTIS Technology. This article is also
a formal specification of the first software implementation
of the ostis-platform.

Keywords—computer aided design (CAD), ontological
design, automation tools for the design and development of
computer systems, graph database, graph knowledge base,
database management system (DBMS), knowledge base
management system, universal interpreter, graph storage,
ostis-platform

I. INTRODUCTION

The main result of research in the field of design and
development of computer systems (c.s.) is not so much
the existing c.s., but the development of technologies
and tools based on the principles of these technologies
that allow to quickly and in large quantities generate a
wide variety of c.s. [1] that have great practical value.
Right now, there are a wide variety of solutions in
the field of automated design and development of c.s.,
which allow solving problems of a fairly serious level of
complexity [2]. However, none of these systems are able
to provide platform independence, and hence the semantic
compatibility and interoperability of the created computer
systems. The urgency of the problem is explained by the
need to create next-generation computer systems capable
of solving problems of any kind quickly and adequately
[3]. To achieve this, it is necessary to design the Standard
of design and developing of c.s. and implement such tools
according to this standard [4], [5], [6].

II. PROBLEMS OF THE CURRENT STATE OF COMPUTER
SYSTEMS AND PLATFORMS FOR THEIR

IMPLEMENTATION

Modern computer systems, as well as automation tools
for the design and development of such systems, have a
number of significant disadvantages:

1) Computer systems to a great extent remain dependent
on the implementation of specific platforms on which
they are designed, which, in turn, leads to significant
costs for integrating the methods and tools for system
design in case of transition to new platforms.

2) The design and development of the implementation
of a particular system is carried out using different
methods and models for designing software c.s. Thus,
the description of the target state of the system and
the description of the current implementation may
not correspond to each other, and the integration of
such solutions is difficult to achieve. This problem
is well described when designing a platform for
practical applications [7].

3) Specification of software systems is relegated to the
background, and sometimes it is not done at all by the
development project of a specific c.s. Consequently,
the costs of maintaining the process of permanent
re-engineering of such systems increase [8].

4) When developing modern systems, there is no
understanding of the need to develop and describe
the design methods for these systems, including de-
scriptions of the implementation process, directions
of use, etc. For this reason, developers of modern
software c.s. do not use already existing accumulated
experience but re-invent the same or similar solutions
[8], [9].

5) There are no unified universal tools for the develop-
ment [10] and re-engineering of other systems that
allow not only to automate their design, but also to
minimize the development process itself by way of
unifying the representation models of these systems
and having a semantically powerful complex library
of reusable components.

6) Even highly specialized software c.s. must have
a good level of intelligence and a good level of
trainability to solve more complex problems. Next-
generation software c.s., unlike modern c.s., must
operate on the meaning of what they know and
process: they must understand each other [11]. [12],
find common ground and form teams to solve
problems of any class [13], [14].

297

7) Modern computers are poorly adapted for effec-
tive implementation of even existing models of
knowledge representation and models for solving
problems that are hard to formalize, which requires
the development of fundamentally new platforms
and computers that ensure the unification of the
representation of this knowledge (!) [15], [16].

Typically, systems of this kind are designed and
developed to solve narrow applied problems. As a result,
systems with the problems described above are created.
So, most of the described problems, unfortunately, were
not solved when creating CADs described in the following
papers [17], [18], [19], [20], [21], [22].

When designing next-generation c.s., first of all, it is
necessary to take into account the shortcomings of modern
c.s. This means that the design of next-generation c.s.
should be reduced to solving the problems that exist in
modern c.s. Thus, the following possible solutions can
be identified:

1) Implementation of next-generation c.s. should not
be inferior to the implementation of modern c.s.
Such a task is reduced to the choice of means
for storing, representing and processing data in
these systems. But still, when speaking of next-
generation c.s., it is necessary to lean towards a
higher form of data – knowledge [14]. They must be
unified in their representation, semantically integral,
connected, unambiguous, etc. Thus, next-generation
c.s. should be organized in such a way that the form
of representation of different types of knowledge is
the same (!). And this, in turn, means that the design
and development tools for other systems should be
organized in such a way that these systems can be
easily integrated with each other, striving to increase
their degree of convergence [6].

2) Since modern c.s. are platform-dependent, which in
turn complicates the development of such systems,
it is necessary to create such tools that allow you to
create c.s. independently (!) of the implementation
of these tools. At the same time, this should be
done in such a way that the process of designing,
developing, documenting and using such systems is
carried out using the same tools and methods [6],
[23], which are part of these tools, and in such a way
that the quality of such systems is determined by the
degree of their deep integration with each other. This
can be solved with the help of general ontologies
for the development of such systems, that is, with
the help of an ontological [24] and component [25]
approaches (!) not only to their design, but also to
their implementation.

Specific solutions will be discussed and described
below. This work develops the ideas and solves the
problems described in the previous work [26].

III. APPROACHES TO DESIGNING AUTOMATION
SYSTEMS USED IN C.S. DESIGN AND IMPLEMENTATION

Implementation of data storages used in the vast
majority of c.s. is based on the relational data model.
Examples of such systems for processing unstructured and
semi-structured data are the SMILA platform (SeMantic
Information Logistic Architecture), Teradata Aster Dis-
covery Platform, which implement relational, columnar
and hybrid models for storing records in a database with
a massively parallel MPP architecture [27], CYC platform
[28], Semantic Web tools [29].

However, information systems are currently undergoing
intensive intellectualization. First of all, this is due to
an increase in the level of complexity of the tasks being
solved. The intellectualization of information systems, like
any technology for developing software systems, requires
taking into account weakly formalized, possibly not
completely defined, fuzzy, temporal, spatially distributed
information and, as a result, obtaining structured, semi-
structured and unstructured data [30]. The increase in the
number of intellectual tasks of processing large amounts
of data in all spheres of human activity leads to the
need to create universal means of storing, presenting and
processing multistructured information.

The presence of such tasks stimulates the transition
from conventional databases to graph counterparts. This
is explained not so much by the efficiency of memory
organization and data processing in graph databases, but
by the importance of representing the configurations
of relationships (i.e., meaning) between them [31]. A
detailed explanation of the principles of organizing graph
data in databases can be found in the work of the authors
of the popular Neo4j graph DBMS [32].

For a general understanding of the whole problem
associated with the representation and processing of
data and knowledge, we will consider several modern
implementations of graph data models in the form of
software products. Any of the databases described below
is designed for convenient storage and access to data
presented in the form of super-large graphs. According
to the organization of memory and the process of data
processing, graph databases can be classified into the
following types:

1) databases with local storage and processing of graphs
(Neo4j, HyperGraphDB, AllegroGraph);

2) databases with distributed data storage and process-
ing (Horton, InfiniteGraph);

3) databases in "key-value" format (Trinity, Cloud-
Graph, RedisGraph, VertexDB);

4) document-oriented databases (OrientDB);
5) add-ons for SQL-oriented databases (Filament, G-

store);
6) graph databases with MapReduce model (Pregel,

Apache Giraph, GraphLab).

298

A detailed description of each of the presented
databases can be found in the works devoted to comparing
relational and graph databases [33], [34], [35], [36].

The motivation for moving from conventional graph
databases is due to the advantages of organizing a memory
model and processing in them:

1) Data processing performance improves by one or
more orders of magnitude when data is represented as
graph structures, which is explained by the properties
of the graph itself. Unlike relational databases,
where query performance degrades as the dataset
grows with increasing query intensity, graph database
performance tends to remain relatively constant even
as the dataset grows. This is due to the fact that data
processing is localized in some part of the graph.
As a result, the execution time of each request is
only proportional to the size of the part of the graph
traversed to satisfy this request, and not to the size
of the entire graph [37].

2) Graph structures have tremendous expressive power.
Graph databases offer an extremely flexible data
model and way of representing [38], [39]. Graph
structures are additive, which provides the flexibility
to add new data relationships, new nodes, and new
subgraphs to an existing structure without violating
its integrity and connectivity.

As mentioned earlier, next-generation c.s., by virtue
of their properties, must operate not just with data, but
with knowledge. In order to understand the meaning of
knowledge, it is necessary to present this knowledge
in an understandable form for everyone: both for a
person and for a machine. Speaking about the unification
of the representation of all types of knowledge, it is
important to use graph databases not just as a means
for storing structured data, but for storing semantically
holistic and interconnected knowledge [40]. In the context
of designing next-generation c.s., we will talk about
knowledge bases designed according to the principles
of graph databases.

It should also be noted that the emphasis in this work
is on the development of c.s. support for the design of
other c.s., and for the development of complex tools to
support the automatic design of next-generation intelligent
computer systems, which are knowledge-driven. Such
tools can be compared with knowledge base management
systems [41], [42], [43], [44].

IV. SUGGESTED SOLUTION

Despite the vast variety of classical technologies used
by mankind, there is no general solution that allows
solving the problem in a complex manner. At the moment,
the described problems can only be solved with the help of
a general and universal solution – the OSTIS Technology.
The OSTIS Technology is based on a unified version
of information encoding based on semantic networks

with a basic set-theoretic interpretation, called SC-code.
The language of semantic representation of knowledge
is based on two formalisms of discrete mathematics: set
theory – determines the semantics of the language – and
graph theory – determines the syntax of the language.
Any types and models of knowledge can be described
using SC-code [6].

The platform for interpreting the semantic models of
ostis-systems will simply be called the ostis-platform,
which denotes the interpreter of the logical-semantic
models of ostis-systems. The logical-semantic model (sc-
model) of the osits-system is a formal model (formal
description) of the functioning of this osits -system,
consisting of (1) a formal model of information stored in
the memory of the osits-system and (2) a formal model
of a team of agents that process the specified information.
The sc-model of the ostis-system includes the sc-memory,
the sc-model of the knowledge base, the sc-model of the
problem solver, and the sc-model of the interface. Each
ostis-system designed using the OSTIS Technology must
include a platform for interpreting the semantic models
of ostis-systems (in a particular case, sc-memory) and a
logical-semantic model of the ostis-system, represented
using SC-code (sc-model of the ostis-system) [6], [23].

For the convenience of knowledge representation, there
are three external knowledge representation languages
based on the SC-code:

1) SCg-code with which knowledge is displayed in
the form of graph structures understandable to the
average user;

2) SCs-code in which knowledge is represented as a
linear text;

3) SCn-code for displaying sc-constructions as hyper-
text. This representation is close to natural, under-
standable to the average user [6].

No other classical technology used by the engineers
of the modern information society has a clearly defined,
strict, formal conceptual system that could be used to
solve various types of problems, not to mention the means
necessary to solve the tasks set in the direction of increas-
ing efficiency, interoperability, semantic compatibility of
systems developed on the basis of these technologies. The
OSTIS technology provides all the necessary capabilities
and tools for developing next-generation ostis-platforms
that provide efficient and high-quality interpretation
of logical-semantic models of semantically compatible
interoperable ostis-systems [6], [12].

The ostis-platform also means a family of software-
based semantic associative computer emulators [6].

Platforms for developing other c.s. (not necessarily
intelligent) should provide:

• determinism and uniqueness of interpretation of sys-
tems built on the basis of such ostis-platforms,

• availability of common language tools for formal
description of designed components at different

299

levels of detail [45], [46],
• clear separation of the process of developing for-

mal descriptions of components and the process
of their implementation according to given formal
descriptions [47], [48],

• creation and use of powerful and
accessible libraries of formal descriptions of
reusable ostis-platforms components,

• quality and a high level of applicability of
reusable ostis-platform components.

The need for such properties in implemented ostis-
platforms is justified by their purpose. Computer com-
plexes that allow the development of other c.s. must
be implemented and described in such a way that
any intelligent computer system implemented on it is
compatible with another similar system, so that the
future interpretation of its logical-semantic model remains
correct, unambiguous and independent of the means and
solutions by which the ostis-platform is implemented.
From this point of view, the implemented ostis-platform
is only a means of mass creation of other systems and can
be easily replaced by its functionally equivalent analogue
that meets all the requirements for platforms [23].

In general, next-generation platforms should provide
platform independence (!) of the logical-semantic models
of ostis-systems implemented and interpreted on them.
Different options for implementing the ostis-platform
should not affect the process and result of designing
ostis-systems, that is, the process and result of building
logical-semantic models of the developed ostis-systems.
That is, the designed ostis-systems should not depend
on the specific platform for their interpretation. Thus,
the platform independence of systems from specific
ostis-platforms means the functional completeness of
these platforms for creating systems, the simplicity and
flexibility of expanding their functionality and the range
of tasks to be solved, and, ultimately, the level of high
intelligence of computer systems implemented on them.

The implementations of the ostis-platform designed
using the OSTIS Technology Implementations should be
based on the following fundamental principles:

• All texts represented in SC-code are graph construc-
tions. Therefore, the task of developing a Software
implementation of the ostis-platform is reduced
to developing means for storing and processing
such graph structures. In other words, the fu-
ture platform should provide functionally complete
and unambiguous interpretation of stored graph con-
structions.

• Designing a platform for interpreting sc-models of
computer systems, including its components, must
be clearly specified and formulated in terms of
models, methods and tools for describing complex
systems offered by the OSTIS Technology. It is
the ontological approach to the design, operation

and re-engineering of such a subclass of computer
systems that will make it possible to effectively and
universally develop other ostis-systems for various
purposes [49], [50].

One of the ways to test, develop, and, in some cases,
introduce new models and technologies, regardless of the
availability of appropriate hardware, is the development
of software models of this hardware that would be
functionally equivalent to the hardware itself, but at
the same time interpreted on the basis of traditional
hardware architecture (in this paper, we will consider
the von Neumann architecture as the dominant traditional
architecture now). Obviously, the performance of such
software models in the general case will be lower than
the hardware solutions themselves, but in most cases it
turns out to be sufficient to develop the corresponding
technology in parallel with the development of hardware
and to gradually transfer existing systems from a software
model to hardware.

The popularity and development of graph databases
leads to the fact that, at first glance, it seems expedient
and effective to implement the Software implementation
of the ostis-platform based on one of these tools. However,
there are a number of reasons why this is not possible.
These include the following:

• To ensure the efficiency of storage and processing of
information structures of a certain type (in this case,
SC-code structures, sc-constructions), the specificity
of these structures should be taken into account. In
particular, the experiments described in [51] showed
a significant increase in the efficiency of their own
solution compared to those existing at that time.

• Unlike classical graph constructions, where an arc or
an edge can only be incident to a graph vertex (this
is also true for rdf-graphs), in SC-code, it is quite
typical that an sc-connector is incident to another sc-
connector or even two sc-connectors. In this regard,
the existing means of storing graph constructions
do not allow explicit storage of sc-constructions (sc-
graphs). This problem can also be solved by passing
from an undirected graph to a digraph [52].

• Information processing within the framework of
the OSTIS Technology is based on a multi-agent
approach [53], within which agents for processing
information stored in sc-memory (sc-agents) respond
to events occurring in sc-memory and exchange
information by specifying the actions they perform
in sc-memory [54]. In this regard, one of the most
important tasks is the implementation within the
Software implementation of the ostis-platform of
the possibility of subscribing to events occurring in
Implementation the sc-memory, which at the moment
is practically not supported within modern tools for
storing and processing graphs structures.

• SC-code also allows describing external information

300

structures of any kind (images, text files, audio
and video files, etc.), which are formally treated
as the contents of sc-elements, which are signs of
external files of ostis-systems. Thus, the Software
implementation of the ostis-platform component
should be a file memory implementation that allows
storing the indicated constructions in any generally
accepted formats. The implementation of such a
component within the framework of modern means
of storing and processing graph structures is also
not always possible.

Due to the combination of the above reasons, it was
decided to implement the Software implementation of
the ostis-platform "from scratch", taking into account the
peculiarities of storing and processing information within
the framework of the OSTIS Technology.

V. CURRENT SOFTWARE IMPLEMENTATION OF THE
OSTIS-PLATFORM

The current Software implementation of the ostis-
platform is web-oriented, so from this point of view,
each ostis-system is a website accessible online through
a regular browser. This implementation option has an
obvious advantage – access to the system is possible from
anywhere in the world where the Internet is available,
and no specialized software is required to work with the
system. On the other hand, this implementation option
provides the possibility of several users operating the
system in parallel. The implementation is cross-platform
and can be built from source on various operating systems.
At the same time, the interaction between the client and
server parts is organized in such a way that web-interface
can be easily replaced with a desktop or mobile interface,
both universal and specialized.

Software implementation of the ostis-platform
∈ specialized ostis-platform
∈ web-based implementation of the ostis-platform

:= [implementation of the platform for inter-
preting sc-models of computer systems
that involves the interaction users with
the system via the Internet]

∈ multi-user ostis-platform implementation
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ software system decomposition*:

{{{• Implementation of the sc-memory
• Implementation of the interpreter of user

interface sc-models
• Implementation of a basic set of

platform-specific sc-agents and their
common components

}}}
⇒ component dependencies*:

{{{• Implementation of the sc-memory

• Implementation of the interpreter of user
interface sc-models

}}}

The core of the platform is Implementation of the sc-
memory, which can simultaneously interact with both
Implementation of the interpreter of user interface sc-
models, and with any third-party applications using the
appropriate networking languages (network protocols).
From the point of view of the overall architecture
Implementation of the interpreter of user interface sc-
models acts as one of many possible external components
that interact with Implementation of the sc-memory over
the network. It is worth noting that the current version of
the ostis-platform implementation is specialized, that is,
it does not include the implementation of the SCP base
language interpreter.

VI. GENERAL DESCRIPTION OF IMPLEMENTATION OF
THE SC-MEMORY

Within the framework of the current Implementation
of the sc-memory, sc-storage is understood as a program
model component that stores sc-constructions and ac-
cesses them through the program interface. In general, sc-
storage can be implemented in different ways. In addition
to sc-storage itself, Implementation of the sc-memory also
includes Implementation of the file storage, designed to
store the contents of internal files of ostis-systems.

Implementation of the sc-memory
:= [Implementation of the sc-machine]
⇐ software model*:

sc-memory
∈ software model of the sc-memory based on linear

memory
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ software system decomposition*:

{{{• Implementation of the sc-storage
• Implementation of the file storage
• Implementation of the subsystem of

interaction with external environment
using networking languages

• Implementation of auxiliary tools for
working with sc-memory

}}}
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

• C++ Standard Library for Methods and
Data Structures

• Implementation of sc-storage
• File storage implementation

}}}

301

It should be noted that when switching from Implemen-
tation of the sc-memory to its hardware implementation, it
would be advisable to implement the file memory of the
ostis-system based on traditional linear memory (at least
at the first stages of semantic computer development).
The current version of Implementation of the sc-memory
is open and available at [55].

Within this Implementation of the sc-storage, sc-
memory is modeled as a set of segments, each of which is
a fixed-size ordered sequence of sc-storage elements, each
of which corresponds to specific sc-element. Currently,
each segment consists of 216 − 1 = 65535 sc-storage
elements. Each segment consists of a set of data structures
describing specific sc-elements (sc-storage elements).
Regardless of the type of sc-element being described, each
sc-storage element has a fixed size (currently 36 bytes),
which ensures convenient storage. Thus, the maximum
size of the knowledge base in the current sc-memory
software model can reach 180 GB (excluding the contents
of internal files of the ostis-system stored on the external
file system).

VII. IMPLEMENTATION OF THE SC-STORAGE

A. Selected solution and its rationale

Implementation of the sc-storage must meet the fol-
lowing requirements:

• high performance – minimizing the time spent on
adding, deleting and accessing stored information;

• minimal memory and disk space for storing sc-texts;
• scalability – the ability to easily add computing

power as the load increases.

The sc-storage consists of sc-segments of elements that
correspond to some sc-elements of the abstract SC-code.
Each segment of the sc-storage has a number relative to
the sc-storage itself, and each element of some sc-storage
sc-segment has a number relative to that sc-segment.

Allocation of sc-storage segments makes it possible,
on the one hand, to simplify address access to sc-storage
elements, and on the other hand, to realize the possibility
of unloading a part of sc-memory from RAM to the file
system if necessary. In the second case, the sc-storage
segment becomes the minimum (atomic) paged part of
the sc-memory. The segment unloading mechanism is
implemented in accordance with the existing principles of
virtual memory organization in modern operating systems.

The maximum possible number of segments is limited
by the settings of the software implementation of the
sc-storage (currently the number of sc-segments is 216 −
1 = 65535 by default, but in the general case it may
be different). Thus, technically, the maximum number
of stored sc-elements in the current implementation is
about 4.3 × 109 sc-elements. By default, all segments
are physically located in RAM, if there is not enough
memory, then a mechanism is provided for unloading

some of the sc-segments to the hard disk (virtual memory
mechanism).

The current version of the Implementation of the sc-
memory assumes the possibility of saving the memory
state (imprint) to the hard disk and subsequent loading
from the previously saved state. This feature is necessary
to restart the system in case of possible failures, as well
as when working with the source code of the knowledge
base, when the assembly from the source code is reduced
to the formation of a snapshot of the memory state, which
is then placed in the Implementation of the sc-memory.

B. General description of the current implementation of
sc-storage

Implementation of the sc-storage
∈ implementation of sc-storage based on linear

memory
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇐ software model*:

sc-storage
⇐ subset family*:

sc-storage segment
:= [sc-storage page]
⇐ subset family*:

sc-storage element
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

• C++ Standard Library of Methods and
Data Structures

}}}
⇒ used method representation language*:

• C
• C++

⇒ internal language*:
• SCin-code

Each sc-storage element in the current implementation
can be uniquely specified by its address (sc-address),
which consists of the sc-segment number and the sc-
storage element number within the sc-segment. Thus,
the sc-address serves as the unique coordinates of an
sc-storage element within the framework of the Imple-
mentation of the sc-storage.

For each sc-address, it is possible to assign one-to-
one correspondence to some hash obtained as a result
of applying a special hash function on this sc-address.
The hash is a non-negative integer and is the result of
converting the number of the sc-storage segment si, in
which the sc-element is located, and the number of this
sc-element of the sc-storage ei within this sc-segment si.
The sc-storage framework uses a single hash function to
get the hash of the sc-address of the sc-element and is
specified as f(si, ei) = si << 16∨ ei∧ 0xffff , where

302

the operation << is the operation logical bit shift left
of the left argument by the number of units specified by
the right argument, relative to of this operation, the ∨
operation is a logical OR operation, the ∧ operation is a
logical AND operation, the number 0xffff is the number
65535, represented in hexadecimal form and denoting
the maximum number of sc-elements in one sc-storage
segment.

sc-address
:= [address of the sc-storage element corresponding

to the given sc-element within the current imple-
mentation of the sc-storage as part of software
model of sc-memory]

∈ 32-bit integer

The sc-address is not taken into account in any way
when processing the knowledge base at the semantic
level and is only necessary to provide access to the
corresponding data structure stored in linear memory
at the Implementation of the sc-storage level. In general,
sc-address of the sc-storage element corresponding to
the given sc-element may change, for example, when
rebuilding the knowledge base from source texts and then
restarting the system. At the same time, the sc-address
of the sc-storage element corresponding to the given sc-
element cannot change directly during the system opera-
tion in the current implementation. For simplicity, we will
say "sc-address of the sc-element", meaning sc-address
of the sc-storage element that uniquely corresponds to
the given sc-element.

The specification of such complex software objects
must be represented in some kind of knowledge rep-
resentation language, in this case SC-code. From the
point of view of SC-code itself, the language that should
describe the Software implementation of the ostis-platform
is a sublanguage of SC-code, that is, it inherits all the
properties of the syntax and denotational semantics of SC-
code, and a metalanguage for describing the representation
of the SC-code constructions in the memory of a software
emulator of a semantic associative computer. Such a
model for presenting the specification of a c.s., which
is a platform for the creation, use and development of
other c.s., certainly provides strong advantages over other
options for presenting c.s. specifications:

1) The language, the texts of which the system stores
and processes, and the language of the specification
of how the system represents the texts of the
first language in the memory of itself, are subsets
of the same language. This simplifies not only
the understanding of a developer who develops a
complex software system, due to the fact that the
form of representation of the language processed by
this system and the language of its specification is
unified, but also allows you to open new functionality

for this system in knowing itself. Thus, this approach
makes it possible to fully realize the properties of
an intelligent system, for example, reflexivity.

2) It is impossible to design and implement intelligent
c.s. on a computer system that is not itself intelligent.
Presenting the specification of a system in this
form makes it possible to increase the level of its
intelligence.

3) Since the form of representation of the language
describing the system is unified with the language it
processes, there is no need to create additional tools
for verification and analysis of the system operation.

C. The concept of SCin-code

We will call such a language the language of the
internal representation of SC-code, or, briefly, SCin-code
(Semantic Code interior). Sc-storage of SC-code texts
can be considered as a subset of scin text.

SCin-code
:= [Semantic Code interior]
:= [Language of the internal semantic representation

of the SC-code inside the memory of the ostis-
system]

:= [meta-language for describing the representation
of the SC-code inside the memory of the ostis-
system]

⇒ frequently used non-primary sc-element external
identifier*:
[scin-text]
∈ common noun

∈ abstract language
∈ metalanguage
⊂ SC-code
⊃ sc-storage

SCin-code syntax is given by: (1) SCin-code alphabet,
(2) one-to-one correspondence sc-addresses*.

D. SCin-code alphabet

SCin-code alphabet^
:= [syntactic type of sc-storage element]
:= [Set of types of sc-storage elements]
⇐ alphabet*:

SCin-code
= {{{• sc-storage element corresponding to

sc-node
• sc-storage element corresponding to

sc-arc
• sc-storage element with null sc-address

∈ singleton
}}}

SCin-code alphabet^ consists of three syntactically
distinguished types of sc-storage elements: an sc-storage

303

element corresponding to a general sc-node, an sc-
storage element corresponding to a general sc-arc, and
an sc-storage element, having a null sc-address. Such
an alphabet not only allows you to set in memory the
minimum set of objects with which you can perform
computational operations, but, if necessary, is convenient
for expansion. So, for example, the given alphabet of
the language can be extended by adding to it sc-storage
element, corresponding to the internal file of ostis-system
or sc-storage element, corresponding to sc-edge.

sc-storage element corresponding to sc-element
∈ sc-element
:= [sc-storage element]
:= [sc-storage cell]
:= [sc-element image within sc-storage]
:= [data structure, each instance of which within sc-

storage corresponds to one sc-element]
⇒ subdividing*:

SCin-code alphabet^

The relation sc-address* is defined as a one-to-one
correspondence, the first component of each ordered pair
of which is some element of the sc-storage corresponding
to some sc-element, and the second component is the
sc-address of this element of the sc-storage.

sc-address*
∈ one-to-one correspondence
⇒ first domain*:

sc-storage element correspoinding sc-element
⇒ second domain*:

16-bit integer

E. Syntax and syntactic rules of SCin-code

Within Implementation of sc-storage there must be a set
of syntactic and semantic classes of sc-storage elements
that:

1) define the element type at the platform level and
does not have a corresponding sc-arc of membership
(more precisely, a base sc-arc) explicitly stored
in sc-memory (its presence is implied, but it is
not explicitly stored, since it will lead to infinite
increasing the number of sc-elements to be stored
in sc-memory);

2) can be represented as parameters of the correspond-
ing elements of the sc-storage, that is, a set of such
elements, each of which has a "label" expressed by
some numerical value;

3) can specify the type of elements of the sc-storage
with the level of detail that is necessary so that, for
example, when performing a search operation using
such element classes, it is easy to determine the class
of a particular element.

For this purpose, the basic syntactic classification of
its elements is allocated in the SCin-code. In order
to represent and store any constructions of the SC-
code, it is enough to have only two base classes of
sc-storage elements, while the remaining classes of sc-
storage elements can be added in the extended version
of the SCin-code and thereby implement the necessary
logic at the level of sc-memory Implementation .

S y n t a c t i c c l a s s i f i c a t i o n o f S C i n - c o d e
e l e m e n t s
⊃=⊃=⊃=
{{{

sc-storage element corresponding to sc-element
⇒ subdividing*:

{{{• sc-storage element corresponding to
sc-node

• sc-storage element corresponding to
sc-arc

}}}
}}}

It should be noted that all classes of sc-storage elements
that are part of the syntactic classification of SCin-code
elements are syntactically distinguished classes of SCin-
code elements.

Although the sc-addresses* relation makes it possible
to completely describe the links between the elements of
the sc-storage of the ostis-system, but for the specification
of the representation of SC-code constructions inside the
memory of the ostis-system, only one sc-address* relation
is not always enough to indicate completely exactly
and clearly the relationships between the elements of
the sc-storage corresponding to the sc-elements of these
constructions. Therefore, in practice, when describing the
representation of SC-code structures inside the memory
of the ostis-system, it is necessary to use more particular
relations of this basic relation, for example, such as sc-
address of the sc-storage element corresponding to the
outgoing sc-arc from the given sc-element *, sc-address of
the sc-storage element corresponding to the incoming sc-
arc in the given sc-element*, sc-address of the sc-storage
element corresponding to the incident sc-element of the
sc-arc*.

sc-address*
⇒ subdivinding*:

{{{• sc-address of the sc-storage element
corresponding to the outgoing sc-arc from
the given sc-element*

• sc-address of the sc-storage element
corresponding to the incoming sc-arc in
the given sc-element*

• sc-address of the sc-storage element

304

corresponding to the incident sc-element
of the sc-arc*

}}}

The sc-address of the sc-storage element corresponding
to the outgoing sc-arc from the given sc-element* is
defined as a binary oriented relation, the first component
of each oriented pair of which is some element of the
sc-storage corresponding to some sc-element from which
the given sc-arc comes out, and the second component is
the sc-address of this outgoing sc-arc. Particular types of
this relation are the relation sc-address of the sc-storage
element corresponding to the initial outgoing sc-arc from
the given sc-element*, the relation sc-address of the sc-
storage element corresponding to the next outgoing sc-arc
from of the given sc-element* and the relation sc-address
of the sc-storage element corresponding to the previous
outgoing sc-arc from the given sc-element*.

sc-address of the sc-storage element corresponding to
the outgoing sc-arc from the given sc-element*
⇒ subdividing*:

{{{• sc-address of the sc-storage element
corresponding to the initial outgoing
sc-arc from the given sc-element*

• sc-address of the sc-storage element
corresponding to the next outgoing sc-arc
from the given sc-element*

• sc-address of the sc-storage element
corresponding to the previous outgoing
sc-arc from the given sc-element*

}}}

The relation sc-address of the sc-storage element
corresponding to the incoming sc-arc in the given sc-
element* is defined as a binary oriented relation, the first
component of each oriented pair of which is some element
of the sc-storage corresponding to some sc-element, in
which this sc-arc enters, and the second component is
the sc-address of this incoming sc-arc. Particular types of
this relation are the relation sc-address of the sc-storage
element corresponding to the initial incoming sc-arc in
the given sc-element*, the relation sc-address of the sc-
storage element corresponding to the next incoming sc-
arc in the given sc-element* and the relation sc-address
of the sc-storage element corresponding to the previous
incoming sc-arc in the given sc-element*.

sc-address of the sc-storage element corresponding to
the incoming sc-arc in the given sc-element*
⇒ subdividing*:

{{{• sc-address of the sc-storage element
corresponding to the initial incoming
sc-arc in the given sc-element*

• sc-address of the sc-storage element

corresponding to the next incoming sc-arc
in the given sc-element*

• sc-address of the sc-storage element
corresponding to the previous incoming
sc-arc in the given sc-element*

}}}

The relation sc-address of the sc-storage element
corresponding to the incident sc-element of the sc-arc* is
defined as a binary oriented relation, the first component
of each oriented pair of which is some element of the
sc-storage corresponding to some sc-element, which is
sc- arc, and the second component is the sc-address
of some sc-element incident to it. Particular types of
this relation are the relation sc-address of the sc-storage
element corresponding to the initial sc-element of the sc-
arc* and the relation sc-address of the sc-storage element
corresponding to the final sc-element of the sc-arc* .

sc-address of the sc-repository element corresponding
to the incident sc-element of the sc-arc*
⇒ subdividing*:

{{{• sc-address of the sc-storage element
corresponding to the initial sc-element of
the sc-arc*

• sc-address of the sc-storage element
corresponding to the final sc-element of
the sc-arc*

}}}

The following restrictions are imposed on the syntactic
constructions of the SCin code:

• Each sc-storage element corresponding to an sc-
element, has a one-to-one relation to its sc-address.

• For each sc-storage element corresponding to the
sc-node, there is one and only one relation pair sc-
addresses of the sc-storage element corresponding to
the initial outgoing sc-arc from the given sc-element*
and one and only one relation pair sc-addresses
of the sc-store element corresponding to the initial
incoming sc-arc in the given sc-element*.

• For each sc-storage element corresponding to the
outgoing sc-arc from the given sc-element (sc-storage
element corresponding to the incoming sc-arc to the
given sc-element), there is at most one relation pair
sc-addresses of the sc-storage element corresponding
to the next outgoing sc-arc from the given sc-
element* (sc-addresses of the sc-storage element
corresponding to the next incoming sc-arc in the
given sc-element*) and at most one relation pair sc-
addresses of the sc-storage element corresponding
to the previous outgoing sc-arc from the given sc-
element* (sc-addresses of the sc-storage element
corresponding to the previous incoming sc-arc to
the given sc-element*).

• For each sc-storage element corresponding to the

305

sc-arc that is the second component of each pair
of the sc-address relation of the sc-store element
corresponding to the initial outgoing sc-arc from the
given sc-element* (sc-addresses of the sc-storage
element corresponding to the initial incoming sc-arc
in the given sc-element*) there is only one pair sc-
addresses of the sc-storage element corresponding
to the next outgoing sc-arc from the given sc-
element* (sc-addresses of the sc-storage element
corresponding to the next incoming sc-arc in the
given sc-element*).

F. Denotational semantics of SCin-code

According to the above, for each class of sc-elements of
the SC-code, there must be a program model of the class
of sc-store elements that satisfies all the listed require-
ments. Therefore, it is important that SCin-code Alphabet
is initially complete in order to immerse not only sc-
constructions SC-code Core, but also its extended version.
For this, semantic classes of sc-storage elements have
been developed, the specification of which is represented
as Semantic classification of SCin-code elements.

S e m a n t i c c l a s s i f i c a t i o n o f S C i n - c o d e
e l e m e n t s
⊃=⊃=⊃=
{{{

sc-storage element corresponding to sc-element
⇒ subdividing*:

Typology of sc-storage elements based on
constantness^
= {{{• sc-storage element corresponding

to sc-constant
• sc-storage element corresponding

to sc-variable
• sc-storage element corresponding

to sc-meta-variable
}}}

⇒ subdividing*:
Typology of sc-storage elements based on
permanency^
= {{{• sc-storage element corresponding

to permanent sc-element
• sc-storage element corresponding

to temporary sc-element
}}}

⇒ subdividing*:
Typology of sc-storage elements based on
accessibility^
:= [sc-storage element access level class]
= {{{• sc-storage element corresponding

to sc-element on which read
access is allowed

• sc-storage element corresponding
to sc-element on which write
access is allowed

}}}
⇒ include*:

sc-storage element corresponding to internal
ostis-system file

sc-storage element corresponding to generic sc-node
⇒ subdividing*:

Structural typology of sc-storage elements
corresponding to sc-nodes^
= {{{• sc-storage element corresponding

to sc-node denoting a non-binary
sc-link

• sc-storage element corresponding
to sc-class

• sc-storage element corresponding
to sc-node denoting a class of
classes

• sc-storage element corresponding
to sc-structure

• sc-storage element corresponding
to sc-node denoting the role
relation

• sc-storage element corresponding
to sc-node denoting a non-role
relation

• sc-storage element corresponding
to sc-node denoting the primary
entity

}}}
⇒ subdividing*:

Structural typology of sc-storage elements
corresponding to sc-arcs^
= {{{• sc-storage element corresponding

to sc-arc of membership
• sc-storage element corresponding

to generic sc-arc
}}}

⇒ subdividing*:
Typology of sc-storage elements corresponding to
sc-arcs of membership, according to the type of
denoted membership^
= {{{• sc-storage element corresponding

to sc-arc of positive membership
• sc-storage element corresponding

to sc-arc of fuzzy membership
• sc-storage element corresponding

to sc-arc of negative membership
}}}

}}}

All semantically and syntactically distinguished classes
of sc-storage elements, as well as all possible subclasses
of these classes, are instances (elements) of the class.

306

At the moment, sc-edges are stored in the same way
as sc-arcs, that is, they have a start and end sc-element,
the difference is only in the sc-storage element syntactic
type. This leads to a number of inconveniences during
processing, but sc-edges are currently used quite rarely.

G. SCin-code specification

The specification of a SCin-code is the union of the
specification of its elements. For each element, links
between elements and their properties, restrictions are
imposed in the form of syntactic rules described above.

sc-storage element corresponding to sc-element
∈ sc-storage element syntactic type
⇒ specification*:

{{{}}}
⊃ relation narrowing by the first domain

(sign specification*, sc-storage element
corresponding to sc-node)*

⊃ relation narrowing by the first domain
(sign specification*, sc-storage element
corresponding to sc-arc)*

sc-storage element corresponding to sc-node
⇒ specification*:

{{{• class of sc-storage element corresponding
to sc-node

• sc-storage element access level class
• sc-address*
• sc-address of the first sc-arc outgoing

from the given sc-element*
• sc-address of the first sc-arc incoming in

the given sc-element*
}}}

sc-storage element corresponding to sc-arc
⇒ specification*:

{{{• class of sc-storage element corresponding
to sc-arc

• sc-storage element access level class
• sc-address*
• sc-address of the sc-storage element

corresponding to the initial sc-element of
the sc-arc*

• sc-address of the sc-storage element
corresponding to the final sc-element of
the sc-arc*

• sc-address of the sc-storage element
corresponding to the initial outgoing
sc-arc from the given sc-element*

• sc-address of the sc-storage element
corresponding to the initial incoming
sc-arc in the given sc-element*

• sc-address of the sc-storage element
corresponding to the next outgoing sc-arc
from the given sc-element*

• sc-address of the sc-storage element
corresponding to the next incoming sc-arc
in the given sc-element*

• sc-address of the sc-storage element
corresponding to the previous outgoing
sc-arc from the given sc-element*

• sc-address of the sc-storage element
corresponding to the previous incoming
sc-arc in the given sc-element*

}}}

H. General algorithm for embedding the SC-code con-
struction into the memory of an ostis-system

Loading an sc-construction into the memory of the
ostis-system means translating each sc-element of this
sc-construction and the incidence relations between these
sc-elements into the memory of the ostis-system, i.e.
translating the syntactic structure of the sc-construction
into the corresponding representation inside the memory
of the ostis-system. In the general case, the algorithm for
loading any arbitrary sc-construction into the memory of
the ostis-system consists of the following steps:

1) Selection of sc-nodes and internal files of the sc-
construction and saving to the corresponding memory
cells of the ostis-system;

2) Select all free sc-connectors (i.e. sc-connectors
whose start and end sc-element is not another sc-
connector), store all sc-connectors in the correspond-
ing ostis-system memory cells and establish links
between the initial and final sc-elements of these
sc-connectors;

3) Return to step 2 if there are unloaded sc-connectors;
4) Loading the contents of all internal files of the ostis-

system into its file storage.

I. Example of the specification of the representation of the
SC-code construction in the memory of the ostis-system

The figure 1 shows an example of the specification of
the representation of an sc-construction in the memory of
an ostis-system implemented on the basis of the designed
ostis-platform. Here, each sc-element of the given sc-
construction is assigned an sc-element denoting the
storage element. For each sc-element denoting a storage
element of some sc-element of a given sc-construction, its
own denotational semantics is described: links between
sc-storage elements and syntactic and semantic classes
of elements.

J. Advantages and disadvantages of SCin-code

This model of representation in memory of a system
of syntactic and semantic classes of sc-elements in the
form of syntactic and semantic classes of elements of

307

Figure 1. Example of the specification of the representation of the SC-code construction in the memory of the ostis-system

storage sc-elements that correspond to the first ones has
a number of advantages:

• Syntactic and semantic classes of sc-storage elements
can be combined with each other to obtain more
specific classes. From the point of view of software
implementation, such a combination is expressed
by the operation of bit-wise addition of the values
of the corresponding numerical expressions classes
of elements of the sc-storage (here, in the speci-
fication on the SC-code, this can be done using
the intersection of the corresponding classes). For
example, bit-wise addition of numeric expressions of
sc-storage element classes corresponding to sc-node
and sc-constant results in a new sc-storage element
class – sc-storage element corresponding to constant
sc-node.

• Numeric expressions of some classes may match.
This is done to reduce the size of the sc-storage
element by reducing the maximum size of the
numeric expression of the class of these elements.
There is no conflict in this case, since such classes

cannot be combined, for example sc-storage element
corresponding to the sc-node of the role relation
and sc-storage element corresponding to the fuzzy
membership sc-arc.

• It is important to note that each of the selected
classes of elements (except for classes obtained
by combining other classes) uniquely corresponds
to the ordinal number of a bit in linear memory,
which can be seen by looking at the corresponding
numerical expressions of these classes. This means
that classes of elements are not included in each other
(although this is not the case in the specification),
for example, specifying membership in the class
of sc-store elements corresponding to an sc-arc of
positive membership does not automatically indicate
the membership of elements of the sc-storage
corresponding to the sc-arc of membership. At the
implementation level, this makes label combination
and comparison operations more efficient.

However, an increase in their number, although it
improves the performance of the platform by simplifying

308

some operations for checking the class of an sc-storage
element, it leads to an increase in the number of situations
in which it is necessary to take into account the explicit
and implicit representation of sc-arcs, which, in turn, com-
plicates the development of the platform and development
of program code for processing stored sc-construction.
This model does not allow sufficient representation of
the syntactic and semantic classes of sc-elements, since
it has the following important disadvantages:

• At the moment, the number of syntactic classes of
sc-storage elements is large enough, which leads
to a fairly large number of situations in which
it is necessary to take into account the explicit
and implicit storage of sc-arcs belonging to the
corresponding classes. On the other hand, changing
the set of classes of elements for any purpose in
the current implementation is a rather laborious task
(in terms of the amount of changes in the program
code of the platform and sc-agents implemented at
the platform level), and expanding the set of classes
without increasing the volume sc-storage element
in bytes turns out to be completely impossible. The
solution to this problem is to minimize the number
of classes as much as possible, for example, to the
number of classes corresponding to the SC-code
alphabet. In this case, the membership of sc-elements
to any other classes will be recorded explicitly, and
the number of situations in which it will be necessary
to take into account the implicit storage of sc-arcs
will be minimal.

• Some class from the current set of syntactic and
semantic classes of sc-elements are rarely used (for
example, sc-store element corresponding to a generic
sc-edge or sc-store element corresponding to sc-arc
of negative membership), in turn, in sc-memory there
can be classes that have quite a lot of elements
(for example, binary relation* or number). This
fact does not allow us to fully use the efficiency
of having classes. The solution to this problem is
the rejection of a previously known set of classes
and the transition to a dynamic set of classes (while
their number can remain fixed). In this case, a set of
classes expressed as numeric values will be formed
based on some criteria, for example, the number of
elements of this class or the frequency of calls to it.

• base sc-arcs denoting that sc-elements belong to
some known limited set of classes in memory are
presented implicitly. This fact must be taken into
account in a number of cases, for example, when
checking whether an sc-element belongs to a certain
class, when searching for all outgoing sc-arcs from
a given sc-element, etc. If necessary, some of these
implicitly stored sc-arcs can be represented explicitly,
for example, in the case when such an sc-arc must be
included in some set, that is, another sc-arc must be

drawn into it. In this case, it becomes necessary to
synchronize changes associated with a given sc-arc
(for example, its deletion) in its explicit and implicit
representation. The current Implementation of sc-
storage does not implement this mechanism. This
problem is solved by one of the previous options
for solving the problems of this model.

In the current Implementation of sc-storage access-level
classes are used to provide the ability to restrict the access
of some processes in sc-memory to certain elements stored
in sc-memory. Each sc-store element belongs to one of
two classes: the class of sc-store elements corresponding
to sc-elements on which the read right is allowed and the
class of sc-store elements corresponding to sc-elements
on which the right is allowed records. Each of which is
expressed as a number from 0 to 255.

Thus, the null value of the numeric expressions of the
class sc-storage elements corresponding to sc-elements
on which read access is allowed and the class sc-
storage elements corresponding to sc-elements on which
write access is allowed means that any process can get
unrestricted access to this sc-storage element.

Each element of the sc-storage corresponding to some
sc-element is described by its syntactic type (label), and,
regardless of the type, the sc-address of the first sc-arc
entering the given sc-element and the first sc-arc leaving
the given sc-element is indicated (may be empty if there
are no such sc-arcs). The remaining bytes, depending
on the type of the corresponding sc-element (sc-node
or sc-arc), can be used to store the specification of the
sc-arc. Also, sc-address of the first sc-arc outgoing from
the given sc-element* and sc-address of the first sc-arc
entering the given sc-element* may generally be absent
(be null, "empty"), but the size of the sc-element in bytes
will remain the same.

From the point of view of software implementation, the
data structure for storing the sc-node and sc-arc remains
the same, but the list of fields (components) changes in
it. In addition, as you can see, each sc-storage element
(including sc-storage element corresponding to sc-arc)
does not store a list of sc-addresses of associated sc-
elements, but stores sc-addresses of one outgoing and
one incoming arc, each of which in turn stores the sc-
addresses of the next and previous arcs in the list of
outgoing and incoming sc-arcs for the corresponding
elements. All of the above allows you to:

• make the size of such a structure fixed (currently 36
bytes) and independent of the syntactic type of the
stored sc-element;

• provide the ability to work with sc-elements without
regard to their syntactic type in cases where it is
necessary (for example, when implementing search
queries like “Which sc-elements are elements of this
set”, “Which sc-elements are directly related with
the given sc-element”, etc.);

309

• provide the ability to access sc-storage element in
constant time;

• provide the ability to place the sc-storage element
in the processor cache, which in turn speeds up the
processing of sc-constructions;

VIII. IMPLEMENTATION OF THE OSTIS-SYSTEM FILE
STORAGE

A. Selected solution and its rationale

Often, the expressiveness of SC-code graph structures
is not enough to represent and store linear sequences
of texts, pictures, sound, video, and so on. Although
SC-code is a universal tool for representing any kind
of knowledge, there is not always a need to immerse
something in the graph-dynamic memory of the ostis-
system, at least in the early stages of development of the
ostis-platform. This can also be explained by the fact that
information constructions that do not belong to the SC-
code are quite complex in syntax and volume. To solve
such problems, an additional element is introduced at the
SC-code Alphabet^ level – the internal file of the ostis-
system. With the help of ostis-system files, it is possible
to represent, store, process and visualize information
structures that do not belong to the SC-code using the
SC-code.

Therefore, when implementing sc-memory, it is neces-
sary to take into account the need to store information
structures that do not belong to SC-code using SC-code.
Such solution is the Implementation of the file storage of
the ostis-system.

During the entire period of Software implementation of
the ostis-platform development, there have been quite a
few attempts to implement a fully functional and fast file
storage based on popular databases. However, all these
solutions did not take into account potential problems
in the implementation of the search and navigation
subsystem Software implementation of the ostis-platform.
Now the file storage is implemented by its own means,
as data structures for storing information structures that
do not belong to the SC-code, prefix B-trees [56] and
linear lists are used.

The choice is justified by the fact that:
• prefix structures are fairly easy to understand and

minimal in their syntax;
• with the help of prefix structures, it is quite conve-

nient to store and process key-value relations;
• accessing a value by key occurs in the worst case

for the length of that key [57], [58];
• due to the fact that the prefixes stick together, there

is a strong gain in memory usage.
To store the contents of internal files of ostis-systems,

files are used that are explicitly stored on the file system,
which is accessed by means of the operating system on
which Software implementation of the ostis-platform is
running.

Implementation of the ostis-system file storage
∈ file storage implementation based on prefix tree
⇐ software model*:

ostis-system file storage
∈ atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

}}}
⇒ used method representation language*:

• C
⇒ internal language*:

• SCfin-code

As in the case with the sc-storage, it is necessary
to describe the language for representing information
structures that do not belong to the SC-code inside the
file storage of the ostis-system.

B. The concept of the SCfin-code

We will call such a language the language of internal
representation of information constructions that do not
belong to the SC-code, or, briefly, SCfin-code (Semantic
Code file interior). The file storage of texts that do not
belong to the SC-code can be considered as a subset of
the scfin-text.

SCfin-code
:= [Semantic Code file interior]
:= [Language of the internal semantic representation

of information constructions that do not belong
to the SC-code inside the memory of the ostis-
system]

:= [meta-language for describing the representation
of the information constructions that do not
belong to the SC-code inside the memory of
the ostis-system]

⇒ frequently used non-primary sc-element external
identifier*:
[scfin-text]
∈ common noun

∈ abstract language
∈ metalanguage
⊂ SC-code
⊃ ostis-system file storage

The SCfin-code syntax is given by: (1) the SCfin code
alphabet, (2) the sequence in linear text* order relation.

C. SCfin-code alphabet

SCfin-code alphabet^
:= [syntactic type of ostis-system file storage ele-

ment]
:= [Set of types of ostis-system file storage elements]

310

⇐ alphabet*:
SCfin-code

= {{{• element of ostis-system file storage
corresponding to a substring of linear
language text

}}}

SCfin-code alphabet^ consists of one syntactically
distinguished type of file storage elements – element
of ostis-system file storage corresponding to a substring
of linear language text.

element of ostis-system file storage corresponding to a
substring of linear language text
∈ sc-element
:= [ostis-system file storage element]
:= [ostis-system file storage cell]
:= [image of information construction substring that

do not belong to the SC-code within the ostis-
system file storage]

The relation sequences in a linear text* is defined as
a binary oriented order relation, the components of each
ordered pair of which are elements of the ostis-system
file storage corresponding to some substrings of the linear
text, as a result of which, as a result of their concatenation,
a substring belonging to the same linear text is formed.

D. SCfin-code syntax

The SCfin-code syntax is quite simple, since the
information constructions on it are specified using the
SCfin-code alphabet, whose cardinality is 1, and the single
incidence relation sequence in a linear text*. Hierarchies
of syntactic elements are not distinguished as such, as
this is not necessary.

E. Denotational semantics of SCfin-code

At the implementation level, it is important to single
out the semantic classes eelements of the ostis-system file
storage, corresponding to a substring of the text of the
linear language, which denote some prefix or postfix part
of the entire information construction.

S e m a n t i c c l a s s i f i c a t i o n o f S C f i n - c o d e
e l e m e n t s
⊃=⊃=⊃=
{{{

element of ostis-system file storage corresponding to a
substring of linear language text
⇒ subdividing*:

Typology of elements by substring location in
linear text
= {{{• element of the ostis-system file

storage corresponding to the

prefix substring of the linear
language text

• element of the ostis-system file
storage corresponding to the
postfix substring of the linear
language text

}}}
}}}

F. Example of the specification of the representation of
information constructions that doesn’t belong to the SC-
code in the memory of the ostis-system

In the SCfin-code, it is enough to simply set the
information constructions of any linear texts. However,
from the point of view of the implemented sc-memory
model, there is a need to specify not so much the form
of information structures that do not belong to the SC-
code inside the file storage of the ostis-system, but rather
the links between these external information structures,
the files of the ostis-system, which are signs of the SC-
code. At the same time, at the sc-memory level, both
the method for obtaining ostis-system files that contain
a given external information structure and the methods
for obtaining external information structures from given
ostis-system files must be implemented at the sc-memory
level.

Figure 2 shows the representation of information
constructions that do not belong to the SC-code and
the correspondence between ostis-system files and in-
formation constructions. Using the relation set of sc-
addresses of ostis-system files by their content prefixes*,
a binary oriented pair is specified, the first component
of which is a prefix structure, the elements of which
are substrings of external information constructions, and
the second component is the set of corresponding sc-
addresses ostis-system files. And using the relation set
of postfixes of the contents of ostis-system files by their
sc-addresses*, a binary oriented pair is specified, the first
component of which is a prefix structure, the elements
of which are substrings of the sc-addresses of ostis-
system files presented in string form, and the second
component is the set of corresponding postfixes of external
information structures of the prefix structure, which is
the first component of each pair of the relation set of sc-
addresses of ostis-system files by their content prefixes*.

G. Advantages and disadvantages of SCfin-code

The used Implementation of the ostis-system file storage
fully justifies itself when interacting with the system. Due
to the use of prefix structures, the asymptotic complexities
of the method for obtaining a set of external information
constructions from given ostis-system files and the method
for obtaining a set of ostis-system files from given external
information constructions are linear, since it depends on
the length of a given string and the structure of the prefix
tree.

311

Figure 2. An example of a specification for the representation of information structures that do not belong to the SC-code in the memory of the
ostis-system

312

• Information constructions that do not belong to the
SC-code are still completely stored in RAM of the
computer device on which the platform is deployed.
This problem can be solved if only the first characters
of substrings of information structures are stored in
RAM, and the remaining parts of these substrings
are stored at the file system level.

• At the moment, the information retrieval subsystem
is not fully implemented. Implementation of the
ostis-system file storage allows quickly solving
the problem of searching for external information
constructions by their prefix substrings, but does not
allow quickly solving the problem of searching for
information constructions by any substring, even for
which some sample-template is specified.

The described problems will be solved within a future
version of the Software version of the ostis-platform.

IX. GENERAL DESCRIPTION OF METHODS FOR
IMPLEMENTATION OF THE SC-MEMORY

The SCin-code and the SCfin-code are sufficient to
represent the texts of the SC-code within the memory of
the ostis-system. To translate some SC-code text into the
ostis-system memory, it is necessary to use sc-memory
methods (programs, procedures), which are elements of
Implementation of the sc-memory.

sc-memory method
⊂ method
⊂ Implementation of the sc-memory
∋ Method of creating an sc-storage element

corresponding to the sc-node with a given type
∋ Method of creating an sc-storage element

corresponding to the sc-arc with a given type
∋ Method of creating an sc-storage element

corresponding to the ostis-system file with a
given type

∋ Method of setting the information construction of
the linear language in accordance with the given
sc-storage element corresponding to the
ostis-system file

So, using the Method of creating an sc-storage element
corresponding to the sc-node with a given type, the
Method of creating an sc-storage element corresponding
to the sc-arc with a given type, and the Method of creating
an sc-storage element corresponding to the ostis-system
file with a given type, it is possible to create all program
elements of the SCin-code alphabet^ corresponding to
sc-elements of the SC-code alphabet^, and using the
Method of setting the information construction of the
linear language in accordance with the given sc-storage
element corresponding to the ostis-system file to indicate
the connections between the sc-storage elements corre-
sponding to the files of the ostis-system and external

information structures represented in the ostis-storage file
systems as linear text.

There are other methods in Implementation of the sc-
memory, but they will not be covered in this article.

X. IMPLEMENTATION OF THE SUBSYSTEM OF
NETWORK INTERACTION WITH IMPLEMENTATION OF

SC-MEMORY

A. Selected solution and its rationale

The interaction of the sc-memory software model with
external resources can be carried out through a specialized
programming interface (API), however, this option is
inconvenient in most cases, since:

• it is only supported for a very limited set of
programming languages (C, C++);

• it requires that the client application accessing the
sc-memory software model actually forms a single
whole with it, thus eliminating the possibility of
building a distributed collective of ostis-systems;

• as a consequence of the previous paragraph, the
possibility of parallel work with sc-memory of
several client applications is excluded.

In order to provide the possibility of remote access to
sc-memory without taking into account the programming
languages with which a particular client application is
implemented, it was decided to implement the possibility
of accessing sc-memory using a universal language that
does not depend on the means of implementing one or
another component or system.

Among the effective protocols used in the implemen-
tation of client-server systems, it is worth noting the
application layer protocols of the TCP/IP stack – HTTP
and WebSocket protocols [59], [60]. It is advisable to use
the WebSocket protocol due to the following reasons:

• WebSocket is useful in web-based systems where
data sent by the server is represented or stored on
the client side. In WebSocket, data is constantly
transferred over the same open connection, so
WebSocket communication is faster than HTTP
communication [61], [62]. This is very important in
terms of designing the OSTIS Ecosystem, which can
consist of tens of thousands of different ostis-systems
kinds.

• Since ostis-systems are based on the idea of agent-
oriented knowledge processing (asynchronous pro-
cessing) and the memory of such systems must be
both distributed and shared, it is necessary that each
of them (in particular, an independent ostis-system)
be able to communicate with other ostis-systems.
Moreover, such communication can and should take
place on the conditions of initiating events in the
memory of these systems. This implies an unambigu-
ous conclusion that the HTTP protocol cannot be
used in advanced next-generation intelligent systems

313

due to the unidirectional nature of the connection it
creates.

A string language based on the JSON language [63],
[64] – SC-JSON-code – was developed as a system
communication language. Such choice is explained by
the flexibility of setting relation between the objects it
describes.

B. Implementation of the subsystem for interaction with
sc-memory based on the JSON language

Generally speaking, the subsystem of interaction with
the external environment can be implemented in different
ways. So, for example, before the implementation of the
current subsystem, there was previously its analogue in
the Python programming language, which used the HTTP
protocol and a binary representation of commands and
responses. Therefore, there can be a wide variety of such
subsystems, that can build various Implementations of the
subsystem of interaction with the external environment
using network languages.

This Implementation of the sc-memory interaction sub-
system based on the JSON language allows ostis-systems
to interact with systems from the external environment
based on the generally accepted JSON data transfer
transport format and provides an API for accessing the
sc-memory of the sc-model interpretation platform.

Implementation of the subsystem of interaction with
the external environment using network languages
⇒ software system decomposition*:

{{{• Implementation of the subsystem of
interaction with the external environment
using network languages based on the
JSON language

}}}

Implementation of the sc-memory interaction
subsystem based on the JSON language
:= [Subsystem for interaction with sc-memory based

on the JSON format]
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
∈ client-server system
⇒ used method representation language*:

• C
• C++
• Python
• TypeScript
• C#
• Java

⇒ used language*:
• SC-JSON-code

⇒ software system decomposition*:
{{{

• Websocket- and JSON-based server
system providing network access to
sc-memory

{{{}}}
= {{{• Implementation of the client

system in the Python programming
language

• Implementation of the client
system in the TypeScript
programming language

• Implementation of the client
system in the C# programming
language

• Implementation of the client
system in the Java programming
language

}}}
}}}

Interaction with sc-memory is provided by transferring
information in the SC-JSON-code and is conducted, on
the one hand, between the server, which is part of the
ostis-system, written in the same implementation language
of this ostis-system and having access to its sc-memory,
and, on the other hand, a set of clients who are aware of
the presence of a server within the network of their usage.
Using the subsystem for interaction with sc-memory based
on the JSON language, it is possible to interact with the
ostis-system on the same set of possible operations as in
the case if the interaction took place directly, in the same
implementation language of the platform for interpreting
sc-models of computer systems. In this case, the result
of the work differs only in the speed of information
processing.

C. Concept of the SC-JSON-code

As mentioned earlier, subsystems within the imple-
mented software version of a specialized platform com-
municate using the external knowledge representation
language – an SC-JSON-code. This language is string, i.e.
linear, and easy to reverse, since there are a large number
of facilities for processing its JSON superlanguage.

SC-JSON-code
:= [Semantic JSON-code]
:= [Semantic JavaScript Object Notation code]
:= [Language of external semantic representation of

knowledge based on the JSON language]
⇒ frequently used non-primary external identifier of

an sc-element*:
[sc-json-text]
∈ common noun

∈ abstract language
∈ linear language
⊂ JSON

314

D. Syntax and syntactic rules of the SC-JSON-code

The SC-JSON-code syntax is specified by: the (1) SC-
JSON-code alphabet and the (2) SC-JSON-code grammar.
In the alphabet of the SC-JSON-code, the basic syntactic
classification of its elements is distinguished.

S y n t a c t i c c l a s s i f i c a t i o n o f
S C - J S O N - c o d e e l e m e n t s
⊃=⊃=⊃=
{{{

S C - J S O N - c o d e
⇐ subset family*:

sc-json-sentence
⊂ json-list of json-pairs
⇐ subset family*:

sc-json-pair*
⇐ Cartesian product*:

⟨⟨⟨• sc-json-string
• sc-json-object

⟩⟩⟩
⇒ subdividing*:

{{{• SC-JSON-code command
• SC-JSON-code command response

}}}

sc-json-object
⇒ subdividing*:

{{{• sc-json-list
• sc-json-pair
• sc-json-literal

⇒ subdividing*:
{{{• sc-json-string
• sc-json-number

}}}
}}}

}}}

The SC-JSON-code alphabet^ is a set of all possible
characters in the SC-JSON-code. Since the SC-JSON-
code is a linear string knowledge representation language,
its alphabet includes the combination of the alphabets of
all languages, the texts in which can represent external
identifiers and/or the contents of ostis-system files, the
set of all digits, and the set of all other special char-
acters. Alphabet sequences can form sc-json-keywords,
sc-json-pairs, sc-json-sentences from sc-json-pairs, and
sc-json-texts from sc-json-sentences. At the same time,
constructions on the SC-JSON-code are built according
to the following syntactic rules:

• Each SC-JSON-code grammar rule describes the
correct order of sc-json objects in an sc-json-sentence
according to the SC-JSON-code syntax. The set of
SC-JSON-code grammar rules describes the order
of sc-json-sentences in sc-json-text that is correct

in terms of the SC-JSON-code syntax. Each sc-json-
sentence is an sc-json-list of sc-json-pairs, which
represents a command or response to that command.

• Each command (command response) in the SC-JSON-
code consists of a header that includes sc-json-pairs
describing the command itself (command response)
and a message that is different for each class of
commands (command responses). The command
(command response) message in the SC-JSON-code
is usually a list of sc-json-objects, which may not
be limited in size.

• Each sc-json-pair consists of two elements: a key-
word and some other sc-json-object associated with
that keyword. The set of keywords in sc-json-pairs
is determined by a specific class of commands
(command response) in the SC-JSON-code. The sc-
json pair starts with an open brace "{" and ends
with a close brace "}". The keyword and the sc-json
object associated with it are separated by a colon
character ":".

• Sc-json strings written in sc-json texts begin and end
with the double-quoted character “.

• Sc-json-lists that do not consist of sc-json-pairs begin
with an opening square bracket "[" and end with a
close square bracket "]". Sc-json-objects in sc-json-
lists are separated by commas ",".

E. Syntax and grammar of the SC-JSON-code. SC-JSON
command and response examples

The grammar of the SC-JSON-code is the set of all
possible rules used in building commands and responses
to them in the SC-JSON code. Each SC-JSON-code
command has a unique SC-JSON-code grammar rule.
The SC-JSON grammar rules allow correctly representing
commands in the SC-JSON-code. Each SC-JSON-code
grammar rule is represented as a rule in the ANTLR
Grammar Description Language and its natural language
interpretation.

SC-JSON grammar
∋ key sc-element ′:

Rule that specifies the syntax of SC-JSON-code
commands
⇐ syntax rule*:

SC-JSON-code command
∋ key sc-element ′:

Rule that specifies the syntax of SC-JSON-code
command responses
⇐ syntax rule*:

SC-JSON-code command response
∋ Rule that specifies the syntax of the command for

creating sc-elements
⇐ syntax rule*:

command for creating sc-elements

315

∋ Rule that specifies the syntax of response to the
command for creating sc-elements
⇐ syntax rule*:

response to the command for creating
sc-elements

The rule that specifies the syntax of the SC-JSON-code
command means the following 3. The SC-JSON-code
command class includes the command for creating sc-
elements, command for getting corresponding types of
sc-elements, command for deleting sc-elements, command
for processing key sc-elements, command for processing
contents of ostis-system files, command for searching
for sc-constructions isomorphic to a given sc-template,
command for generating an sc-constructions isomorphic
to a given sc-template, and command processing sc-event.
The SC-JSON-code command includes the command ID,
type, and message.

Figure 3. Description of the Rule that specifies the syntax of the
SC-JSON-code command

The rule specifying the syntax of the SC-JSON-code
command response describes the syntax of command
responses described by the previous rule. The SC-JSON-
code command response class includes the command
response for creating sc-elements, command response for
getting the corresponding types of sc-elements, command
response for deleting sc-elements, command response
for processing key sc-elements, command response for
processing contents of ostis-system files, command re-
sponse for searching for sc-constructions isomorphic to
the given sc-template, command response for generating
an sc-construction isomorphic to the given sc-template,
and command response for sc-event processing.

The command for creating sc-elements message con-
tains a list of descriptions of the sc-elements to be created.
Such sc-elements can be an sc-node, an sc-arc, an sc-
edge, or an ostis-system file. The sc-element type is

Figure 4. Description of the Rule that specifies the syntax of the
SC-JSON-code command response

specified in pair with the "el" keyword: for an sc-node,
the sc-json-type of element is represented as a "node",
for an sc-arc and an sc-edge – an "edge", for ostis-system
file – a "link". Type labels of sc-elements are specified in
their corresponding descriptions in the command message,
paired with the "type" keyword. If the sc-element being
created is an ostis-system file, then the contents of this
ostis-system file are additionally specified in pair with
the "content" keyword; if the sc-element being created
is an sc-arc or an sc-edge, then the descriptions of the
sc-elements they go out and the sc-elements they come in
are specified. Descriptions of such sc-elements consist of
two pairs: the first pair indicates the method of association
with the sc-element and is represented as "addr", or "idtf",
or "ref" paired with the "type" keyword, the second pair
represents what is associated with this sc-element: its
hash, system identifier, or number in the array of created
sc-elements – paired with the "value" 5 keyword.

The command response for creating sc-elements mes-
sage is a list of hashes of created sc-elements correspond-
ing to the command for creating sc-elements descriptions
with status 1, in case of successful processing of the 6
command.

The SC-JSON-code command set is easily extensible
due to the flexibility and functionality of the JSON
language. The set of the command responses in the SC-
JSON-code is also easily extensible, along with the SC-
JSON-code commands extension.

command for creating sc-elements
:= [create elements command]
⊂ SC-JSON-code command

316

Figure 5. Description of the Rule that specifies the syntax of the
command for creating sc-elements

Figure 6. Description of the Rule that specifies the syntax of the
command response for creating sc-elements

⇒ example*:
Example of the command for creating
sc-elements

⇒ command class*:
command response for creating sc-elements

The Websocket- and JSON-based server system pro-
viding network access to sc-memory will interpret the
Example of command for creating sc-elements 7 as
“Process command for creating sc-elements: an sc-node
of type 1 (of an unspecified type), an ostis-system file of
type 2 (of an unspecified type), and contents in the form
of a floating point number 45.4, and an sc-arc of type
32 (of a constant type) between the sc-element located at
the zero position in the array of created sc-elements, and
an sc-element in the first position in the same array”.

It should be noted that at the sc-memory interface level,
the command is interpreted quickly due to the fact that
templates for creating constructions isomorphic to them
are not used. Also, the contents of the message of the
command for creating sc-elements can be empty.

command response for creating sc-elements
:= [create elements command response]
⊂ SC-JSON-code command response
⇒ example*:

Example of the command response for creating
sc-elements

An example of the command response for creating
sc-elements is an example of a response to the previous
command if this command was interpreted and executed
successfully 8.

The formal text of the Example of the command
response for create sc-elements is equivalent to the natural
language text “Created sc-elements with hashes 323,
534, and 342, respectively. The command was processed
successfully”.

A detailed description of the syntax of commands and
responses to these commands, as well as their examples,
can be found in the OSTIS Standard [6].

317

Figure 7. An example of the command for creating sc-elements

Figure 8. An example of the command response for creating sc-elements

F. Description of Implementation of The server system
based on Websocket and JSON, providing network access
to sc-memory

The Server system based on Websocket and JSON,
providing network access to sc-memory is an interpreter
of commands and responses of the SC-JSON-code for pro-
gramm representation of sc-constructions in sc-memory
using the Library of software components for processing
json texts (JSON for Modern C++) and the Library of
cross-platform software components for implementing
server applications based on Websocket (WebSocket++),
and is also provided with comprehensive test coverage

through the Google Tests and Google Benchmark Tests
software frameworks. The Library of software components
for processing json-texts (JSON for Modern C++) has a
rich, convenient, and high-speed functionality necessary
for the implementation of such components of ostis-
systems, and the Library of cross-platform software
components for the implementation of server applications
based on Websocket (WebSocket++) allows elegantly
designing server systems without using redundant de-
pendencies and solutions. The software component is
configured with the help of the Software component for
ostis-systems software components configuration, as well
as CMake and Bash scripts.

Implementation of the Server system based on
Websocket and JSON, providing network access to
sc-memory
:= [Implementation of the Websocket-based system

that provides parallel-asynchronous multi-client
access to sc-memory of the sc-model interpreta-
tion platform using the SC-JSON-code]

:= [sc-json-server]
⇒ frequently used non-primary external identifier of

the sc-element*:
[sc-server]

∈ atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ used method representation language*:

• C
• C++

⇒ used language*:
• SC-JSON-code

⇒ component dependencies*:
{{{• Library of software components for

processing json-texts JSON for Modern
C++

• Library of cross-platform software
components for implementing server
applications based on Websocket
WebSocket++

• Software component for ostis-systems
software components configuration

• Implementation of the sc-memory
}}}

It is worth noting that the current Implementation of the
Server system based on Websocket and JSON, providing
network access to sc-memory is not the first of its kind and
replaces its previous implementation written in Python.
The reason for this replacement is as follows:

• Previous Implementation of the server system based
on Websocket and JSON, providing access to sc-
memory using SC-JSON-code commands, imple-
mented in the Python programming language, de-
pends on the Boost Python library provided by

318

the C++ Language Development and Collaboration
Community, as well as Python. The fact is that such
a solution requires the support of the mechanism
for interpreting the Python program code into the
C++ language, which is redundant and unreasonable,
since most of the Software implementation of the
ostis-platform program code is implemented in the C
and C++ languages. The new implementation of the
described software system allows getting rid of the
usage of capacious and resource-intensive libraries
(for example, boost-python-lib, llvm) and the Python
language.

• When implementing distributed subsystems, the
speed of knowledge processing plays an important
role, that is, the ability to quickly and urgently
respond to user requests. The quality of access
to sc-memory through the implemented Subsystem
for interacting with sc-memory based on the JSON
language should be commensurate with the quality
of access to sc-memory using a specialized API,
implemented in the same programming language as
the system itself. The new implementation makes it
possible to increase the processing speed of requests
by the JSON-based sc-memory interaction subsystem,
including knowledge processing, by at least 1.5 times
compared to the previous implementation of this
subsystem.

Implementation of the Server system based on Web-
socket and JSON, providing network access to sc-memory
possesses the following common properties:

• From the point of view of its model, the server
subsystem has the same specialized programming
interface as the Implementation of the sc-memory,
however, interaction with it using such an interface
is carried out via the network. This makes it possible
for client systems implemented in different program-
ming languages to interact with the same shared
memory.

• This subsystem can be considered as an interpreter of
an external knowledge representation language (SC-
JSON-code), which can be used by ostis-systems
implemented on the basis of a specialized ostis-
platform. Each command and response to a command
of this language corresponds to a handler (potentially
an agent at all), which is part of this interpreter.
The SC-JSON-code language of external knowledge
representation itself is independent of the platform
implementation and is used only as a language of
external knowledge representation, however, it can be
used when implementing other tools and interpreters
of sc-models of ostis-systems.

• The implemented software component provides
multi-user asynchronous access to sc-memory. While
testing the sc-server, it turned out that its implemen-
tation allows processing requests from at least 1000

client systems. Due to the need to provide parallel
access to sc-memory, synchronization blocks were
added at the implementation level of the software
component. For example, in the implementation,
it is possible to notice a queue of commands for
processing by the system – regardless of the number
of client systems and how many commands were
sent for processing, all commands can queue up. This
solution allows temporarily bypassing the problems
of interaction of synchronization blocks at the sc-
memory level when processing different types of
commands over it (search, generative, destructive,
etc.). However, the server system cannot be shut
down as long as the command queue has any pending
commands. Also, the server system continues to work
if the list of client system identifiers still has non-
disconnected ones. The need for these functions of
the server subsystem is determined by the need to
support the atomicity of requests processed by the
system.

• In the process of testing the subsystem, an estimate of
its speed of processing commands and responses was
obtained. During load testing, a test client system
was used, written in C++ and not possessing the
functionality of processing texts of the SC-JSON-
code. As a result of testing, it was found that
when sending 1000 different commands – commands
for creating sc-elements, commands for processing
the contents of ostis-system files, and commands
for deleting sc-elements – the time spent on their
processing did not exceed 0.2 seconds. At the same
time, in some cases, processing 1000 commands for
creating sc-elements took no more than 0.14 seconds,
commands for deleting sc-elements – no more than
0.07 seconds, commands for processing the contents
of ostis-system files – no more than 0.27 seconds,
commands search for sc-constructions isomorphic
to a given sc-template – no more than 0.45 seconds.

The Server system based on Websocket and JSON,
providing network access to sc-memory describes the
necessary and sufficient programming interface for inter-
acting with sc-memory. In the general case, it describes
the functionality of not only the Server system based on
Websocket and JSON, providing network access to the
sc-memory but also the client systems interacting with it,
since these client systems often include a specialized
programming interface similar to the server system
interface but implemented in a different programming
language.

XI. IMPLEMENTATION OF THE INTERPRETER OF USER
INTERFACE SC-MODELS

A. Concept of the interpreter of user interface sc-models

In most cases, user interface development in modern
systems takes up most of the time spent on developing

319

the entire system. However, the effectiveness of using a
software system depends on the developed user interface
[65].

Along with the Implementation of the sc-memory, an
important part of the Software implementation of the
ostis-platform is the Implementation of the interpreter
of user interface sc-models, which provides basic tools
for viewing and editing the knowledge base by the user,
tools for navigation through the knowledge base (asking
questions to the knowledge base) and can be supplemented
with new components depending on the problems solved
by each specific ostis-system.

Implementation of the interpreter of user interface
sc-models
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ used method presentation language*:

• JavaScript
• TypeScript
• Python
• HTML
• CSS

⇒ component dependencies*:
{{{• Library of standard interface components

in the JavaScript programming language
• Library for implementing server

applications in the Python programming
language, named Tornado

• Implementation of the client system in the
TypeScript programming language

• Implementation of the client system in the
Python programming language

}}}

An important principle of the Implementation of the in-
terpreter of user interface sc-models is the simplicity and
uniformity of connecting any user interface components
(editors, visualizers, switches, menu commands, etc.).
To do this, the Sandbox software layer is implemented,
within which low-level operations of interaction with
the server part are implemented and which provides a
more convenient programming interface for component
developers. The current version of the Implementation of
the interpreter of user interface sc-models is open and
available at [66].

B. Main components of the interpreter of user interface
sc-models

Implementation of the interpreter of user interface
sc-models
⇒ software system decomposition*:

{{{• User interface command menu bar
• Component for switching the language of

identification of displayed sc-elements

• Component for switching the external
language of knowledge visualization

• Search field of sc-elements by identifier
• Panel for displaying the user dialog with

the ostis-system
• Knowledge visualization and editing

panel
⇒ software system decomposition*:

{{{• Visualizer of sc.n-texts
• Visualizer and editor of

sc.g-texts
}}}

}}}

The Component for switching the language of iden-
tification of displayed sc-elements is an image of the
set of natural languages available in the system. User
interaction with this component switches the user interface
to a mode of communication with a specific user with
the help of basic sc-identifiers belonging to this natural
language (Fig. 9). This means that when displaying sc-
identifiers of sc-elements in any language, for example,
SCg-code or SCn-code, basic sc-identifiers belonging to
the given natural language will be used. This applies
both to sc-elements displayed within the Knowledge
visualization and editing panel and any other sc-elements,
for example, command classes and even natural languages
themselves, displayed within the Component for switching
the language of identification of displayed sc-elements of
the ostis-meta-system.

Figure 9. The Component for switching the language of identification
of displayed sc-elements of the ostis-meta-system

The Component for switching the external language of
knowledge visualization is used to switch the knowledge
visualization language in the current window displayed
on the Knowledge visualization and editing panel. In the
current implementation, SCg-code and SCn-code (Fig. 10,
as well as any other languages included in the external
SC-code visualization languages set, are supported by
default as such languages.

Figure 10. The Component for switching the external language of
knowledge visualization of the ostis-meta-system

The Search field for sc-elements by identifier allows
searching for sc-identifiers containing the substring en-

320

tered in this field (case sensitive). As a result of the search,
a list of sc-identifiers containing the specified substring
is displayed (Fig. 11), when interacting with them, the
question “What is this?” is automatically set, the argument
of which is either for the sc-element itself, which has the
given sc-identifier (if the specified sc-identifier is the main
or system identifier, and thus the specified sc-element
can be uniquely determined), or for the internal file of
the ostis-system that is the sc-identifier (in case when the
given sc-identifier is not the main one).

Figure 11. The Component for switching the external language of
knowledge visualization of the ostis-meta-system

The Panel for displaying the user dialog with the ostis-
system displays a time-ordered list of sc-elements (Fig.
12) that are signs of actions initiated by the user within the
dialog with the ostis-system by interacting with images of
the corresponding command classes (that is, if the action
was initiated in another way, for example, by explicitly
initiating it by creating an arc of membership to the action
initiated set in the sc.g editor, then it will not be displayed
on this panel). When the user interacts with any of the
depicted action signs, the Knowledge visualization and
editing panel displays a window containing the result of
this action in the visualization language, in which it was
displayed when the user viewed it in the last (previous)
once. Thus, in the current implementation, this panel can
work only if the action initiated by the user assumes the
result of this action explicitly represented in memory. In
turn, it follows from this that at present this panel, as
well as the whole Implementation of the interpreter of
user interface sc-models, allows working with the system
only in the “question-answer” dialog mode.

The Knowledge visualization and editing panel displays
windows containing sc-text, represented in some language
from the set of external SC-code visualization languages
and, as a rule, the result of some action initiated by the

Figure 12. The Panel for displaying the user dialog with the ostis-meta-
system

user. If the corresponding visualizer supports the ability
to edit texts of the corresponding natural language, then
it is also an editor at the same time. If necessary, the
user interface of each specific ostis-system can be supple-
mented with visualizers and editors of various external
languages, which in the current version of Implementation
of the interpreter of user interface sc-models will also
be located on the Knowledge visualization and editing
panel. By default, two visualization and editing panels
are available: the Visualizer of sc.n-texts (Fig. 13) and
the Visualizer and editor of sc.g-texts (Fig. 14).

The User interface commands menu bar contains
images of command classes (both atomic and non-atomic)
currently available in the knowledge base and included
in the main user interface decomposition (meaning the
complete decomposition, which in may include several
levels of non-atomic instruction classes in general) (Fig.
15). Interaction with the image of a non-atomic instruction
class initiates a command for the image of instruction
classes included in the decomposition of this non-atomic
instruction class. Interaction with the image of an atomic
command class initiates the generation of a command of
this class with previously selected arguments based on
the corresponding generalized command class statement
(command class template).

The semantic models of the described user interface
components are represented in more detail in [67].

C. Advantages and disadvantages represented in the
current version of Implementation of the interpreter of
user interface sc-models

The current implementation of the sc-interface model
interpreter has a large number of shortcomings, namely:

• The idea of platform independence of the user inter-
face (building the sc-model of the user interface) is
not fully implemented. Fully describing the sc-model
of the user interface (including the exact placement,
size, design of components, their behavior, etc.) is
currently likely to be difficult due to performance
limitations, but it is quite possible to implement the
ability to ask questions to all interface components,
change them location, etc., however, these features
cannot be implemented in the current version of the
platform implementation.

321

Figure 13. The Visualizer of sc.n-texts of the ostis-meta-system

Figure 14. The Visualizer and editor of sc.g-texts of the ostis-meta-system

322

Figure 15. The User interface commands menu bar of the ostis-meta-system

• In addition, part of the interface actually works
directly with sc-memory using WebSocket tech-
nology and part through an interlayer based on
the tornado library for the Python programming
language, which leads to additional dependencies
on third-party libraries. Recently, the development
of the current Software implementation of the ostis-
platform has largely solved this problem, but there
are still components implemented in Python.

• Some of the components (for example, the search
field by identifier) are implemented by third-party
tools and have almost nothing to do with sc-memory.
This hinders the development of the platform.

• The current Implementation of the sc-model inter-
preter for user interfaces is focused only on dialog
with the user (in the style of a user question – a
system answer). Obviously, necessary situations are
not supported, such as executing a command that
does not expect a response; the occurrence of an
error or lack of response; the need for the system
to ask a question to the user, etc.

• Restricted user interaction with the system without
the usage of special controls. For example, it is
possible to ask the system a question by drawing
it in the SCg-code, but the user will not see the
answer, although it will be generated in memory by
the corresponding agent. Most of the technologies
used in the implementation of the platform are now
outdated, which hinders the development of the
platform.

• There is no inheritance mechanism implemented
when adding new external languages. For example,
adding a new language, even one that is very close
to the SCg-code, requires physically copying the
component code and making the appropriate changes,
which results in two unrelated components that begin
to develop independently of each other.

• Low level of documenting the current Implementa-
tion of the interpreter of user interfaces sc-models.
Represented current specification only describes the
key points of the Implementation of user interfaces
sc-models but does not cover them.

Based on the shortcomings described, the following
requirements are imposed on future implementation:

• Unify the principles of interaction of all interface
components with the Implementation of the sc-
memory, regardless of what type the component
belongs to. For example, a list of menu commands
should be formed through the same mechanism as
a response to a user request, an editing command
generated by the user, a command for adding a
new fragment to the knowledge base, etc. It is
necessary to improve the ways of using the interface
for convenient and comfortable usage [68].

• Unify the principles of user interaction with the
system, regardless of the mode of interaction and the
external language. For example, it should be possible
to ask questions and execute other commands directly
through the SCg/SCn interface. At the same time, it
is necessary to take into account the principles of
editing the knowledge base so that the user cannot,
under the guise of asking a question, enter new
information into the agreed part of the knowledge
base.

• Unify the principles of handling events that occur
during user interaction with interface components
– the behavior of buttons and other interactive
components should not be set statically by third-
party tools but implemented as an agent, which,
nevertheless, can be implemented in an arbitrary
way (not necessarily on platform-independent level).
Any action performed by the user, at the logical level,
must be interpreted and processed as the initiation
of the agent.

• Provide the ability to execute commands (in par-
ticular, ask questions) with an arbitrary number of
arguments, including without arguments.

• Make it possible to display the answer to a question
in parts if the answer is very large and takes a long
time to display.

• Each displayed interface component should be inter-
preted as an image of some sc-node described in the
knowledge base. Thus, the user should be able to
ask arbitrary questions to any interface components.

• Simplify and document the mechanism for adding
new components as much as possible.

• Provide the ability to add new components based on
existing ones without creating independent copies.

323

For example, it should be possible to create a
component for a language that extends the SCg
language with new primitives, redefine the principles
for placing sc-texts, etc.

• Minimize dependency on third-party libraries.
• Minimize the usage of the HTTP protocol (bootstrap

of the common interface structure), ensure the
possibility of equal two-way interaction between
the server and client parts.

Obviously, the implementation of most of the above re-
quirements is associated not only with the implementation
of the platform itself but also requires the development of
the theory of logical-semantic models of user interfaces
and the refinement of the general principles for organizing
user interfaces of ostis-systems within it. However, the
fundamental possibility of implementing such models
should be taken into account in the Implementation of
the ostis-platform.

XII. PLANS FOR THE DEVELOPMENT OF THE Software
implementation of the ostis-platform

In the further development of the Software implementa-
tion of the ostis-platform, it will be important and correct
to:

• maximally detail the specification of the components
of the designed ostis-platform, including the lan-
guages used for external and internal knowledge
representation, and clearly stratify the hierarchy
of classes and relations used in describing the
components of the ostis-platforms;

• eliminate and take into account the shortcomings
in the implementation of new components in the
designed ostis-platform, indicate possible options
for their implementation;

• reduce the dependency of the ostis-platform compo-
nents to a minimum, that is, if possible, implement
them in the SCP language (for example, an inter-
preter of user interface sc-models);

• evaluate the quality of the designed system and its
components as a whole.

In the direction of improving the quality and efficiency
of the Software implementation of the ostis-platform
components, the following problems will be solved first:

• The implemented sc-memory model is not intended
for its usage in a multi-user mode, especially when
there are more than 4 subjects of interaction with
it. This, in turn, hinders the implementation of all
the principles of the OSTIS Technology. All this is
explained by the failure of the implementation of
blocking mechanisms at the level of the memory
itself. The sc-memory model will be revised and
improved in such a way as to reduce the usage of
blocking mechanisms and minimize the number of
mutually exclusive situations for processes in sc-
memory.

• Using the current Software implementation of the
ostis-platform is quite difficult and resource-intensive.
This is primarily due to the lack of the possibility
for collectively developing knowledge bases. This is
affected by the lack of the necessary interface com-
ponents for easy editing and viewing the knowledge
base. For example, the current scg-editor is quite
primitive and inconvenient to use, and the tools for
creating methods (programs) are not implemented
at all.

XIII. CONCLUSION

The current implementation of the ostis-platform is
a universal tool for designing next-generation computer
systems. It acts as a software emulator of a semantic
associative computer (!), focused on the semantic repre-
sentation and processing of information of any kind. The
ostis-platform acts as a program memory for any next-
generation software c.s., implemented according to the
principles of the OSTIS Technology, in which a logical-
semantic model (knowledge) can be placed, regardless
of its type and contents. Thus, on the basis of the ostis-
platform, the sc-model of the OSTIS Metasystem is im-
plemented [69], which acts as a software implementation
of the OSTIS Standard [6].

Using the ostis-platform, it is possible to solve any
information problems of human activity. In this sense
of the word, the implemented ostis-platform is a design
automation system not only for other systems but also
for solving information problems of any kind in general.

In this article, the problems of ensuring the design
of platforms for the design and development of other
systems are considered. A comparative analysis of existing
solutions in the field of design automation of c.s. and jus-
tified the chosen decision in detail. The work determines
the solution of the problem in the form of designing
and developing universal interpreters of logical-semantic
models of systems according to the principles underlying
the OSTIS Technology, named an ostis-platform. This
article is also a formal specification of the first Software
implementation of the ostis-platform.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

REFERENCES

[1] A. Iliadis, “The tower of babel problem: making data make sense
with basic formal ontology,” Online Information Review, vol. 43,
no. 6, pp. 1021–1045, 2019.

[2] S. C. J. Lim, Y. Liu, Y. Chen et al., “Ontology in design
engineering: status and challenges,” 2015.

324

[3] I. Ahmed, G. Jeon, and F. Piccialli, “From artificial intelligence to
explainable artificial intelligence in industry 4.0: a survey on what,
how, and where,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 8, pp. 5031–5042, 2022.

[4] Jeff Waters and Brenda J. Powers and Marion G. Ceruti, “Global
interoperability using semantics, standards, science and technology
(gis3t),” Computer Standards & Interfaces, vol. 31, no. 6, pp.
1158–1166, 2009.

[5] V. Golenkov, N. Guliakina, V. Golovko, and V. Krasnoproshin,
“On the current state and challenges of artificial intelligence,”
in International Conference on Open Semantic Technologies for
Intelligent Systems. Springer, 2022, pp. 1–18.

[6] Golenkov Vladimir and Guliakina Natalia and Shunkevich Daniil,
Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
V. Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[7] Sokolov A.P., Golubev A.O., “Computer-aided design system
for composite materials. part 3. graph-oriented methodology for
developing user-system interaction tools,” Izvestiya SPbGETU
LETI, pp. 43–57, 2021.

[8] T. S. Dillon, E. Chang, and P. Wongthongtham, “Ontology-based
software engineering-software engineering 2.0,” in 19th Australian
Conference on Software Engineering (ASWEC 2008). IEEE, 2008,
pp. 13–23.

[9] Dillon, Tharam and wu, Chen and Chang, Elizabeth, “Gridspace:
Semantic grid services on the web-evolution towards a softgrid,”
in 3rd International Conference on Semantics, Knowledge, and
Grid, SKG 2007, 11 2007, pp. 7–13.

[10] V. Kabilan, “Ontology for information systems (04is) design
methodology: conceptualizing, designing and representing domain
ontologies,” Ph.D. dissertation, KTH, 2007.

[11] A. M. Ouksel and A. Sheth, “Semantic interoperability in global
information systems,” ACM Sigmod Record, vol. 28, no. 1, pp.
5–12, 1999.

[12] F. W. Neiva, J. M. N. David, R. Braga, and F. Campos, “Towards
pragmatic interoperability to support collaboration: A systematic
review and mapping of the literature,” Information and Software
Technology, vol. 72, pp. 137–150, 2016.

[13] K. Lu, Q. Zhou, R. Li, Z. Zhao, X. Chen, J. Wu, and H. Zhang,
“Rethinking modern communication from semantic coding to
semantic communication,” IEEE Wireless Communications, 2022.

[14] F. Zhou, Y. Li, X. Zhang, Q. Wu, X. Lei, and R. Q. Hu, “Cognitive
semantic communication systems driven by knowledge graph,”
arXiv preprint arXiv:2202.11958, 2022.

[15] P. Hagoort, G. Baggio, and R. M. Willems, “Semantic unification,”
in The cognitive neurosciences, 4th ed. MIT press, 2009, pp.
819–836.

[16] J. H. Siekmann, “Universal unification,” in International Confer-
ence on Automated Deduction. Springer, 1984, pp. 1–42.

[17] D. B. Lenat, R. V. Guha, K. Pittman, D. Pratt, and M. Shepherd,
“Cyc: toward programs with common sense,” Communications of
the ACM, vol. 33, no. 8, pp. 30–49, 1990.

[18] S. L. Reed, D. B. Lenat et al., “Mapping ontologies into cyc,” in
AAAI 2002 Conference workshop on ontologies for the semantic
Web, 2002, pp. 1–6.

[19] Zbigniew Gomolkaa and Boguslaw Twaroga and Ewa Zeslawskaa
and Ewa Dudek-Dyduchb, “Knowledge base component of
intelligent almm system based on the ontology approach,” Expert
Systems with Applications, vol. 199, p. 116975, 2022.

[20] V. V. Gribova, A. S. Kleschev, F. M. Moskalenko, V. A. Timchenko,
L. A. Fedorishchev, E. A. Shalfeeva, “Iacpaas cloud platform for
developing shells of intelligent services: state and development
prospects,” Programmnyye produkty i sistemy, 2018.

[21] Filippov A. A., Moshkin V. S., Shalaev D. O., Yarushkina N. G.,
“Unified ontological data mining platform,” System Analysis and
Applied Informatics, pp. 77–82, 2016.

[22] Yu. A. Zagorulko, “Semantic technology for the development
of intelligent systems, focused on domain experts,” Ontologiya
proyektirovaniya, pp. 30–44, 2015.

[23] Gulyakina N. A., Golenkov V. V., “Graphic-dynamic models of
parallel knowledge processing: principles of construction, imple-
mentation and design,” in Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-

gies for intelligent systems], G. V.V., Ed. BSUIR, Minsk, 2012,
pp. 23–52.

[24] C. W. Holsapple and K. D. Joshi, “A collaborative approach to
ontology design,” Communications of the ACM, vol. 45, no. 2, pp.
42–47, 2002.

[25] Ford, Brian and Schiano-Phan, Rosa and Vallejo, Juan, Component
Design, 11 2019, pp. 160–174.

[26] D. Shunkevich, D. Koronchik, “Ontological approach to the
development of a software model of a semantic computer based
on the traditional computer architecture,” in Otkrytye semantich-
eskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems]. BSUIR, Minsk,
2021, pp. 75–92.

[27] C. Ballinger, “The teradata scalability story,” Technical report,
Teradata Corporation, 2009.

[28] “Cyc platform,” 2022. [Online]. Available:
https://cyc.com/platform/

[29] R. Gurunath and D. Samanta, “A novel approach for semantic
web application in online education based on steganography,”
International Journal of Web-Based Learning and Teaching
Technologies (IJWLTT), vol. 17, no. 4, pp. 1–13, 2022.

[30] Rudikova L. V., Zhavnerko E. V., “About data modeling of subject-
domains of a practice-oriented orientation for a universal system
for storing and processing data,” System Analysis and Applied
Informatics, pp. 4–11, 2017.

[31] J. Bai, L. Cao, S. Mosbach, J. Akroyd, A. A. Lapkin, and
M. Kraft, “From platform to knowledge graph: evolution of
laboratory automation,” JACS Au, vol. 2, no. 2, pp. 292–309,
2022.

[32] Ian Robinson, Jim Webber and Emil Eifrem, Graph databases.
O’Reilly Media, Inc., 2015.

[33] Abramsky Mikhail Mikhailovich, Timerkhanov Timur Ildarovich,
“Comparative analysis of the use of relational and graph databases
in the development of digital educational systems,” in Vestnik
NGU. Russian Federation, Novosibirsk, Vestnik NSU, 2018, pp.
5–11.

[34] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: a
data provenance perspective,” in Proceedings of the 48th annual
Southeast regional conference, 2010, pp. 1–6.

[35] Klimanskaya E.V., “Modern platforms for intelligent information
processing: Graph databases,” Nauka vchera, segodnya, zavtra,
pp. 9–16, 2014.

[36] C. Chen et al., “Multi-perspective evaluation of relational and
graph databases,” 2022.

[37] Amir Hosein Khasahmadi and Kaveh Hassani and Parsa Moradi
and Leo Lee and Quaid Morris, “Memory-based graph networks,”
in International Conference on Learning Representations, 2020.
[Online]. Available: https://openreview.net/forum?id=r1laNeBYPB

[38] O. P. Kuznecov, Diskretnaya matematika dlya inzhenera: Uchebnik
dlya vuzov [Discrete Mathematics for an Engineer: A Textbook
for High Schools]. Moscow: Lan’, 2009.

[39] Reinhard Diestel, Graph Theory. Hamburg, Germany: Universität
Hamburg, 2017.

[40] C. A. Sen, S. Parkkonen, Yu. A. Zobni, “Application of graph
databases to form knowledge bases of complex systems,” in
Problemy formirovaniya yedinogo prostranstva ekonomicheskogo i
sotsial’nogo razvitiya stran SNG (SNG-2017). Tyumen: Tyumen
Industrial University, 2017, pp. 165–172.

[41] A.N.Naumov, A.M.Vendrov, V.K.Ivanov, Database and knowledge
management systems. M.: Finance and statistics, 1991.

[42] T. A. Gavrilova, V. F. Khoroshevsky, Knowledge bases of
intelligent systems. SPb: Peter, 2000.

[43] A. A. Bashlykov, “Knowledge management systems,” in Avtoma-
tizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti,
2010, pp. 33–39.

[44] ——, “Methodology for building knowledge base management
systems for intelligent systems,” in Programmnyye produkty i
sistemy, 2013, pp. 131–137.

[45] V. Golenkov and N. Guliakina and I. Davydenko and A. Eremeev,
“Methods and tools for ensuring compatibility of computer systems,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-

325

tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2019, pp. 25–52.

[46] Golenkov V.V., Gulyakina N.A., Davydenko I.T., Shunkevich D.V.,
Eremeev A.P., “Ontological design of hybrid semantically compat-
ible intelligent systems based on the semantic representation of
knowledge,” in Ontologiya proyektirovaniya, G. V.V., Ed. Russian
Federation, Samara: Samara National Research University named
after Academician S.P. Korolev, 2019, pp. 132–148.

[47] M. J. Jacobs, “A software development project ontology,” Master’s
thesis, University of Twente, 2022.

[48] V.V. Gribova and A.S. Kleschev and D.A. Krylov and F.M.
Moscalenko, “The basic technology development of intelligent
services on cloud platform iacpaas. part 1. the development of a
knowledge base and a solver of problems,” Software engineering,
no. 12, pp. 3–11, 2015.

[49] Yurii I. Molorodov, “Development of information system based
on ontological design patterns,” in 5th International Conference
Information Technologies in Earth Sciences and Applications for
Geology, Mining and Economy,. Institute of Computational
Technologies, Siberian Branch of the Russian Academy of
Sciences, 2019.

[50] C. M. Zapata Jaramillo, G. L. Giraldo, and G. A. Urrego Giraldo,
“Ontologies in software engineering: approaching two great
knowledge areas,” Revista Ingenierías Universidad de Medellín,
vol. 9, no. 16, pp. 91–99, 2010.

[51] D. N. Koronchik, “Unificirovannye semanticheskie modeli
pol’zovatel’skih interfejsov intellektual’nyh sistem i tekhnologiya
ih komponentnogo proektirovaniya [Unified semantic models of
user interface for intelligent systems and technology for their
develop],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2013,
pp. 403–406.

[52] V. P. Ivashenko and N. L. Verenik and A. I. Girel’ and E.
N. Sejtkulov and M. M. Tatur, “Predstavlenie semanticheskih
setej i algoritmy ih organizacii i semanticheskoj obrabotki na
vychislitel’nyh sistemah s massovym parallelizmom [Semantic
networks representation and algorithms for their organization and
semantic processing on massively parallel computers],” in Otkrytye
semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems],
V. Golenkov, Ed. BSUIR, Minsk, 2015, pp. 133–140.

[53] E. Iotti, “An agent-oriented programming language for jade multi-
agent systems,” 2018.

[54] D. Shunkevich, “Agentno-orientirovannye reshateli zadach
intellektual’nyh sistem [Agent-oriented models, method and
tools of compatible problem solvers development for intelligent
systems],” in Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], V. Golenkov, Ed. BSUIR, Minsk, 2018,
pp. 119–132.

[55] (2022, Nov) Implementation of the sc-memory. [Online].
Available: https://github.com/ostis-ai/sc-machine

[56] R. Bayer and K. Unterauer, “Prefix b-trees,” ACM Transactions
on Database Systems (TODS), vol. 2, no. 1, pp. 11–26, 1977.

[57] K. Tsuruta, D. Köppl, S. Kanda, Y. Nakashima, S. Inenaga,
H. Bannai, and M. Takeda, “c-trie++: A dynamic trie tailored for
fast prefix searches,” Information and Computation, vol. 285, p.
104794, 2022.

[58] D. Belazzougui, P. Boldi, R. Pagh, and S. Vigna, “Fast prefix
search in little space, with applications,” in European Symposium
on Algorithms. Springer, 2010, pp. 427–438.

[59] Bhumij Gupta1, Dr. M.P. Vani, “An overview of web sockets: The
future of real-time communication,” in International Research
Journal of Engineering and Technology (IRJET), 2018.

[60] A. A. Naik and M. R. Khare, “Study of “websocket protocol
for real-time data transfer”,” International Reasearch Journal of
Engineering and Technology, 2020.

[61] M. Tomasetti, “An analysis of the performance of websockets in
various programming languages and libraries,” Available at SSRN
3778525, 2021.

[62] Q. Liu and X. Sun, “Research of web real-time communication
based on web socket,” 2012.

[63] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, “Foun-
dations of json schema,” in Proceedings of the 25th International
Conference on World Wide Web, 2016, pp. 263–273.

[64] T. Marrs, JSON at work: practical data integration for the web.
" O’Reilly Media, Inc.", 2017.

[65] Myers B.A., Rosson M.B., “Survey on user interface programming,”
in Proceedings SIGCHI’92: Human Factors in Computing Systems.
Monterrey, CA, 1992, pp. 195–202.

[66] (2022, Niv) Implementation of the interpreter of user interface
sc-models. [Online]. Available: https://github.com/ostis-ai/sc-web

[67] M. Sadouski, “Semantic-based design of an adaptive user interface,”
in International Conference on Open Semantic Technologies for
Intelligent Systems. Springer, 2022, pp. 165–191.

[68] J. Kong, W. Zhang, N. Yu, and X. Xia, “Design of human-
centric adaptive multimodal interfaces,” Int. J. Hum.-Comput. Stud.,
vol. 69, pp. 854–869, 12 2011.

[69] (2022, Nov) OSTIS Metasystem. [Online]. Available:
https://ims.ostis.net

Программная платформа для
интеллектуальных компьютерных систем

нового поколения
Зотов Н.В.

Данная работа посвящена проблемам обеспечения про-
ектирования семантически совместимых компьютерных си-
стем и их независимости от реализации платформ проекти-
рования таких систем. Работа показывает высокий уровень
значимости проектирования и реализации платформ нового
поколения, а также определяет решение задачи в виде про-
ектирования и разработки универсальных интерпретаторов
логико-семантических моделей систем по принципам, лежа-
щим в основе Технологии OSTIS. Вторая часть работы отра-
жает текущее состояние реализуемой платформы, приводит
достоинства и недостатки реализуемых в ней компонентов,
предлагает пути совершенствования платформы.

Received 28.10.2022

326

Problems and prospects of automating various
types and fields of human activity with the help
of next-generation intelligent computer systems

Vladimir Golenkov
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: golen@bsuir.by

Valery B. Taranchuk
Department of Computer
Applications and Systems

Belarusian State University
Minsk, Republic of Belarus

taranchuk@bsu.by

Mikhail Kovalev
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: michail.kovalev7@gmail.com

Abstract—In the article, the principles for automating
various fields of human activity using next-generation
intelligent computer systems are considered. An ontology
of various types of activities and related technologies is
proposed. The specification of these principles is carried out
on the example of human activity in the field of Artificial
Intelligence.

Keywords—OSTIS, ostis-system, activity, ontological ap-
proach, intelligent computer system, interoperability, knowl-
edge base, SC-code

I. INTRODUCTION

The key problem of the modern level of complex
automation of human activity is as follows. Currently,
either full automation of some classes of actions initiated
by the corresponding teams is being carried out, or
partial automation of some types of human activity,
within which a person controls the appropriate automation
tools. At the same time, automation of complex problems
solving, which are reduced to several partially automated
subproblemss, requires "manual" (non-automated) control
of several automation tools simultaneously.

The principles underlying the transition to a higher
level of automation of human activity are as follows.
All automation tools (all services) currently managed by
people are being "managed" by interoperable intelligent
computer systems that are able to effectively interact with
each other and, accordingly, are able to fully automate
the solution of complex problems requiring the use of
several automation tools (services) [1], [2], [3], [4], [5],
[6].

In this paper, we will first clarify the basic concepts
we use to consider the structure of human activity, then
we will consider in detail the structure of the current state
and the problems of Human activity development in the
field of Artificial Intelligence. Next, we will generalize
the principles of organization and automation of Human
activity in the field of Artificial Intelligence to all the
variety of types and directions of human activity.

II. BASIC CONCEPTS UNDERLYING THE FORMAL
DESCRIPTION OF THE STRUCTURE OF HUMAN

ACTIVITY

activity
:= [process of situational impact on some dynamic system,

aimed either at creating this system, or maintaining certain
characteristics of this system, or its destruction, or its
development (improvement)]

:= [system of all actions performed by some individual or
collective entity or an integral subsystem of such actions
corresponding to the purpose (duties) of this entity]

⊂ process

should be distinguished*
∋ {{{• activity

• action
}}}

⇒ comparison*:
[Each action necessarily corresponds to the formulation of
the problem that is solved as a result of performing this
action. In this case, the action can be complex (non-atomic),
i.e. it can be a hierarchical system of sub-actions, providing
the solution of sub-problemss of the initial problem.

In contrast, each activity can correspond to several initial
problems that are not sub-problems of other problems
within this activity.

An example of an activity that is not an action is an activity
carried out by some subject within some field (meaning
the activity to solve all kinds of problems of the most
different kinds that can be formulated within the specified
field).]

⇒ note*:
[Each activity and, accordingly, each action uniquely corre-
sponds to a subject performing that activity.]

human activity
:= [a system of actions performed by people or human

communities either "manually" or with "passive" tools
(sticks, ropes, shovels, axes and e.t.c.) or with "active"
tools (vehicles, excavators, chainsaws and e.t.c.)]

327

action
:= [process of changing the state of some dynamic system

(from a given state to a desired target state), initiated
and possibly directly carried out by some subject with
the possible use of some tools, additional materials and
information resources (in particular methods)]

:= [a purposeful (conscious) process of some subject acting
on some object]

⇒ note*:
[The subject of the action can be either individual or
collective. The object of impact may have any complex
structure and consist of any number of components that
are impacted. The initiation and execution of an action can
be carried out by different subjects using various auxiliary
tools]

. ⊃ information action
:= [information process performed by some subject (in-

cluding a computer processor)]
:= [process of changing the state of some information

resource]

should be distinguished*
∋ {{{• action

• problem
:= [specification of some action that contains enough

information to perform that action]
:= [problem formulation]
⊃ declarative problem formulation
⊃ procedural problem statement

}}}

relationship defined on the action set
∋ action*

:= [be an action performed to solve a given problem]
⇔ inverse relation*:

problem*
:= [to be a problem performed as a result of this action]

relationship defined on the set of activities
∋ activity object*

:= [being an object over which a given activity is per-
formed*]

∋ product of activity*
:= [to be the product of a given activity*]

∋ part of the time of existence*
:= [to be a segment of time of existence of a given temporal

entity*]
∋ activities whose object classes coincide*
∋ activities performed simultaneously*

activity type
:= [class of activities]
:= [class of similar activities, which can be matched with a

common technology that ensures the performance of all
activities of this class]

:= [a class whose instances (elements) are equivalent (similar)
activities performed in general by different cybernetic
systems]

∋ example ′:
design
:= [design activity]
:= [human activity whose product is the design documen-

tation of some created entity]
:= [building a complete specification (design documenta-

tion) of some entity to be created]
⇒ note*:

[The products of this activity are the specifications of
any socially significant created entities]

⇒ particular activity over a subclass of activity objects*:
• ostis-systems design
• circuit design
• building design

∋ example ′:
life cycle support
⇒ particular activity over a subclass of activity objects*:

• chip life cycle support
• buildings life cycle support
• support of life cycle of ostis-systems

⇒ particular activity over a subclass of activity
objects*:
• support of the ostis-systems knowledge

base life cycle
• support for the life cycle of ostis-systems

problem solvers
• support life cycle of ostis-systems

interfaces
∋ human resources training

:= [educational activity]
∋ production
∋ environmental activity
∋ construction activity
∋ health care activity
∋ administrative activity
∋ research activity

should be distinguished*
∋ {{{• type of activity

• class of actions
}}}

should be distinguished*
∋ {{{• class of actions

• class of problems
:= [a set of similar (similar) formulations of specific

problems that can easily be generalized by replac-
ing some constants going into those formulations
with variables]

• problem class formulation
:= [a generalized problem class formulation (spec-

ification) that "turns" into a specific problem
formulation when specific values are assigned to
all the free variables included in this generalized
problem class formulation]

}}}

relationship defined on the action set
∋ method*

:= [to be a method that provides all actions of a given
class of actions, or solving all problems of a given
class of problems, or performing a particular given
action, or solving a particular given problem*]

∋ maximal action class*
:= [to be the maximum class of actions performed by a

given method*]

method
:= [information construct whose interpretation by any subject

belonging to the corresponding class of subjects ensures
that any action belonging to the corresponding class of
actions]

⊃ methodology
:= [method implemented by a person or group of people]

328

a relation defined on a set of activities
∋ technology*

:= [be a technology that ensures the performance of each
activity belonging to a given type of activity*]

∋ class of objects of activity*
:= [be a class of activity objects for a given type of

activity*]
∋ activity product class*

:= [be a class of activity products for a given type of
activity*]

∋ a particular type of activity over a subclass of objects of
activity*
:= [a particular type of activity, the class of objects of

which is a subclass of objects of activity of a given
type of activity*]

∋ a particular type of activity over a class of components of
objects of activity*
:= [a particular type of activity, the class of objects of

which is the class of components of the objects of
activity of a given type of activity*]

∋ a particular type of simultaneously performed activity*
:= [a particular type of activity, each of which is performed

simultaneously (in parallel) with activities belonging
to a given type of activity*]

∋ a particular type of activity performed at some stage*
:= [a particular type of activity, each of which is performed

as one of the stages of the activity, belonging to a given
type of activity*]

∋ types of activities whose object classes coincide*
∋ types of activities performed by the same entities*

technology
:= [a system of knowledge, skills and tools that ensure the

performance of each activity of the appropriate type by
the relevant subjects]

⇒ note*:
[The basis of any technology is multiplicity - either the
multiplicity of creating similar (analogous) entities, or the
multiplicity of performing similar actions, the multiplicity
of using similar methods (techniques). Obviously, the
higher the degree of similarity (proximity, convergence) of
repeatedly created entities and repeatedly used methods,
the higher their unification, the simpler the corresponding
technology will be.]

scope of execution*
:= [be a subject domain and a corresponding ontology (possi-

bly with some child subject domains and corresponding
ontologies) containing knowledge sufficient to perform a
given action, or a given class of actions, or a given activity,
or a given type of activity*]

⊃ scope of the action*
⊃ scope of the action class execution*
⊃ scope of activity*
⊃ scope of the type of activity*

subject*
:= [be a subject performing a given action or a given activity*]
⇒ note*:

[The initiation of an action or activity performed by a
subject can be carried out either independently (on its own
initiative), or on the initiative (command, task) of another
subject.]

information resource
:= [a socially significant information structure that is a product

of relevant human activity, which requires not only its
creation, but also maintenance (updating, updating)]

⊃ project documentation
⊃ scientific theory

:= [the product of scientific research activity, which is a
strict description of the properties and patterns of a
certain class of entities]

⊃ standard
⊃ specification of a set of techniques of the corresponding

technology
⊃ specification of tools of the corresponding technology

project documentation
:= [full specification of the entity being created]
:= [product of project activity]
:= ["digital" copy of some entity]
:= [an information model (description) of an entity that has

sufficient completeness (detail) to reproduce (reproduce)
this entity]

III. PROBLEMS AND PROSPECTS OF HUMAN ACTIVITY
DEVELOPMENT IN THE FIELD OF ARTIFICIAL

INTELLIGENCE

Earlier in the work [7] we clarified:
• architecture of next-generation intelligent computer

systems
• how the activity (functioning) of next-generation

intelligent computer system is carried out
• the way applied engineering human activity for de-

signing new-generation intelligent computer systems
is automated and supporting all subsequent stages
of their life cycle.

Let’s clarify how the whole complex of human activity
in the field of Artificial Intelligence is carried out and
automated.

A. General assessment of the current state of human
activity in the field of Artificial intelligence

Let’s consider the need to move the organization of hu-
man activity of Artificial intelligence to a fundamentally
new level, ensuring the formation of a market for seman-
tically compatible new-generation intelligent computer
systems, developed on the basis of a fundamentally new
complex of semantically compatible Artificial intelligence
technologies.

Now it is important to investigate not only models for
solving intelligent problems in intelligent computer sys-
tems of various types, but also methodological problems
of the current state of Artificial intelligence in general
and ways to solve these problems.

An analysis of the current state of work in the field
of Artificial intelligence shows that this scientific and
technical discipline is in a serious methodological crisis.
Therefore, it is necessary:

• Identification of the main causes of this crisis;
• Clarification of the main measures aimed at its

elimination.

329

The solution of the crisis problems under consideration
requires:

• An essential fundamental system-wide rethinking of
everything we do in the field of Artificial intelligence
and how we do it, i.e. requires clarification of the
characteristics of intelligent computer systems, clari-
fication of the concept of a community consisting
of intelligent computer systems and users interacting
with them, clarification of the requirements for
intelligent computer systems, as well as clarification
of methods and means of their creation and use.

• The realization that Cybernetics, Computer Science
and Artificial intelligence are a common fundamental
science that requires an integrated approach to the
construction of general formal models of systems
based on information processing (cybernetic systems)
by convergence and integration of formal models
of various components of these systems [8]. Thus,
the current stage of the development of Artificial
intelligence is a transition from the accumulated to
the current moment variety of models for solving
various types of problems to the transformation of
this variety into a coherent system of semantically
compatible models;

• The realization that now it is necessary not to
expand the diversity of points of view, but to
learn to coordinate them, to ensure their semantic
compatibility, improving the appropriate methods.

Discussing the modern problems of convergence of
various models in the field of Artificial intelligence
and the construction of integrated hybrid models, it is
appropriate to recall «the fantastic story of D.A. Pospelov
”Contact”, dedicated to the contact of different worlds. In
it, the main character popularly expounds his theory of
conceptual faults <...>. This theory resembles the history
of a long period of differentiation of sciences, when
various scientific disciplines developed independently,
like parallel worlds, only occasionally touching each
other, and individual scientists, receiving an increasingly
narrow specialization, knew little about the achievements
of even their "close brethren". Fortunately, in recent years,
new directions of contact between individual disciplines
have been emerging more and more often, ideas are
interpenetrating, analogies are being established between
the results obtained and development trends. This is
largely due to the emergence and widespread introduction
of advanced information and communication technologies
into all spheres of society <...>. Modern technologies rely
on the achievements of many scientific and technical dis-
ciplines, among which new-generation synthetic sciences
- the sciences of artificial» come to the fore.
⇐ quote*:

Tarasov V.B. fMStIO – 2002bk/p.13 [9]

Analyzing the current state of work in the field of
Artificial intelligence (AI), it should be stated that the

conceptual gap between the various directions of Artificial
intelligence is an obvious fact. This is confirmed by
the following quote from the book by V.B. Tarasov [9]
«again, as at the dawn of AI, the formation of unified
methodological foundations of AI, the development of
theoretical problems of creating intelligent systems of new
generations, the development of unconventional hardware
and software are becoming relevant. Here, great prospects
are associated with the use of ideas and principles of
synergetics in AI. The term "synergetics" itself comes
from the word "synergy", meaning joint action, coopera-
tion. According to the "father of synergetics" G. Haken,
such a name is quite suitable for the modern theory of
complex self-organizing systems for two reasons: a) the
joint actions of many elements of a developing system
are being investigated; b) to find common principles
of self-organization, it requires the combined efforts of
representatives of various disciplines».
⇐ quote*:

Tarasov V.B. fMStIO – 2002bk/p.14 [9]

In order to make sure that there is a conceptual rift
between different directions of Artificial intelligence, it
is enough to simply list the main directions of work
of conferences on the subject of Artificial intelligence,
paying attention to the fact that many of them are
developing independently of others:

• synergetic models of self-organization of intelligent
computer systems;

• hybrid intelligent computer systems;
• collaborative intelligent computer systems;
• soft computing, intelligent computing;
• modeling of non-factors;
• non-classical, multivalued, modal, pseudophysical,

inductive, fuzzy logic and approximate reasoning,
logic programs;

• fuzzy sets, relations, graphs, algorithms;
• functional programs, fuzzy algorithms, genetic algo-

rithms, production models;
• neural network models;
• parallel asynchronous models of decentralized prob-

lem solving;
• signal processing;
• multisensory convergence, sensorimotor coordina-

tion;
• situational management models.
Overcoming the conceptual rift between different

directions of research in the field of Artificial intelligence
is a kind of "leap" across the "conceptual abyss", which
requires special concentration of efforts. You can’t jump
over the abyss in two jumps.

If we briefly characterize the current state of all
work in the field of Artificial Intelligence, it is an
illusion of well-being. There is an active local devel-
opment of various directions of Artificial Intelligence
(non-classical logics, formal ontologies, artificial neural

330

networks, machine learning, soft computing, multi-agent
systems, etc.), but there is no comprehensive increase in
the level of intelligence of modern intelligent computer
systems. This first of all requires the convergence and
integration of all directions of Artificial intelligence and
the corresponding building of a general formal theory of
intelligent computer systems, and also the transformation
of the modern variety of development tools (frameworks)
of various components of intelligent computer systems
into a single Technology of integrated design and support
the whole life cycle of intelligent computer systems,
which guarantees the compatibility of all developed
components of intelligent computer systems, as well as the
compatibility of intelligent computer systems themselves
as independent entities (agents, actors) interacting with
each other within complex systems of automation of
complex collective human activity (smart houses, smart
hospitals, smart schools, smart manufacturing enterprises,
smart cities, etc.). Thus the epigraph of the current state
of work in the field of Artificial Intelligence is the well-
known statement from Ecclesiastes: ”A time to scatter
stones and a time to gather stones - to all in good time”.

«Unfortunately, in today’s discussions on AI (Artificial
Intelligence) scientific debates are often substituted by
exaggerated expectations from the rapid introduction of
AI and a significant narrowing of the topic of AI, which
has been reduced only to machine learning based on
artificial neural networks. <...> Meanwhile ontologies,
knowledge bases, methods of reasoning and decision
making, methods of synthesis and analysis of complex
structures, intelligent cyber-physical systems, digital
twins, autonomous systems, systems of analysis of both
"big" and "small" data were left out of the National
Strategy. <...>

Recognizing the importance of machine learning based
on artificial neural networks, world-class scientific and
practical results should be sought at the intersection
of different disciplines in the convergence of different
AI technologies and integration of multidisciplinary
knowledge. In this regard, knowledge formalization in the
form of ontologies and knowledge bases within Semantic
Web is seen as one of the fundamental directions for the
creation of AI. Indeed, what kind of intelligence can there
be without using the knowledge of modern textbooks, on
the basis of which AI will understand the context of the
situation, draw conclusions and make decisions? <...>

Another key direction of AI that is not reflected in
the Russian AI strategy is distributed decision-making,
which is increasingly becoming collective for the rapidly
developing smart Internet of Things and autonomous
control systems, starting with unmanned cars, aircraft,
ships, etc.

Gartner has declared 2020 the year of "autonomous
things" which, according to the company, have already
evolved from "digital" to "smart". In the next phase,

autonomous things with their own AI are expected to
"talk" to each other and the scientific agenda will include
semantic interoperability of AI systems that will not only
exchange data, but also negotiate to agree on solutions.
The U.S. AI research roadmap highlights such direction
as the connectivity of Artificial intelligence systems
(Integrated Intelligence) and their meaningful interaction,
along with various types of Self-Aware Learning in
systems, as key.»
⇐ quote*:

Barinov I.I.. DevelSFoftheConAI- 2021art/pp. 264-265 [10]

The key reason for the methodological problems of
the current state of Artificial intelligence and a serious
challenge for specialists in this field is the curse of the
Babylonian Pillar of [11], which haunts us at all levels:

• at the level of internal organization of problem
solving in intelligent computer systems;

• at the level of interaction of intelligent computer
systems, both among themselves and with users;

• at the level of interaction of scientists working in
the field of Artificial intelligence, which prevents the
creation of a general formal theory and standard
of intelligent computer systems, as well as the
Technology of integrated design and support of the
entire life cycle of intelligent computer systems

• at the level of interaction between scientists, en-
gineers who develop applied intelligent computer
systems, university professors who train specialists in
the field of Artificial intelligence, as well as students,
undergraduates and graduate students.

The complexity of currently developed intelligent
computer systems and Artificial Intelligence technologies
has reached such a level that their development requires
not just large creative teams, but also a significant
increase in the qualifications and quality of these teams.
It is well known that the qualification of a team of
developers is determined not only by the qualification of
its members, but also by the efficiency and atmosphere
of their interaction. It is also known that the quality
of any technical system is a reflection of the quality
of the team that developed the system. Can a team of
sufficiently qualified specialists, many of whom are not
highly interoperable, develop an intelligent computer
system with a high level of interoperability, much less a
technology for integrated support of the entire life cycle
of intelligent computer systems of this level? The obvious
answer to this question and the obvious complexity
of creating workable creative teams indicate the main
challenge addressed to Artificial Intelligence specialists
at the present time. Thus, the requirements for the new-
generation intelligent computer systems, determining their
ability to individually and collectively solve complex
problems, should also be imposed on the developers of
these systems, as well as the developers of any other

331

complex objects, since all complex types and directions
of human activity are collective and creative.

Creating a rapidly growing market of semantically
compatible intelligent computer systems is the main
goal addressed to the experts in the field of Artificial
Intelligence, requiring overcoming the Babylonian pan-
demonium in all its manifestations, forming a high
culture of agreement and a unified, coordinated form
of representation of collectively accumulated, improved
and used knowledge. Scientists, working in the field of
Artificial Intelligence, should ensure the convergence of
the results of different directions of Artificial intelligence
and build a general formal theory of intelligent computer
systems, as well as the Integrated Design Technology
for semantically compatible intelligent computer systems,
including appropriate standards for intelligent computer
systems and their components. Engineers who develop
applied intelligent computer systems should collaborate
with scientists and participate in the development of
the Comprehensive technology for fesign of semantically
interoperable intelligent computer systems, and support
all subsequent stages of the life cycle of these systems.

The isolation of various research directions in the
field of Artificial Inteiligence is the main obstacle to
the creation of a comprehensive technology for the design
of semantically compatible intelligent computer systems,
as well as the Technology of integrated support for all
subsequent stages of the life cycle of intelligent computer
systems.

B. Structure of activity in the field of Artificial Intelligence

In order to consider the problems of further develop-
ment of activity in the field of Artificial Intelligence and,
in particular, the problems of complex automation of this
activity, it is necessary to specify the structure of the
mentioned activity.

Human activity in the field of Artificial Intelligence are
aimed at research and creation of intelligent computer
systems of various kinds and different purposes. The
objects of research in Artificial Intelligence are:

• individual intelligent computer systems (in particular,
cognitive agents);

• multiagent intelligent computer systems (in particular,
communities consisting of individual intelligent
computer systems);

• Human-machine communities consisting of intelli-
gent computer systems and their users.

The main goals of human activity in Artificial Intelli-
gence are:

• building a formal theory of intelligent computer
systems (artificial intelligent systems);

• creation of technologies (techniques and tools) that
provide design, implementation, maintenance and
operation of intelligent computer systems;

• transition to a fundamentally new level of complex
automation of all types of human activity, which is
based on mass application of intelligent computer
systems and which implies:
– not only the presence of intelligent computer

systems capable of understanding each other and
coordinating their activities,

– but also consideration of the general structure of
human activity carried out under the conditions
of its new level of automation (smart-society
activity), which should be "understandable" to
the used intelligent computer systems and which
will require a substantial rethinking of the modern
organization of human activity.

Artificial Intelligence as a field of human activity
includes the following activities:

• Research activity in the field of Artificial Intelli-
gence, in the process of which there is a competition
of different points of view and approaches to the
construction of formal models of various components
of intelligent computer systems. The ultimate goal
of such activity is the constantly evolving General
theory of intelligent computer systems. The objects
of research of this theory are intelligent computer
systems and their formal logical-semantic models.
These models include formal models of various
types of knowledge, which are part of knowledge
bases of intelligent computer systems, as well as
various problem-solving models (logical models
of various types, neural network models, genetic
models, productive models, functional models, etc.).

• The development of the Intelligent Computer
Systems Standard, which includes the permanent
evolution of this standard and maintains the integrity
of each version of it. The current version of the
Standard for Intelligent Computer Systems is the
consensus (generally accepted) currently part of the
General Theory of Intelligent Computer Systems.

• Development of technology for designing intelligent
computer systems, which includes a family of
design methodologies, as well as methods and tools
for automating design of various components of
intelligent computer systems and intelligent computer
systems in general. The result of designing intelligent
computer systems is a complete formal logical-
semantic model of this system.

• The development of technology for the implemen-
tation of designed intelligent computer systems, as
well as technologies for the operation and mainte-
nance of intelligent computer systems. In the basis
of the technology of implementation (production)
of the designed intelligent computer systems lies
the universal interpreter of formal logical-semantic
models of intelligent computer systems, which are
the result of the design of the specified systems. The

332

specified universal interpreter can be implemented
either as a software system on modern computers, or
as a universal new-generation computer, oriented to
the interpretation of formal logical-semantic models
of intelligent computer systems.

• Applied engineering activity in the field of Artificial
Intelligence, i.e., the direct design, implementa-
tion and maintenance, which includes updating (re-
engineering) performed during operation, of specific
intelligent computer systems.

• Training activity in the field of Artificial Intelli-
gence are aimed at training specialists in the field of
Artificial Intelligence and at continuous professional
development of existing specialists in this field.
Without effective organization of training activities
in the field of Artificial Intelligence, rapid progress in
this field is impossible. Direct inclusion of learning
activity in the general structure of human activity in
the field of Artificial Intelligence is caused by the
following circumstances:
– the necessity of deep convergence between dif-

ferent fields and types of activities in the field
of Artificial Intelligence and the corresponding
specificity of requirements to specialists in this
field – each such specialist must be competent
enough both in research activities in the field of
Artificial Intelligence, and in the development of
technologies (methods and means) of designing
intelligent computer systems, and in the develop-
ment of technologies of reproduction (realization)
of the designed Artificial Intelligence;

– high rate of evolution of results in the field of
Artificial Intelligence, which makes it necessary
to organize the training of relevant specialists by
connecting them directly not to training (simpli-
fied) projects, but to real projects, implemented
at the moment. Otherwise, trained specialists will
have the qualification of "yesterday’s day";

– the significant expansion of the volume of work
in the field of Artificial Intelligence and the urgent
need for mass training of relevant specialists.

The difficulty of Training of young professionals
in the field of Artificial Intelligence lies not only
in the high degree of scientific intensity of this field,
but also in the fact that the formation of relevant
knowledge and skills in them is carried out in
conditions of rapid moral aging of the current state of
Artificial Intelligence technology, significant changes
in which occur during the education of students and
undergraduates. Therefore, it is necessary to teach
not the current level of development of Artificial
Intelligence, but the level of development that will
be achieved in five years or more.
When training young professionals in the field of
Artificial Intelligence, it is necessary to form in them:

– formalization culture (mathematical culture);
– systemic culture (in particular, the ability to per-

form qualitative stratification of complex dynamic
systems);

– technological culture (in particular, the ability to
distinguish between what should be unified and
what unification limits the direction of evolution
of a given class of complex systems);

– technological discipline;
– culture of collective creativity (in particular, initial

interoperability);
– high cognitive activity and motivation;
– ability to combine individual creative freedom

and independence with ensuring compatibility of
one’s results with the results of one’s colleagues,
i.e. to combine freedom in creating (generating)
new meanings with the coherence (compatibility)
of forms of their representation – notions, terms
and syntax are not argued about, but agreed upon.

• Organizational activity in the field of Artificial
Intelligence, aimed at creating an infrastructure for
the quality performance of all other activities in the
field of Artificial Intelligence, namely:
– to ensure a deep convergence between the different

fields and activities in the field of Artificial
Intelligence and, in particular, between theory,
technology and engineering practice in this field;

– to balance tactics and strategy in the development
of Artificial Intelligence activities as a key basis
for significantly increasing the level of automation
of all types of human activities and the transition
to smart society.

The considered decomposition of human activity in
the field of Artificial Intelligence by types of activities is
not a traditional feature of scientific-technical disciplines
decomposition. Usually, the decomposition of scientific-
technical disciplines is carried out according to the content
directions which correspond to the decomposition of tech-
nical systems studied and developed within these scientific-
technical disciplines, i.e. correspond to the allocation of
various kinds of components in these technical systems.
For Artificial Intelligence such directions are:
• Research and development of formal models and

knowledge representation languages;
• research and development of knowledge bases;
• research and development of logical models of

knowledge processing;
• research and development of artificial neural net-

works;
• research and development of computer vision sub-

systems;
• research and development of subsystems for pro-

cessing natural language texts (syntactic analysis,
comprehension, synthesis);

• and many others.

333

The importance of decomposition of Artificial Intel-
ligence by types of activities is determined by the fact
that the allocation of different types of activities allows to
clearly set a problem for the development of automation
tools for these types of activities.

Here is the general structure of human activities in the
field of Artificial Intelligence.

Human activities in Artificial Intelligence
:= [Artificial Intelligence (as a scientific and technical disci-

pline]
∈ scientific-technical discipline
:= [human activity in the Subject domain of intelligent com-

puter systems]
∈ activity
⇒ decomposition*:

{{{• Integral activity of support the life cycle of all types of
intelligent computer systems
⇒ decomposition*:

support the life cycle of intelligent computer
systems

• Support the life cycle of the General Theory of
Intelligent Computer Systems
∈ research activity

• Smart computer systems standard life cycle support
∈ standardization
⇒ part*:

Support the life cycle of the ostis-systems Standard

• life cycle Support for Integrated Life Cycle Support
Technologies for Intelligent Computer Systems
∈ support technology life cycle

:= [technology creation and maintenance]
⇒ part*:

OSTIS Technology life cycle Support
• Support of the human resources life cycle for Human

Activity in the field of Artificial Intelligence
• Support the life cycle of the system of complex

organization of interaction between all directions of
Human Activity in the field of Artificial Intelligence
∈ supporting the life cycle of meta-systems of

complex management support and providing life
cycle support for entities of the respective class

}}}

support the life cycle of intelligent computer systems
∈ type of activity
⇒ generalized decomposition*:

{{{• designing intelligent computer systems
• production of intelligent computer systems
• initial training of intelligent computer systems
• quality monitoring of intelligent computer systems
• recovery of the required quality level of intelligent

computer systems
• reengineering intelligent computer systems
• security assurance of intelligent computer systems
• operation of intelligent computer systems by end users

}}}

Technology of intelligent computer systems life cycle support
technology
⇒ type of activity*:

smart computer systems life cycle support
⇒ decomposition*:

{{{• Technology of intelligent computer system design
⇒ type of activity*:

designing intelligent computer systems
• Technology of production intelligent computer systems

⇒ type of activity*:
intelligent computer system production

• Technology for initial training of intelligent computer
systems (activity-specific adaptation)
⇒ type of activity*:

initial training of intelligent computer systems
• Technology of Quality monitoring for intelligent

computer systems
⇒ type of activity*:

quality monitoring of intelligent computer systems
:= [planned testing and diagnosis of intelligent

computer systems]
• Technology of restoring the required level of quality of

intelligent computer systems during their operation
:= [Technology for detecting and correcting potentially

dangerous situations and events in the operation
of intelligent computer systems (errors, inconsis-
tencies, etc.)]

⇒ type of activity*:
restoring the required level of quality of intelligent
computer systems

• Technology of reengineering intelligent computer
systems
:= [Technology of improving, modernizing, updating

intelligent computer systems]
⇒ type of activity*:

reengineering intelligent computer systems
• Technology of intelligent computer systems security

⇒ type of activity*:
securing intelligent computer systems

• Technology of operation of intelligent computer
systems by end users
⇒ type of activity*:

exploitation of intelligent computer systems by end
users

}}}

C. Current state and current problems of Artificial
Intelligence

Let’s consider in which directions the evolution (quality
improvement) of Artificial Intelligence activities should
take place, as well as the evolution of the products of
these activities.

1) Current state and current problems of research
activities in the field Artificial Intelligence: Currently,
research in Artificial Intelligence is actively developing
in a wide range of different directions (knowledge repre-
sentation models, different kinds of logics – deductive,
inductive, abductive, clear, fuzzy, various kinds of artifi-
cial neural networks, machine learning, decision making,
goal setting, behavior planning, situational behavior, multi-
agent systems, computer vision, recognition, data mining,
soft computing, and more). However:

• There is no consistency of definitions systems in
different directions of Artificial Intelligence and, as
a consequence, there is no semantic compatibility
and convergence of these directions, resulting in
significant difficulties in the direction of building

334

General theory of intelligent systems with a high
level of formalization. The existence and continuing
increase in the "height of barriers" between different
research directions in the field of Artificial Intel-
ligence is manifested in the fact that a specialist
working within a particular direction of Artificial
Intelligence, attending meetings of "not his" section
at a conference on Artificial Intelligence, can under-
stand little there and, accordingly, learn something
useful for himself;

• There is a lack of motivation and awareness of the
urgent need for mentioned convergence between
different directions of Artificial Intelligence;

• There is no real movement in the direction of build-
ing General theory of intelligent systems, because
there is no appropriate motivation and awareness of
the acute practical need for it;

• There is no rigorous and consistent specification of
the concept of intelligent computer system. So far,
the Turing Test has been used for this purpose. A
superficial interpretation of the Turing Test has given
rise to various imitations of intelligence in the style
of "small talk". In fact, a meaningful, goal-oriented
dialogue should be taken into account, in which
the intelligence of intelligent computer system is
defined as its non-trivial contribution to the collective
solution of some intelligent (creative) problem.

2) Current status of intelligent computer systems
Standard: Currently, the need for unification and stan-
dardization of intelligent computer systems is not realized,
which significantly hinders the creation of complex
technology of Artificial Intelligence.

3) Current state and current problems of development:
technologies of intelligent computer system design

Modern technology of Artificial Intelligence is a whole
family of all sorts of private technologies focused on
development various kinds of intelligent computer systems
components that implement a wide variety of information
representation and processing models, as well as focused
on development different classes of intelligent computer
systems. However:

• high complexity of development of intelligent com-
puter systems;

• high qualification of developers is required;
• modern technologies of Artificial Intelligence do

not fundamentally ensure the development of such
intelligent computer systems, which eliminate the
drawbacks of modern intelligent computer systems
and, in particular, provide a sufficiently high level
of interoperability;

• compatibility of design technologies of different
classes of AI intelligent computer systems is prac-
tically absent and, as a consequence, there is no
semantic compatibility and interaction of the devel-
oped intelligent computer systems, so the system

integration of intelligent computer systems is done
manually;

• there is no complex technology of intelligent com-
puter systems design;

• there is no compatibility between existing particular
design technologies for various components of intel-
ligent computer systems (knowledge bases, problem
solvers, intelligent interfaces). There are tools for
component development, but it is necessary to "glue"
(connect, integrate) developed components manually,
because there are no comprehensive tools to develop
intelligent computer systems as a whole.

4) The current state and current problems of develop-
ment technologies for the implementation of designed
intelligent computer systems as well as their operation
and maintenance: There have been a number of attempts
to develop new-generation computers focused on the use
of in intelligent computer systems. But all of them were
unsuccessful because they were not oriented towards the
whole variety of problem-solving models in intelligent
computer systems. In this sense, they were not universal
computers for intelligent computer systems.

Developed intelligent computer systems can use a
variety of combinations of intelligent problem-solving
models (logic models corresponding to various kinds of
logics, neural network models of various kinds, goal-
setting models, plan synthesis, complex object control
models, natural language text understanding and syn-
thesis models, etc.). However, modern traditional (von
Neumann’s) computers are not able to interpret all the
variety of these problem-solving models in a sufficiently
productive way. At the same time, the development of
specialized computers focused on the interpretation of
any one problem-solving model (neural network model or
any logical model) does not solve the problem, because
in intelligent computer system several different problem-
solving models must be used at once, and in various
combinations.

Currently, there is no comprehensive approach to the
technological support of all stages of the intelligent
computer systems life cycle – not only to support the
design and implementation (assembly, production) of
intelligent computer systems, but also to the technological
support of maintenance, re-engineering and operation of
intelligent computer systems.

The semantic unfriendliness of the user interface and
the lack of built-in intelligent help systems that allow
you to query information about interface elements and
system features leads to low operational efficiency of all
intelligent computer system features.

5) Current state and current problems of applied
engineering in the field of Artificial Intelligence:
We have accumulated quite a lot of experience in the
development of intelligent computer systems for various
purposes - systems of medical diagnostics automation,

335

as well as diagnostics of complex technical systems,
intelligent learning, information and help systems, systems
of natural language communication, intelligent computer
personal assistants, intelligent corporate systems, intelli-
gent systems of situational management of various kinds
of complex objects, systems of intelligent analysis of big
data. However:

• The level of efficiency of practical use of scien-
tific results in the field of Artificial Intelligence
clearly does not correspond to the current level of
development of these scientific results themselves.
In order to improve the level of effectiveness of
the practical use of the mentioned scientific re-
sults, collaborative efforts of scientists creating new
models of intelligent problem solving, developers
of design and implementation technologies, and
developers of applied intelligent computer systems
are required.

• There is no clear systematization of the variety of
intelligent computer systems, corresponding to the
systematization of automated types of human activity;

• There is no convergence of intelligent computer
systems that provide automation of fields of human
activity belonging to the same type of human activity;

• There is a lack of semantic compatibility (semantic
unification, mutual understanding) between intelli-
gent computer systems, the main reason being the
absence of a concerted system of common concepts
used;

• Analysis of the problems of complex automation
of all types of human activity convinces us that
further automation of human activity requires not
only increasing the level of intelligence of the
corresponding intelligent computer systems, but also
to substantially increase their ability level:
– build its semantic compatibility (understanding)

both with other computer systems and with its
users;

– maintain this semantic compatibility in its own
evolution, as well as the evolution of users and
other computer systems;

– coordinate with users and other computer systems
in the collective solution of various problems;

– participate in the distribution of work (subprob-
lems) in the collective solution of various prob-
lemss.

It is important to emphasize that the implementation
of the above capabilities will create the possibility for
substantial and even complete automation of system
integration of computer systems into complexes of in-
teracting intelligent computer systems and automation of
reengineering of such complexes. Such automation of
system integration and its reengineering:

• will give the complexes of computer systems the
opportunity to adapt independently to the solution

of new problems;
• will significantly increase the efficiency of operation

of such complexes of computer systems, as the
reengineering of system integration of computer
systems included in such a complex is often in
demand (for example, in the reconstruction of
enterprises);

• significantly reduces the number of errors compared
to "manual" (non-automated) execution of system
integration and its reengineering, which, in addition,
require high skills.

Thus, the next stage of increasing automation of human
activity urgently requires the creation of such intelligent
computer systems, which could by themselves (without
a system integrator) combine to solve complex problems
together.

6) Current state and current problems of academic
activities in the field of Artificial Intelligence: Many
leading universities are training specialists in Artificial
Intelligence. At the same time it is necessary to note the
following features and problems of the current state of
this activity:

• Since activities in the field of Artificial Intelligence
combines both a high degree of science-intensive
and a high degree of engineering complexity, train-
ing specialists in this field requires simultaneous
formation of both research skills and knowledge
and engineering-practical skills and knowledge, as
well as system and technological culture and style
of thinking. From the point of view of teach-
ing methodology and psychology, the combination
of fundamental scientific and engineering-practical
training of specialists is a rather complex pedagogical
problem;

• There is no semantic compatibility between differ-
ent academic disciplines, which leads to "mosaic"
perception of information;

• There is no systematic approach to the training
of young professionals in the field of Artificial
Intelligence;

• There is no personalization of learning, as well
as an attitude to the identification, discovery and
development of individual abilities;

• There is no purposeful formation of motivation for
creativity;

• No formation of skills to work in real teams of
developers. There is no adaptation to the real
practical work;

• Any modern technology (including Artificial In-
telligence technology) must have a high rate of
development, because without it it is impossible
to maintain a high level of its competitiveness. But
a rapidly developing technology requires:
– not just highly qualified personnel using and

developing the technology;

336

– but also a high rate of improvement of this
qualification, because without this it is impossible
to effectively use and develop rapidly changing
technology.

It follows that learning activity in Artificial Intelligence
field and its corresponding technology should not just be
an important part of activities in the field of Artificial
Intelligence, but a part that is deeply integrated into
all other types of activities in the field of Artificial
Intelligence. Thus, for example, every intelligent computer
system must be oriented not only to serving its end users,
not only to organizing purposeful interaction with its
developers who are constantly improving the system, and
not only to providing a minimum "threshold of entry"
for new end users and developers, but also to organize
continuous and personalized professional development for
each of its end users and developers in the face of constant
changes made to mentioned intelligent computer system.
To do this, the operated intelligent computer system must
"know" what has changed in it, what it is capable of, and
how to initiate these abilities (the content and form, of
the corresponding user commands).

When we talk about convergence and integration in
the field of Artificial Intelligence, we are talking not only
about convergence between intelligent computer systems,
but also between different types and fields of human
activities. Thus, learning activities aimed at training
specialists in Artificial Intelligence are organically part
of activities in Artificial Intelligence field, and the most
important way to increase the efficiency of this activity
is its convergence and integration with other types of
activities in the field of Artificial Intelligence.

7) Current state and current problems of organiza-
tional activities in the field of Artificial Intelligence:
The urgent need to significantly increase the level of
automation in various fields of human activities (industry,
medicine, transportation, education, construction and
many others), as well as the current results in the
development of Artificial Intelligence technology have
led to a significant increase in the creation of applied
intelligent computer systems and the appearance of a
large number of commercial organizations focused on the
development of such applications. However:

• It is not easy to balance the tactical and strategic
directions of development of all types of activities in
the field of Artificial Intelligence (research activities,
development of design technology and production
of intelligent computer systems, development of
application systems, educational activities), as well
as the balance between all the above types of
activities;

• Currently, there is no deep convergence of different
types of ctivities in the field of Artificial Intelligence
(primarily, the convergence of development of Arti-
ficial Intelligence technologies and development of

various applied intelligent computer systems), which
makes the development of each of these activities
very difficult and in particular makes the integration
of different problem-solving models (e.g., logic
models, neural network models, natural language
text processing models, signal processing models –
audio signals, images).

• The high level of science-intensive work in the field
of Artificial Intelligence makes special requiremnts
on the qualifications of employees and their ability
to work as part of creative teams.

D. Key tasks and methodological problems of the current
stage of development of Artificial intelligence

Among the key tasks of the current stage of develop-
ment of Artificial intelligence should be included:

• Construction of a general formal theory of intelli-
gent computer systems, which would provide com-
patibility of all directions of Artificial intelligence,
all models of knowledge representation, all models
of problem solving, all components of intelligent
computer systems. This implies:
– Clarification of the requirements for a new-

generation intelligent computer systems – clarify-
ing the properties of intelligent computer systems
that determine a high level of intelligence;

– Convergence and integration of all kinds of knowl-
edge and all kinds of problem-solving models
within each intelligent computer system.

• Creating an infrastructure that ensures intensive
permanent development of the General Formal
Theory of Intelligent Computer Systems in a vari-
ety of directions, guaranteeing the preservation of
logical and semantic integrity of this theory and
compatibility of all directions of its development;

• Based on the General Formal Theory of Intelligent
Computer Systems, constructing the Technology of
Integrated Life Cycle Support for Next Generation
Intelligent Computer Systems with a High Level of
Interoperability and Compatibility;

• Creation of infrastructure to ensure intensive perma-
nent development of the Integrated technology for
the development and operation of new-generation
intelligent computer systems in a variety of directions,
guaranteeing the preservation of the integrity of this
technology and compatibility of all directions of its
development;

• Development of new-generation computers fo-
cused on high-performance interpretation of logical-
semantic models of next-generation intelligent com-
puter system;

• Creation of a global ecosystem of new-generation
intelligent computer systems, focused on compre-
hensive automation of various human activities.

337

The epicenter of modern methodological problems of
development of human activity in the field of Artificial
Intelligence is the convergence and deep integration of
all types, directions and results of this activity. The level
of interconnection, interaction and convergence between
different types and directions of activities in the field of
Artificial Intelligence is currently clearly insufficient. This
leads to the fact that each of them develops in isolation,
independent of the others. It is a question of convergence
between such directions of Artificial Intelligence as
knowledge representation, solution of intelligent problems,
intelligent behavior, understanding etc., and between
such types of human activity in the field of Artificial
Intelligence as scientific research, technologies devel-
opment, applications development, education, business.
Why the market of intelligent computer systems and
complex technology of Artificial Intelligence, providing
the development of a wide range of intelligent computer
systems for various purposes and accessible to a wide
contingent of engineers, has not yet been created on the
background of already long intensive development of
scientific research in the field of Artificial Intelligence.
Because the combination of high level of science intensity
and pragmatism of this problem requires for its solution
a fundamentally new approach to the organization of
interaction between the scientists working in the field of
Artificial Intelligence, developers of design automation
tools of intelligent computer systems, developers of means
for the realization of intelligent computer systems, includ-
ing hardware support tools of intelligent computer systems,
developers of applied intelligent computer systems. This
purposeful interaction should be carried out within each of
these forms of activity in the field of Artificial Intelligence,
as well as between them. Thus, the convergence of both
different types (forms and directions) of human activities
in the field of Artificial Intelligence and different products
(outcomes) of these activities is the main tendency of
further development of theoretical and practical works
in the field of Artificial Intelligence. It is necessary to
eliminate the barriers between different types and products
of activities in the field of Artificial Intelligence in order
to ensure their compatibility and integrability.

Convergence of intelligent computer systems under
development transforms a set of individual (autonomous)
intelligent computer systems of different purposes into a
collective of actively interacting intelligent computer sys-
tems for joint (collective) solution of complex (complex)
problems and for the permanent support of compatibility
between all the intelligent computer systems included in
the collective, in the process of individual evolution of
each of these systems.

The convergence of specific artificial entities (e.g.,
technical systems) is an aspiration to their unification
(in particular, to standardization), i.e., an aspiration
to minimize the diversity of forms of solving similar

practical problems - an aspiration to ensure that everything
that can be done equally, is done equally, but without
compromising the required quality. The latter is very
important, since illiterate standardization can lead to
a significant brake on progress. Limiting the diversity
of forms should not lead to a limitation of content,
opportunities. Figuratively speaking, "words should be
crowded, but thoughts - free" .

Methodologically convergence of artificially created
entities (artifacts) is reduced (1) to revealing (discovering)
principal similarities between these entities, which are
often quite camouflaged and difficult to "see" and (2) to
implementing the discovered similarities in the same way
(in the same form, in the same "syntax"). Figuratively
speaking, from "semantic" (semantic) equivalence we
have to go to "syntactic" equivalence as well. By the way,
this is exactly the point of semantic representation of
information, the aim of which is to create such a linguistic
environment (semantic space) within the limits of which
(1) semantically equivalent information constructions
would completely coincide, and (2) convergence of
information constructions would be reduced to revealing
isomorphic fragments of these constructions.

Among the general methodological problems of the
current stage of development of Artificial Intelligence
are:

• Lack of mass awareness that the creation of a market
of new-generation intelligent computer systems, with
semantic compatibility and a high level of inter-
operability, as well as the creation of complexes
(ecosystems) consisting of such intelligent computer
systems and providing automation of various human
activities, is impossible unless the development
teams of such systems and complexes significantly
increase the level of socialization of all their employ-
ees. The level of quality of the team of developers,
i.e. the level of qualification of employees and the
level of coordination of their activities, should exceed
the level of quality of the systems developed by this
team. The considered problem of specialists’ activity
coherence in the field of Artificial Intelligence has
a special meaning for the construction of General
formal theory of new-generation intelligent computer
systems, as well as the Complex technology of
development and Exploitation of new-generation
intelligent computer systems;

• Not all scientists working in the field of Artificial In-
telligence accept the pragmatic, practical orientation
of Artificial Intelligence;

• Not everyone accepts the need to converge the
various directions of Artificial Intelligence and the
need to integrate them in order to build a general
formal theory of intelligent computer systems;

• Not everyone accepts the need for the convergence
of different activities in the field of Artificial Intelli-

338

gence;
• An important obstacle to the convergence of scien-

tific and technological results is the emphasis formed
in science and technology on identifying differences
rather than similarities. To be convinced of this,
it is enough to pay attention to the fact that the
level of scientific results is evaluated by scientific
novelty, which can be imitated by novelty not in
substance, but in form of presentation (for example,
by means of new concepts or even new terms).
Results in engineering, for example, in patents are
also evaluated by differences from previous technical
solutions. But convergence requires a different
emphasis – not the search for differences, but the
identification of non-obvious similarities and their
transformation into obvious similarities presented in
the same form;

• There is no movement to build a comprehensive
technology for the design, implementation, mainte-
nance, re-engineering and operation of intelligent
computer systems. It is a comprehensive approach
to the technological support of all stages of the
life cycle of intelligent computer systems;

• There is no active development of work on the
creation of a global ecosystem of next-generation
intelligent computer system;

• At the heart of the modern organization and automa-
tion of human activity is the "Babylonian Pillar"
of an ever-expanding variety of languages. This
refers not only to natural languages, but also to
formal languages aimed at precise representation of
various kinds of knowledge. The variety of different
specialized languages permeates all human activities
– in many fields of human activity, specialized
languages are created to solve different kinds of
problems, to develop different models for solving
problems. An example of this is the diversity of
programming languages. Specialized languages can
and must appear, but only as sub-languages of more
general languages, the syntax of each of which
coincides with the syntax of all the corresponding
sub-languages. In this case within the framework
of General Formal Theory of Intelligent Computer
Systems one universal formal language – kernel
language, with respect to which all other used formal
languages are sublanguages, should be defined.
Denotational semantics of the mentioned universal
formal language should be set by an appropriate for-
mal ontology of the highest possible level. Otherwise
what convergence and integration of knowledge and
semantic compatibility of computer systems can be
talked about.

The proposed organization of human activity in the
field of Artificial Intelligence is based on the following
provisions:

• complex convergence - both "vertical" convergence
between different types of activities in the field of
Artificial Intelligence and "horizontal" convergence
within each of these activities, corresponding to
different components or different classes of intel-
ligent computer systems - knowledge bases, problem
solvers, different types of problem-solving models,
different types of interfaces (visual, audio, natural-
language), robotic intelligent computer systems, intel-
ligent learning systems, intelligent automated control
systems, intelligent design automation systems, etc.);

• "horizontal" convergence within each human activ-
ity in the field of Artificial Intelligence includes:
– convergence in the research activities in the field of

Artificial Intelligence, which means the transition
from the independent development of different
directions of Artificial Intelligence to the general
theory of intelligent computer systems;

– convergence in the development of Artificial
Intelligence technologies, meaning the transition
from the independent development of private
technologies to the creation of a single set of
semantically compatible private technologies;

– convergence within Artificial Intelligence engi-
neering, meaning the transition from the practice
of independent development of various applied
intelligent computer systems to the development
of a set (ecosystem) of interoperable intelligent
computer systems;

– convergence in the framework of educational
activities in the field of Artificial Intelligence,
denoting the transition from the study of individual
disciplines to the formation of young professionals
a comprehensive picture of the current state of
Artificial Intelligence and the problem directions
for further development;

– convergence within the general organizational
activities in the field of Artificial Intelligence,
the transition from the individual activities listed
above in the field of Artificial Intelligence to a
single set of all these activities and providing
convergence and integration of these activities
in the field of Artificial Intelligence, which will
significantly improve their quality, as each of these
activities is highly dependent on all others;

• organization of the design and permanent develop-
ment of the proposed technology in the form of an
open international project that provides:
– free access to the use of the current version of

the technology under development;
– the opportunity for everyone to join the team of

developers of this technology;
• phased process of forming the market of semanti-

cally compatible and actively interacting with each

339

other next-generation intelligent computer systems,
the initial stages of which are:
– development of logical-semantic models (knowl-

edge bases) of several applied next-generation
intelligent computer systems;

– software implementation on modern computers
platform interpretation of logical-semantic models
of next-generation intelligent computer systems;

– installation of each developed logical-semantic
model of the applied intelligent computer system
on the developed software platform of interpreta-
tion of such models with subsequent testing and
re-engineering of each such model;

– development and permanent improvement of the
logical-semantic model (knowledge base) of intel-
ligent computer metasystem, which contains (1)
a description of the standard of new-generation
intelligent computer systems [12], (2) a library of
reusable (in different intelligent computer systems)
knowledge of different types and, in particular,
different methods of solving problems, (3) design
methods and design support tools of different types
of components of intelligent computer systems
(components of knowledge bases),

– development of an associative semantic computer
as a hardware implementation platform for inter-
preting logical-semantic models of next-generation
intelligent computer systems;

– transfer of the developed logical-semantic models
of next-generation intelligent computer systems to
new, more effective variants of the implementation
platform of interpretation of these models;

– development of a new-generation intelligent com-
puter systems market in the form of a global
ecosystem consisting of actively interacting such
systems and focused on comprehensive automation
of all human activities;

– creation of a knowledge market based on a global
ecosystem of next-generation intelligent computer
systems;

– automating the re-engineering of operating next-
generation intelligent computer systems in the
direction of bringing them into compliance with
new versions of the intelligent computer systems
standard by automatically replacing obsolete com-
ponents in these systems with current versions of
these .

It should be emphasized that the key factor in
solving the considered methodological problems in
the field of Artificial Intelligence are various directions
of convergence and integration, providing the transition
to a new-generation intelligent computer systems, the
corresponding technology for the integrated support of
their life cycle and a significant increase in the level of
automation of the entire complex of human activities:

• convergence and integration of different models of
information representation and processing in new-
generation intelligent computer systems
– convergence and integration of different types of

knowledge in knowledge bases of new-generation
intelligent computer systems

– convergence and integration of different problem-
solving models

– convergence and integration of different types of
interfaces of new-generation intelligent computer
systems

• convergence and integration of different directions
of Artificial Intelligence for the purpose of building
a general formal theory of new-generation intelligent
computer systems

• convergence and integration of design technologies
for various components of next-generation intelligent
computer systems in order to build integrated Design
Technologies for next-generation intelligent computer
systems

• convergence and integration of technologies to
support various stages of the life cycle of next-
generation intelligent computer systems in order to
build technologies of comprehensive support for all
stages of the life cycle of next-generation intelligent
computer systems

• convergence and integration of various types of
human activities in the field of Artificial intelligence
(research activities, development of technological
complex, applied engineering, educational activities)
to increase the level of coherence and coordination
of these activities, as well as to increase the level
of their complex automation with the help of se-
mantically compatible new-generation intelligent
computer systems

• convergence and integration of various types and
fields of human activity, as well as means of complex
automation of this activity with the help of new-
generation intelligent computer systems

The final practical result of human activity in the field
of Artificial Intelligence is:

• Reorganization and complex automation of human
activity in the field of Artificial intelligence with the
help of new-generation intelligent computer systems;

• Step-by-step creation of a global network of effec-
tively interacting new-generation intelligent com-
puter systems, providing comprehensive automation
of various types and fields of human activity.

The transition from modern intelligent computer sys-
tems to new-generation intelligent computer systems and
to the corresponding integrated technology does not
require specialists in the field of Artificial intelligence to
change the scope of their scientific interests. They are only
required to overcome the Babel syndrome, formalizing

340

their scientific results as part of a common collective
product.

The problems of the current stage of Artificial Intel-
ligence development aimed at creating a general theory
and technology of new-generation intelligent computer
systems require a fundamental integrated interdisciplinary
approach and a fundamentally new organization of
scientific and technical activities.

E. Comprehensive automation of human activities in
the field of Artificial Intelligence with the help of new-
generation intelligent computer systems

Within the framework of OSTIS technology, the life
cycle support of new-generation intelligent computer
systems (ostis-systems) is carried out on the basis of
OSTIS Metasystem, which belongs to the class of ostis-
systems and is actually a form of implementation of the
specified Technology. Automation of life cycle support
of ostis-systems is carried out both in the form of
instrumental maintenance of engineering activities (in
particular, OSTIS Metasystem is a system of design au-
tomation of ostis-systems), and in the form of information
maintenance of the specified activities. For this purpose,
the knowledge base OSTIS Metasystem contains:

• The current state of the full text Standard of ostis-
systems;

• The current state of the reusable components library
of ostis-systems;

• The current status of the ostis-systems life cycle
support methodologies used and implemented by
engineers;

• Documentation of tools used by engineers to support
the life cycle of ostis-systems.

In addition to all of this, OSTIS Metasystem:
• Provides automation of the support of the life

cycle of the ostis-systems Standard, i.e. provides
the organization of interaction between the authors
of this Standard, aimed at its permanent development

• Provides automation of OSTIS Technology life cycle
Support, which boils down to supporting the life
cycle of the main part of the OSTIS Metasystem
knowledge base, which is the complete documenta-
tion of the current state of OSTIS Technology.

Automation of other directions of human activities in
the field of Artificial Intelligence can also be done with
ostis-systems that are semantically compatible and interact
with Metasystem OSTIS within the Eco-system OSTIS.

IV. PROBLEMS AND PROSPECTS OF COMPREHENSIVE
AUTOMATION OF ALL TYPES AND DIRECTIONS OF

HUMAN ACTIVITY WITH THE HELP OF
NEXT-GENERATION INTELLIGENT COMPUTER SYSTEMS

Above it was considered how the whole complex of
Human activity in the field of Artificial Intelligence is
carried out and automated with the help of new-generation

intelligent computer systems. Now we will summarize it
and consider the principles of organization and complex
automation of human activity as a whole, i.e. automation
of the most various types and field of human activity.

A. General principles of systematization of human activity
and its comprehensive automation with the help of new-
generation intelligent computer systems

The experience of complex organization, structuring
and automation of human activities in the field of Artificial
Intelligence (in the creation and maintenance of intelligent
computer systems) can be generalized to other fields of
human activities. This is due to the following reasons:

• Firstly, because human activity aimed at supporting
the whole life cycle of new- generation intelligent
computer systems is a paricular direction of activity
in relation to the type of human activity aimed
at supporting the whole life cycle of any artificial
(artificially created) entity (any artifact). Depending
on the complexity of the artificially created entity,
the level of complexity of human activities aimed
at supporting the life cycle of this entity can be
very different. But the overall structure of these
activities corresponding to the different stages of the
life cycle of artificially created entities. As well as the
necessary directions of providing this engineering
activity is the same for artificial entities of different
classes. These directions of providing support for
the life cycle of artificial entities include:
– research activities aimed at the study of artificial

entities of the relevant class;
– development of the standard of artificial entities

of the specified class;
– development of life-cycle support technology for

the specified class of artificial entities;
– training personnel capable of supporting the life

cycle of the specified class of artificial entities, i.e.,
capable of effectively using the above-mentioned
technology;

– training personnel capable of participating in
the above-mentioned research and development
activities;

– training personnel capable of participating in the
development of the standard of artificial entities
of a given class;

– training personnel capable of participating in the
design and development of the above-mentioned
technology;

– organizational support of the whole set of works
on the development and use of the above-
mentioned technology.

• Second, because many complex technical systems
are actually becoming intelligent computer systems
(including distributed ones) with various sets of
sensor and effector subsystems – intelligent cars

341

with autopilot and autosteer, intelligent automatic
factories, smart houses, smart cities, etc.

• Thirdly, because the nature of the activities of new-
generation intelligent computer systems and the
nature of each person and each organization in fact
there is little difference, because the new-generation
intelligent computer systems become equal partners
(subjects) of human activity, because the level of their
independence, responsibility, interoperability and
intelligence is close to the corresponding qualities of
the natural subjects of human activity (individuals,
legal persons, legal entities, etc.)

So, the structuring of human activity in the field of
Artificial Intelligence based on the concepts of type
of activity, field of activity, product of activity (object
of activity) can be easily generalized for all scientific
and technical disciplines, which makes it possible to
consider automation of activity within all scientific
and technical disciplines from the general position, as.
because automation of different type of activity within
different scientific and technical disciplines can look
similar, and sometimes can be implemented using the
same intelligent computer system. So, for example, any
intelligent computer system for design automation of
technical systems of a given types can be built on the basis
of intelligent computer system for design automation and
knowledge base reengineering, since the result of design
of any technical system is a formal model (description,
specification, documentation) of this technical system,
which has enough completeness to reproduce (implement)
this system.

At the current stage of development of Artificial
Intelligence it is necessary to move from automation of
separate types of human activity to integrated automation
of the whole complex of human activity, to creation
and constant evolution of the whole global ecosystem of
intelligent computer systems. That systems independently
interact both among themselves and with people whose
activities they automate, and also with modern computer
systems, which are not intelligent systems. It should
be remembered that the main "overheads", the main
problems, arise at the "joints" when integrating different
technical solutions. The developer of each subsystem
should guarantee the absence of such "overhead" costs. It
should be emphasized that one should focus not so much
on creating an effective global ecosystem of intelligent
computer systems as on creating effective techniques
and tools aimed at the permanent evolution of such an
ecosystem.

The methodology of complex automation human activ-
ity includes the following steps:
• Construction of a general structure of human

activity, based on the hierarchy of human activity by
types of activity and products of activity with a clear
fixation of different kinds of connections between

the various components of this structure.
• Formalization of various types of human activity.
• Development of technology, which ensures the

maximum possible automation of this activity with
the help of new-generation intelligent computer
systems.

• Ensuring maximum possible convergence of various
types of activities, which will reduce the variety of
automation tools (i.e., appropriate new-generation
intelligent computer systems).

• Ensuring maximum possible convergence of tech-
nologies for performing the same type of activity
for different objects of activity (convergence of
design technologies for objects of different classes,
convergence of monitoring, prevention and diagnosis
technologies for agents of different classes, etc.)
and thereby ensure convergence of corresponding
automation tools based on new-generation intelligent
computer systems

B. Multiplicity of types of human activities and the
connections between them

The basic type of human activity can be considered
supporting the life cycle of various entities.

The class of objects of activity for this type of activity
is the class of all kinds of socially significant objects,
which it makes sense to influence, support the life cycle
of which is advisable to implement.

life cycle support
:= [support of the life cycle of socially significant entities]
∈ type of activity
⇒ particular type of activity performed at some point*:

• design
• production
• initial training

:= [setting up]
• quality monitoring

:= [scheduled examination and diagnosis]
• restoring the required level of quality

:= [repair, treatment]
• reengineering

:= [renewal, improvement]
• security
• using

:= [operation, usage]
⇒ particular type of activity over a subclass of activity

objects*:
• research activities

:= [support for the life cycle of scientific theories]
⇒ class of activity objects*:

scientific theory
• standardization

:= [standards life cycle support]
⇒ class of activity objects*:

standard
• support for the technology life cycle

⇒ class of activities object*:
technology

• educational activities

342

:= [support for the human resource life cycle]
⇒ class of activity objects*:

resource personnel
• supporting the life cycle of comprehensive support

management metasystems and providing support for
the life cycle of the entities of the respective classes
⇒ class of activity objects*:

meta-system for the integrated management of the
support and provisioning of the life cycle of the
entities of the respective classes

When the general structure of human activity was
considered above by summarizing the structure of human
activity in Artificial Intelligence, we:

• introduced the concept of type of activity
• As a "starting point" generalization we chose such a

type of activity as support of life cycle of intelligent
computer systems

• further expand the class of activity objects of the
selected type of activity,
– moving from the class of intelligent computer

systems to the class of all kinds of artificial
material entities

– combining the class of artificial material entities
with the class of natural material entities (material
entities of natural origin), as well as with the
class of natural-artificial material entities (either
natural artificially modified material entities or
hybrid natural-artificial material entities with both
natural and artificial components);

– combining the class of material entities with
the class of information resources, i.e., socially
significant information constructions (documents)
which are the products of corresponding actions
or activities (scientific theories, standards, bases
of knowledge, methods, design documents of
corresponding created objects)

– combining the class material entities information
resources with the class material-information-
objects, which, in particular, include various
technologies.

Thus, support of the life cycle of various socially
important objects is a special type of human activity.
Firstly, the efficiency of human activity in general de-
pends (1) on the duration of the socially useful (active)
phase of the life cycle of the used objects and (2)
on the amount of society’s expenditure on maintaining
the necessary socially useful properties of the used
objects. Secondly, the nature and technology of life cycle
support of different types of socially important objects
can differ significantly from each other. For example,
the organization of life cycle support for automobiles,
traditional computer systems of various purposes, modern
intelligent computer systems, interoperable intelligent
computer systems, people, enterprises, houses, various
legal entities, settlements, etc. differs significantly. At the
same time, the typology of socially significant objects

whose life cycle must be supported includes the most
diverse classes of objects - artificially created material
information products of human activity, all people, all
kinds of social communities and enterprises. The diversity
of types of socially significant objects generates a variety
of technologies corresponding to them, which complicates
the complex automation of human activity as a whole.

Nevertheless, we note that types of human activity is
much smaller than fields of human activity. This is, to
some extent, due to the fact that the types of relations
between entities (relative concepts) are much fewer than
the classes of various entities. This circumstance indicates
that the movement in the direction of global automation
of society activities should be based on the orientation
towards a competent systematization of types of human
activities, and their deepest convergence (both within
each type of activity and between different types). Thanks
to this, the artificially introduced variety of automation
means of human activities can be minimized.

should be distinguished*
∋ {{{• research activities

:= [support for the life cycle of scientific theories]
• standardization

:= [standards design and development]
:= [standards life cycle support]

• support for the technology life cycle
}}}

Research activity is aimed at studying the entities of
a given class, at studying the principles underlying their
structure and functioning. Within this type of activity,
novelty and competition of ideas and approaches are
important, the correlation between the structure (archi-
tecture) of the organization of functioning of the studied
entities and the general characteristics (parameters) of
the quality of these entities, the general requirements
imposed on them is important. The product of the activity
under consideration is the General theory of entities
of a given class, which reflects the plurality and even
contradiction of different points of view and whose most
important direction of development (evolution) is to
bring together (convergence) different points of view and
ensure compatibility and inconsistency between them.
At the heart of research activity is the competition of
points of view, the principal novelty of ideas and verified
results aimed at revealing and substantiating non-obvious
properties and regularities of the corresponding subject
domain, at developing methods of solving various classes
of problems solved within this subject domain. The
purpose of the research activity and the required detailing
of the generated knowledge about the research objects of
the corresponding subject domain

In contrast to research activity, the development of
the standard of created entities and the development of
the corresponding technology of support for their life
cycle is based on agreement of different points of view

343

(consensus search) and their simplification as much as
possible (observance of Occam’s Razor principle). The
necessity of such a methodological attitude is caused by
the mass nature of human activity to create and support
the life cycle of the corresponding class of entities and
the need to involve people with different (including quite
low) qualifications in this activity. In the process of
development of the standard of entities of a given class it
is not the competition of different points of view that is
important, but their convergence, semantic compatibility
and deep integration. Each standard artificial entities
of a given class is an agreed currently point of view
(consensus) about the structure, functioning, properties,
and patterns of artificial entities of a given class, an
agreed (generally accepted) part of the General Theory of
Artificial Entities of a Given Class, which is understand-
able to the broad contingent of practitioners (engineers)
who design, produce and maintain the entire life cycle
of specific artificial entities of a specified class.

The creation and support of the technology life cycle
must take into account a number of requirements for any
technology:

• comprehensiveness - maximum possible coverage
of all tasks that must be solved with technology (at
least all stages of the life cycle)

• maximum ease of use of technology (required
completeness of documentation, intelligent help-
support, absence of unnecessary information that
is not necessary for using technology, availability
of rich and systematic library of typical reusable
solutions)

Society is a hierarchical system of interacting individual
and collective entities, each of which:

• Produces either part of the socially significant prod-
ucts produced by the collective entity, which includes
this subject, or an integral socially significant product
(produced goods) consumed by other external entities
or provides some service to another entity, aimed
at ensuring the livelihood and improvement of this
other entity.

• It consumes products produced by other entities,
necessary for the production of its own products
(raw materials and equipment), as well as necessary
to ensure its own livelihood.

• It consumes services provided by other entities
necessary for the production of its own products
or services, as well as those necessary to improve
its activities.

The main directions of automation of the whole
complex human activity are:

• automation of socially useful professional activities
of all subjects of activity (both individual subjects -
all individuals, and all kinds of collective - corporate
entities, including legal entities)

• automation of providing (creating) comfortable con-
ditions for all subjects of society based on the moni-
toring of activities and specific (adapted) facilitation
of the evolution of each subject, taking into account
its immediate needs and problems.

The organization of each subject’s interactions with the
external environment should be carried out both by this
subject and by the mentioned external environment (i.e.,
by society). Society should turn "face" to each subject
and not throw it to the mercy of fate. At present, creation
(provision) of conditions of society’s subjects’ activity is
given to each such subject. Society, represented by other
subjects designated for this purpose, provides services and
supplies goods on the initiative of the subject in need.
Thus, the responsibility for the development of each
subject of activity falls exclusively on the "shoulders" of
this subject. The society’s support is general and does
not take into account in any way the peculiarities of the
current situation of each subject.

The most important reason preventing further increase
in the overall level of automation of human activity is the
fact that automation of various fields of human activity
is carried out local. At the current stage of application of
intelligent computer systems the main problem is not the
automation of local types and fields of human activity,
but the automation of complex processes of human
activity, requiring integration in a priori unpredictable
combinations of a variety of information resources and a
variety of automated services, implemented in the form
of specialized intelligent computer systems.

Locality of automation of human activity leads to the
fact that all human activity acquires the appearance of
"archipelago" consisting of well-automated "islands" but
interconnected "manually". This "manual" non-automated
connection of these "islands" depends entirely on the hu-
man factor and qualification of corresponding executors.

The specified "manual" connection of some set of
semantically close automated fields of human activity can
be automated, but it should be done very competently at
a high level of system culture and on the fundamental
basis of the general theory of human activity.

Another important reason preventing further improve-
ment of the overall level of automation in society is
that automation of different fields of human activity is
carried out without identifying and deeply analyzing
the similarities of some activities in different fields
and, accordingly, without converging, convergence and
unifying these types of activity.

The most important direction to increase the level
of automation of human activity is the transition to
automation of more and more complex (large) types and
fields of human activity, for example, from the automation
of various enterprises, organizations, economic services
to the automation of the city as a whole).

Automation of complex human activities requires the

344

creation of a set of actively interacting computer systems,
each of which provides automation of the corresponding
particular type of human activity that is part of the
complex activity being automated. In this case the number
of levels of hierarchy of automated human activities is
not limited in any way. Obviously, the level of automation
of complex human activities is determined by:

• level of convergence (convergence, compatibility) of
the respective particular types of activities;

• quality of integration of these private activities;
• level of convergence of computer systems, providing

automation of the specified particular types of
activities;

• quality of interaction of these computer systems, i.e.
the level of interoperability of these systems).

The level of evolution of society depends to a large
extent on the level of automation of human activity, on the
level of development of the corresponding technologies
of such automation. But this dependence looks much
more complicated than it seems at first glance, especially
if we are talking about automation of not physical but
intelligent human activity (both individual and collective).
Illiterate and, all the more so, socially irresponsible or
malicious automation of society’s informational activity
can cause enormous damage to its development. Such
illiteracy and irresponsibility, for example, leads to such
side factors as computer addiction, virtualization of
the environment, superficiality of thinking, reduction
of cognitive motivation and activity, and much more.
Consequently:

• Needs to significantly increase the level of social
responsibility of the developers of computer systems
and related technologies.

• The danger from illiterate, socially irresponsible and,
even more so, malicious implementation of the new-
generation of intelligent computer systems can be
fatal for humanity.

If we consider society as a multi-agent system consist-
ing of independent intelligent agents, it is obvious that
the most important factors determining the improvement
of the quality (level of development) of society are:

• increase the efficiency of humanity’s knowledge and
skills to use the experience accumulated by society,
the efficiency of humanity’s knowledge and skills;

• increase the rate of acquisition, accumulation and
systematization of humanity’s effective use of knowl-
edge and skills.

The solution of the above problems becomes quite
possible by using new-generation intelligent computer
systems, by means of which humanity’s accumulated the
knowledge and skills will be organized as a systematized
distributed library of reusable information resources
(knowledge and skills). Consequently, the systematization
and automation of the reusable information resources(that
was acumaleted by humans) requires their convergence,

deep integration and formalization. A special place in
this process is occupied by mathematics as a basis for
systematization and formalization of knowledge and skills
at the level of formal ontologies of the upper level.

V. CONCLUSION

Due to the fact that new-generation intelligent computer
systems become independent and active subjects of human
activity sufficiently equal to humans(natural individual
subjects of human activity), the nature and, respectively,
the level of automation of human activity changes
significantly – the need to control automation means
is removed, since this "manual" management is replaced
by the distribution of duties and responsibilities among
people

If automation of any kind of automation in any types
of human activity is carried out with the help of new-
generation intelligent computer systems and if new-
generation intelligent computer systems that provide
automation of different types and fields of human activity
will meaningfully interact with each other, the overall
level of automation of human activities will significantly
increase due to the fact that there will be no need to
manually coordinate the use of various automation tools.

The efficiency and labor intensity of automation of
different types and fields of human activities will be
significantly determined by the degree of convergence
between different types and fields of human activities. A
hierarchical model of human activity must be built, within
which a competent systematization and stratification of
all types and fields of human activity must be carried
out, aiming against an excessive eclectic diversity. Thus,
before implementing comprehensive automation of human
activities with the help of new-generation intelligent com-
puter systems, it is necessary to rethink the organization
of this activity from the perspective of general systems
theory. Otherwise, automating clutter will lead to more
clutter.

Let us emphasize the fact that many of the problems we
have considered the current state and directions of further
development of human activity in the field of Artificial
Intelligence are similar to the problems and trends in
many other scientific and technical disciplines.

Each person’s time is the main irreplaceable resource
of society, and it should be spent not on the routine
support of the life cycle of all kinds of socially important
objects, but on the integrated development of appropriate
technologies. Automation of human activities with the
help of a global system of interoperable semantically
compatible and actively interacting intelligent computer
systems in various fields of human activities will sig-
nificantly reduce the time of each person to perform
routine, easily automated activities. Human activity should
become oriented to the maximum possible self-realization,
opening creative potential of each person, aimed at

345

accelerating the rate of increasing the level of intelligence
of the whole society.

The creation of a Global ecosystem of next-generation
intelligent computer systems, involves:
• Building a formal model of human activity;
• The transition from eclectic construction of complex

intelligent computer systems that use different types
of knowledge and different types of problem-solving
models to their deep integration and unification,
when the same representation models and knowl-
edge processing models are implemented equally in
different systems and subsystems;

• Reducing the distance between the modern level of
the theory of intelligent computer systems and the
practice of their development;

• The development of a competent tactic and strategy
for the transition period, in which modern intelligent
computer systems should be gradually replaced
by new-generation intelligent computer systems,
which should effectively interact not only with each
other, but also with well-proven modern information
resources and services.

ACKNOWLEDGMENT

The authors would like to thank the scientific teams of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their assistance and valuable comments.

REFERENCES

[1] K. Yaghoobirafi and A. Farahani, “An approach for semantic
interoperability in autonomic distributed intelligent systems,”
Journal of Software: Evolution and Process, vol. 34, no. 10, p.
e2436, 2022.

[2] Ouksel, A. M. and Sheth, A., “Semantic interoperability in global
information systems,” SIGMOD Rec., vol. 28, no. 1, p. 5–12, mar
1999.

[3] Lanzenberger, Monika and Sampson, Jennifer and Kargl, Horst
and Wimmer, Manuel and Conroy, Colm and O’Sullivan, Declan
and Lewis, David and Brennan, Rob and Ramos-Gargantilla,
José Ángel and Gómez-Pérez, Asunción and Fürst, Frédéric and
Trichet, Francky and Euzenat, Jérôme and Polleres, Axel and
Scharffe, François and Kotis, Konstantinos, “Making ontologies
talk: Knowledge interoperability in the semantic web,” IEEE
Intelligent Systems, vol. 23, no. 6, pp. 72–85, 2008.

[4] Frâncila Weidt Neiva and José Maria N. David and Regina Braga
and Fernanda Campos, “Towards pragmatic interoperability to
support collaboration: A systematic review and mapping of the
literature,” Information and Software Technology, vol. 72, pp.
137–150, 2016.

[5] J. Pohl, “Interoperability and the need for intelligent software: A
historical perspective,” 09 2004.

[6] Jeff Waters and Brenda J. Powers and Marion G. Ceruti, “Global
interoperability using semantics, standards, science and technology
(gis3t),” Computer Standards & Interfaces, vol. 31, no. 6, pp.
1158–1166, 2009.

[7] V. Golenkov, N. Guliakina, I. Davydenko, and A. Eremeev,
“Methods and tools for ensuring compatibility of computer systems,”
in Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], V. Golenkov, Ed. BSUIR, Minsk, 2019, pp. 25–52.

[8] A. Palagin, “Problemy transdisciplinarnosti i rol’ informatiki
[problems of transdisciplinarity and the role of informatics],”
Kibernetika i sistemnyj analiz [Cybernetics and Systems Analysis],
no. 5, p. 3–13, 2013.

[9] V. Tarasov, Ot mnogoagentnykh sistem k intellektual’nym
organizatsiyam [From multi-agent systems to intelligent
organizations]. M.: Editorial URSS, 2002, (in Russian).

[10] I. Barinov, , N. Borgest, S. Borovik, O. Granichin, S. Grachev,
Y. Gromyko, R. Doronin, S. Zinchenko, A. Ivanov, V. Kizeev,
R. Kutlakhmetov, V. Laryukhin, S. Levashkin, A. Mochalkin,
M. Panteleev, S. Popov, E. Sevastyanov, P. Skobelev,
A. Chernyavsky, V. Shishkin, and S. Shlyaev, “Development
strategy formation of the committee on artificial intelligence in
the scientific and educational center "engineering of the future",”
Ontology of Designing, vol. 11, no. 3, pp. 260–293, Sep. 2021.
[Online]. Available: https://doi.org/10.18287/2223-9537-2021-11-
3-260-293

[11] A. Iliadis, “The tower of babel problem: Making data make sense
with basic formal ontology,” 02 2019.

[12] V. Golenkov, N. Guliakina, and D. Shunkevich, Open technology
of ontological design, production and operation of semantically
compatible hybrid intelligent computer systems, V. Golenkov, Ed.
Minsk: Bestprint [Bestprint], 2021.

Проблемы и перспективы автоматизации
различных видов и областей

человеческой деятельности с помощью
интеллектуальных компьютерных систем

нового поколения
Голенков В. В., Таранчук В. Б., Ковалёв М. В.
В работе рассмотрены принципы автоматизации различ-

ных областей человеческой деятельности с использованием
интеллектуальных компьютерных систем нового поколения.
Предлагается онтология различных видов деятельности и со-
ответствующих технологий. Детализация указанных принци-
пов осуществляется на примере человеческой деятельности
в области Искусственного интеллекта.

Received 01.11.2022

346

Principles for implementing the ecosystem of
next-generation intelligent computer systems

Alexandr Zagorskiy
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: alexandr.zagorskiy.research@gmail.com

Abstract—In the article, the architecture of the ecosystem
of intelligent computer systems based on the OSTIS
Technology is considered. The formal interpretation of such
concepts as ostis-system, ostis-community has been clarified,
the typology of ostis-systems has been identified, which
together makes it possible to determine the structure of
the OSTIS Ecosystem. The results obtained can be applied
in the implementation of such projects as “Society 5.0”,
“Industry 4.0”, “Smart Home”, “Smart City”, “Knowledge
Market”.

Keywords—Digital Ecosystem, OSTIS Ecosystem, Society
5.0, Smart City

I. INTRODUCTION

To increase the level of automation of more and more
broad types of human activity, a qualitative transition to
the development of entire complexes of independently
interacting intelligent computer systems is necessary.

The central problem of the next stage in the devel-
opment of information technologies is the problem of
ensuring the semantic compatibility of computer systems
and their components [1]. To solve this problem, it is
necessary to move from traditional computer systems and
modern intelligent systems to semantically compatible
computer systems [2], [3].

Semantic computer systems are next-generation com-
puter systems that eliminate many of the shortcomings
of modern computer systems. However, for the mass
development of such systems, an appropriate technology
is required, which should include:

• methods and tools for designing semantic computer
systems;

• methods and tools for permanent improvement of
the technology itself.

As the subject of engineering activity in the field of
artificial intelligence, not a set of intelligent computer
systems should be considered but the whole complex of
intelligent computer systems interacting with each other.

The purpose of this work is to designate the architecture
of the ecosystem, within which the most comfortable
conditions would be created for the implementation of
next-generation intelligent computer systems, capable of
organizing collectives of systems due to the high level of
interoperability of these systems. It is necessary to focus

not on creating an ideal information ecosystem but on
creating an effective technology aimed at the permanent
evolution of this ecosystem.

II. ANALYSIS OF EXISTING APPROACHES TO SOLVING
THE PROBLEM

To create any complex things, humanity draws on the
concepts of nature. The process of studying elementary,
natural systems and processes in order to inspire and
try to replicate the learned behaviour in their designs is
called biomimicry. Biomimicry is not a direct imitation
of processes – it is the study of basic natural principles
and their application in various areas of human society
[4].

The idea of a network, a community, complex adaptive
systems has also been realized by nature. The concept of
such an archetype is reduced to the combination of many
autonomous objects with each other. These objects are
strongly connected to each other and at the same time
do not have any center. Thus, they form a decentralized
network, where there is the lack of a single control center
[5]. The following characteristics of such a system can
be distinguished:

• absence or lack of centralized control;
• autonomous nature of participants, objects of such

a network;
• strong connectivity of the participants of such a

network with each other;
• the influence of the participants of such a network

on each other is non-linear and rather complicated.
Such distributed artificial systems have both advantages

(high level of adaptability, stability, connectivity) and
disadvantages (non-optimality, uncontrollability, unpre-
dictability of behaviour). The most appropriate example
of an implemented technology based on the concept of a
network is the Internet.

It is convenient to use the network archetype to display
complex processes, the interdependence of components,
economic, social, environmental processes, and communi-
cation processes. In such processes, there is no beginning
or ending, everything is the center. The network is the only
topology capable of limitless expansion or self-learning;

347

other topologies have their own limitations. “The Atom is
the icon of 20th century science. The symbol of science
for the next century is the dynamical Net” [6].

The idea of a digital ecosystem is also borrowed
from nature, where biological ecosystems are the main
source of inspiration. The concept of an ecosystem
has become a popular way of describing collaboration
outside an organization [7]. It can be defined as a multi-
stakeholder structure of organizations that materializes a
shared value proposition. Ecosystems have two distinct
characteristics compared to other collaborative concepts:
complementarity and interdependence exist at the same
time, and the system is not fully hierarchically controlled
[8].

Implementation options for the ontology of the digital
ecosystem have been proposed [9]. There are such
types of ecosystems as Business, Innovation, Knowledge,
Entrepreneurial. Each of these ecosystems has its own
characteristics, structure, purposes [10].

The ecosystem serves as a value multiplier for a
product. The coefficient value depends on the quality
of each member of the given community [11], [12].
Approaches to the integration of the digital ecosystem into
various spheres of human activity [13], [14], [15], [16],
approaches to expanding an existing ecosystem with new
objects [17] are considered. There were also attempts
to recreate the ecosystem model based on traditional
information technologies [18], [19].

With traditional approaches to solving the problem
of ecosystem formation, there are problems associated
with the low level of interoperability of such systems
[20]. Often, each of the systems will have its own
specialized programming interface and data format for
communicating with it, which leads to additional costs for
eliminating the shortcomings of such problems. Moreover,
life cycle support, modification of existing systems can
impose additional time and resource costs.

III. PROPOSED APPROACH

Within this article, it is proposed to take an OSTIS
Technology [21] as a basis. The OSTIS Technology is a
set of technologies that provide the design, production, op-
eration, and reengineering of intelligent computer systems
designed to automate a wide variety of human activities.
The Technology is based on semantic representation and
ontological systematization of knowledge, as well as
agent-oriented knowledge processing.

The principles underlying the OSTIS Technology are:
• Orientation towards the development of intelligent

computer systems with a high level of intelligence
and, in particular, a high level of socialization. These
systems, developed using the OSTIS Technology,
will be called ostis-systems.

• Orientation towards complex automation of all types
and areas of human activity by creating a network

of interacting and coordinating their activities ostis-
systems. This network of ostis-systems, together with
their users, is called the OSTIS Ecosystem.

• The OSTIS Technology is implemented as a net-
work of ostis-systems, which is part of the OSTIS
Ecosystem. The key ostis-system of this network
is the OSTIS Metasystem (Intelligent MetaSystem
for ostis-systems), which implements the OSTIS
Technology Core, which includes basic (subject-
independent) methods and tools for designing and
producing ostis-systems with integration into their
structure of typical built-in support subsystems for
operation and reengineering of ostis-systems. The
remaining ostis-systems that are part of the network
under consideration implement various specialized
ostis-technologies for designing various classes of
ostis-systems that automate any areas and types of
human activity.

• Convergence and integration based on the semantic
representation of knowledge of various scientific
directions of Artificial Intelligence (in particular,
various basic knowledge and skills for solving
intelligent problems) within the General formal
semantic theory of ostis-systems.

• Orientation towards the development of next-
generation computers that provide efficient (includ-
ing productive) interpretation of the logical-semantic
models of ostis-systems, which are represented by
knowledge bases of these systems with semantic
representation.

Within the technology, several universal variants of
visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant).

Within this article, fragments of structured texts in the
SCn code [22] will often be used, which are simultane-
ously fragments of the source texts of the knowledge base,
understandable both to a human and to a machine. This
allows making the text more structured and formalized,
while maintaining its readability. The symbol “:=” in
such texts indicates alternative (synonymous) names of
the described entity, revealing in more detail certain of
its features.

The basis of the knowledge base within the OSTIS
Technology is a hierarchical system of subject domains
and ontologies. Based on this, in order to solve the
problems set within this article, it is proposed to develop
the following system of subject domains and ontologies:

IV. FORMAL MODEL OF THE ECOSYSTEM OF
NEXT-GENERATION INTELLIGENT COMPUTER SYSTEMS

An OSTIS Ecosystem is a sociotechnical ecosystem,
which is a collective of interacting semantic computer
systems, which provides permanent support for the
evolution and semantic compatibility of all its member
systems throughout their entire life cycle.

348

Subject domain and ontology of the OSTIS Ecosystem
⇒ private subject domain*:

• Logical-semantic model of integration of
heterogeneous information resources and
services in the OSTIS Ecosystem in the
process of its extension

• Subject domain and ontology of
semantically compatible intelligent
ostis-portals of scientific knowledge

• Subject domain and ontology of
semantically compatible intelligent
corporate ostis-systems for various
purposes

• Subject domain and ontology of
ostis-systems, which are personal
assistants of users, ensuring the
organization of effective interaction of
each user with other ostis-systems and
users that are part of the OSTIS
Ecosystem

An intelligent computer system that is built in accor-
dance with the requirements and standards of the OSTIS
Technology is defined as an ostis-system. This provides
a significant development of a number of properties for
this computer system, which can significantly increase
the level of intelligence of this system (and, above all,
its level of learning and the level of socialization).

The OSTIS Ecosystem is a collective of interacting:
• ostis-systems themselves;
• users of the specified ostis-systems (both end users

and developers);
• some computer systems that are not ostis-systems

but are considered by them as additional information
resources or services.

Members of the OSTIS Ecosystem collective are
characterized as:

• semantically compatible;
• constantly evolving individually;
• constantly maintaining their compatibility with other

members in the course of their individual evolution;
• capable of decentralized coordination of their activi-

ties.
The purpose of the OSTIS Ecosystem is to provide

continuous support for the compatibility of computer
systems included in the Ecosystem both at the stage of
their development and during their operation. The problem
lies in the fact that during the operation of the systems
included in the OSTIS Ecosystem, they may change, due
to which compatibility may be violated. The objectives
of the OSTIS Ecosystem are:

• prompt implementation of all agreed changes in
the ostis-systems standard (including changes in

the concepts systems used and their corresponding
terms);

• permanent support of a high level of mutual un-
derstanding of all systems included in the OSTIS
Ecosystem, as well as all their users;

• corporate solution for various complex problems that
require the coordination of several ostis-systems and
possibly also particular users.

The OSTIS Ecosystem is a transition from independent
ostis-systems to collectives of independent ostis-systems,
i.e. to distributed ostis-systems.

ostis-system
⇒ subdividing*:

{{{• stand-alone ostis-system
• built-in ostis-system
• ostis-systems collective

}}}

A. Compatibility support between ostis-systems that are
part of the OSTIS Ecosystem

Each system that is part of the OSTIS Ecosystem have
to:

• study intensively, actively, and purposefully, both
with the help of teachers-developers and indepen-
dently;

• inform all other systems about proposed or finally
approved changes in ontologies and, in particular, in
the set of concepts used;

• accept proposals from other ostis-systems about
changes in ontologies, including the set of concepts
used, to agree or approve these proposals;

• implement approved changes to ontologies stored in
its knowledge base;

• help in maintaining of a high level of semantic
compatibility not only with other ostis-systems
included in the OSTIS Ecosystem but also with
its users (train them, inform them about changes in
ontologies).

Special requirements are imposed on independent ostis-
systems that are part of the OSTIS Ecosystem:

• they must have all the necessary knowledge and
skills for messaging and purposeful organization of
interaction with other ostis-systems that are part of
the OSTIS Ecosystem;

• in the context of constant change and evolution of
ostis-systems included in the OSTIS Ecosystem, each
of them must itself monitor the state of its com-
patibility (consistency) with all other ostis-systems,
i.e. must independently maintain this compatibility,
coordinating with other ostis-systems all changes
that require coordination, occurring in itself and in
other systems.

349

According to the purpose, the ostis-system, included
in the OSTIS Ecosystem, can be:

• assistants of specific users or specific user collec-
tives;

• typical built-in subsystems of ostis-systems;
• systems of information and instrumental support for

designing various components and various classes
of ostis-systems;

• systems of information and instrumental support for
designing production of various classes of technical
and other artificially created systems;

• portals of knowledge in various scientific disciplines;
• control automation systems for various complex

objects (manufacturing enterprises, educational insti-
tutions, university departments, certain students);

• intelligent reference and help-systems;
• intelligent robotic systems.

To ensure high operational efficiency and high rates
of evolution of the OSTIS Ecosystem, it is necessary to
constantly increase the level of information compatibility
(the level of mutual understanding) not only between the
computer systems that are part of the OSTIS Ecosystem
but also between these systems and their users. One of
the ways to ensure such compatibility is the desire to
ensure that the knowledge base (picture of the world)
of each user becomes a part (fragment) of the Unified
knowledge base of the OSTIS Ecosystem. This means that
each user must know how the structure of each scientific
and technical discipline is arranged (objects of research,
subjects of research, definitions, regularities, etc.), how
different disciplines can be interconnected.

Maintaining the compatibility of the OSTIS Ecosystem
with its users is carried out as follows:

• each ostis-system includes built-in ostis-systems
oriented
– for permanent monitoring of the activities of end

users and developers of this ostis-system,
– for analyzing the quality and, first of all, the

correctness of this activity,
– for advanced training of users (personalized train-

ing);
• The OSTIS Ecosystem includes ostis-systems spe-

cially designed to train users of the OSTIS Ecosys-
tem with basic generally recognized knowledge
and skills for solving the corresponding classes of
problems.

The OSTIS ecosystem is associated with its unified
knowledge base, which is a virtual combination of the
knowledge bases of all ostis-systems that are part of the
OSTIS Ecosystem. The quality of this knowledge base
(completeness, consistency, compliance) is a constant
concern of all independent ostis-systems that are part of
the OSTIS Ecosystem.

B. Structure of the OSTIS Ecosystem

A subject that is part of the OSTIS Ecosystem is an
agent of the OSTIS Ecosystem.

OSTIS Ecosystem agent
⇒ subdividing*:

{{{• individual ostis-system of the OSTIS
Ecosystem
⇒ subdividing*:

{{{• stand-alone ostis-system of
the OSTIS Ecosystem

• build-in ostis-system of the
OSTIS Ecosystem

}}}
• ostis-community

⇒ subdividing*:
{{{• simple ostis-community
• hierarchical

ostis-community
}}}

• OSTIS Ecosystem user
}}}

The concept of an ostis-community is not only a
collective of ostis-systems but also a certain collective of
humans (users and developers of the corresponding ostis-
systems). The ostis-community is a stable fragment of
the OSTIS Ecosystem, which provides comprehensive au-
tomation of a certain part of the collective human activity
and a permanent increase in its efficiency. A hierarchical
ostis-community is an ostis-community, at least one of
whose members is some other ostis-community.

Rules of behaviour for OSTIS Ecosystem agents:
• Coordinate the denotational semantics of all used

signs (primarily concepts);
• Coordinate terminology, eliminate contradictions and

information holes;
• Constantly eliminate synonymy and homonymy both

at the level of sc-elements (internal characters) and
at the level of their corresponding terms, as well as
other external identifiers (external designations);

• Each agent of the OSTIS Ecosystem, on its own
initiative, can become a member of any ostis-
community of the OSTIS Ecosystem after appro-
priate registration.

All rules of behaviour for OSTIS Ecosystem agents
must be observed not only by ostis-systems that are agents
of the OSTIS Ecosystem but also by human who are
agents. The correct behaviour of ostis-systems as agents
of the OSTIS Ecosystem is much easier to ensure than the
correct behaviour of human as such agents. The behaviour
of users (natural agents) of the OSTIS Ecosystem must be
closely monitored and controlled, constantly contributing
to the improvement of their qualifications as agents of

350

the OSTIS Ecosystem, as well as increasing their level
of motivation, purposefulness, and self-realization.

The OSTIS Ecosystem is the maximum hierarchical
ostis-community that provides comprehensive automation
of all types of human activity. It cannot be part of any
other ostis-community. The principles underlying the
OSTIS Ecosystem are:

• the OSTIS ecosystem is a network of ostis-
communities;

• each ostis-community corresponds one-to-one with
the corporate ostis-system of this ostis-community;

• each ostis-community can be a part of any other
ostis-community on its own initiative. Formally,
this means that the corporate ostis-system of the
first ostis-community is a member of another ostis-
community;

• each specialist who is part of the OSTIS Ecosystem
is assigned an one-to-one correspondence with their
personal ostis-assistant, which is considered as a cor-
porate ostis-system of a degenerate ostis-community
consisting of one human.

In the OSTIS Ecosystem, the following levels of
hierarchy can be distinguished:

• individual computer systems (individual ostis-
systems and humans who are end users of ostis-
systems);

• a hierarchical system of ostis-communities, each of
which can have members of individual ostis-systems,
humans, and other ostis-communities;

• the maximum ostis-community of the OSTIS Ecosys-
tem that is not a member of any other ostis-
community, which is part of the OSTIS Ecosystem.

The quality of the OSTIS Ecosystem is largely deter-
mined by the effectiveness of the interaction of each ostis-
system (including each ostis-community), each human
with their external environment, as well as the quality and
compliance of the external environment itself. Therefore,
the main purpose of the OSTIS Ecosystem is to improve
the quality of the information environment for all entities
that are part of the OSTIS Ecosystem. In other words, the
OSTIS Ecosystem provides support for the Information
Ecology of human society.

ostis-community
⇒ subdividing*:

{{{• minimal ostis-community
• ostis-systems collective

}}}

Each human included in the OSTIS Ecosystem has an
one-to-one correspondence with their personal assistant in
the form of a personal ostis-assistant. Thus, the number of
personal ostis-assistants included in the OSTIS Ecosystem
coincides with the number of humans included in the

OSTIS Ecosystem. An example of humans and their
corresponding personal ostis-assistants is shown in Figure
1.

Figure 1. Jack, Tom, and Sam as humans and their corresponding
personal ostis-assistants

A collective consisting of a human and a correspond-
ing personal ostis-assistant is actually a minimal ostis-
community. An example of minimal ostis-communities
is shown in Figure 2.

Figure 2. Samś and Jackś communities as objects of the minimal
ostis-community class

Since, formally, non-minimal ostis-communities in-
clude not humans but personal ostis-assistants correspond-
ing to them, all ostis-communities, except minimal ostis-
communities, are collectives of ostis-systems.

The corporate ostis-system is the central ostis-system
that coordinates, organizes, and supports the evolution of
the activities of the members from the corresponding ostis-
community. The corporate ostis-system is a representative
of the corresponding ostis-community in other ostis-
communities of which it is a member. An example of
the ostis-system of the corporate community is shown in
Figure 3.

351

Figure 3. The chess club community with a corporate ostis-system

The main purpose of the OSTIS Ecosystem Corporate
System is to organize common interaction in the perfor-
mance of various types and areas of human activity, which
can be either fully automated, or partially automated,
or not automated at all. It follows from this that the
knowledge base of the OSTIS Ecosystem Corporate
System should contain the General formal theory of
human activity, which includes a typology of types and
areas of human activity, as well as a general methodology
for this activity.

Activities in the field of Artificial Intelligence carried
out on the basis of the OSTIS Technology
⇒ core product*:

OSTIS Ecosystem
⇒ subproject*:

• OSTIS Metasystem Project
• Abstract sc-machine software

implementation project
• Universal sc-computer development

project

The product of human activity in the field of Artificial
Intelligence, carried out on the basis of OSTIS Technol-
ogy, is not just a set of ostis-systems for various purposes
but an Ecosystem consisting of interacting ostis-systems
and their users. The typology of ostis-systems that are
agents of the OSTIS Ecosystem is represented below.

C. Purpose of creating the OSTIS Ecosystem

The OSTIS Ecosystem is a self-developing network of
ostis-systems that provides comprehensive automation of
various types and areas of human activity. A special
place among the ostis-systems that are part of the
OSTIS Ecosystem is occupied by corporate ostis-systems,
through which the coordination and evolution of the
activities of some groups of ostis-systems and their users

ostis-system, which is an agent of the OSTIS
Ecosystem
⊃ personal ostis-assistant
⊃ corporate ostis-system
⊃ ostis-portal of scientific and technical knowledge
⊃ ostis-system of design automation
⊃ ostis-system of production automation
⊃ ostis-system of educational activities automation

⊃ learning ostis-system
⊃ corporate ostis-system of the virtual

department
⊃ ostis-system of business automation
⊃ ostis-system of control automation

⊃ ostis-system of project management of the
appropriate type

⊃ ostis-system of sensomotor coordination
when performing a certain type of
complex actions in the external
environment
⊃ ostis-system of self-driving control

is carried out. The main purpose of corporate ostis-
systems is to localize the knowledge bases of the indicated
groups of ostis-systems, transfer them from virtual to real
status, and automate their evolution.

The OSTIS Ecosystem is the next stage in the develop-
ment of human society, providing a significant increase
in the level of public (collective) intelligence by trans-
forming human society into an ecosystem consisting of
humans and semantically compatible intelligent systems.
The OSTIS Ecosystem is a proposed approach to the
implementation of a smart society, or Society 5.0, built
on the basis of the OSTIS Technology.

The super-purpose of the OSTIS Ecosystem is not
just a comprehensive automation of all types of human
activity (of course, only those activities whose automation
is appropriate) but also a significant increase in the level
of intelligence of various human (more precisely, human-
machine) communities and the entire human society as a
whole.

V. INTEGRATION OF HETEROGENEOUS INFORMATION
RESOURCES AND SERVICES IN THE OSTIS ECOSYSTEM

It is very important to design not only the OSTIS
Ecosystem itself as a form of implementation of Society
5.0 but also the process of a phased transition from a
modern global network of computer systems to a global
network of ostis-systems (i.e. to the OSTIS Ecosystem).

Within such a transitional period, ostis-systems can play
the role of system integrators for various resources and
services implemented by modern computer systems, since
the level of intelligence of ostis-systems allows them to
specify the integrated computer systems with any level of

352

detail and, therefore, quite adequately “understand” what
each of them knows and/or can. Also, ostis-systems are
able to coordinate the activities of a third-party resource
and service with sufficient quality and provide a “relevant”
search for the desired resource and service. In addition,
the systems can play the role of intelligent help systems
– assistants and consultants on the effective operation
of various computer systems with complex functionality,
having a user interface with non-trivial semantics and
used in complex subject domains. Such intelligent help
systems can be made intelligent intermediaries between
the respective computer systems of their users.

At the first stages of the transition to Society 5.0,
there is no need to convert all modern automation
systems into ostis-systems for certain types and areas
of human activity. However, ostis-systems should take on
a coordinating and connecting role due to the high level
of their interoperability. The ostis-systems must learn
to either fulfill the mission of an active interoperable
superstructure over various modern automation tools or
set problems that are feasible for modern automation tools,
ensuring their direct participation in solving complex
problems and organizing management of the interaction
of various automation tools in the process of collectively
solving complex complex problems.

The most important feature in the development of ostis-
systems is that the development of an ostis-system is
actually reduced to the development of its knowledge
base. When developing the components of the problem
solver and the interface, their features are taken into
account, however, the general mechanism for making any
changes to the ostis-system becomes a single one [23].

VI. SEMANTICALLY COMPATIBLE INTELLIGENT
OSTIS-PORTALS OF SCIENTIFIC KNOWLEDGE

Without the General formal theory of intelligent sys-
tems, it is impossible to build a set of methods and tools
that provide comprehensive support for the development
of intelligent computer systems for various purposes and
with a different set of skills that intelligent computer
systems may have but not necessarily each of them.
At the same time, it is important not only to build a
General theory of intelligent systems and bring it to a
strict formal level but also to bring the representation of
such a formal theory to the level of the knowledge base
of the corresponding scientific knowledge portal.

The purposes of the intelligent portal of scientific
knowledge are:

• accelerating the immersion of each human in new sci-
entific areas while constantly maintaining a common
holistic picture of the World (educational purpose);

• fixing new scientific results in a systematic way so
that all the main connections between new results
and known ones are clearly indicated;

• automating coordination of work on reviewing new
results;

• automating the analysis of the current state of the
knowledge base.

The creation of intelligent portals of scientific knowl-
edge, providing an increase in the pace of integration
and negotiation of different points of view, is a way
to significantly increase the pace of evolution of scien-
tific and technological activities. Compatible portals of
scientific knowledge, implemented in the form of ostis-
systems included in the OSTIS Ecosystem, are the basis of
new principles for organizing scientific activity, in which
the results of this activity are not articles, monographs,
reports, and other scientific and technical documents but
fragments of the global knowledge base, the developers of
which are freely formed scientific collectives, consisting
of specialists in the relevant scientific disciplines. With
the help of scientific knowledge portals, both the process
of reviewing new scientific and technical information
coming from scientists to the knowledge bases of these
portals is coordinated, and the process of coordinating
different points of view of scientists (in particular, the
introduction and semantic correction of concepts, as well
as the introduction and correction of terms corresponding
to different entities).

The implementation of a family of semantically compat-
ible scientific knowledge portals in the form of compatible
ostis-systems that are part of the OSTIS Ecosystem
involves the development of a hierarchical system of
semantically consistent formal ontologies corresponding
to various scientific and technical disciplines, with a
clearly defined inheritance of the properties of the de-
scribed entities and with clearly defined interdisciplinary
connections, which are described by connections between
the corresponding formal ontologies and the subject
domains specified by them.

An example of a scientific knowledge portal built in
the form of an ostis-system is the OSTIS Metasystem,
which contains all currently known knowledge and skills
that are part of the OSTIS Technology.

VII. SEMANTICALLY COMPATIBLE INTELLIGENT
CORPORATE OSTIS-SYSTEMS FOR VARIOUS PURPOSES

The corporate ostis-system allows monitoring, ana-
lyzing, and gradually automating all data processing
processes within the ostis-community. Such a system
operates according to the following principles:

• intelligent subsystems (agents) organize the data
structure in such a way that up-to-date information
is always available and outdated information is
automatically archived or deleted in accordance with
data storage and protection laws;

• requests to the system are executed in the form
of simple instructions, the system helps managers
enter the necessary information, performs partial or
complete automation of updating information from
databases available via the Internet;

353

• intelligent subsystems perform structuring and clas-
sification of documents and information to make
quick and correct decisions, automatically process
documents and available databases to select key
information needed now and in the future;

• the existing system environment in the enterprise
can be easily connected to the system through open
interfaces; all information remains available;

• all key data systems are synchronized with the main
system; data is constantly compared with each other
to avoid loss;

• all information is available in the knowledge base,
which is the source of data for workflows, reporting,
and comprehensive checks.

Thus, the proposed platform allows representing all
information about the ostis-community in a single, holistic
way. The advantages of introducing the proposed system
are:

• help in collecting and evaluating information without
intentional misrepresentations or human error;

• providing full control over own data;
• the system provides only high-quality, reliable, and

up-to-date data;
• digital representation of all community processes

provides integrated information processing within
the community, which gives full transparency of
management, facilitates access to all information
and its analysis;

• thanks to the support of intelligent subsystems, all
the necessary data from documents, processes, and
external sources can be extracted, structured, and
properly evaluated.

Corporate ostis-systems can be applied in various
areas: medicine and healthcare, educational activities of
a wide profile, insurance business, industrial activities,
administrative activities, real estate, transport, etc.

VIII. PERSONAL USER ASSISTANTS

Society must turn its “face” to each human, be re-
sponsible and really contribute to each human personally,
adapting to their characteristics, to ensure:

• the maximum level of physical health, activity, and
longevity;

• the maximum level of physical comfort, personal
space, material consumption;

• the maximum level of social, administrative, and
legal comfort.

For this, the following must be carried out:
• personal monitoring of each human in all directions;
• diagnostics and elimination of unwanted deviations;
• provision of timely personal assistance in clarifying

the directions of further evolution of each personality.
It is necessary to move from the provision of services

in solving various problems at the initiative of the humans

who have encountered these problems to the timely
detection of the possibility of these problems and to
appropriate prevention. This is possible only if there is a
clear system organization of personal monitoring.

The client is not required to know the set of services
from which they must choose the functionality that suits
them. For the client, a set of semantically compatible
services should be located “behind the scenes”. Therefore,
all information resources and services used by the client
must be semantically compatible. The choice of a resource
or service suitable for the user should be made by their
personal assistant.

The personal assistant must take into account that the
roles of clients can change, expand, as well as their
interests and purposes. At the same time, all personal
assistants must be semantically compatible in order
to understand each other and also have the ability to
independently interact within various corporate systems,
representing the interests of their clients.

Personal ostis-assistant is an ostis-system, which is a
personal assistant of the user within the OSTIS Ecosystem.
This system provides the opportunity to:

• analysis of user activity and the formation of recom-
mendations for its optimization;

• adaptation to the user’s mood, their personal qualities,
the general environment, the problem that the user
most often solves;

• permanent training of the assistant itself in the
process of solving new problems, while learning
is potentially unlimited;

• conduct a dialog with the user in natural language,
including in speech form;

• answer questions of various classes, and if something
is not clear to the system, then it can ask counter
questions;

• autonomously receive information from the entire
environment, and not just from the user (in text or
speech form).

At the same time, the system can both analyze available
information sources (for example, on the Internet) and
analyze the physical world around it, for example,
surrounding objects or the user’s appearance.

Advantages of a personal ostis-assistant:
• the user does not need to store different information

in different forms in different places – all information
is stored in a single knowledge base compactly and
without duplication;

• due to unlimited learning, assistants can potentially
automate almost any activity, not just the most
routine;

• thanks to the knowledge base, its structuring, and
information search tools in the knowledge base, the
user can get more accurate information more quickly.

Personal assistants have a variety of purposes and can
be used for a variety of categories of users (patient, legal

354

service, administrative service, customer, consumer of
various services).

IX. KNOWLEDGE MARKET

The evolution of ostis-systems and the OSTIS Ecosys-
tem as a whole is a very complex creative, collective
process, which in principle can only be partially auto-
mated. At the same time, high qualifications are required
from humans participating in this process, the highest
system culture at the level of deep knowledge of general
systems theory, high mathematical culture – a culture of
formalization, a high culture of convergence (discovering
similarities, bringing them to formal analogies), a high
culture of deep integration, high level of negotiation.

The evolution of ostis-systems and OSTIS Ecosystems
as a whole comes down to the collective reengineering of
knowledge bases of ostis-systems, which in turn comes
down to:

• “manual” generation of proposed additional knowl-
edge into the knowledge base of the specified ostis-
system;

• “manual” generation of proposed changes to the
current state of the knowledge base of the specified
ostis-system;

• “manual” review of each submitted proposal;
• automatic appointment of competent and interested

reviewers;
• automatic appointment of a sufficiently wide range

of competent and interested specialists to approve
the proposal received;

• automatic decision-making in relation to the received
proposal based on the opinion of all involved experts
and specialists.

In the knowledge base of each ostis-system, it is
possible to record the entire process of discussing each
proposal received, indicating the time points of all
involved events, as well as the participants in each event
(authors of proposals, authors of reviews, of polling
participants). Each ostis-system, analyzing the process of
using the knowledge stored by it during operation, can
estimate the frequency of direct and indirect usage of this
knowledge, i.e. can assess the degree of demand for this
knowledge.

Therefore, in the future, the OSTIS Ecosystem with
a sufficiently high degree of objectivity can assess the
volume and significance of the contribution of each
specialist to the development of the distributed knowledge
base of the OSTIS Ecosystem. This is a fundamental basis
for the formation of a fairly objective, honest knowledge
market.

The knowledge proposed for review, approval, and
publication, must be specified in the knowledge base
of the corresponding ostis-system: ostis-system, atomic
section of the knowledge base, date and time, author, type
of publication. Copyright protection should not occur at

the document level but at the content level of a knowledge
base fragment.

Absolutely ideal solutions, including design ones, do
not exist. Minimizing the degree of falsity can be ensured
by:

• error-correction speed (other participants are less
likely to use the erroneous fragment for their own
purposes);

• improving the quality of analysis when making
a decision (collective expertise, a larger number
of experts involved, taking into account the level
of expertise of an expert within a specific subject
domain).

The implementation of the knowledge market will
make it possible to make the transition from the classical
representations of dictionaries and encyclopedias to a
semantic network of specifications for all described
entities. Such specifications will automatically determine
the presence or absence of a synonymous sign within the
technical state of the knowledge base for any new sign
entered into the knowledge base.

X. CONCLUSION

The key direction in increasing the level of intelli-
gence of individual intelligent cybernetic systems is the
transition from individual intelligent cybernetic systems,
absolutely independent of each other, to their universal
communities, i.e. to multi-agent systems, independent
agents of which are the indicated individual intelligent
cybernetic systems. Within such systems, the possibility
of communication of each agent with each one is provided,
as well as the possibility of forming specialized collectives
for the collective solution of complex collective problems.
The implementation of the specified universal community
of interoperable intelligent cybernetic systems is carried
out in the form of the OSTIS Global Ecosystem.

The OSTIS Ecosystem is the basis for transferring the
level of informatization of various areas of human activity
to a fundamentally new level, as well as for integrating
relevant projects: “Society 5.0”, “Industry 4.0”, “Smart
House”, “Smart City”, “Knowledge market”, and others.
Without intelligent computer systems, all these projects
are impossible.

The process of transition of the cybernetic systems
community to next-generation intelligent cybernetic sys-
tems can take place gradually, where ostis-systems can
play the role of coordinator of activities performed by
other systems. Specified types of ostis-systems, such
as semantically compatible intelligent ostis-portals of
scientific knowledge, semantically compatible intelligent
corporate ostis-systems, and personal user assistants,
contribute to increasing the level of global community
intelligence by increasing the level of interoperability.

The projects must be brought into a single coherent
hierarchical system of interrelated projects covering the
entire scope and diversity of human activity.

355

ACKNOWLEDGMENT

The author would like to thank the research group of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for its help in the work and valuable
comments.

REFERENCES

[1] F. W. Neiva, J. M. N. David, R. Braga, and F. Campos, “Towards
pragmatic interoperability to support collaboration: A systematic
review and mapping of the literature,” Information and Software
Technology, vol. 72, pp. 137–150, 2016.

[2] P. Lopes de Lopes de Souza, W. Lopes de Lopes de Souza, and
R. R. Ciferri, “Semantic interoperability in the internet of things:
A systematic literature review,” in ITNG 2022 19th International
Conference on Information Technology-New Generations, S. Latifi,
Ed. Cham: Springer International Publishing, 2022, pp. 333–340.

[3] Hamilton, Gunther, Drummond, and Widergren, “Interoperability
- a key element for the grid and der of the future,” in 2005/2006
IEEE/PES Transmission and Distribution Conference and Exhibi-
tion, 2006, pp. 927–931.

[4] P. Marrow, “Nature-inspired computing technology and applica-
tions,” Bt Technology Journal - BT TECHNOL J, vol. 18, pp.
13–23, 10 2000.

[5] G. Briscoe and P. De Wilde, “Self-organisation of evolving agent
populations in digital ecosystems,” 01 2012.

[6] K. Kelly, Out of Control: The New Biology of Machines, Social
Systems, and the Economic World. USA: Addison-Wesley
Longman Publishing Co., Inc., 1995.

[7] H. Boley and E. Chang, “Digital ecosystems: Principles and
semantics,” in 2007 Inaugural IEEE-IES Digital EcoSystems and
Technologies Conference, 2007, pp. 398–403.

[8] M. Tsujimoto, Y. Kajikawa, J. Tomita, and Y. Matsumoto, “A
review of the ecosystem concept — towards coherent ecosystem
design,” Technological Forecasting and Social Change, vol. 136,
pp. 49–58, 2018.

[9] H. Dong and F. K. Hussain, “Digital ecosystem ontology,” in 2007
IEEE International Symposium on Industrial Electronics. IEEE,
2007, pp. 2944–2947.

[10] D. Cobben, W. Ooms, N. Roijakkers, and A. Radziwon, “Ecosys-
tem types: A systematic review on boundaries and goals,” Journal
of Business Research, vol. 142, pp. 138–164, 2022.

[11] M. Borgh, M. Cloodt, and G. Romme, “Value creation by
knowledge-based ecosystems: Evidence from a field study,”
R& D Management, vol. 42, pp. 150–169, 02 2012.

[12] R. Kapoor, “Ecosystems: broadening the locus of value creation,”
Journal of Organization Design, vol. 7, no. 1, pp. 1–16, 2018.

[13] M. Hadzic, T. Dillon, and E. Chang, “Use of digital ecosystem
and ontology technology for standardization of medical records,”
in 2007 Inaugural IEEE-IES Digital EcoSystems and Technologies
Conference, 2007, pp. 595–601.

[14] A. Elizarov, A. Kirillovich, E. Lipachev, and O. Nevzorova,
“Digital ecosystem ontomath: Mathematical knowledge analytics
and management,” in Data Analytics and Management in Data
Intensive Domains, L. Kalinichenko, S. O. Kuznetsov, and
Y. Manolopoulos, Eds. Cham: Springer International Publishing,
2017, pp. 33–46.

[15] S. D. Nagowah, H. Ben Sta, and B. Gobin-Rahimbux, “A
systematic literature review on semantic models for iot-enabled
smart campus,” Applied Ontology, vol. 16, no. 1, pp. 27–53, 2021.

[16] C. Reinisch, M. J. Kofler, and W. Kastner, “Thinkhome: A smart
home as digital ecosystem,” in 4th IEEE International Conference
on Digital Ecosystems and Technologies. IEEE, 2010, pp. 256–
261.

[17] E. G. Caldarola, A. Picariello, and A. M. Rinaldi, “An approach
to ontology integration for ontology reuse in knowledge based
digital ecosystems,” ser. MEDES ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 1–8. [Online].
Available: https://doi.org/10.1145/2857218.2857219

[18] G. Briscoe and P. De Wilde, “Digital ecosystems: Evolving service-
oriented architectures,” 12 2007.

[19] G. Briscoe, S. Sadedin, and P. De Wilde, “Digital ecosystems:
Ecosystem-oriented architectures,” Natural Computing, vol. 10,
no. 3, pp. 1143–1194, 2011.

[20] W. Li, Y. Badr, and F. Biennier, “Digital ecosystems: Challenges
and prospects,” in Proceedings of the International Conference
on Management of Emergent Digital EcoSystems, ser. MEDES
’12. New York, NY, USA: Association for Computing Machinery,
2012, p. 117–122.

[21] Vladimir Golenkov and Natalia Guliakina and Daniil Shunkevich,
Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems,
V. Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[22] (2022, Nov) Ostis Metasystem. [Online]. Available:
https://ims.ostis.net

[23] V. Golenkov, N. Gulyakina, I. Davydenko, and D. Shunke-
vich, “Semanticheskie tekhnologii proektirovaniya intellektual’nyh
sistem i semanticheskie associativnye komp’yutery [Semantic
technologies of intelligent systems design and semantic associative
computers],” Otkrytye semanticheskie tehnologii proektirovanija
intellektual’nyh sistem [Open semantic technologies for intelligent
systems], pp. 42–50, 2019.

Принципы реализации экосистемы
интеллектуальных компьютерных систем

нового поколения
Загорский А. Г.

В работе рассмотрена архитектура экосистемы интел-
лектуальных компьютерных систем на основе Технологии
OSTIS. Уточнена формальная трактовка таких понятий, как
ostis-система, ostis-сообщество, выделена типология ostis-
систем, что в совокупности позволяет определить структуру
Экосистемы OSTIS. Полученные результаты могут быть
применены при реализации таких проектов, как “Общество
5.0”, “Industry 4.0”, “Умный дом”, “Умный город”, “Рынок
знаний”.

Received 30.10.2022

356

Metasystem of the OSTIS Technology
and the Standard of the OSTIS Technology

Kseniya Bantsevich
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: ksusha.bantsevich@gmail.com

Abstract—In the article, an approach to automating
the processes of creation, development, and application of
standards based on the OSTIS Technology is proposed.
The general problems related to the development and
usage of modern standards in various fields are considered.
Standardization of intelligent computer systems is proposed,
as well as standardization of methods and means of their
design within the proposed approach.

Keywords—Standard, standard of intelligent computer
systems, Metasystem of the OSTIS Technology, Standard
of the OSTIS Technology.

I. INTRODUCTION

Each developed sphere of human activity is based on
a number of standards that formally describe its various
aspects — a concepts system (including terminology),
typology, sequence of actions performed in the process of
applying appropriate methods and tools, and much more
[1].

Standards in a wide variety of fields are the most
important knowledge type, the main purpose of which is
to ensure the compatibility of various activities. Despite
the development of information technologies, currently,
the vast majority of standards are represented either in
the form of traditional linear documents or in the form of
web resources containing a set of static pages connected
by hyperlinks. In order for standards to fulfill their main
function, they must be constantly improved. Due to the
need for their permanent development, the current design
of standards does not meet modern requirements.

II. ANALYSIS OF EXISTING PROBLEMS AND
APPROACHES TO THEIR SOLUTIONS

The current design of standards has a number of
disadvantages that prevent the effective and competent
usage of standards in various fields [2], [3]:

• duplication of information within the document
describing the standard;

• the complexity of maintaining the standard itself
due, among other things, to the duplication of
information, in particular, the complexity of changing
terminology;

• the problem of internationalization of the standard
— in fact, the translation of the standard into several

languages leads to the need to support and coordinate
independent versions of the standard in different
languages;

• the complexity of studying and applying standards;
• and others.
The listed problems are mainly related to the form

of representation of standards. To solve these problems,
standards should be designed in the form of intelligent
reference systems that are able to answer a variety of
questions. Thus, it is advisable to design standards in the
form of knowledge bases, corresponding to intelligent
reference systems. This approach makes it possible to
significantly automate the processes of developing the
standard and its application [4], [5].

Another urgent problem in the field of creating and
applying standards for comprehensive technologies is the
problem of their incompatibility, since different aspects of
technology can be standardized by different standards that
are incompatible with each other due to the inconsistency
of the system of concepts and terms.

III. PROPOSED APPROACH

Currently, Informatics is overcoming the most im-
portant stage of its development – the transition from
data informatics (data science) to knowledge informatics
(knowledge science), where attention is focused on
semantic aspects of the representation and processing
of knowledge.

Without a fundamental analysis of such a transition,
it is impossible to solve many problems related to the
management of knowledge, the economy of knowledge,
semantic compatibility of intelligent computer systems.

To solve the above problems, it is proposed to use the
OSTIS Technology, the main feature of which is the focus
on the usage of next-generation computers specifically de-
signed for the implementation of semantically compatible
hybrid intelligent computer systems [6].

From a semantic point of view, each standard is a
hierarchical ontology that clarifies the structure and sys-
tems of concepts of their corresponding subject domains,
which describes the structure and functioning of either a
certain class of technical or other artificial systems, or a

357

certain class of organizations, or a certain type of activity.
This approach provides obvious advantages in terms of
automating the processes of harmonization and usage of
standards [7], [8].

As part of this work, the experience of using this
technology when designing the Standard of the OSTIS
Technology will be considered. The suggested Standard
of the OSTIS Technology is designed in the form of a
family of knowledge base sections of a special intelligent
computer OSTIS Metasystem (Intelligent MetaSystem
for ostis-systems) [9], which is built based on the
OSTIS Technology and represents a constantly improving
intelligent portal of scientific and technical knowledge,
which supports the permanent evolution of the OSTIS
Standard, as well as the development of various ostis-
systems (intelligent computer systems built based on the
OSTIS Technology).

The OSTIS Technology is a complex of models,
techniques, automated methods, and tools permanently
developed within an open project, focused on ontological
design, production, operation, and reengineering of se-
mantically compatible hybrid intelligent computer systems
capable of interacting independently with each other.

The represented technology is a technology of a
fundamentally new level, which is conditioned by:

• the high quality of intelligent computer systems
(ostis-systems) developed on its basis – their semantic
compatibility, the ability to interact independently,
the ability to adapt to users, and the ability to adapt
(train) users themselves to interact with intelligent
computer systems more effectively;

• the high quality of the technology itself – the
ability to integrate the most diverse knowledge types
and the most diverse problem-solving models, the
inextricable connection between the processes of
development of intelligent computer systems and
professional training of developers.

The OSTIS Technology is based on the usage of unified
semantic networks with a basic set-theoretic interpretation
of their elements as a method of knowledge representation.
This way of knowledge representation is called an SC-
code, and the semantic networks, represented in the SC-
code, are called sc-graphs (sc-texts, or texts of the SC-
code). The elements of such semantic networks are called
sc-elements (sc-nodes and sc-connectors, which, in turn,
can be sc-arcs or sc-edges depending on their orientation).
The Alphabet of the SC-code consists of five basic
elements, on the basis of which SC-code constructions
of any complexity are built, including the introduction of
more particular kinds of sc-elements (e.g., new concepts).
The memory storing SC-code constructions is called
semantic memory, or sc-memory.

The key feature of the SC-code is the joint usage of the
mathematical apparatus of a graph theory and a set theory.
This allows, on the one hand, ensuring the strictness and

universatility of formalization tools and, on the other
hand, ensuring the convenience of storing and processing
information represented in this form.

Within the technology, several universal variants of
visualization of the SC-code constructions are also pro-
posed, such as SCg-code (graphic version), SCn-code
(non-linear hypertextual version), SCs-code (linear string
version).

Within this article, fragments of structured texts in the
SCn-code [9] will often be used, which are simultaneously
fragments of source texts of the knowledge base, which
are understandable both to a human and to a machine. This
allows making the text more structured and formalized
while maintaining its readability. The symbol “:=” in
such texts indicates alternative (synonymous) names of
the described entity, which reveal in more detail some of
its features.

The key features of the represented technology are:
• Complex nature, consisting in:

– supporting the design of not only separate com-
ponents of intelligent computer systems but also
intelligent computer systems as a whole;

– supporting not only the design but also the entire
life cycle of intelligent computer systems.

• Ensuring semantic compatibility of both components
of intelligent computer systems and intelligent com-
puter systems as a whole throughout their life cycle.

• Implementation of the OSTIS Technology in the form
of a next-generation intelligent computer system,
which is also built based on the OSTIS Technology.

OSTIS Technology
⇒ class of products*:

ostis-system
:= [next-generation intelligent computer sys-

tems built using the OSTIS Technology]
⊂ next-generation intelligent computer

system
∋ OSTIS Metasystem

IV. OSTIS METASYSTEM

The OSTIS Metasystem [9] is an intelligent computer
system that provides:

• comprehensive information support for all stages of
the life cycle of next-generation intelligent computer
systems;

• automation of the design for all components of next-
generation intelligent computer systems;

• comprehensive automation of all stages in the life
cycle of next-generation intelligent computer sys-
tems.

The implementation form of the represented OSTIS
Metasystem is the OSTIS Technology.

The OSTIS Metasystem is:

358

• a system of information and instrumental support for
all stages of the life cycle of next-generation intel-
ligent computer systems (ostis-systems) for various
purposes;

• OSTIS Technology Knowledge Portal, providing:

□ □ coordination of work on the development of the
OSTIS Technology;

□ □ automation of quality analysis of the OSTIS
Standard.

That is, the OSTIS Metasystem is a project manage-
ment system for the creation and development of the
OSTIS Standard.

V. OSTIS STANDARD

The Standard of the OSTIS Technology [10] is a
documentation of the OSTIS Technology, which is
represented as the main part of the knowledge base
of a special intelligent computer system designed to
comprehensively support the life cycle of semantically
compatible next-generation intelligent computer systems
(the OSTIS Metasystem).

OSTIS Standard
:= [documentation of the OSTIS Technology]
:= [documentation of the Open Technology for

ontological design, production, and operation
of semantically compatible hybrid intelligent
computer systems]

:= [description of the OSTIS Technology (Open
Semantic Technology for Intelligent Systems),
represented in the form of a family of sections
in the knowledge base of a special ostis-system
(system built based on the OSTIS Technology)
in the internal language of ostis-systems and
possessing sufficient completeness for the usage
of this technology by developers of intelligent
computer systems]

:= [complete description of the current state of the
OSTIS Technology, represented in the form of a
family of sections in the knowledge base built
based on the OSTIS Technology]

:= [family of sections in the knowledge base of the
OSTIS Metasystem, which is designed to provide
comprehensive support for the ontological design
of semantically compatible hybrid intelligent
computer systems]

∈ family of knowledge base sections
:= [family of sections of the internal repre-

sentation of the ostis-system knowledge
base – an intelligent computer system
built using the OSTIS Technology]

:= [fairly complete formal documentation of the cur-
rent version of the OSTIS Technology, represented
either as the main part of the knowledge base of

the OSTIS Metasystem or as an external formal
representation of this knowledge base]

:= [main part of the OSTIS Metasystem knowledge
base describing the current version of the OSTIS
Technology]

:= [formal text, the object of which is the OSTIS
Technology, i.e. a text that is a fairly complete
description of the current state of the OSTIS
Technology]

:= [documentation of the OSTIS Technology, fully
reflecting the current state of the OSTIS Technol-
ogy and represented by the corresponding family
of knowledge base sections of the ostis-system,
which is focused on supporting the design, pro-
duction, operation, and evolution (reengineering)
of ostis-systems, as well as supporting the evolu-
tion of the OSTIS Technology itself and named
the OSTIS Metasystem]

:= [family of sections that includes all sections of
the OSTIS Standard]

⇒ main sc-identifier*:
[OSTIS Standard]
⇐ reduction*:

[Standard of the OSTIS Technology]
⇐ reduction*:

[Standard of an Open technology
for integrated support of the life
cycle of semantically compatible
next-generation intelligent com-
puter systems]

It should be emphasized that the OSTIS Standard is not
a description of a certain state of the OSTIS Technology
but a dynamic information model of the evolution of this
technology.

VI. TABLE OF CONTENTS OF THE OSTIS STANDARD

One of the components of the OSTIS Standard is the
Table of contents of the OSTIS Standard.

The Table of contents of the OSTIS Standard is
a hierarchical list of sections included in the OSTIS
Standard, with an additional specification of some sections
indicating their alternative names. It is essential to
emphasize that the hierarchy of sections of the OSTIS
Standard does not mean that sections of a lower level of
the hierarchy are part of the corresponding sections of a
higher level. The relation between sections at different
levels of the hierarchy means that a section at a lower
level of the hierarchy is a child section in relation to the
corresponding section at a higher level, i.e. a section that
inherits the properties of the specified section at a higher
level.

In contrast, each part of the OSTIS Standard, as well
as the OSTIS Standard itself, is a family of sections (a
set of sections) that are part of it.

359

VII. GENERAL STRUCTURE OF THE OSTIS STANDARD

Consider the structure of the top-level OSTIS Standard:
• Part 1 of the OSTIS Standard.

Introduction to next-generation intelligent computer
systems
:= [Analysis of the current state of technologies

of Artificial Intelligence and setting the
objective for creating a complex of compat-
ible Artificial Intelligence technologies that
provides support for the entire life cycle of
next-generation intelligent computer systems
and named an OSTIS Technology]

• Actual documentation of the OSTIS Technology
– Part 2 of the OSTIS Standard.

Semantic representation and ontological system-
atization of knowledge of the next-generation
intelligent computer systems
:= [Standard for information representation

in ostis-systems]
:= [Models of representation of knowledge

and knowledge bases in ostis-systems]
– Part 3 of the OSTIS Standard.

Multi-agent problem solvers of next-generation
intelligent computer systems
:= [Standard of processes and methods of

information processing in ostis-systems]
:= [Knowledge processing models in ostis-

systems (logical, production, functional,
neural network, procedural and non-
procedural, clear and fuzzy)]

– Part 4 of the OSTIS Standard.
Ontological interfaces models of next-generation
intelligent computer systems
:= [Standard of information resources and

models for solving interface problems in
ostis-systems]

• Standard of methods and means of life cycle support
for ostis-systems
:= [Standard of business processes and tech-

niques, automatically implemented pro-
cesses and methods, information tools and
tools used to support the life cycle of ostis-
systems]

– Part 5 of the OSTIS Standard.
Methods and means of designing next-generation
intelligent computer systems
:= [Techniques, methods, and tools for de-

signing knowledge bases, problem solvers,
and interfaces of ostis-systems]

– Part 6 of the OSTIS Standard.
Implementation platforms for next-generation in-
telligent computer systems

:= [Methods and means of implementing
ostis-systems (based on software plat-
forms and specially designed computers
for this purpose)]

– Part 7 of the OSTIS Standard.
Methods and means of reengineering and op-
eration of next-generation intelligent computer
systems
:= [Methods and means of ostis-systems op-

erating by end users, as well as their
maintenance (maintenance of operability)
and reengineering (updates, upgrades)]

• Part 8 of the OSTIS Standard.
Ecosystem of next-generation intelligent computer
systems and their users
:= [Description of products created using the

OSTIS Technology, the main of which is the
OSTIS Ecosystem, semantically compatible
and actively interacting ostis-systems and
their users]

:= [Theory of the OSTIS Ecosystem and its
evolution]

• OSTIS Bibliography
:= [Specification of bibliographic sources se-

mantically close to the OSTIS Technology,
in the context of their comparative analysis
with the OSTIS Standard]

VIII. KEY SIGNS OF THE OSTIS STANDARD

The system of key signs of the OSTIS Standard is
ordered in exact accordance with the Table of contents of
the OSTIS Standard and is a clarification of the specified
Table of contents by listing and explaining the key entities
described in the sections of the Standard, and, first of all,
those entities that are specified in the identifiers (names)
of the sections of the OSTIS Standard.

The System of key signs of the OSTIS Standard is a
complete addition to the Table of contents of the OSTIS
Standard, since:

• the hierarchy and sequence of key characters clearly
correspond to the hierarchy and sequence of sections
of the standard;

• the system of key signs of the OSTIS Standard, as
well as its Table of contents, is perceived (read) as
a complete understandable text.

IX. PURPOSE OF THE OSTIS STANDARD

Since the OSTIS Standard is an integral part of the
OSTIS Metasystem (the main part of its knowledge base),
the main purpose of the OSTIS Standard is to ensure
the most effective implementation of what the OSTIS
Metasystem is designed for.

In addition, the most important direction of the OSTIS
Metasystem and, accordingly, the most important direction
of the application of the OSTIS Standard is their usage

360

as a comprehensive integrated computer textbook in the
specialty “Artificial Intelligence”. For this purpose, a
connection is established between the sections of the
OSTIS Standard and the programs of various academic
disciplines of the specified specialty. It is important
to emphasize at the same time: the OSTIS Standard
contains a fairly complete comparative analysis with
various alternative approaches, i.e. in no case is limited
to considering only the OSTIS Technology.

The OSTIS Standard is considered as a result of
convergence and integration of various directions of
Artificial Intelligence, which allows students and un-
dergraduates to form a holistic view of the subject of
Artificial Intelligence, rather than a mosaic representation
in the form of a variety of disciplines (directions), the
connections between which are not considered in detail
and even more formally.

The OSTIS Standard is permanently and rapidly evolv-
ing. During the training of students and undergraduates,
there are very significant changes in the current version
of the OSTIS Standard.

Students and undergraduates are actively involved in
the process of evolution of the OSTIS Standard, which
ensures:

• formation of the necessary level of their qualifica-
tions in conditions of rapid moral aging of what they
have already been taught;

• formation of the necessary skills that allow them
to quickly adapt to the new conditions of this
activity and, in particular, to new versions of relevant
technologies in the process of real professional
activity.

X. ANALOGUES OF THE OSTIS STANDARD

Analogs of the OSTIS Standard include:
• any serious attempt to systematize the results ob-

tained in the field of Artificial Intelligence to the
current moment:
– a textbook that fully reflects the current state of

Artificial Intelligence;
– a reference book containing fairly complete in-

formation about the current state of Artificial
Intelligence.

• any attempt to move from particular formal models
of various components from the intelligent computer
systems of the general (combined, integrated) formal
model of intelligent computer systems as a whole to
the general theory of intelligent computer systems;

• any unification of technical solutions, elimination
of the variety of forms of technical solutions in the
development of intelligent computer systems;

• the first attempts to develop standards for intelligent
computer systems, as well as Artificial Intelligence
technologies, which, most often, are limited to the
building of systems of corresponding concepts.

XI. FEATURES OF THE OSTIS STANDARD

The OSTIS Standard is not just a systematization of the
current state of results in the field of Artificial Intelligence
– it is a systematization represented in the form of a general
complex formal model of intelligent computer systems
and a complex formal model to support their life cycle.
Moreover, the text of the OSTIS Standard is the main part
of the knowledge base of a special intelligent metasystem,
which is focused on:

• support for the development of intelligent computer
systems for various purposes;

• support for the evolution of the OSTIS Standard;
• support for the training of specialists in the field of

Artificial Intelligence.

The OSTIS Standard is a dynamic text that permanently
reflects new scientific and technical results obtained in the
field of Artificial Intelligence within a General theory of
intelligent computer systems and General comprehensive
technology for the development of intelligent computer
systems. It is important that new scientific and technical
results are recorded promptly, i.e. minimizing the time
interval between the moment of obtaining new results and
the moment of integrating the description of these results
into the OSTIS Standard. In the future, the authors of new
scientific and technical results in the field of Artificial
Intelligence will be interested in personally publishing
(integrating) their results into the OSTIS Standard, i.e.
becoming co-authors of the OSTIS Standard to ensure the
necessary efficiency of such publication and the absence
of distortion of its results. Dynamism of the OSTIS
Standard and efficiency of integration into its structure of
new scientific and technical results in the field of Artificial
Intelligence does the OSTIS Standard always relevant and
never obsolete.

Within the OSTIS Standard, there is no opposition
between scientific and technical information, obtained in
the field of Artificial Intelligence, and educational and
methodological information, used for the training and self-
training of specialists in the field of Artificial Intelligence.
Information about what to learn should be “intertwined”,
integrated with information about how to learn.

It is important to note that the OSTIS Standard, unlike
other standards, is a structured formal text that can
be directly used not only by developers of intelligent
computer systems but also by intelligent computer systems
that automate the design of developed intelligent computer
systems and support subsequent stages of their life cycle.
Thus, the development of the OSTIS Standard is an
integral part in the development of a set of information
and instrumental support tools for the entire life cycle
of intelligent computer systems, and these support tools
of life cycle of intelligent computer systems become
equal partners in the process of creating, operating, and
maintaining intelligent computer systems due to their

361

awareness (understanding) in intelligent computer systems
and their life cycle.

Contensive, the OSTIS Standard covers not only the
description of models of intelligent computer systems
being developed but also the description of techniques,
automated methods, and tools for supporting (automating)
all stages of the life cycle of intelligent computer systems
being developed.

The OSTIS Standard development project is focused
on high rates of evolution of the OSTIS Standard thanks
to automating the management of this project using the
OSTIS Metasystem, which is a full participant in this
project.

Building and structuring of text of the OSTIS Standard
are focused on the maximum possible reduction of the
language and cognitive barrier for its novice users. For
this purpose, (1) various kinds of natural language notes
and comments are used that have appropriate semantic
connections with the entities being explained, as well as
(2) various kinds of didactic knowledge indicating various
analogies, differences, examples, principles underlying
the described entities, etc.

XII. USER OF THE OSTIS STANDARD

Consider the target audience of the OSTIS Standard.

OSTIS Standard
⇒ users class*:

user of the OSTIS Standard
:= [target audience of the OSTIS Standard]
⇒ subdividing*:

{{{• developer of the ostis-system
⊃ developer of the OSTIS

Metasystem
⊃ developer of the

ostis-system knowledge
base
⊃ developer of the

OSTIS Standard
⊃ developer of the

ostis-system problem solver
⊃ developer of the

OSTIS Metasystem
problem solver

⊃ developer of the
ostis-system interface
⊃ developer of the

OSTIS Metasystem
interface

⊃ developer of ostis-systems
implementation platforms

• potential developer of the
ostis-system

• specialist in the field of Artificial
Intelligence who wants to

integrate their results into the
general theory of next-generation
intelligent computer systems and
the corresponding comprehensive
technology

• student or master student of the
“Artificial Intelligence” specialty or
another related specialty who
wants to gain practical experience
in the development of applied
next-generation intelligent
computer systems or in the
development of an appropriate
comprehensive technology

}}}

developer of the OSTIS Metasystem
⇒ subdividing*:

{{{• developer of the OSTIS Standard
• developer of the OSTIS Metasystem

problem solver
• developer of the OSTIS Metasystem

interface
}}}

XIII. WRITING TEAM OF THE OSTIS STANDARD

To ensure permanent evolution, there are a number
of requirements focused on the authors of the OSTIS
Standard.

Authors of the OSTIS Standard should:

• Track and study new publications on the topics
covered in the OSTIS Standard. Close sources for
this are:
– magazine issues;
– conference materials:

∗ organized by the 3WC Consortium;
∗ on the integration of various AI directions;

– standards in the field of AI;
– publications, considering:

∗ formal ontologies;
∗ top-level ontologies;
∗ semantic networks;
∗ knowledge graphs;
∗ graph databases;
∗ semantic representation of knowledge;
∗ convergence of different AI directions.

• To record the results of the study of new publications
on topics close to the OSTIS Standard in the
OSTIS Bibliography, as well as in the main text
of the OSTIS Standard in the form of appropriate
references, citations, comparative analysis.

• Track the current state of the total text of the OSTIS
Standard, form proposals aimed at the development
of the OSTIS Standard and at increasing the pace

362

of this development; actively participate in the
discussion of the problems of OSTIS Technology
development.

• To connect personal work on the OSTIS Standard
with other forms of activity – scientific, educational,
applied – in the maximum possible way.

• Indicate the authorship of their proposals to supple-
ment and/or correct the current text of the OSTIS
Standard.

• Participate in reviewing and approving proposals
submitted by other authors of the OSTIS Standard.

The large volume of work on the creation and de-
velopment of the OSTIS Standard and, accordingly, the
OSTIS Technology, the complex nature of these works,
which require deep convergence and integration of various
directions of Artificial Intelligence, place high demands
on the Writing Team of the OSTIS Standard in terms of
motivation, the quality of the creative atmosphere, the
level of interoperability of all team members, i.e. the level
of ability to quickly and efficiently coordinate personal
points of view.

Since the Project for the creation and development of
the OSTIS Standard is open, anyone who follows the
Rules for organizing the interaction of members of the
OSTIS Standard Writing Team, sharing the purposes and
objectives of developing such a Standard can become a
member of the OSTIS Standard Writing Team.

The following key points of the Rules for organizing
the interaction of members of the OSTIS Standard Writing
Team of the OSTIS Standard are highlighted:

• collectively form tactical and strategic directions
for the development of the OSTIS Standard and,
accordingly, OSTIS Technology;

• collectively distribute tasks for the implementation
of the approved directions for the development of
the OSTIS Standard, taking into account (1) the
scientific interests, qualifications and capabilities of
each member of the Writing Team, (2) the priority
of tasks and a sufficiently complete coverage of all
priority tasks.

XIV. EDITORIAL BOARD OF THE OSTIS STANDARD

Within the Writing Team of the OSTIS Standard,
the Editorial Board of the OSTIS Standard is also
distinguished.

The Editorial Board of the OSTIS Standard is a part
of the Writing Team of the OSTIS Standard, which is
the center of collegial decision-making on the main
directions of the development of the OSTIS Standard
and, accordingly, the OSTIS Technology, in order to
clarify the relevant priorities and terms. The Editorial
Board of the OSTIS Standard is also responsible for the
formation and implementation of strategic directions for
the development of the OSTIS Standard and, in particular,

for the selection and appointment of responsible executors
for sections of the OSTIS Standard.

The main activities of the Editorial Board of the OSTIS
Standard are:

• ensuring the integrity and improving the quality of
the constantly developing OSTIS Technology, as
well as a fairly accurate description (documentation)
of each current version of this technology;

• ensuring clear control of compatibility of OSTIS
Technology versions as a whole, as well as versions
of various components of this technology;

• constantly clarifying the degree of importance for
various directions of OSTIS Technology develop-
ment for each current moment;

• formation and constant refinement of the plan for
tactical and strategic development of the OSTIS
Technology itself, as well as complete documentation
of this Technology in the form of the OSTIS
Standard. At the same time, we emphasize that
this documentation is an integral part of the OSTIS
Technology.

XV. REQUIREMENTS FOR THE OSTIS STANDARD

The OSTIS Standard must meet the following require-
ments:

• the concepts introduced (including didactic relations)
should be clearly explained and/or defined in the
relevant section of the OSTIS Standard;

• providing the possibility of step-by-step formaliza-
tion of information, starting from nl-texts, which can
later be written in a formal language;

• a clear logical and semantic specification of each
subject domain considered in the OSTIS Standard.
The named specification should reflect both the
internal structure of the subject domain (the roles
of its key elements) and the connections with other
subject domains;

• convergence, (“seamless”) integration of various
knowledge types describing a variety of entities,
which, in particular, include knowledge of all kinds;

• integrity, completeness, connectivity:
– lack of information holes;
– a fairly complete specification of all entities;
– consistency of basic identifiers (terms), absence

of synonyms and homonyms.
• absence of information excesses and information

garbage;
• clear semantic stratification – each fragment of the

knowledge base should have its own semantic “shelf”
(no duplication);

• strict logical sequence of the text (all entities used
must be introduced either in a given subject domain
or in a higher-level subject domain);

• unification of stylistics – the text should not cause
difficulties for its understanding;

363

• extended bibliography and comparative analysis;
• strict compliance with and improvement of the rules

for identification and specification of the described
entities;

• a sufficiently detailed specification of each intro-
duced concept in the relevant subject domain.

XVI. RULES FOR THE CONSTRUCTION OF THE OSTIS
STANDARD

As part of the development of the OSTIS Standard, the
General rules for the construction of the OSTIS Standard
and the Particular rules for the construction of the OSTIS
Standard are distinguished.

General rules for the construction of the OSTIS
Standard
:= [principles underlying the structuring and design

of the OSTIS Standard]

Let us consider the main conditions:
• The main form of representation of the OSTIS

Standard as a complete documentation for the
current state of the OSTIS Technology is the internal
representation of the main part from the knowledge
base of the special intelligent computer OSTIS
Metasystem, which ensures the usage and evolution
(permanent improvement) of the OSTIS Technology.
This representation of the OSTIS Standard provides
effective semantic navigation through the contents of
the OSTIS Standard and the ability to ask the OSTIS
Metasystem a wide range of non-trivial questions
about the most diverse details and subtleties of the
OSTIS Technology.

• In addition to the representation of the OSTIS
Standard in the internal language of knowledge rep-
resentation, the external form of the representation
of the OSTIS Standard in the external language of
knowledge representation is also used. At the same
time, the specified external representation of the
OSTIS Standard should be structured and designed
so that the reader can easily “manually” find almost
any information of interest in this text. The SCn-
code is used as the formal language of the external
representation of the OSTIS Standard.

• The OSTIS Standard has an ontological structuring,
i.e. it is a hierarchical system of related formal
subject domains and their corresponding formal
ontologies. This ensures a high level of stratification
of the OSTIS Standard.

• Each concept used in the OSTIS Standard has its own
place within this Standard, its own subject domain
and its corresponding ontology, where this concept is
considered (investigated) in detail, where all the basic
information about this concept, about its various
properties, is concentrated.

• The OSTIS Standard also includes files of informa-
tion constructions that are not SC-code constructions
(including sc-texts belonging to various natural
languages). Such files allow formally describing the
syntax and semantics of various external languages in
the knowledge base, as well as also allow including
in the knowledge base various kinds of explanations
and notes addressed directly to users and helping
them to understand the formal text of the knowledge
base.

• From a semantic point of view, the OSTIS Standard
is a hierarchical system of formal models of subject
domains and their corresponding formal ontologies.

• From a semantic point of view, the OSTIS Standard is
a large refined semantic network, which, accordingly,
has a non-linear character and which includes signs
of any types of entities described (material entities,
abstract entities, concepts, connections, structures),
as well as, accordingly, contains connections between
all these types of entities (in particular, connections
between connections, connections between struc-
tures).

• The OSTIS Standard is a hierarchical system of
subject domains and their corresponding ontologies
specifying these subject domains. Each of the subject
domains describes the corresponding classes of
research objects with the maximum possible degree
of detail determined by a set of relations and
parameters indicated on the classes of research
objects. On a set of subject domains, the private
subject domain* relation is set, which indicates the
direction of inheritance of properties for research
objects considered in different subject domains.

• Each section of the OSTIS Standard may contain
the knowledge that is part of the subject domain and
ontology, which is either fully represented by the
specified section or partially represented in the form
of a specification of one or more specific research
objects.

• Synonymy and homonymy of the main sc-identifiers
within each family is not allowed.

• The specification of each subject domain and each
section should have a sufficient degree of complete-
ness. At a minimum, the role of each concept used
in it should be specified for each subject domain.

• The OSTIS Standard itself is an internal semantic
representation of the main part from the knowledge
base of the OSTIS Metasystem in the internal
semantic language of ostis-systems (this language is
called an SC-code – Semantic Computer Code).

In addition to the General Rules for the construction of
the OSTIS Standard, in the OSTIS Standard, descriptions
of various particular (specialized) rules for constructing
(formatting) various types of fragments of the OSTIS
Standard are provided. These types of fragments include

364

the following ones:
• sc-identifier
:= [external identifier of the internal sign (sc-

element) included in the ostis-system knowl-
edge base]

:= [information construction (most often, a
string of characters) that provides unambigu-
ous identification of the corresponding entity
described in the ostis-systems of knowledge
bases and is, most often, a name (term)
corresponding to the entity being described,
a name denoting this entity in the external
texts of ostis-systems]

• sc-specification
:= [semantic neighborhood]
:= [semantic neighborhood of the corresponding

sc-element (an internal sign stored in the
memory of the ostis-system as part of its
knowledge base, represented in the internal
language of the ostis-systems)]

:= [semantic neighborhood of some sc-element
stored in sc-memory within the current state
of this sc-memory]

• sc-construction \ sc-specification
:= [sc-construction (construction of the SC-code

– the internal language of ostis-systems),
which is not an sc-specification]

• ostis-system file \ sc-identifier
:= [ostis-system file, which is not an sc-

identifier]
It is also important to note that among the particular

rules for building sc-constructions there are Rules for
building ostis-systems knowledge bases. These rules are
aimed at ensuring the integrity of the ostis-systems
knowledge bases, (1) the relevance (necessity) of the
knowledge included in each knowledge base, and (2)
integrity of the knowledge base itself, i.e. the sufficiency
of the knowledge included in each knowledge base for the
effective functioning of the corresponding ostis-system.

XVII. DIRECTIONS OF DEVELOPMENT OF THE OSTIS
STANDARD

OSTIS Standard
⇒ general directions of development*:

{{{• [To include in the OSTIS Standard suf-
ficiently detailed rules for the construc-
tion (design) of sc-identifiers and sc-
specifications of various types of entities,
as well as various types of files of ostis-
systems]

• [At each stage, clearly distribute the work
on the development of various sections
of the OSTIS Standard]

• [All the tools that are part of the OSTIS
Technology should be described (spec-
ified) in sufficient detail in the form
of appropriate ontological models that
have a clear semantic connection with
the corresponding ontologies and related
subject domains that are part of the
OSTIS Standard]

• [To ensure sufficient completeness of the
sc-specification of all entities under con-
sideration]

• [Significantly expand the OSTIS Bibliog-
raphy]

• [Constantly monitor the syn-
onymy/homonymy of sc-identifiers]

• [Constantly improve quality control of
work on the development of the OSTIS
Standard]

• [It is necessary to constantly analyze the
publications of other authors on issues
close to the subject of the OSTIS Standard
and to record in the OSTIS Standard the
results of a comparative analysis of the
point of view, represented in the OSTIS
Standard, with the points of view of other
authors by including specifications of
relevant bibliographic sources with useful
quotes in the OSTIS Standard]

}}}

XVIII. ADVANTAGES OF THE OSTIS STANDARD

The OSTIS Standard is an example of the transition to a
fundamentally new form of representation and publication
of scientific and technical information, research results –
not just to the form of an electronic document but to the
form of a semantically structured electronic document
that is part of the knowledge base for the relevant
scientific and technical discipline. This significantly
increases the efficiency of using scientific and technical
information accumulated by a human, since the user of
this information can not only view (read) it but also
interact with the intelligent computer system, which
becomes a partner in using the information they need.

The Project of creation and development of the OSTIS
Standard is a prototype of a fundamentally new approach
to the organization of scientific and technical activity
within each scientific discipline. This activity is imple-
mented in the form of an open project aimed at developing
the knowledge base of the intelligent knowledge portal in
the relevant scientific and technical discipline. Such a level
of formalization of scientific and technical information,
which is understandable not only to specialists but also
to intelligent computer systems, significantly increases
the efficiency and expands the application areas for this
information in intelligent computer systems. For example,

365

Figure 1. A home page of the OSTIS Metasystem knowledge base

Figure 2. A Table of contents of the OSTIS Standard

an intelligent knowledge portal on a technical discipline
naturally becomes an intelligent system for automating
the design of technical systems of the appropriate class.

Another important advantage is the fact that the OSTIS
Standard is a prototype of next-generation textbooks that
have a clear logical-semantic structuring and stratification
of educational material, as well as a set-theoretic and
logical classification of all concepts used. Therefore, the

usage of the OSTIS Standard not only as the basis of an
intelligent automation system for integrated support of
the next-generation intelligent computer systems life cycle
but also as a comprehensive textbook for the training of
young specialists in the field of Artificial Intelligence is a
prototype of the widespread usage of various intelligent
portals of scientific and technical knowledge as compre-
hensive textbooks for the training of young specialists in

366

relevant specialties. This will significantly improve the
quality of education, which should not lag behind the
development of relevant scientific and technical areas but
should become an integral part of this development.

XIX. OSTIS STANDARD AS THE MAIN PART OF THE
KNOWLEDGE BASE OF THE OSTIS METASYSTEM

As mentioned above, the OSTIS Standard is the main
part of the OSTIS Metasystem knowledge base describing
the current version of the OSTIS Technology, as shown
in Figure 1.

The proposed representation of the OSTIS Standard
provides effective semantic navigation through the con-
tents of the OSTIS Standard, since by going to the
corresponding section of the OSTIS Metasystem, as shown
in Figure 2, it is possible to see the current version of
the OSTIS Standard.

The user is given the opportunity to go to any topic of
interest to them (Figure 3) and ask the OSTIS Metasystem
a wide range of non-trivial questions about the most
diverse details and subtleties of the OSTIS Technology,
as shown in Figure 4, and get answers to the questions
asked, as shown in Figure 5.

Figure 3. Navigation through the OSTIS Standard Table of contents

By default, the system responses to the user are
displayed in the SCn-code, which is a hypertext version
of the external display of SC-code texts and can be read
as linear text.

Figure 4. The function of questions of the OSTIS Metasystem

Figure 5. The function of responses of the OSTIS Metasystem

XX. CONCLUSION

Semantic compatibility of intelligent computer systems
is necessary for the implementation of cooperative,
purposeful, and adaptive interaction of intelligent com-
puter systems within automatically formed collectives of
intelligent computer systems, and this, in turn, requires the
unification of intelligent computer systems. Unification
of an intelligent computer system is possible only on the
basis of a general formal theory of intelligent computer
systems and the corresponding standard of intelligent
computer systems, but for this a deep convergence of
various research directions in the field of Artificial
Intelligence is necessary.

Since the result of developing Artificial Intelligence as
a scientific discipline is the permanent evolution of the
general theory of intelligent computer systems and the
corresponding standard of intelligent computer systems,
in order to increase the pace of development of Artificial

367

Intelligence and, accordingly, technology for the develop-
ment of intelligent computer systems, it is necessary to
create a portal of scientific and technical knowledge on
Artificial Intelligence, ensuring the coordination of the
activities of specialists, as well as the coordination and
integration of the results of this activity.

In the article, an approach to automating the processes
of creation, development, and application of standards
based on the OSTIS Technology is considered. Based on
the Standard of the OSTIS Technology, the basic principles
underlying the proposed approach to standardization are
considered.

The approach proposed in the work allows providing
not only the possibility of automating the processes of
creating, approving, and developing standards but also
significantly increasing the efficiency of the processes for
applying the standard, both manually and automatically.

ACKNOWLEDGMENT

The author would like to thank the research group of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for its help in the work and valuable
comments.

REFERENCES

[1] V. Golenkov, N. Guliakina, I. Davydenko, and A. Eremeev,
“Methods and tools for ensuring compatibility of computer
systems,” Otkrytye semanticheskie tekhnologii proektirovaniya in-
tellektual’nykh system [Open semantic technologies for intelligent
systems], pp. 25–52, 2019.

[2] P. Serenkov, V. Solomaho, V. Nifagin, and A. Minova, “Koncepcija
infrastruktury standartizacii kak bazy znanij na osnove ontologij
[the concept of a standardization infrastructure as an ontology-
based knowledge base],” Novosti. Standartizacija i sertifikacija.
[News. Standardization and certification.], 2004.

[3] V. Uglev, “Aktualizacija soderzhanija standartov proektirovanija
slozhnyh tehnicheskih ob’ektov: ontologicheskij podhod [updating
the content of design standards for complex technical objects:
ontologic approach],” Ontologija proektirovanija. [Ontology of
designing], 2012.

[4] (2022, Nov) It/apkit professional standards. [Online]. Avail-
able: http://www.apkit.webtm.ru/committees/education/meetings/
standarts.php

[5] A. I. Volkov, L. A. Reingold, and E. A. Reingold, “Profes-
sional’nye standarty v oblasti it kak faktor tekhnologicheskogo i
sotsial’nogo razvitiya [professional standards in the field of it as
a factor of technological and social development],” Prikladnaya
informatika [Journal of applied informatics], pp. 80–86, 2015.

[6] I. Davydenko, “Semantic models, method and tools of knowledge
bases coordinated development based on reusable components,”
Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], pp. 99–118, 2018.

[7] S. El-Sappagh, F. Franda, F. Ali, and K.-S. Kwak, “Nomed ct
standard ontology based on the ontology for general medical
science,” BMC Medical Informatics and Decision Making, vol. 18,
no. 1, 2018. [Online]. Available: https://doi.org/10.1186/s12911-
018-0651-5

[8] B. R. Heravi, M. Lycett, and S. de Cesare, “Ontology- based
standards development: Application of ontostand to ebxml
business process specification schema,” International Journal of
Accounting Information Systems, vol. 15, no. 3, pp. 275–297, 2014.
[Online]. Available: https://doi.org/10.1016/j.accinf.2014.01.005

[9] (2022, Nov) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

[10] V. Golenkov, N. Gulyakina, and D. Shunkevich, Otkrytaja
tehnologija ontologicheskogo proektirovanija, proizvodstva i
jekspluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’juternyh sistem [Open technology of ontological design,
production and operation of semantically compatible hybrid
intelligent computer systems]. Bestprint [Bestprint], 2021.

Метасистема Технологии OSTIS и
Стандарт Технологии OSTIS

Банцевич К.А.
В данной работе предлагается подход к автоматизации

процессов создания, развития и применения стандартов на
основе Технологии OSTIS. Рассмотрены общие проблемы,
связанные с развитием и применением современных стан-
дартов в различных областях. Предложена стандартизация
интеллектуальных компьютерных систем, а также стандар-
тизация методов и средств их проектирования в рамках
предлагаемого подхода.

Received 14.11.2022

368

Integration of computer algebra tools
into OSTIS applications

Valery B. Taranchuk
Department of Computer Applications and Systems

Belarusian State University
Minsk, Republic of Belarus

taranchuk@bsu.by

Abstract—From the standpoint of the need for convergence and
unification of intelligent computer systems of a new generation,
the issues of technology development and modernization, integra-
tion of the OSTIS metasystem with the Wolfram Mathematica
computer algebra system are discussed. The current results and
plans for the semantic representation of abstract mathematics on
the Wolfram Language platform are noted as benchmarks. The
software solutions implemented in the Wolfram Knowledgebase
are marked and illustrated with examples.

Index Terms—Semantic analysis, Wolfram Mathematica, Wol-
fram Knowledgebase, Entity

I. INTRODUCTION

Following the assessment given in [1] of the current state of
work in the field of Artificial Intelligence (AI), we can note the
active local development of various areas (non-classical logic,
formal ontologies, artificial neural networks, machine learning,
soft computing, multi-agent systems, etc.), but there is no
comprehensive increase in the level of intelligence of modern
intelligent computer systems. What is especially relevant at
the moment? Convergence and integration of all areas of
Artificial Intelligence and the corresponding construction of
a general formal theory of intelligent computer systems (ICS)
are required.

It is important to transform the modern variety of tools
(frameworks) for the development of various components of
ICS into a single technology for integrated design and support
of the full life cycle of these systems, which guarantees the
compatibility of all components being developed, as well as
the compatibility of ICS themselves as independent entities in-
teracting with each other within complex automation systems
of complex types of collective human activity. Convergence
and unification of intelligent computer systems of the new
generation and their components is necessary. At the same
time, convergent solutions mainly mean optimized complexes
containing everything necessary to solve AI problems, or-
ganized or configured for the effective use of information
resources, to simplify implementation processes; in particular,
it should be possible to solve certain tasks with optimization
requirements and achieve maximum performance, and in all
implementations – optimized for ease of use. The key reasons
of methodological problems of the current state of Artificial
Intelligence, as well as a number of required actions to solve
them are indicated in [1]. Supporting these concepts, we note

that such problems are solved when developing, improving,
systematically updating the content and expanding the capa-
bilities of computer algebra systems. The following examples
illustrate several methodological and technical solutions for
convergence and integration of various types of knowledge
implemented in the computer algebra system Wolfram Math-
ematica (WM), Wolfram Language (WL).

II. WOLFRAM MATHEMATICA. THE SEMANTIC
REPRESENTATION OF PURE MATHEMATICS. THE CURRENT

STATE, PLANS

The current state. Based on more than thirty years of
research, development and use throughout the world, Math-
ematica and the Wolfram Language are aimed at a long-term
perspective and are particularly successful in computational
mathematics. About 6000 characters embedded in the Wolfram
Language allow you to represent and manipulate a huge variety
of computational objects in the system – from special functions
to graphics and geometric areas. In addition, the Wolfram
Knowledgebase [2] and the associated entity structure [3]
allow you to explain/interpret/formalize hundreds of specific
"things (facts/situations/objects)". For example: people, cities,
food, structures, planets, ... are represented by objects that can
be manipulated, they can be cheated.

Wolfram Mathematica. Immediate plans. Despite a
rapidly and ever-increasing number of domains known to
WL, many knowledge domains still await computational rep-
resentation. In his blog "Computational Knowledge and the
Future of Pure Mathematics" Stephen Wolfram presented a
grand vision for the representation of abstract mathematics,
known variously as the Computable Archive of Mathematics
or Mathematics Heritage Project (MHP). The eventual goal of
this project is no less than to render all of the approximately
100 million pages of peer-reviewed research mathematics
published over the last several centuries into a computer-
readable form.

Wolfram Mathematica. The semantic representation of
pure mathematics. In the blog [4], leading Wolfram special-
ists present their vision of the future semantic representation
of abstract mathematics using two examples: abstract math-
ematical concepts of functional, topological spaces; concepts
and theorems of general topology. It seems that such concepts

369

and approaches should be used in solving methodological
problems of the current state of Artificial Intelligence.

III. THE WOLFRAM KNOWLEDGEBASE. EXAMPLES

Powering Wolfram|Alpha and WL, the ever-growing Wol-
fram Knowledgebase (WKB) is by far the world’s largest and
broadest repository of computable knowledge. WKB, covering
thousands of fields, contains carefully selected expert knowl-
edge directly derived from primary sources ([4]). It includes
not only trillions of data elements, but also immense number
of algorithms encapsulating methods and models from almost
every field. The main subject fields of WKB are illustrated in
Fig. 1.

Figure 1. The main subject fields of WKB.

The Wolfram Knowledgebase relies on three decades of
computable knowledge acquisition. All data in the Wolfram
database can immediately be used for computation in WL.
Every millisecond of every day, WKB is updated with the
latest data.

Let’s note a few examples. With a trove of statistics
for hundreds of thousands of educational institutions around
the world, Wolfram|Alpha can compute answers to intricate
questions about education You can request which academic
degrees students of prestigious universities receive. You can
also compute the average salary for teachers in your local
school district, learn more about student scores, and compare
student-teacher ratios among countries and much more. Fig.
2 illustrates the response to the request for the number of
students in the Republic of Belarus.

The comparison for the universities of BSU and BSUIR is
illustrated in Fig. 3.

IV. THE WOLFRAM KNOWLEDGEBASE. REPRESENTATION
AND ACCESS TO IT

Access to WKB is deeply integrated into WL. Free-form
linguistics makes it easy to identify many millions of entities
and many thousands of properties and automatically gener-
ate precise WL representations suitable for extensive further
computation. The Wolfram Language also supports custom
entity stores that allow the same computations as the built-in
knowledgebase, and can be associated with external relational
databases. Note the main groups of WM functions for working
with WKB: Entity & EntityClass & EntityValue, Transforma-
tions & Computations on Entity Classes, Standard Properties,

Figure 2. How many high school students are there in Belarus.

Figure 3. How many high school students are there in Belarus.

Specific Domains, Setting Up Custom Entity Stores, Wolfram
Data Repository, Wolfram Data Drop, Setting Up Custom
Entity Stores, External Knowledgebases, External Database
Connectivity, Web Content, Textual Question Answering, Sys-
tem Configuration. There are more than three subgroups in
each of the listed groups. For example, the Textual Question
Answering group includes:

• FindTextualAnswer attempt to find answers to questions
from text;

• SemanticInterpretation convert free-form linguistics to
Wolfram Language for; SemanticInterpretation["string"] at-
tempts to give the best semantic interpretation of the specified
free-form string as a Wolfram Language expression;

• SemanticImport import data, converting entities etc. to
Wolfram Language form,

• Interpreter interpret input of various types (e.g. "City",
"Date", etc.); Interpreter attempt to interpret strings of a wide
variety of types; Interpreter[form] represents an interpreter

370

object that can be applied to an input to try to interpret it
as an object of the specified form.

V. SEMANTIC ANALYSIS

Humans interact with each other through speech and text,
and this is called Natural language. Computers understand
the natural language of humans through Natural Language
Processing (NLP). NLP is a process of manipulating the
speech of text by humans through Artificial Intelligence so that
computers can understand them. Human language has many
meanings beyond the literal meaning of the words. There are
many words that have different meanings, or any sentence can
have different tones like emotional or sarcastic. It is very hard
for computers to interpret the meaning of those sentences.

NLP. Main applications, tools implemented in the Wol-
fram Mathematica system: Speech Recognition, Voice Assis-
tants and Chatbots, Auto Correct and Auto prediction, Email
Filtering, Sentiment Analysis, Divertissements to Targeted
Audience, Translation, Social Media Analytics, Recruitment,
Text Summarisation.

Several representative examples with explanations of the
functions of the WL groups Structural Text Manipulation, Text
Analysis, Natural Language Processing are mentioned below.
In a sense, these categories are conditional, there are a lot of
functions and capabilities implemented by them. For example,
the Structural Text Manipulation subgroup may include the
following: TextCases – extract symbolically specified elements
(TextCases[text,form] gives a list of all cases of text identified
as being of type form that appear in text); TextSentences –
extract a list of sentences (TextSentences["string"] gives a list
of the runs of characters identified as sentences in string);
TextWords – extract a list of words (TextWords["string"]
gives a list of the runs of characters identified as words
in string); SequenceAlignment – find matching sequences
in text; TextStructure["text"] generates a nested collection of
TextElement objects representing the grammatical structure of
natural language text [5].

An example and the result of executing the TextStructure
function to the text "Open Semantic Technologies for Intelli-
gent Systems" with the option "ConstituentTree" is shown in
Fig. 4

Figure 4. The result of executing the TextStructure function with the option
"ConstituentTree".

Variants for visualizing the components of the analyzed
phrase with the settings "ConstituentGraphs", "Dependency-
Graphs" are shown in Fig. 5.

Figure 5. Results of executing the TextStructure function with the settings
"ConstituentGraphs", "DependencyGraphs".

NLP. Examples of using the FindTextualAnswer func-
tion. Answer questions in natural language from the text [6].

FindTextualAnswer[text,"question",n] gives a list of up
to n answers that appear most probable. FindTextualAn-
swer[text,"question",n,prop] gives the specified property for
each answer.

In the two examples below, the processing object is text
International scientific and technical conference proceedings
"Open Semantic Technologies for Intelligent Systems (OS-
TIS)". Established: 2011. Scientific areas of the conference:
05.13.11, 05.13.15, 05.13.17. In the query variant with the
option "Date of establishment of the conference?" the answer
is

"2011"

In the request variant with the options "Date of the con-
ference establishment?", "Scientific directions of the confer-
ence?" the answer is a list

"2011", "05.13.11, 05.13.15, 05.13.17"

In the following example, the processing object is text
International scientific and technical conference proceedings
Open Semantic Technologies for Intelligent Systems (OSTIS).
Established: 2011. Scientific areas of the conference: Theory
of Informatics, Software for Computers, Computer Complexes
and Networks, Computing Machines and Complexes and Com-
puter Networks.

In the query variant with the option "Scientific areas of the
conference?" the answer is –

"Theory of Informatics, Software for Computers, Com-
puter Complexes and Networks, Computing Machines
and Complexes and Computer Networks"

.

Next example illustrates the search in the text and the
fixation of three signs. The object of processing is text Inter-
national scientific and technical conference proceedings Open
Semantic Technologies for Intelligent Systems (OSTIS). Estab-
lished: 2011. Program Committee: Kuznetsov Oleg Co-Chair,
Dr. of Techn. Sciences, Professor, Academician of the Russian

371

Academy of Natural Sciences, Moscow, Russia; Golenkov
Vladimir Co-Chair, Dr. of Techn. Sciences, Professor, Minsk,
Belarus; ... Arefiev Igor Dr. of Techn. Sciences, Professor,
Szczecin, Poland; ... Globa Larisa Dr. of Techn. Sciences,
Professor, Kyiv, Ukraine

In the query variant with the options "City", "Country",
"Date", the response is –

<|"City" -> "Moscow", "Minsk", "Szczecin", "Kyiv",
"Country" -> "Russian", "Russia", "Belarus", "Poland",
"Ukraine", "Date" -> "2011"|>

.

VI. EXAMPLES OF EXTRACTING KNOWLEDGE, ENTITIES,
OR TOPICS FROM WIKIPEDIA ARTICLES

WikipediaData utilizes MediaWiki’s API to retrieve ar-
ticle and category contents and metadata from Wikipedia
[7]. An article may be specified as a string or a Wolfram
Language entity. The extraction of articles associated with
language entities is provided by the WM TextSentences func-
tion, in particular, you can work with Wikipedia resources.
TextSentences["string"] gives a list of the runs of characters
identified as sentences in string [8]. WikipediaData[article]
gives the plain text of the specified Wikipedia article. En-
tity["type",name] represents an entity of the specified type,
identified by name. WikipediaData[article,property,options]
gives the value of the specified property, modified by op-
tional parameters, for the given Wikipedia article. Below are
the results of executing the TextSentence function, with the
parameters WikipediaData, Entity, "Person", "AlexeiLeonov"
and displaying a list of language versions of Wikipedia (Lan-
guagesList) containing the corresponding article (in Fig. 6)

Figure 6. TextSentences. WikipediaData. Entity. AlexeiLeonov. Languages-
List.

Fig. 7 illustrates the system’s response to the execution of
the WikipediaData function with the parameters "Voskhod 2",
"ImageList":

List of rules representing links between categories.
WikipediaData["Category"->category,property,options] gives
the value of the specified property, modified by optional pa-
rameters, for the given Wikipedia category. "MaxLevelItems"
– number of links to follow at each level. "MaxLevel" –
number of levels to search outward from the specified page.

Fig. 8 shows the result of the function Wikipedi-
aData["Category"->"Artificial intelligence", "CategoryLinks",

Figure 7. TextSentences. WikipediaData. Entity. Voskhod 2. ImageList.

"MaxLevelItems"->5, "MaxLevel"->3] execution in the form
of a graph:

You can output all categories separately, for exam-
ple, for Applications of artificial intelligence, the sys-
tem will output: "Category:Agent-based software", "Cate-
gory:Applied data mining", "Category:Applied machine learn-
ing", "Category:Automated planning and scheduling", "Cate-
gory:Computer vision software".

Examples of extracting in the knowledge cloud, entities
or topics, lists of rules representing relationships between
categories are given in the description of the WordCloud
function. (WordCloud[s1,s2,...] generates a word cloud graphic
in which the si are sized according to their multiplicity in
the list.) The illustration in Fig. 9 is obtained in Wolfram
Mathematica, the functions Delete stop words and Text Words
are used. (DeleteStopwords[list] deletes stopwords from a
list of words; TextWords["string"] gives a list of the runs of
characters identified as words in string).

Figure 8. Graph for "Artificial intelligence".

VII. INTELLECTUALIZATION OF USER INTERFACES.
EXAMPLES OF IMPLEMENTATION IN WOLFRAM

MATHEMATICA

Currently, the user interfaces of many computer systems
(including intelligent computer systems) in most implementa-
tions are not semantically friendly. For users, interaction with
computer systems is often a “bottleneck” that has a significant
impact on the efficiency of automation of human activities.
The basis of the modern organization of user interaction with
a computer system is the paradigm of a trained, competent user

372

Figure 9. WordCloud for "Entity".

who knows the capabilities of the tool he uses, is responsible
for the correctness of interaction with him. At the present
stage of the development of Artificial intelligence, in order
to increase the efficiency of interaction, it is necessary to
move from the paradigm of competent management of the
tool used to the paradigm of equal cooperation, partnership
interaction of an intelligent computer system with the user.
Semantic friendliness of the user interface should consist in
adaptability to the features and qualifications of the user,
eliminating problems for the user in the process of dialogue
with the computer system. It is fundamental to switch from a
friendly user interface to an intelligent predictive interface,
in which the system, when working with a computer, not
only speeds up the input of queries, simplifies the dialogue,
clarifies the correctness of commands and actions, but also
offers, after the output of the next result, a line of options
for the following calculations, actions. Moreover, for each
user, such a line of hints (prompts) is formed taking into
account the accumulated statistics of individual preliminary
requests and the content of the system, and in each particular
session it includes links to several possible formalization
approaches, several different scenarios of work on examples of
similar tasks, virtual textbooks. According to the accumulated
knowledge in the navigation block of the line of hints, the
user can go to illustrations of other recommended processing
methods by means of computer mathematics (with reference
to the subject area being performed), interpretation algorithms.

Explanations, several typical illustrations, fragments of the

windows of the user interface of the Mathematica system, in
which the intelligent predictive interface is implemented, are
shown in the following figures 10, 12.

Figure 10. EntityValue. Entity. RelatedSymbols..

Each illustration includes several fragments of copies of
the screens. Examples are given for the above request
to display a cloud of documentation words for Entity,
and for related WM functions associated to Entity [5],
[6]. As a result of executing the section with the Enti-
tyValue[Entity["WolframLanguageSymbol", "Entity"], "Relat-
edSymbols"] command, the user receives an answer and a
line of suggestions for further actions. Similar tooltips are
displayed after each section is completed, and in all cases
their content is determined by semantic connections. Fragment
2 Fig. 10 – the functions found and shown are sorted alpha-
betically, the contents of fragment 3 – the functions are listed
in reverse order, fragment 4 contains an expanded menu of
possible further actions.

All functions of the Wolfram Mathematica system are
documented in detail; clicking on the function name in any
section of the system provides access to a notebook-article
– description. The examples given in the description can be
executed in the notebook-article itself, you can copy and
transfer to any other notebook, there are no restrictions on
replacing data and settings.

Figure 11 shows a fragment of one (randomly selected) of
the functions mentioned in the list – EntityProperty.

The illustration in Fig. 11, sections of the article-
descriptions are typical; the structure is the same for everyone.
It is important that the examples are grouped by difficulty
levels, but there is no need to perform them sequentially.

373

Figure 11. EntityProperty. Article-description (notebook document) structure

Figure 12 shows the steps of work when the country (United
States) is changed (Belarus) in the basic example, and then
queries are selected following the prompts in the tooltips.

It should be noted that it is also possible to state certain
successes in solving problems of underground hydrodynamics
[9] , forest fires [10] on the formation and filling of knowledge
bases with Wolfram Mathematica tools during processing,
accumulation and interpretation of the results of computational
experiments.

VIII. CONCLUSION

Several representative examples of working with knowledge
bases by means of the Wolfram Mathematica system are
discussed. Since the functions of the Mathematica core can
be used in programs developed on other platforms, presented
results can be interpreted as proposals for innovative improve-
ment of existing tools, components of intelligent computer
systems.

REFERENCES

[1] V. Golenkov, N. Guliakina, and D. Shunkevich, Otkrytaja tehnologija
ontologicheskogo proektirovanija, proizvodstva i jekspluatacii seman-
ticheski sovmestimyh gibridnyh intellektual’nyh komp’juternyh sistem
[Open technology of ontological design, production and operation
of semantically compatible hybrid intelligent computer systems], V.
Golenkov, Ed. Minsk: Bestprint [Bestprint], 2021.

[2] Wolfram Knowledgebase. Making the knowledge of the world com-
putable. Available at: https://www.wolfram.com/knowledgebase (ac-
cessed 2022, Oct).

[3] Knowledge Representation & Access. Wolfram Lan-
guage & System Documentation Center. Available at:
https://reference.wolfram.com/language/guide /KnowledgeRepre-
sentationAndAccess.html (accessed 2022, Oct).

[4] The Semantic Representation of Pure Mathematics. Available at:
https://blog.wolfram.com/2016/12/22/the-semantic-representation-of-
pure-mathematics/ (accessed 2022, Oct).

Figure 12. An illustration of the use of a ruler (palette) of suggestions for
the following calculations.

[5] TextStructure. Available at: https://reference.wolfram.com/langua-
ge/ref/TextStructure.html/ (accessed 2022, Oct).

[6] FindTextualAnswer. Available at: https://reference.wolfram.com/langu-
age/ref/FindTextualAnswer.html/ (accessed 2022, Oct).

[7] WikipediaData. Available at: https://reference.wolfram.com/langu-
age/ref/WikipediaData.html/ (accessed 2022, Oct).

[8] TextSentences. Available at: https://reference.wolfram.com/langu-
age/ref/TextSentences.html/ (accessed 2022, Oct).

[9] V. Taranchuk, Tools and examples of intelligent processing, visualization
and interpretation of GEODATA, Modelling and Methods of Structural
Analysis. IOP Conf. Series: Journal of Physics: Conf. Series Vol. 1425
(2020) 012160. – P. 9, doi:10.1088/1742-6596/1425/1/012160.

[10] D.V. Barovik, V.B Taranchuk. Tools for the analysis and visualisation of
distributions and vector fields in surface forest fires modelling. Journal
of the Belarusian State University. Mathematics and Informatics. – 2. –
2022. – P. 82-93.

Интеграция инструментов компьютерной
алгебры в приложения OSTIS

Таранчук В. Б.
С позиций необходимости конвергенции и унификации

интеллектуальных компьютерных систем нового поколения
обсуждаются вопросы технологии разработки и модерни-
зации, интеграции средств метасистемы OSTIS с системой
компьютерной алгебры Wolfram Mathematica.

Received 15.11.2022

374

Semantically Compatible OSTIS Educational
Automative Systems

Natalya Gulyakina
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: guliakina@bsuir.by

Alena Kazlova
Belarusian State University

Minsk, Belarus
Email: kozlova@bsu.by

Abstract—A class of semantic electronic textbooks is
proposed, which are based on the semantic structuring
of educational material. Thanks to the semantic structuring
of the educational and methodological material, the SEU ac-
quires new opportunities compared to traditional electronic
textbooks. A semantic electronic textbook is an interactive
intellectual self-instruction manual for a certain subject
area, containing detailed methodological recommendations
for studying it and intended for a motivated, independent
and active user who wants to acquire knowledge in the
relevant discipline (subject area). The prospect of designing
intelligent learning systems for specialties is considered on
the example of the specialty Artificial Intelligence.

Keywords—semantics, electronic textbooks, knowledge,
hypertext semantic network, intelligent learning systems

I. Introduction

The organization of educational activities today largely
determines the level of development of any state and society.
Therefore, we can fully explain the great interest in the
use of telecommunications and computer technologies in
order to increase the efficiency of this activity. In this
regard, such a direction of research in the field of artificial
intelligence as intelligent learning systems and automation
of educational activities is of particular relevance. Many
authors in our days consider the problems of transition
to digital forms of education [1], [2], [3], [4].Intelligent
learning systems (ILS) should become part of the specialist
training complex. At the same time, such systems can
be effectively used in the process of providing advanced
training, in the implementation of continuous education.
Also, one of the features of the intelligent learning systems
development is that the users of such systems will be non-
specialists in the field of computer and telecommunication
technologies, people who are significantly different both
in age and in the level of knowledge in a particular subject
area. This is an incentive for the development of artificial
intelligence technologies in various applied areas of human
activity in order to realize the possibility of building an ILS
for training specialists in various professional areas. The
most promising from the point of view of the development
and implementation of ILS in the educational process of
universities is the use of the OSTIS ecosystem for the

formation of both elements of learning and educational
systems, and their integration into a single complex.

II. 1. Semantic electronic textbook as a new type of
computer learning tools

Along with traditional sources of knowledge, such as
teachers (lecturers and seminar leaders), books (teaching
aids), family, acquaintances, the members of the study
group, etc., today such sources, depersonalized in the sense
of personal communication, as intellectual (computer)
information systems, specialized data- and knowledge
bases, electronic textbooks, including those prepared using
hypermedia and multimedia tools, as well as Internet-based
network sources. Thus, the ever-increasing requirements for
the efficiency and practical orientation of training systems
lead to the inevitable realization of the relevance of the
problem of developing such computer training systems,
that provide:
1) processing of large volumes of complexly structured

information of various types;
2) flexibility and easy modifiability of the system;
3) integration of various models and mechanisms for solving

problems;
4) support for various models of learning and user interaction

management;
5) integration of various software systems within one system

and management of their operation and interaction;
6) wide use of multimedia tools;
7) operation in real time.
An example of building such intelligent learning systems

can be ILS based on semantic electronic textbooks (SET).
An electronic textbook, as a rule, is used for independent
study of an academic discipline. As far as the knowledge
presented in the electronic textbook is well structured, their
completeness and consistency, clarity and accessibility,
the possibility of quick associative search are ensured, the
effectiveness of the learning process increases. Semantic
electronic textbook – a set of software tools built using
methods and tools of artificial intelligence, in particular,
OSTIS technology, in which the knowledge base of
educational and educational material is presented in the
form of a hypertext semantic network and the possibility
of associative access to any fragment of this educational

375

material is provided. Feature of the semantic electronic
textbook in comparison with the traditional electronic
textbook:
1) SET is a software systemdesigned both for the development

of electronic textbooks of this type, and for the user
(student) to work with this textbook.

2) The SET is based on a knowledge base, which integrates
the formal presentation of educational material with ILS
traditional hypertext and hypermedia presentation, while
maintaining all the positive features of the latter.

3) Since the SET is based on the knowledge base, the
electronic textbook turns into a fairly “reasonable” question-
answer system for the specified material (i.e., into a system
capable of finding answers to a fairly large number of
questions related to the meaning, semantics of the relevant
material). This means that the SET becomes a system that
"understands"the meaning of the educational and teaching
materials contained in it.

4) The SET provides the possibility of visualization (including
three-dimensional) of the semantic structures of the
educational material, presented in the form of semantic
networks.

The formal basis for the representation of knowledge in
the SET is hypertext semantic networks (HSN) [5]. The
composition of the semantic electronic textbook, in addition
to the actual educational material, includes:
1) Knowledge base of the subject area, which is a formal

record of the semantics of educational material in the
knowledge representation language, which also includes:
• a set of links between the generated knowledge base and
information sources for this knowledge base;

• a description of the specifications of the fragments of
educational material presented in one form or another
(information about what software was used to develop
this fragment, how this fragment is related to other
fragments of educational material, etc.);

• various kinds of systematization, structuring and meta-
description of educational material.

2) Subsystem for the formation and editing of educational
material. This subsystem is designed to acquire expert
knowledge. The formation of the knowledge base takes
place in the representation language of hypertext semantic
networks (SCht) and ILS extension, specially oriented to
describe educational material (both in linear and graph
language specifications). This subsystem supports the
possibility of further checking the syntactic and semantic
correctness of the generated knowledge base.

3) Subsystem of navigation through educational material. As
a language of dialogue with the user, a specialized query
language or menu items are used.

The semantic electronic textbook is generally focused
on working with such categories of users as the authors
of educational material (subject expert, expert teacher,
knowledge engineer, designer) and students. As practice
shows, often one person often performs the functions of all
the listed authors (developers) of an electronic textbook.

The SET operates in twomodes: in themode of formation
of educational material (the mode of acquiring knowledge)
and in the training mode (presenting the material to the
end user-learner). The user interface of the SET includes:

• commands for the formation of the educational material of
the SET;

• commands for editing the educational material of the SET;
• commands for navigation through the hypertext semantic
network of the SET;

• the command for printing the hypertext semantic network
of the SET;

• teams that ensure the integration of the SET;
• graphical modification of the universal language of
semantic networks SC;

• linear modification of the universal language of semantic
networks SC;

• ways to visualize various other forms of presentation of
educational material (editors of traditional information
structures).

III. Hypertext Semantic Networks as a Model of the SEU
Subject Domain

The domain model is used to solve the problems
of structuring and systematizing educational material,
implementing navigation and search algorithms for
educational material, generating information about the
student and implementing adaptive learning management,
etc. The knowledge representation model should combine
traditional forms of presenting educational information
with ILS formal presentation. In this paper, it is proposed
to use hypertext semantic networks as a knowledge
representation model [5]. Hypertext semantic networks
(HSNs) are a class of knowledge representation models,
the distinguishing feature of which is that various forms
of information representation are integrated on their basis:
traditional, for example, hypermedia, and formal – in
the form of semantic networks, in fact, the knowledge
base. Traditional forms of information presentation are
focused primarily on the visualization of the information
displayed to the user, in turn, the formalized presentation of
this information in the knowledge representation language
makes it a semantically interpreted system. The integration
of these heterogeneous ways of presenting information
is based on meta-relations (meta-descriptions) of this
information. HSN is a knowledge representation model
focused on a formal description of the syntax and semantics
of information structures of any kind, as well as a
description of the relationships between them.
A hypertext semantic web can also be called a

semantically structured hypertext; the result of the
integration of hypertext technologies and technologies
based on semantic networks; semantically structured
hypertext multimedia knowledge base. The following
should be indicated as the main structures underlying
hypertext semantic networks. The HSN node, which is a
sign of some information structure, contains the information
structure designated by it (the information structure is
considered to be the content of the node of the hypertext
semantic network that designates it). The set of input signs
denoting a variety of objects (specific objects of a certain
subject area, specific information structures, specific sets,
connections, concepts, relations) of the HSN one-to-one
correspond to a set of identifiers (names), which are a string

376

(linear-symbolic) version of the image of signs. A HSN
node that denotes some information construct does not
always need to explicitly "store"that information construct
as ILS content. This information structure may be unknown
(not formed), it may be broken into fragments, each ofwhich
is presented explicitly, and, therefore, there is no need to
explicitly represent and store the entire original information
structure. An information structure (in particular, a text
information structure) may include identifiers (names)
of some characters represented by GSS nodes. This is
interpreted as a link to the corresponding sign (a node of the
hypertext semantic network). Links can be multisets, since
the same element can be included in the link multiple times,
including under different attributes. A link whose elements
have their roles (attributes) is a directed link, otherwise it
is an undirected link. Hypertext semantic networks allow
you to have links that connect not only objects, information
structures, but also the links themselves. They also allow
the formation of set signs, called set systems, including the
signs of some other sets and their elements, as well as the
corresponding signs of membership pairs. In this way, it is
possible to describe connections not only between bundles,
but also between entire structures (systems of sets). GSN
are focused on the description of subject knowledge that has
a complex hierarchical, multi-level structure. In hypertext
semantic networks, the description of various types of links
is supported: links between links, links between entire
structures, links between various fragments of processed
knowledge. The set of nodes of the GSN on the subject basis
is divided into a set of nodes of the subject level, that is,
those that can be semantically interpreted directly through
the elements, structures and relationships of the described
subject area, and the set of meta-level nodes denoting
statements about objects and relations of the subject area,
the connections between them. These structures allow for
semantic and semantic compatibility both within a separate
EMS, and in the future when integrating several EMS in a
certain subject area, as well as when building an ILS for
training specialists in a certain professional field.

IV. Systematization of educational material in the SET

The main task of the learning process is the formation of
a system of knowledge in the student on the subject being
studied. In a semantic electronic textbook, this problem
is solved through an explicit, visual representation of the
semantic structures of the educational material. The formal
model of the content structure of the information support
of the EMS is presented as a set of sets and structures.
For example, a set of semantically elementary information
structures of educational and educational material; a set
of knowledge base constructions, which are a formalized
record of some elementary information construction in the
knowledge representation language; set of relationships
between the above sets. Such constructions, in particular,
include relations that define the description of bibliographic

attributes for information constructions, a set of semantic
equivalence links between source text fragments and their
formalized record, specifications of educational material
fragments, and a meta description of educational material.
When describing the educational material, one can consider
as the main set of objects of study (concepts) of the SEU
subject area; a set of statements (such as axioms, theorems,
lemmas, etc.) that describe the main properties of the
objects of study; a set of relations describing the relationship
between the main objects of study. The latter include in
particular:

• relations defining the typology of the main objects
of research (“subset”, “genus – species”, membership
relations, relations “general concept – particular concept”,
etc.);

• relations describing the system of concepts of the subject
area, based on the hierarchical structure of their definitions
(defined concept-defining concepts), etc.

Each concept from the set of objects of the subject area
is assigned a knowledge model of the SEU, called the
semantic neighborhood of the concept, which is given,
in turn, by the formulation from the textbook, as well as
the formalized definition of the concept, the relationship
between the text of the definition in natural language and the
formalized record of the definition); synonyms, homonyms
for a given concept; examples - elements of the set denoted
by this concept; determining the place of a given concept
in the hierarchy of concepts of the theory; a set of relations
that are defined on a set of specified concepts; set of the
most important statements that describe the properties
of this concept. These semantic structures of educational
material in the SEU can be used in the following access
options:

• Query drafting option: the user generates a query to the
system in a specialized query language, or initiates the
navigation and search command of the EMS presented
in the system menu, in response the system searches for
relevant information, for example, searches for the semantic
neighborhood of a concept or a section of a textbook;

• a variant of navigation through semantic links, when the
student or the system forms a certain path, reveals a feature,
moves to the next feature, and so on through the learning
material.

V. Knowledge Representation Languages in Semantic
Electronic Textbooks and Intelligent Learning Systems
The tools for creating an SET include knowledge

representation languages:
1) Basic semantic language SC.
2) Language SCht for representation of hypertext semantic

networks. The key nodes of this language are divided into
two classes:
• key nodes that determine the typology of information
structures of the hypertext semantic network;

• key nodes, which are signs of relations, the scope of
which includes the specified information constructions.

The SET knowledge representation language is focused
on ILS use by both the authors of the educational material
and the end users (students), i.e. the language with which

377

the developer structures, systematizes, marks out the
educational material and the language of presentation of
this material to the student is one and the same language.
Accordingly, themeans of searching and navigating through
the educational material are the same for all categories
of users. For navigation and search within the framework
of a semantic electronic textbook, special navigation and
search tools can be used, which are based on associative
access to stored information. The essence of search in
graph-dynamic models is to compare the graph-query
and fragments of the semantic network. The output to
the user of the search results of this or that information
about the subject area occurs through the implementation
of the corresponding search operations. The execution of
each navigation and search operation occurs when the
task (request) corresponding to this operation enters the
knowledge base. To control the methods for displaying
fragments of the hypertext semantic network, it is necessary
to introduce the concept of display (reproduction) style
and special relationships between the playback style and
reproducible fragments. Displaying responses to user
requests should be focused on adapting the style of
visualization of educational material to the individual
characteristics of the student.
The process of designing applied SET should include

such stages as the formation of a knowledge base of
educational material, test debugging of the system, trial
operation.

A semantic electronic textbook, like any other textbook
or any book, must contain a description of the structure of
the educational material presented, which is reflected in
the form of content. Educational material is a structured set
of information components of various types. The task of
the developer is to isolate these components and describe
their order. The presentation of the educational material
and, accordingly, the structure of the training course can
be linear, or it can also have a branched reading structure.

Whenwriting a textbook, the author immediately focuses
on the development of a semantic electronic textbook.
A traditional textbook can become part of a semantic
electronic textbook (as part of a hypertext semantic
network). The construction of a semantic electronic
textbook requires the construction of a strict formal
presentation of educational material, the systematization
and structuring of educational material, a clear consistency
of the system of concepts of the subject area, which makes
it possible to avoid ambiguity in the understanding of some
concepts.
An adaptive approach to designing a user interface in

learning systems is one of the promising areas for the
development of intelligent learning systems. This approach
provides for the creation of a flexible structure of the
dialogue between the system and the user in accordance
with a number of such individual characteristics of the
user as readiness to work with the system, characteristics

of interaction with the system, interface preferences,
individual psychological characteristics, etc.

VI. The Artificial Intelligence specialty education in the
context of creating intelligent training systems in the

specialty
The most important direction of improving engineering

education, in particular, in the direction of Artificial
Intelligence, is the destruction of often artificially created
barriers between various academic disciplines, which leads
to a "mosaic unsystematic perception of the educational
material of the specialty as a whole. Therefore, it is very
relevant:

• the transition from programs for individual academic
disciplines to comprehensive unified programs for each
specialty, where the structuring and systematization of
educational material is carried out not on the basis of
the conditional division of this material into academic
disciplines, but on the basis of ILS semantics;

• transition from textbooks for individual academic
disciplines to comprehensive textbooks for each specialty;

• transition from electronic textbooks for individual
academic disciplines to complex electronic textbooks and,
in general, to intelligent teaching systems for each specialty.

In this regard, it is very important to provide
technological means of "transition"of boundaries between
educational materials of different academic disciplines.
Ideally, the trainee should be able to work with educational
material not on the scale of a separate academic
discipline, but on the scale of the entire specialty, when
solving a number of problems. The principles underlying
the consideration of integration issues are based on
the general theory of the interaction of scientific and
technical disciplines. The SET technology supports the
possibility of further mutual integration of the SET in
several academic disciplines into a single integrated ILS.
Moreover, integration in this case means integration at
the content (semantic, semantic) level. The possibility
of such integration is primarily provided by the basic
language for representing the knowledge of educational
material in each individual EMS and in the system as a
whole, which makes it possible to describe information
at various structural levels, move from level to level and
to a meta level, which makes it possible to describe the
links between atomic fragments of academic disciplines,
between sections of academic disciplines, between the
academic disciplines themselves, etc. The integration of
many heterogeneous sources of knowledge is carried out
on the basis of a single knowledge system, represented
as a single conceptual scheme, or ontology. Sources of
knowledge can be presented in documentary form (texts),
in the form of formatted data (statistical data files), graphic
diagrams, expert knowledge (knowledge of specialists). The
main requirement for knowledge sources is to prevent the
loss and increase the availability of all types of corporate
knowledge by providing a centralized, well-structured
information repository that meets the requirement of

378

semantic interoperability across disciplines. The structuring
of an information warehouse involves the creation and
description of a unified knowledge system based on
a taxonomy of conceptual concepts, a meta-knowledge
base or ontology, through which you can access various
sources of knowledge. A number of authors work on
this issue within the last decade [6], [7], [8], [9] The
integration of SETs in several academic disciplines consists
in the integration of hypertext semantic networks of these
textbooks and involves:

• coordination of objects of study of these academic
disciplines;

• harmonization of the subjects of study of these
academic disciplines;

• harmonization of the "foundation"of integrable
academic disciplines (basic (undefined) concepts and
systems of axioms);

• building interdisciplinary links, which includes the
coordination of conceptual systems of integrated
academic disciplines; harmonization and integration
of the typology of the main objects of research;
coordination and integration of the system of
statements, about the main objects of research and the
relationship between them, etc.;

• integration of relevant scht-constructions;
• pasting of synonymous scht-nodes of the semantic
network.

The hypertext semantic network, obtained as a result of
the integration of individual SET, will make it possible to
localize quite well those groups of concepts that require
clarification. With the mutual integration of semantic
electronic textbooks, the following problems are solved:

• search for contradictions in the integrated knowledge
base;

• maintaining the consistency of constituent elements.
Work on the logical organization of educational material
within the specialty, which, in fact, is the preparation
of a specialty curriculum, allows you to identify the
links between academic disciplines, certain topics of
these academic disciplines, their constituent fragments
(theorems, definitions of concepts, etc.)with other academic
disciplines, topics, fragments of educational material,
subsequent and previous. It becomes possible to determine
a more rational sequence for studying educational material.
As a result, individual SETs in the disciplines of the
specialty can be integrated into a complex, an intelligent
learning system, which is a hypertext semantic network
obtained as a result of the integration of hypertext semantic
networks of the SES in all educational disciplines of
the specialty. The construction of a semantic electronic
textbook requires the construction of a strict formal
presentation of educational material, the systematization
and structuring of educational material, a clear consistency
of the system of concepts of the subject area, which makes
it possible to avoid ambiguity in the understanding of some

concepts. The analysis of semantic correctness and editing
of the knowledge base can be performed by the developer
by navigating through the semantic links of the knowledge
base of the SET. Explicit description of interdisciplinary
links during the integration of SES will allow developing
electronic textbooks for a complex of related academic
disciplines, including a complex of academic disciplines
for the entire specialty. Using the principles underlying
the semantic electronic textbook and providing semantic
structuring and systematization of stored information will
also allow a new approach to solving the problems of
intellectualization of computer educational resources and,
in particular, educational sites in the open education system.
An intellectual learning system (ILS) should be able to
track the consistency and integrity of the picture of the
world presented in it and presented to the student, teach
through ILS own ability to solve problems, contain a
system of assessments and decision-making on a learning
strategy based on these assessments, i.e. should itself
consist of a number of subsystems containing knowledge
bases semantically correlated with each other. One of the
necessary characteristics of any learning process and, of
course, SET is the ability to intelligently assist the student.
In educational practice, intellectual assistance means the
automation of the teacher’s consulting work, when the
student independently solves problems with the support of
an automated system. Thus, the IOS helps the user to make
decisions by providing relevant information and decision
rules in a particular situation. At the same time, in the
process of searching for an answer, the user considers
various options for solving the problem presented by the
knowledge management system, modifies the problem
statement or models the situation, choosing the most
appropriate solutions. There may be another mode of
solving the problem, when the user independently solves
the problem, and evaluates the result of the solution with
the help of the ILS for correctness and effectiveness based
on comparison with the solution proposed by the system
itself, or, for example, asking for help directly from the
teacher. As specialists involved in filling the knowledge
base of the entire ILS, as well as the knowledge bases
of its subsystems, in building the subsystems of learning
strategies, specialist models, problem solvers, and others,
specialists in a particular field of knowledge, pedagogues,
methodologists, knowledge engineers should be involved.
The trainee, trainer and customer of personnel can act both
as users and as conditionally developers of the SET, making
adjustments to its work by their actions. The integration
of heterogeneous knowledge sources, the interdisciplinary
nature of their use, the need to attract additional sources
of knowledge, the exchange of knowledge between users
involves the development of a knowledge management
system architecture based on a common information space
in the form of an integrated memory of a virtual university
and knowledge ontologies, i.e. based on the properties of

379

interoperability and convergence of systems and knowledge.
An educational, educational, training organization or the
structure and process of learning is not just a set of
automated and intelligent learning systems in certain
disciplines that have multimedia tools, flexible learning
strategies, subsystems for adapting to the user, etc. For the
effective use of all these tools, an infrastructure is needed
in which information is processed, interaction between
users and subsystems, joint problem solving, in which
both users and subsystems are involved. Such a complex
system, which combines many autonomous entities (or
agents) serving users, solving problems, teaching students,
etc., is a multi-agent system (MAS). Any organization that
acts as a set of entities that perform certain functions in the
interests of achieving the goals of the entire organization is
a multi-agent system. All this becomes possible within the
OSTIS ecosystem, as an association of structures, objects
and their interaction with each other and with the external
environment [10].

REFERENCES

[1] D. Tapscott, The Digital Economy: Promise and Peril In The Age
of Networked Intelligence 1st Edition. McGraw-Hill: McGraw-
Hill, 1st edition, 2014.

[2] D. Bell, Gryaduschee postidustrialnoye obschestvo: Opyt so-
cialnogo prognozirovaniya[The coming post-industrial society: the
experience of social forecasting]. Mozhaysk, Russia: Moskwa,
Akademia [Moscow: Academy], 2004.

[3] A. R.I.Zinurova, “Multimediynye moduli v formate distancionnykh
obrazovatelnykh tekhnologij: problema elektronnogo kontenta
[Multimedia modules in the format of remote educational
technology: The problem of electronic content],” in Vestnik
Kazanskogo Universiteta [Proceedings of the Kazan University],
vol. 17, no. 12. KGU, Kazan, 2014, pp. 243–246.

[4] A. Baboshkin, “A. baboshkin biznes-modeli obrazovatelnykh
proektov [Business models of educational projects],” in Vestnik
molodezhnoy nauki [Bulletin of youth science], vol. 11, no. 4.
Baltic Federal University I.Kant, Russia, 2017, pp. 5–10.

[5] N. Bezzubenok, “Gibridnye intellektualnye obuchayuschie sistemy
na baze gipertkstovykh semanticheskikh setey [Hybrid intellegent
educational systems based on hypertext semantic networks],” in
Izvestiya Belorusskoy inzhenernoy akademii [Proceedings of the
Belarusian Engineering Academy], vol. 15, no. 1. BSUIR, Minsk,
2003, pp. 74–76.

[6] Y. Zhuk, “Otsenka-effektivnosti-raboty-generatora-
semanticheskoy-seti-dialogovoy-informatsionnoy-sistemy
[Evaluation of the efficiency of the generator of the semantic
network of the dialogue information system],” in Trudy BGTU.
Sria 3: Fiziko-matematicheskie nauki i informatika[Proceedings
of BSTU. Series 3: Physical and Mathematical Sciences and
Informatics], vol. 218, no. 1. EE "Belarusian State Technological
University", Minsk, Belarus, 2019, pp. 75–78.

[7] N. S.E.Veremchuk, “Sistema-testirovaniya-znaniy-na-
estestvennom-yazyke-na-osnove-semanticheskoy-seti-
obuchayuschey-sistemy [Natural language knowledge testing
system based on the semantic network of the learning system],”
in Trudy BGTU. Sria 3: Fiziko-matematicheskie nauki i
informatika[Proceedings of BSTU. Series 3: Physical and
Mathematical Sciences and Informatics], vol. 218, no. 1. EE
"Belarusian State Technological University", Minsk, Belarus,
2019, pp. 51–53.

[8] N. E.V. Smirnova, E.K.Dobritsa, “Ispolzovanie-ontologiy-v-
obrazovatelnyh-protsessah [Using ontologies in educational
processes],” in Problemy sovremennoy nauki i obrazovaniya
[Problems of modern science and education], vol. 104, no. 22.
Olymp, 2017, pp. 15–20.

[9] A. E.A. Gavrilina, M.A.Zakharov and E.V.Smirnova,
“Ontologicheskiy-podhod-k-testirovaniyu-urovnya-vladeniya-
obuchayuschimsya-metapredmetnymi-ponyatiyami [Ontological
approach to testing the level of mastery of students in meta-
subject concepts],” in Mashinostroenie i komputernye tekhnologii
[Mechanical engineering and computer technology], vol. 2, no. 2.
MSTU im. Bauman, Russia, 2015, pp. 15–20.

[10] V. Golenkov, N. Gulyakina, I. Davydenko, and D. Shunke-
vich, “Semanticheskie tekhnologii proektirovaniya intellektual’nyh
sistem i semanticheskie associativnye komp’yutery [Semantic
technologies of intelligent systems design and semantic associative
computers],” Otkrytye semanticheskie tehnologii proektirovanija
intellektual’nyh sistem [Open semantic technologies for intelligent
systems], pp. 42–50, 2019.

Семантически совместимые
OSTIS-системы автоматизации
образовательной деятельности
Н.А. Гулякина, Е.И. Козлова

Предлагается класс смысловых электронных учебников,
в основе которых лежит смысловое структурирование учеб-
ного материала. Благодаря смысловому структурированию
учебно-методического материала СЭУ приобретает новые
возможности по сравнению с традиционными электронными
учебниками. Смысловой электронный учебник представляет
собой интерактивный интеллектуальный самоучитель по
определенной предметной области, содержащий подробные
методические рекомендации по ее изучению и предназначен-
ный для целеустремленного, самостоятельного и активного
пользователя, желающего приобрести знания по соответ-
ствующей дисциплине (предметной области). На примере
специальности «Искусственный интеллект» рассматривает-
ся перспектива проектирования интеллектуальных систем
обучения для специальностей.

Received 01.11.2022

380

A semantics-based approach to automatic generation
of test questions and automatic verification of user

answers in the intelligent tutoring systems
Wenzu Li

Belarussian State University Informatics and Radioelectronics
Minsk, Belarus

lwzzggml@gmail.com

Abstract—The article is dedicated to the problem of test
question generation and user answer verification in the intelligent
tutoring systems. The approach of using knowledge base to
automatically generate various types of test questions in the
intelligent tutoring systems developed using OSTIS Technology
and the approach of realizing automatic verification of user
answers based on various semantic structures of described
knowledge are introduced in detail in this article.

Keywords—test question generation, user answer verification,
OSTIS Technology, intelligent tutoring systems, semantic struc-
ture, knowledge base

I. INTRODUCTION

As an activity of the progress and development of human so-
ciety, education has made a unique contribution to the progress
of human civilization, especially with the development of
science and technology, education is playing an increasingly
important role in modern society. In recent years, with the
development of modern information technology such as arti-
ficial intelligence, computer researchers have begun to apply
artificial intelligence technology to the field of education. The
application of artificial intelligence technology in the field
of education can not only improve the learning efficiency of
learners, but also an important means to ensure the fairness
of education. Among them, the most representative product
combining artificial intelligence technology and education is
the intelligent tutoring systems (ITS) [5].

Compared with the traditional multimedia training system
(MTS), ITS has the following characteristics:

• able to conduct free man-machine dialogue;
• providing personalized learning strategies;
• automatic solution of test questions;
• automatic generation of test questions;
• automatic verification of user answers;
• etc.

Among them, automatic generation of test questions and
automatic verification of user answers are the most basic and
important functions of ITS. It allows automation of the entire
process from test question generation, exam paper generation
to automatic verification of user answers and scoring of exam
papers. This can not only greatly improve the efficiency
of testing the user’s knowledge level, but also reduce their

learning cost, while eliminating human factors to ensure the
fairness and justice of the testing process as much as possible.

Although some approaches and systems for automatic gen-
eration of test questions and automatic verification of user
answers have been proposed and developed by some scientific
research teams in recent years with the development of related
technologies such as semantic web and natural language
processing (NLP), these approaches and systems have many
shortcomings, for example:

• only simple objective questions can be generated;
• most of the existing answer verification approaches and

systems only support the verification of user answers to
objective questions;

• some existing approaches to verifying user answers to
subjective questions are based on keyword matching and
probability statistics and do not consider the semantic
similarity between answers;

• partially semantic-based verification approaches to user
answers to subjective questions can only calculate the
similarity between answers with simple semantic struc-
tures;

• components developed using existing approaches to test
question generation and user answer verification can
only be used in the corresponding systems and are not
compatible with each other;

• automated implementation of the entire process from test
question generation to user answer verification is not
supported [1], [2], [6].

Objective questions refer to a type of question that has a
unique standard answer. In this article, objective questions in-
clude: multiple-choice questions, fill in the blank questions and
judgment questions. Objective questions differ from subjective
questions, which have more than one potential correct answer
and sometimes have room for a justified opinion. Subjective
questions in this article include: definition explanation ques-
tions, proof questions and problem-solving task [8].

For the above reasons, an approach to automatic generation
of test questions and automatic verification of user answers
in ITS developed using OSTIS Technology (Open Seman-
tic Technology for Intelligent Systems) is proposed in this
article, and the implementation process of the approach is

381

described in detail in this article, that is, the development
of a universal subsystem for automatic generation of test
questions and automatic verification of user answers. The basic
principle of automatic generation of test questions in this
article is to first summarize a series of test question generation
strategies based on the structural characteristics of the ostis-
system (system built using OSTIS Technology) knowledge
base and the knowledge representation structure therein, and
then use these test question generation strategies to extract
corresponding semantic fragments from the knowledge base
and generate semantic models corresponding to test questions
[1], [4]. The basic principle of test question answer verification
is to first calculate the similarity between the semantic graph of
the standard answer and the semantic graph of the user answer,
and then realize the automatic verification of the user answer
based on the calculated similarity and the evaluation strategy
of the corresponding test question. A semantic graph is a net-
work that represents semantic relationships between concepts.
In the ostis-systems, the semantic graph is constructed using
SC-code (as a basis for knowledge representation within the
OSTIS Technology, a unified coding language for information
of any kind based on semantic networks is used, named SC-
code) [4], [6]. It should be emphasized that the semantic
graph corresponding to the test question and its corresponding
natural language description are converted to each other using
the natural language interface [7]. The approach proposed in
this article needs to solve the following tasks:

• automatic generation of a number of test questions from
the knowledge base and storage in the corresponding
sections of the subsystem knowledge base;

• design and build subsystem knowledge bases for storing
generated test questions;

• according to the needs of users, the corresponding types
of test questions are extracted and composed of exam
papers;

• calculating the similarity between the semantic graphs of
the answers to the objective questions;

• calculating the similarity between the semantic graphs of
the answers to the definition explanation questions;

• calculating the similarity between the semantic graphs
of the answers to the proof questions and the problem-
solving task;

• automatic verification of test question answers and au-
tomatic scoring of exam papers based on the calculated
similarity and the evaluation strategy of the corresponding
test questions.

It should be emphasized here that in the previous articles, we
have introduced the implementation process of the correspond-
ing approaches by module (automatic test question generation
module and user answer automatic verification module). For
example, in the literature [6] we detail the approach to
automatically generate various types of test questions from the
knowledge base of the ostis-systems, and in the literature [8]
we detail the approach to automatically verify user answers
in the ostis-systems (including verification of user answers

to subjective questions and verification of user answers to
objective questions). Therefore, this article focuses on the
automation of the entire process from test question generation
to user answer verification, and the development of a universal
subsystem for automatic generation of test questions and
automatic verification of user answer. The approach proposed
in this article does not rely on any natural language, but
in order to explain how the proposed approach works, the
semantic fragments and illustrations selected in this article are
presented in English. Among them, the discrete mathematics
ostis-system and the euclidean geometry ostis-system will be
used as demonstration systems for the subsystem developed
using the proposed approach.

II. EXISTING APPROACHES AND PROBLEMS

A. Automatic generation of test questions

Approach to automatic generation of test questions mainly
studies how to use electronic documents, text corpus and
knowledge bases to automatically generate test questions
quickly and flexibly. Among them, the knowledge base stores
highly structured knowledge that has been filtered, and with
the development of semantic networks, using the knowledge
base to automatically generate test questions has become the
most important research direction in the field of automatic
generation of test questions [5], [9], [13]. Some of the research
results are listed below:

• an approach to using classes, instances, attributes and
relationships between them in the OWL ontology for gen-
erating multiple-choice questions is presented in the liter-
ature [12]. The W3C Web Ontology Language (OWL) is
a Semantic Web language designed to represent knowl-
edge about things, groups of things, and relations between
things. Ontology is a type of knowledge, each of which
is a specification of the corresponding subject domain,
focused on describing the properties and relations of
concepts that are part of the specified subject domain;

• an approach to automatically generate objective questions
using an ontology created by Protégé [11] is presented in
the literature [10].

These approaches mainly have the following problems:
• the approach of using electronic documents to automat-

ically generate test questions requires a large number of
sentence templates;

• the creation of text corpus requires a lot of human
resources to collect and process various knowledge;

• existing approaches can only be applied in the corre-
sponding systems and are not compatible;

• existing approaches only allow to generate simple objec-
tive questions.

B. Automatic verification of user answers

Automatic verification of user answers is divided into ver-
ification of answers to objective questions and verification
of answers to subjective questions. The basic principle of
verification of answers to objective questions is relatively

382

simple, i.e., it is enough to determine whether the string
of the standard answer and the string of the user’s answer
match. The answers to subjective questions are usually not
unique, so the basic principle of verification of answers to
subjective questions is to calculate the similarity between
standard answers and user answers, and then to implement
automatic verification of user answers based on the calculated
similarity and the evaluation strategy of the corresponding test
questions. The more similar the standard answer and the user
answer are, the higher the similarity between them [14], [16],
[17]. Verification of answers to subjective questions is divided
into the following categories according to the approach used
to calculate similarity:

• Based on keyword phrases
This type of approach first allows to split the sentences
into keyword phrases and then calculate the similarity
between them according to the matching relationship
of keyword phrases between sentences. Representative
approaches include:

– N-gram similarity
– Jaccard similarity

• Based on vector space model (VSM)
The basic principle of VSM is to use traditional machine
learning algorithms to first convert sentences into vector
representations, and then use the distance calculation for-
mula between vectors to calculate the similarity between
them [15]. Representative approaches include:

– TF-IDF
– Word2vec
– Doc2Vec

• Based on deep learning
This type of approach allows the use of neural network
models to calculate the similarity between sentences [18].
Representative neural network models include:

– Tree-LSTM
– Transformer
– BERT

• Based on semantic graph
The basic principle of calculating the similarity between
answers (i.e., sentence or short text) using this type of
approach is to first convert the answers into a semantic
graph representation using natural language processing
tools (such as syntactic dependency trees and natural
language interfaces), and then calculate the similarity
between the semantic graphs (i.e., similarity between
answers). In ITS knowledge is stored in the form of
semantic graphs, so this type of approach provides the
possibility to compute the similarity between any two
semantic graphs in ITS. The main advantage of this
type of approach is computing the similarity between
answers based on semantics. One of the most representa-
tive approaches is SPICE (Semantic Propositional Image
Caption Evaluation) [19].

These approaches mainly have the following problems:

• the keyword phrase-based approach does not take into
account the order between words in a sentence;

• the VSM-based approach leads to the generation of
high-dimensional sparse matrices, which increases the
complexity of the algorithm;

• semantic graph-based approaches supporting only the
description of simple semantic structures;

• these approaches cannot determine whether the sentences
are logically equivalent to each other;

• these approaches are dependent on the corresponding
natural language.

Therefore based on the existing approaches to automatically
generate test questions using knowledge bases, approaches
to calculate the similarity between answers using semantic
graphs, and OSTIS Technology, an approach to automatically
generate test questions and automatically verify user answers
using semantics is proposed in this article.

III. PROPOSED APPROACH

The main task of this article is to detail an approach to
automatic generation of test questions and automatic verifi-
cation of user answers in the ostis-systems and to develop
a universal subsystem based on this approach. Where the
universality of the subsystem means that the subsystem can
be easily transplanted between different ostis-systems. The
proposed approach can be divided into two parts according
to the functions to be implemented, i.e., automatic generation
of test questions and automatic verification of user answers
[8]. Therefore, we will introduce the implementation process
of these two parts separately.

A. Automatic generation of test questions

The basic principle of automatic generation of various types
of test questions (including objective questions and subjective
questions) in the ostis-systems is to first extract the corre-
sponding semantic fragments from the knowledge base using a
series of test question generation strategies summarized based
on the knowledge representation approach and the knowledge
description structure in the framework of OSTIS Technology,
then add some test question description information to the
extracted semantic fragments, and finally store the seman-
tic fragments describing the complete test questions in the
corresponding section of the universal subsystem [1]. When
exam papers needs to be generated, the subsystem allows to
extract some corresponding test questions from the subsystem
knowledge base according to the parameters input by the user
and combine them into exam papers. The test questions and
exam papers in the form of semantic graphs are converted
into natural language descriptions using a natural language
interface. Since in the literature [6] we have detailed some of
the strategies used for automatic generation of test questions in
the ostis-systems, we next select only some of the test question
generation strategies for introduction.

• Test question generation strategy based on class
This type of test question generation strategy is used
to automatically generate objective questions based on

383

various relations between classes. It is further divided
into:

– Based on ”inclusion*” relation
The inclusion relation is one of the most frequently
used relations in the knowledge base of the ostis-
systems, which is satisfied between many classes
(including subclasses), so that the inclusion relation
between classes can be used to generate objective
questions. The set theory expression form of inclu-
sion relation between classes is as follows: Si ⊆
C(i ≥ 1), (S-subclass, i-subclass number, C-parent
class). The following shows a semantic fragment in
the knowledge base that satisfies the inclusion rela-
tion in SCn-code (one of SC-code external display
languages) [1], [4]:

binary tree
⇐ inclusion*:

directed tree
⇒ inclusion*:

• binary sorting tree
• brother tree
• decision tree

Consider the example of a multiple-choice question
generated using this semantic fragment according to
the strategy of inclusion relations, which has the
natural language form shown below:
<<Binary tree does not include ()?>>
A. directed tree B. brother tree
C. decision tree D. binary sorting tree
Similarly, other types of objective questions can be
generated using this strategy;

– Based on ”subdividing*” relation
The result of set subdivision is to get pairs of
disjoint sets, and the union of these disjoint sets
is the original set. The subdividing relation is also
an important relation in the knowledge base, so
that semantic fragments in the knowledge base that
satisfy this relation can be used to generate objective
questions;

– Based on ”strict inclusion*” relation
Strict inclusion relation is a special form of inclusion
relation (Si ⊂ C(i ≥ 1)). Using strict inclusion
relation to automatically generate objective questions
is similar to using inclusion relation.

Other strategies used to generate objective questions include:
• Test question generation strategy based on elements;
• Test question generation strategy based on identifiers;
• Test question generation strategy based on axioms;
• Test question generation strategy based on relation at-

tributes;
• Test question generation strategy based on image exam-

ples.
The process of generating subjective questions using sub-

jective question generation strategy is as follows:

• searching the knowledge base for semantic fragments
describing the definition, proof or solution of the question
using logic rules (i.e. templates constructed using SC-
code);

• storing the found semantic fragments in the correspond-
ing section of the knowledge base of the subsystem;

• using manual approaches or automatic approaches (such
as natural language interfaces) to describe the definition,
proof process or solution process of the corresponding
test question according to the knowledge representation
rules (i.e. standard answers to subjective questions).
Among them, standard answers to subjective questions
are represented using SCg-code (SCg-code is a graphical
version for the external visual representation of SC-code)
or SCL-code (a special sub-language of the SC language
intended for formalizing logical formulas) [1], [4].

Using these test question generation strategies described
above allows various types of test questions to be generated
automatically from the knowledge base. These automatically
generated test questions are stored in the knowledge base of
the subsystem according to their type and the corresponding
test question generation strategy, this type of storage allows
to quickly and dynamically generate exam papers according
to the needs of user needs. In the next section we will
describe in detail the construction of the knowledge base of
the subsystem and the way in which test questions are stored
in it. The proposed approach to generating test questions has
the following advantages:

• OSTIS Technology supports uniform knowledge repre-
sentation approaches and knowledge description struc-
tures, so the proposed approach to generating test ques-
tions can be used in different ostis-systems;

• the generated test questions are described using SC-code,
so they do not rely on any natural language;

• using the proposed test question generation approach, not
only objective questions but also subjective questions can
be generated.

B. Automatic verification of user answers

In the ostis-systems, test questions are stored in the knowl-
edge base in the form of semantic graphs, so the most
critical step of user answer verification is to calculate the
similarity between the semantic graph of standard answer and
the semantic graph of user answer, and when the similarity
is obtained and combined with the evaluation strategy of the
corresponding test questions, the correctness and completeness
of user answers can be verified [2], [8].

User answer verification is classified according to the type
of test questions: 1. verification of answers to objective
questions; 2. verification of answers to subjective questions.
Although the most critical step of answer verification is all
about calculating the similarity between the semantic graphs of
answers, the knowledge types (factual knowledge and logical
knowledge) and and knowledge structures used to describe
different types of test questions are not the same, so the
approach to calculate the similarity between the semantic

384

graphs of answers to different types of test questions are
different. Factual knowledge refers to knowledge that does not
contain variable types, and this type of knowledge expresses
facts. Logical knowledge usually contains variables, and there
are logical relations between knowledge. In the ostis-systems
SCL-code is used to represent logical knowledge. In this article
objective questions, proof questions and problem-solving task
are described using factual knowledge, and definition inter-
pretation questions are described using factual knowledge and
logical knowledge together.

C. Verification of answers to objective question

The semantic graphs used to describe objective types of test
questions and their answers in the knowledge base have the
same semantic structure, so the similarity between answers to
such types of test questions can be calculated using the same
approach. Since the user answers in the natural language to
the objective questions are already aligned with the existing
knowledge in the knowledge base when they are converted to
semantic graphs using the natural language interface, that is,
the elements representing the same semantics in the knowledge
base have the same main identifier (identifier is a file that can
be used to denote (name) an entity in the framework of external
language) [7]. Therefore, it is not necessary to consider the
differences between concepts at the natural language level
when calculating the similarity between semantic graphs of
answers to objective questions, that is, the similarity between
answers is calculated based on the semantic structure. The
basic principle for calculating the similarity between semantic
graphs of answers to objective questions is shown below:

• the semantic graph of standard answers (s) and the
semantic graph of user answers (u) are decomposed into
substructures according to the rules of representation of
factual knowledge;

• using formulas (1), (2), and (3) to calculate the precision
Psc, recall Rsc and similarity Fsc between semantic
graphs.

Psc(u, s) =
|Tsc(u)⊗ Tsc(s)|

|Tsc(u)|
(1)

Rsc(u, s) =
|Tsc(u)⊗ Tsc(s)|

|Tsc(s)|
(2)

Fsc(u, s) =
2 · Psc(u, s) ·Rsc(u, s)

Psc(u, s) +Rsc(u, s)
(3)

The main calculation parameters in the formulas include:
• Tsc(u) — all substructures after the decomposition of the

user answers u;
• Tsc(s) — all substructures after the decomposition of the

standard answers s;
• ⊗ — binary matching operator, which represents the

number of matching substructures in the set of two
substructures.

Once the similarity of the answers is obtained, the correct-
ness and completeness of the user answers to the objective

questions can be verified by combining them with the evalua-
tion strategy of the objective questions. The evaluation strategy
of the objective questions is shown below:

• if there is only one correct option for the current test
question, only if the standard answer and the user answer
match exactly, the user answer is considered correct and
the user gets the maximum score (Maxscore);

• if the current question has multiple correct options
(multiple-choice question with multiple correct options
and partially fill in the blank questions):

– as long as the user answer contains an incorrect
option, the user answer is considered incorrect and
the user score is 0;

– if all the options in the user answer are correct, but
the number of correct options is less than the number
of correct options in the standard answer, the user
answer is considered correct but incomplete. At this
time, the user answer score is Rsc ∗Maxscore;

– if all the options in the standard answer match
exactly with all the options in the user answer, the
user answer is exactly correct, and the user score is
Maxscore.

Fig. 1 shows an example of verification of user answer to
subjective question in SCg-code.

Figure 1. An example of verification of user answer to subjective question.

D. Verification of answers to subjective questions

The most critical step of verification of answers to subjective
questions is also the calculation of similarity between semantic
graphs of answers, but the knowledge types and knowledge
structures used to describe different types of subjective ques-
tions and their answers are not the same in the ostis-systems.
Thus the approach to calculating the similarity between the
semantic graphs of the answers to the subjective questions
is further divided into: 1. the approach to calculating the
similarity between answers to definition explanation questions;
2. the approach to calculating the similarity between answers
to proof questions and problem-solving task.

Calculating the similarity between answers to definition
explanation questions

The answers to the definition explanation questions in the
ostis-systems are described in the form of logical formulas

385

using factual knowledge and logical knowledge (SCL-code).
Logic formulas are powerful tools for formal knowledge rep-
resentation in the framework of OSTIS Technology, which are
expanded based on the first-order predicate logic formulas and
inherits all the operational properties of first-order predicate
logic formulas [4]. It is to be emphasized that when calculating
the similarity between the answers to the definition explanation
questions, the factual knowledge in the semantic graph of the
user answers has been aligned with the existing knowledge in
the knowledge base (using natural language interfaces) [7]. In
order to calculate the similarity between the semantic graphs
of the answers to the definition explanation questions the
following tasks need to be solved:

• automatic selection of potential equivalent standard an-
swer;

• establishing the mapping relationship of potential equiv-
alent variable sc-node pairs between the semantic graphs
of the answers;

• calculating the similarity between semantic graphs;
• if the similarity between semantic graphs is not equal to 1,

they also need to be converted to the prenex normal form
(PNF) representation separately, and then the similarity
between them is calculated again [23].

Because some definition explanation questions sometimes
have multiple standard answers, but the logical formulas
used to represent them formally are not logical equivalents
(described according to different conceptual systems). For
example, the definition of equivalence relation: 1. in math-
ematics, an equivalence relation is a binary relation that is
reflexive, symmetric and transitive; 2. for any binary relation-
ship, if it is a tolerant relationship and is transitive, then it
is an equivalence relation. The logical equivalence between
semantic graphs in the ostis-systems is divided into two types:
1. logical equivalence between semantic graphs described
based on logical formulas; 2. logical equivalence between
semantic graphs based on different conceptual systems. This
type of equivalence is further classified according to the type
of knowledge:

• logical equivalence between semantic graphs based on
factual knowledge;

• logical equivalence between semantic graphs based on
logical knowledge (for example, the definition of equiv-
alence relation).

Therefore, when calculating the similarity between answers,
it is necessary to filter a standard answer that best matches
the user answer from multiple possible standard answers in
advance. Therefore an approach to filter a standard answer
that best matches the user answer according to the predicate
similarity between answers is proposed in this article. This
working principle of this approach is shown below:

• finding all the predicates in each answer (non-repeating);
• calculating the predicate similarity between the user an-

swer and each standard answer using formulas (1), (2)
and (3);

• the standard answer that is most similar (maximum simi-
larity) to the user answer is selected as the final standard
answer.

Since the semantic graphs used to describe the answers
to the definition explanation questions are constructed based
on logical formulas, the variables sc-nodes (equivalent to the
bound variables in the predicate logic formula) are included
in the semantic graphs. In order to calculate the similarity
between semantic graphs, the most critical step is to establish
the mapping relationship of potential equivalent variable sc-
node pairs between semantic graphs. Therefore, based on the
existing ontology mapping methods and mapping systems (for
example, ASMOW, RiMOM, etc.) an approach to establish
the mapping relationship of potential equivalent variable sc-
node pairs between semantic graphs according to semantic
structures (various sc-constructions) are proposed in this article
[20], [21], [22].

In the ostis-systems, the sc-construction composed of sc-
tuple, relation sc-node, role relation sc-node and sc-connector
is used to describe logical connectives (such as negation (¬)
and implication (→), etc.) and quantifiers (universal quantifier
(∀) and existential quantifier (∃)), atomic logic formula (var-
ious sc-constructions) or multiple atomic logic formulas that
satisfy conjunctive relation are contained in the sc-structure
and connected with the corresponding sc-tuple, and these
sc-elements together constitute the semantic graph used to
represent the user answer [1], [22]. All sc-tuples and sc-
connectors form a tree, which completely describes the logical
sequence between connectives and quantifiers in the logical
formula. Because the sc-structure containing the atomic logical
formula is connected to the corresponding sc-tuple, as long as
the position of each sc-tuple and sc-structure in the semantic
graph is determined, the position of each variable sc-node
in the semantic graph can be determined. An approach to
numbering each sc-tuple and sc-structure in the semantic graph
according to a depth-first search strategy (DFS) is proposed
in this article. The working process of this approach is shown
below:

• starting from the root of the tree structure composed of
sc-tuples, each sc-tuple node in the tree is numbered in
turn according to the DFS strategy and the priority of
the current sc-node (for example, the sc-node priority of
the ”if’ ” condition is higher than the sc-node of ”else’
” conclusion) (the numbering sequence starts from 0);

• according to the numbering sequence of sc-tuple, each sc-
tuple in the tree is traversed from small to large, and the
sc-structure connected to the current sc-tuple is numbered
while traversing (the numbering sequence starts from 1).

For a detailed procedure for numbering sc-tuples and sc-
structures, please refer to the literature [8]. In answer verifi-
cation, if the standard answer and the user answer are exactly
equal, it means that the atomic logic formulas with the same
semantics between the answers have the same position in
the semantic graph (That is, the numbering sequence of sc-
structure is the same). Therefore, in this article, the mapping

386

relationship of potential equivalent variable sc-node pairs will
be established based on the matching relationship of the
sc-constructions in the same position between the answers.
The establishment of mapping relationship of the potential
equivalent variable sc-node pairs between answers mainly
includes the following steps:

1) according to the numbering sequence of the sc-structure
in the semantic graph, each time a sc-structure pair with
the same number is found from the standard answer and
the user answer;

2) according to the priority order (from high to low) of the
various types of sc-constructions used to describe the
atomic logic formula, it is determined in turn whether
the current sc-structure pair contains this type of sc-
construction at the same time. If the current sc-structure
pair contains this type of sc-construction at the same
time, then, according to the matching relationship of
each sc-element between the current sc-construction in
the standard answer and the current sc-construction
in the user answer, the mapping relationship of the
potential equivalent variable sc-node pairs between the
current sc-construction pair is established;

3) repeat step 1 — step 2 until all mapping relationships
between semantic graphs are established [8].

Fig. 2 shows an example of establishing the mapping
relationship between semantic graphs in SCg-code.

In Fig. 2, the definition of the inclusion relation is described
(∀A∀B((A ⊆ B) ⇐⇒ (∀a(a ∈ A→ a ∈ B))).

When the mapping relationship between the potential equiv-
alent variable sc-node pairs between the semantic graphs is
established, the similarity between the answers can be calcu-
lated. The process of calculating the similarity between the
semantic graphs of the answers to the definition explanation
questions is shown below:

• decomposing the semantic graph of standard answer and
the semantic graph of user answer into substructures
according to the rules of representation of factual knowl-
edge and logical knowledge;

• numbering the sc-tuples and sc-structures in the semantic
graphs of the answers, respectively, and establishing the
mapping relationship of potential equivalent variable sc-
node pairs between the semantic graphs;

• using formulas (1), (2) and (3) to calculate the precision
Psc, recall Rsc and similarity Fsc between semantic
graphs.

Since the semantic graphs of answers to definition expla-
nation questions are described based on logical formulas,
if the similarity between semantic graphs is not equal 1
(Fsc < 1), it is also necessary to determine whether their
logical formulas are logically equivalent. There is such a
theorem in predicate logic: any predicate logic formula has
a PNF that is equivalent to it. Because the logical formulas
in the framework of OSTIS Technology are extended based
on predicate logical formulas, it also has such a property.
Therefore we can consider converting semantic graphs based

on logical formula descriptions to PNF descriptions, and then
determine whether logical equivalence is satisfied between
them [23], [24]. However, the PNF of the logic formula is not
unique, and the reasons why the PNF is not unique include:

• the used order of different logical equivalence formulas
(conversion rules). For example, converting (∀xF (x) ∧
¬∃xG(x)) to PNF:

– ∀xF (x) ∧ ¬∃xG(x)
⇔ ∀xF (x) ∧ ∀x¬G(x)
⇔ ∀x(F (x) ∧ ¬G(x)), (equivalence rule)

– ∀xF (x) ∧ ¬∃xG(x)
⇔ ∀xF (x) ∧ ∀y¬G(y), (renaming rule)
⇔ ∀x∀y(F (x) ∧ ¬G(y)), (rule of expansion of
quantifier scope)

• the order of the quantifiers in PNF;
• etc.
Therefore, based on the approach to convert predicate logic

formulas into PNF and some characteristics of logic formulas
in ostis-systems, an approach to convert logic formulas into
unique (deterministic) PNF according to strict restriction rules
is proposed in this article. The strict restrictions mainly include
the following:

• in order to solve the problem that PNF are not unique due
to the order in which the logical equivalence formulas are
used, we specify that the renaming rule is preferred when
converting logical formulas to PNF;

• in order to solve the problem that the PNF is not unique
due to the order of the quantifiers, an approach to move all
quantifiers to the forefront of the logical formula strictly
according to the priority of the quantifiers is proposed
in this article. The movement process of quantifiers is
shown below:

– if no quantifiers exist at the front of the logical
formula, all existential quantifiers are moved to the
front of the logical formula in preference;

– if the last quantifier at the forefront of the logi-
cal formula is a universal quantifier, the universal
quantifiers in the logical formula will be moved
preferentially to the front of the formula;

– if the last quantifier at the forefront of the logical
formula is a existential quantifier, the existential
quantifiers in the logical formula will be moved
preferentially to the front of the formula.

• the logical formula used to represent the answer to the
definition explanation question can usually be expressed
in the following form: (Q1x1Q2x2...Qnxn(A ↔ B)),
where Qi(i = 1, ...n) is a quantifier [8], [25]. A is used to
describe the definition of a concept at a holistic level, and
it does not contain any quantifiers. B is used to explain
the semantic connotation of a definition at the detail level,
and it is usually a logical formula containing quantifiers
(also known as a logical sub-formula). Therefore, based
on the characteristics of the logical formula and in order
to simplify the knowledge processing, it is only necessary
to convert the logical formula B to PNF;

387

Figure 2. An example of establishing the mapping relationship between semantic graphs.

• to simplify the knowledge processing, only the implica-
tion connective need to be eliminated when converting
logic formulas to PNF;

• multiple atomic logic formulas connected using the same
conjunctive connective are preferentially merged into one
whole (i.e. they are merged into the same sc-structure).

The process of converting the semantic graphs of answers
to definition explanation questions into PNF descriptions ac-
cording to strict restriction rules is shown below:

• if there are multiple sc-structures in the semantic graph
connected by the same conjunctive connective, the sc-
constructions contained in them are merged into the same
sc-structure;

• eliminating all the implication connectives in the semantic
graphs;

• moving all negative connectives in the semantic graphs
to the front of the corresponding sc-structure;

• using renaming rules so that all bound variables in the
semantic graphs are not the same;

• moving all quantifiers to the front of the logical formula;
• merging again the sc-structures in the semantic graphs

that can be merged.
Fig. 3 shows an example of converting a semantic graph into
PNF representation in SCg-code (∀A∀B((A ⊆ B) ↔ ∀a(a ∈
A → a ∈ B)) ⇔ ∀A∀B((A ⊆ B) ↔ ∀a(¬(a ∈ A) ∨ (a ∈
B)))).

It should be emphasized that if the calculated similarity
between the semantic graphs of PNF representation is not
1 (Fsc < 1), the similarity between the semantic graphs

Figure 3. An example of converting a semantic graph into PNF representation.

calculated for the first time is used as the final answer
similarity. When the similarity between the answers is ob-
tained and then combined with the evaluation strategy of the
subjective questions, the correctness and completeness of the
user answers can be verified [8].

Calculating the similarity between answers to proof
questions and problem-solving task

Both proof questions and problem-solving task in mathe-
matics follow a common task-solving process:

388

1) the set (Ω) of conditions consisting of some known
conditions;

2) deriving an intermediate conclusion using some of the
known conditions in Ω and adding it to Ω. Each element
in Ω can be regarded as a solving step;

3) repeat step 2) until the final result is obtained [26], [27].

This task-solving process is abstracted as a directed graph,
whose structure is in most cases an inverted tree (in special
cases the directed graph will contain cycle), and is called a
reasoning tree (i. e. the reasoning tree of the standard answer)
[26]. Fig. 4 shows an example of a reasoning tree.

Figure 4. An example of a reasoning tree.

The user answer to the proof question or problem-solving
task is a linear structure consisting of some solving steps (i.e.
known conditions, intermediate conditions or conclusions),
each of which satisfies a strict derivation relationship and
logical relationship if the user answer is completely correct.
The automatic verification process of user answers to this
type of test questions is the same as the traditional manual
answer verification process, i.e., verifying whether the current
solving step of the user answer is a valid conclusion of the
partial solving step preceding that step. This means whether
the solving step in the user answer corresponding to the parent
node in the reasoning tree always is located after the solving
steps in the user answer corresponding to the child nodes.

The semantic graphs of user answers to proof questions and
problem-solving task in the ostis-systems are linear structures
consisting of some semantic sub-graphs for describing the
solving steps and some semantic fragments for describing the
logical order and transformation processes between the seman-
tic sub-graphs [1], [4]. The construction process and semantic
specification of semantic graphs of user answers to proof
questions and problem-solving tasks are described in detail
in the literature [3]. The semantic graph of standard answers
to this type of test questions is an reasoning tree consisting
of a number of search templates (which can be abstracted
as the nodes in the tree). Each search template is constructed
strictly according to the solving steps of the corresponding test
question (i.e., according to the known conditions, intermediate
conditions and conclusions in Ω). The search template in the
ostis-systems is used to search in the knowledge base for all

semantic fragments corresponding to it, and it is constructed
based on the SCL-code. The following takes a real problem-
solving task as an example to introduce the constructing of
the semantic graph of its standard answer (reasoning tree).
Description of the problem-solving task: <<Two equal circles
externally tangent to other and a third circle the radius of
which is 4. The segment that connects the tangent points of
the two equal circles to the third circle is 6. Find the radii of
equal circles>>. Fig. 5 shows the explanatory picture of the
task.

Figure 5. Explanatory pictures for problem-solving task.

Description of user answer in natural language:
1) ∵ KP = 2 ∗R
2) ∵ KO = 4 +R
3) ∴ ∆AOB ∽ ∆KOP
4) ∴ KA = R = 12

Fig. 6 shows an example of the semantic graph of the
standard answer in SCg-code.

The user answers in natural language are converted into
semantic graphs using natural language interfaces. Therefore,
when calculating the similarity between the semantic graphs
of the answers, it is not necessary to consider the differences
of the concepts at the natural language level [7]. Fig. 7 shows
an example of the semantic specification of a segment in the
knowledge base in SCg-code.

From the above example, it can be seen that Segment AB
and Segment BA are represented by the same sc-node, they
are just two identifiers of the sc-node.

Therefore based on the previously introduced principles of
automatic verification of user answers to proof questions and
problem-solving task and the semantic models of answers
in the ostis-systems, an approach to calculate the similarity
between the semantic graphs of answers to proof questions
and problem-solving task according to the reasoning tree
of standard answer (semantic graph of standard answer) is
proposed in this article. The calculation process of similarity
between semantic graphs is shown below:

389

Figure 6. An example of the semantic graph of the standard answer.

Figure 7. An example of the semantic specification of a segment.

1) numbering each semantic sub-graph (solving step) in the
semantic graph of user answers (the numbering order
started from 1);

2) each node in the reasoning tree (the search template) is
traversed in turn according to the DFS strategy. At the
same time, the corresponding semantic sub-graph that
is included in the semantic graph of the user answer
are searched in the knowledge base using the search
template currently being traversed. If such a semantic
sub-graph exists, then determine whether the searched
semantic sub-graph number is smaller than the semantic
sub-graph number corresponding to the search template
of the current search template parent node (except for the
root node of the reasoning tree), and if so, the searched
semantic sub-graph is considered correct;

3) repeat step 2) until all search templates in the reasoning
tree have been traversed and the number of correct
semantic sub-graphs is counted at the same time;

4) using formulas (1), (2) and (3) to calculate the precision

Psc, recall Rsc and similarity Fsc between answers.
Parameters in the formula are redefined:

• |Tsc(u)| — the number of all semantic sub-graphs
in the semantic graph of the user answer u;

• |Tsc(s)| — the number of all search templates in
the reasoning tree s;

• |Tsc(u)⊗Tsc(s)| — the number of correct semantic
sub-graphs.

Once the similarity between the answers to the proof ques-
tions and the problem-solving task is obtained, the correctness
and completeness of the user answers can be verified combined
with the evaluation strategy for the subjective questions.

The evaluation strategy for the subjective questions is shown
below:

• if the similarity between the answers is equal to 1 (Fsc =
1), the user’s answer is completely correct and the user
gets the maximum score (Maxscore);

• if the similarity between the answers is less than 1 (Fsc <
1) and the precision is equal to 1 (Psc = 1), the user
answer is correct but incomplete and the user score is
Rsc ∗Maxscore;

• if the similarity between the answers is greater than 0 and
less than 1, and the precision is less than 1 (0 < Fsc < 1
and Psc < 1), then the user answer is partially correct
and the user score is Fsc ∗Maxscore;

• if the similarity between the answers is equal to 0 (Fsc =
0), the user answer is wrong and the user score is 0 [8].

The proposed approach to automatic verification of user
answers has the following advantages:

390

• verifying the correctness and completeness of user an-
swers based on semantics;

• the correctness and completeness of user answers to
any type of test question can be verified and logical
equivalence between answers can be determined;

• allowing the calculation of the similarity between any two
semantic graphs in the knowledge base;

• the proposed approach can be used in different ostis-
systems.

IV. KNOWLEDGE BASE OF THE SUBSYSTEM

The knowledge base of subsystem is mainly used to store
automatically generated test questions of various types, and
it also allows to automatically extract a series of test ques-
tions and form exam papers according to user requirements.
Therefore, in order to improve the efficiency of accessing
the knowledge base of the subsystem and the efficiency of
extracting the test questions, an approach to construct the
knowledge base of the subsystem according to the type of
test questions and the generation strategy of the test questions
is proposed in this article.

The basis of the knowledge base of any ostis-system (more
precisely, the sc-model of the knowledge base) is a hierarchical
system of subject domains and their corresponding ontologies
[1], [3], [4]. Let’s consider the hierarchy of the knowledge
base of subsystem in SCn-code:

Section. Subject domain of test questions
⇐ section decomposition*:
{
• Section. Subject domain of subjective questions
⇐ section decomposition*:
{
• Section. Subject domain of definition explanation

question
• Section. Subject domain of proof question
• Section. Subject domain of problem-solving task
}

• Section. Subject domain of objective questions
⇐ section decomposition*:
{
• Section. Subject domain of multiple-choice question
• Section. Subject domain of fill in the blank question
• Section. Subject domain of judgment question
}

}

Next, taking the subject domain of the objective questions
as an example, let us consider its structural specification in
SCn-code:

Subject domain of objective questions
∈ subject domain
∋ maximum class of explored objects’:

objective question

∋ not maximum class of explored objects’:
• multiple-choice question
• fill in the blank question
• judgment question

In this article objective types of test questions are decom-
posed into more specific types according to their character-
istics and corresponding test question generation strategies.
Next, taking the multiple-choice question as an example let
us consider its semantic specification in SCn-code:

multiple-choice question
∈ maximum class of explored objects’:

Subject domain of multiple-choice question
⇐ subdividing*:
{
• multiple-choice question based on relation attributes
• multiple-choice question based on axioms
• multiple-choice question based on image examples
• multiple-choice question based on identifiers
• multiple-choice question based on elements
⇐ subdividing*:
{
• multiple-choice question based on role relation
• multiple-choice questions based on binary relation
}

• multiple-choice question based on classes
⇐ subdividing*:
{
• multiple-choice question based on subdividing

relation
• multiple-choice question based on inclusion

relation
• multiple-choice question based on strict inclusion

relation
}

}
⇐ subdividing*:
{
• multiple-choice question with multiple answer options
• multiple-choice question with a single answer option
}

⇐ subdividing*:
{
• choice the incorrect options
• choice the correct options
}

V. PROBLEM SOLVER

The problem solver of any ostis-system (more precisely, the
sc-model of the ostis-system problem solver) is a hierarchical
system of knowledge processing agents in semantic memory
(sc-agents) that interact only by specifying the actions they
perform in the specified memory [1].

Therefore, in order to implement the corresponding tasks,
the problem solver for the automatic generation of test ques-

391

tions and automatic verification of user answers is developed
in this article, and its hierarchy is shown as follows in SCn-
code:

Problem solver for the automatic generation of test
questions and automatic verification of user answers
⇐ decomposition of an abstract sc-agent*:
{
• Sc-agent for automatic generation of test questions
⇐ decomposition of an abstract sc-agent*:
{
• Sc-agent for quick generation of test questions and

exam papers
• Sc-agent for generating single type of test questions
• Sc-agent for generating a single exam paper
}

• Sc-agent for automatic verification of user answers
⇐ decomposition of an abstract sc-agent*:
{
• Sc-agent for automatic scoring of exam papers
• Sc-agent for calculating similarity between

answers to objective questions
• Sc-agent for calculating the similarity between

answers to definition explanation questions
• Sc-agent for converting a logical formula into PNF
• Sc-agent for calculating the similarity between the

answers to proof questions and problem-solving
task

}
}

The main function of the sc-agent for quick generation of
test questions and exam papers is to automate the whole pro-
cess from test question generation to exam paper generation by
initiating the corresponding sc-agents (sc-agent for generating
single type of test questions and sc-agent for generating a
single exam paper). The main function of the sc-agent for
generating single type of test questions is to automatically
generate a series of test questions from the knowledge base
using logical rules built on the basis of SC-code [4]. The
logical rules for generating test questions are constructed
strictly in accordance with the strategies for generating test
questions described earlier. Fig. 8 shows an example of a logic
rule for generating multiple-choice question constructed based
on a strategy of inclusion relation.

The main function of the sc-agent for automatic scoring of
exam papers is to implement automatic verification of user
answers to various types of test questions and automatic scor-
ing of exam papers by initiating sc-agents for calculating the
similarity between user answers and sc-agents for converting
a logical formula into PNF.

VI. CONCLUSION AND FURTHER WORK

A semantic-based approach to automatic generation of test
questions and automatic verification of user answers in the

ostis-systems is proposed in this article. And based on the pro-
posed approach a universal subsystem for automatic generation
of test questions and automatic verification of user answers is
developed. The developed subsystem supports automating the
entire process from test question generation, to the scoring of
exam papers.

The basic principle of automatic generation of test questions
is the automatic generation of objective and subjective ques-
tions from the knowledge base using some rules constructed
based on the structural features of the knowledge base of the
ostis-systems. The basic principle of automatic verification
of user answers is to first calculate the similarity between
the semantic graphs of answers, and then combine it with
the evaluation strategy of the corresponding test question to
achieve automatic verification of user answers (including the
logical equivalence judgment between answers). The proposed
approach to calculate the similarity between answers also
supports the calculation of the similarity between any two
semantic graphs in the knowledge base, so the approach can
be used in other tasks in the future as well (such as ontology
mapping, knowledge fusion, etc.).

The effectiveness of the developed subsystem will be eval-
uated in future work.

ACKNOWLEDGMENT

The work in this article was done with the support of
research teams of the Department of Intelligent Information
Technologies of Belarusian State University of Informatics and
Radioelectronics. Authors would like to thank every researcher
in the Department of Intelligent Information Technologies.

REFERENCES

[1] V. V. Golenkov and N. A. Guljakina, “Proekt otkrytoj semantich-
eskoj tehnologii komponentnogo proektirovanija intellektual’nyh sistem.
chast’ 1: Principy sozdanija project of open semantic technology for
component design of intelligent systems. part 1: Creation principles],”
Ontologija proektirovanija [Ontology of design], no. 1, pp. 42–64, 2014.

[2] V. Golenkov, N. Guliakina, I. Davydenko, and A. Eremeev, ”Methods
and tools for ensuring compatibility of computer systems,” in Otkrytye
semanticheskie tehnologii proektirovanija intellektual’nyh sistem [Open
semantic technologies for intelligent systems], V. Golenkov, Ed., BSUIR.
Minsk, BSUIR, 2019, pp. 25–52.

[3] D. Shunkevich, “Metodika komponentnogo proektirovaniya sistem, up-
ravlyaemyh znaniyami,” in Otkrytye semanticheskie tehnologii proek-
tirovanija intellektual’nyh sistem [Open semantic technologies for intel-
ligent systems], V. Golenkov, Ed., BSUIR. Minsk, BSUIR, 2015, pp.
93–110.

[4] (2022, NOV) Ims.ostis metasystem. [Online]. Available:
https://ims.ostis.net

[5] Xu G. P., Zeng W. H., Huang C. L. Research on intelligent tutoring
system. Application research of computers, 2009, Vol. 26(11), pp. 4020-
4030.

[6] Li W., Grakova N., Qian L. Ontological Approach for Question Gen-
eration and Knowledge Control. Communications in Computer and
Information Science, 2020, Vol. 1282, pp. 161-175.

[7] Qian L., Sadouski M., Li W. Ontological Approach for Chinese Lan-
guage Interface Design. Communications in Computer and Information
Science, 2020, Vol. 1282, pp. 146-160.

[8] Wenzu Li, ”Development of a problem solver for automatic answer
verification in the intelligent tutoring systems,” in Otkrytye semantich-
eskie tehnologii proektirovanija intellektual’nyh sistem [Open semantic
technologies for intelligent systems], V. Golenkov, Ed., BSUIR. Minsk,
BSUIR, 2021, pp. 169–178.

392

Figure 8. An example of a logic rule for generating multiple-choice question.

[9] Mousavinasab E., Zarifsanaiey N. R., Niakan Kalhori. S. Intelligent
tutoring systems: a systematic review of characteristics, applications,
and evaluation methods. Interactive Learning Environments, 2021, Vol.
29(1), pp. 142-163.

[10] Li, H. Research on item automatic generation based on DL and domain
ontology. Journal of Changchun University of Technology (Natural
Science Edition), 2012, Vol. 33(04), pp. 461-464.

[11] (2022, NOV) Protégé [Electronic resource, Online]. Available:
http://protege.stanford.edu

[12] Andreas P., Konstantinos K., Konstantinos K. Automatic generation of
multiple-choice questions from domain ontologies. In: IADIS Interna-
tional Conference e-Learning, 2008, pp. 427-434.

[13] Arjun S. B., Manas K., Sujan K. S. Automatic Generation of Multiple
Choice Questions Using Wikipedia. International Conference on Pattern
Recognition and Machine Intelligence, 2013, Vol. 8251, pp. 733-738.

[14] Wan C. L., Yang Y. H., Deng F. A review of text similarity calculation
methods. Information science, 2019, Vol. 37(33), pp. 158-168.

[15] Shahmirzadi O., Lugowski A., Younge K. Text similarity in vector space
models: a comparative study. 2019 18th IEEE international conference
on machine learning and applications (ICMLA), IEEE, 2019, pp. 659-
666.

[16] Li X. J. Realization of automatic scoring algorithm for subjective
questions based on artificial intelligence. Journal of Jiangnan University
(Natural Science Edition), 2009, Vol. 08(03), pp. 292-295.

[17] Wan H. R., Zhang Y. S. Review on Research Progress of Text Simi-
larity Calculation. Journal of Beijing Information Science (Technology
University), 2019, Vol. 34(01), pp. 68-74.

[18] Mingyu Ji., Xinhai Zhang. A Short Text Similarity Calculation Method
Combining Semantic and Headword Attention Mechanism. Scientific
Programming, 2022.

[19] Anderson P., Fernando B., Johnson M., Gould S. Spice: Semantic
propositional image caption evaluation. In: European Conference on
Computer Vision, Springer, 2016, pp. 382-398.

[20] Su J. L., Wang Y. Z., Jin X. L., et al. Knowledge Graph Entity
Alignment with Semantic and Structural Information. Journal of Shanxi
University(Nat. Sci. Ed.), 2018, Vol. 42(1), pp. 23-30.

[21] Zhuang Y., Li G. L., Feng J. H. A Survey Entity Alignment of
Knowledge Base. Journal of Computer Research and Development,
2016, Vol. 53(1), pp. 165-192.

[22] Wang X. Y., Hu Z. W., Bai R. J., et al. Review on Concepts, Processes,
Tools and Methods Ontology Integration. Library and Information
Service, 2011, Vol. 55(16), pp. 119-125.

[23] Fujiwara M., Kurahashi T. Prenex normal form theorems in semi-
classical arithmetic. The Journal of Symbolic Logic, 2022, pp. 1-31.

[24] Kowalski R. Predicate logic as programming language. In: IFIP
congress, 1974, Vol. 74, pp. 544-569.

[25] Pan M., Ding Z. A simple method for solving prenex disjunction
(conjunction) normal forms. Computer Engineering and Science, 2008,
Vol. 30(10), pp. 82-84.

[26] Jin-zhong Z., Xian-qing H., Xiao-shan G. Automated production of
traditional proofs for theorems in euclidean geometry. Annals of Math-
ematics and Artificial Intelligence, 1995, Vol. 13(1), pp. 109–137.

[27] Zhang J., Peng X., Chen M. Self-evident automated proving based on
point geometry from the perspective of Wu’s method identity. Journal
of Systems Science and Complexity, 2019, Vol. 32(1), pp. 78-94.

393

ОСНОВАННЫЙ НА СЕМАНТИКЕ ПОДХОД К
АВТОМАТИЧЕСКОЙ ГЕНЕРАЦИИ ТЕСТОВЫХ
ВОПРОСОВ И АВТОМАТИЧЕСКОЙ ПРОВЕРКЕ

ОТВЕТОВ ПОЛЬЗОВАТЕЛЕЙ В
ИНТЕЛЛЕКТУАЛЬНЫХ ОБУЧАЮЩИХ

СИСТЕМАХ
Ли Вэньцзу

Данная статья посвящена проблеме генерации тестовых вопро-
сов и проверки ответов пользователей в интеллектуальных обу-
чающих системах. В данной статье подробно представлен подход
к автоматической генерации различных типов тестовых вопросов
на основе базы знаний в интеллектуальных обучающих системах,
разработанных с использованием Технологии OSTIS, и подход к
реализации автоматической проверки ответов пользователей на
основе различных семантических структур описанных знаний.

Keywords—генерация тестовых вопросов, проверка ответов
пользователей, Технология OSTIS, интеллектуальные обучающие
системы, онтология, база знаний, семантическая структура

Как деятельность прогресса и развития человеческого обще-
ства, образование внесло уникальный вклад в прогресс человече-
ской цивилизации, особенно с развитием науки и техники, обра-
зование играет все более важную роль в современном обществе.
В последние годы, с развитием современных информационных
технологий, таких как искусственный интеллект, компьютерные
исследователи начали работать над применением технологии
искусственного интеллекта в сфере образования. Применение
технологии искусственного интеллекта в сфере образованияможет
не только повысить эффективность обучения учащихся, но и
стать важным средством обеспечения справедливости образова-
ния. Среди них наиболее представительным продуктом, объединя-
ющим технологии искусственного интеллекта и образования, яв-
ляются интеллектуальные обучающие системы (ИОС). Особенно
после вспышки COVID-19 в 2020 году была подчеркнута важность
и актуальность разработки ИОС. По сравнению с традиционной
мультимедийной обучающей системой (MОС), ИОС имеет следу-
ющие характеристики:

• способен вести свободный человеко-машинный диалог;
• предоставление персонализированной педагогической услу-

ги;
• автоматическое решение тестовых вопросов;
• автоматическая генерация тестовых вопросов;
• автоматическая проверка ответов пользователей;
• и т.д.
Среди них автоматическая генерация тестовых вопросов и

автоматическая проверка ответов пользователей являются самыми
основными и важными функциями ИОС. Она позволяет автомати-
зировать весь процесс от генерации тестовых вопросов, форми-
рования экзаменационных билетов до автоматической проверки
ответов пользователей и оценки экзаменационных билетов. Это
может не только значительно повысить эффективность тести-
рования уровня знаний пользователей, но и снизить стоимость
их обучения, при этом исключая человеческий фактор, чтобы
максимально обеспечить справедливость процесса тестирования.

Received 01.11.22

394

Ontological approach to batch enterprise within
Industry 4.0

Valery Taberko, Dzmitry Ivaniuk
JSC “Savushkin Product”, Brest, Republic of Belarus

Email: id@pda.savushkin.by

Abstract—This article provides an review of the current
situation of ontology use the techniques of creation, devel-
opment and practice standards and digital twins with help
of OSTIS Technology, examines in more detail the issues
of current approaches to standards evolution, maintenance
and application, with particular consideration to standards
in the field of Industry 4.0, such as ISA-88, ISA-95 and ISA
5.1. Current standards-specific issues in this area are taken
into account.

Keywords—Standards, Ontologies, Industry 4.0, OSTIS,
ISA-88, ISA-95, ISA-5.1.

I. INTRODUCTION

This work expands on the ideas discussed in [1], [2] and
includes descriptions of current issues and new versions
of suitable tools for developing and using standards.
Also connection with Industry 4.0 is considered - it
is typically characterized by its complexity, requiring
multidisciplinary knowledge of models, techniques to
achieve an integrated solution [3]. With the advent of
Industry 4.0, the scenario of reliable and safe interaction
of various intelligent systems with each other becomes a
reality that technical systems must take into account [4].

Each developed area of human activity is based on a set
of standards that formally describe different aspects of it.
It includes a system of concepts (including terminology),
a typology, and a model, the sequence of actions taken
during the process of applying appropriate methods
and means. Production site, types and structures of
project documents, accompanying activities, etc. The
existence of standards allows us to solve one of the
key problems associated with any technology. Especially
the rapidly developing computer information technology,
compatibility problem [5] can be solved. Compatibility
can be considered in many aspects, from the consistency
of terminology in the interactions of process participants
to the consistency of actions taken in the process of
technology application. On the one hand, the problem
with cohesion of digital twin models lies in the fact that
a large number of disparate, unrelated and heterogeneous
models are required. On the other hand, connecting digital
twins in a single system [6] requires their interaction, and
awaits conceptual unification of this interaction. It also
require from Supervisory Control And Data Acquisition
(SCADA) systems a higher level of integration, scalability
and technological modernity [7].

Despite advances in information technology, most
standards are now presented in the form of traditional
linear documents or Web resources containing a series of
static pages connected by hyperlinks. This approach to
expressing standards has many serious drawbacks, and
ultimately the overhead costs of maintaining and using
standards actually outweigh the benefits of using them
[8].

II. PROBLEMS AND STATE OF ART

An analysis of the work has made it possible to
formulate the most important and common problems
related to the development and application of modern
standards in various fields [8], [9]:

• Above all, the complexity of maintaining the stan-
dards themselves due to the duplication of in-
formation, especially the complexity of changing
terminology.

• Duplicate information in the documentation describ-
ing the standard.

• Standards Internationalization Issues – translating a
standard into multiple languages actually requires
supporting and coordinating independent versions of
the standard in different languages.

• As a result, inconsistencies in the format of different
standards. As a result, automating the process of
developing and applying standards is complicated.

• The inconvenience of using the standard, especially
the complexity of finding the information you need.
As a result, the complexity of studying standards.

• The complexity of automating the verification that
an object or process complies with the requirements
of a particular standard.

• etc.
These problems are mainly related to the presentation

of standards. The most promising approach to solve
these problems is the transformation of each specific
standard into a knowledge base, which is based on a
set of ontologies corresponding to this standard [5], [8]–
[11]. This approach allows us to significantly automate the
development processes of the standard and its application.

As an example, consider the ISA-88 [12] standard
(the basic standard for batch production). Although this
standard is widely used by American and European

395

companies and is actively implemented on the territory
of the Republic of Belarus, it has a number of drawbacks
listed below. The author’s experience with the ISA-88 and
ISA-95 standards revealed the following issues related to
the versions of the standard:

• The American version of the standard – ANSI/ISA-
88.00.01-2010 – has been updated and is now in its
3rd edition in 2010;

• ISA-88.00.02-2001 — contains data structures and
guidelines for languages;

• ANSI/ISA-TR88.00.02-2015 – describes an imple-
mentation example of ANSI/ISA-88.00.01;

• ISA-88.00.03-2003 – an activity that describes the
use of common site recipes within and across
companies;

• ISA-TR88.0.03-1996 – shows possible recipe proce-
dure presentation formats;

• ANSI/ISA-88.00.04-2006 – structure for the batch
production records;

• ISA-TR88.95.01-2008 – explains using ISA-88 and
ISA-95 together;

• At the same time, the European version approved in
1997 – IEC 61512-1 – is based on the older version
ISA-88.01-1995;

• Russian version of the standard – GOST R IEC
61512-1-2016 – is identical to IEC 61512-1, that is,
it is also outdated. Also raises a number of questions
related to the not very successful translation of the
original English terms into Russian.

Another standard often used in the context of Industry
4.0 is ISA-95 [13]. ISA-95 is an industry standard for
describing high-level control systems. Its main purpose
is to simplify the development of such systems, abstract
from the hardware implementation and provide a single
interface to interact with the ERP and MES layers.
Consists of the following parts:

• ANSI/ISA-95.00.01-2000, Enterprise-Control System
Integration Part 1: "Models and Terminology" – it
consists of standard terminology and object models
that can be used to determine what information is
exchanged;

• ANSI/ISA-95.00.02-2001, Enterprise-Control System
Integration Part 2: "Object Model Attributes" – it
consists of attributes for each object defined in Part
1. Objects and attributes can be used to exchange
information between different systems and can also
be used as the basis for relational databases;

• ANSI/ISA-95.00.03-2005, Enterprise-Control System
Integration, Part 3: "Models of Manufacturing Op-
erations Management" – it focuses on Level 3
(Production/MES) functions and activities;

• ISA-95.00.04 Object Models & Attributes Part 4:
"Object models and attributes for Manufacturing
Operations Management". The SP95 committee is
yet developing this part of ISA-95. This technical

specification defines an object model that determines
the information exchanged between MES Activities
(defined in Part 3 of ISA-95). The model and
attributes of Part 4 form the basis for the design
and implementation of interface standards, ensuring
a flexible flow of cooperation and information
exchange between various MES activities;

• ISA-95.00.05 B2M Transactions Part 5: "Business to
manufacturing transactions". Part 5 of ISA-95 is still
in development. This technical specification defines
operations among workplace and manufacturing
automation structures that may be used along with
Part 1 and Part 2 item models. Operations join
and arrange the manufacturing items and activities
described withinside the preceding a part of the
standard. Such operations arise in any respect ranges
withinside the organisation, however the attention of
this technical specification is at the interface among
the organisation and the manage system.

Models help define boundaries between business and
control systems. They help answer questions about which
functions can perform which tasks and what information
must be exchanged between applications.

The first phase of building a digital twin model
requires embedding data at lower levels of production,
such as production processes and equipment. The P&ID
production scheme serves as the source of this data.
Therefore the ISA 5.1 standard [14] has to work with
the P&ID scheme and is widely used in control systems
along with the ISA 88 standard to fully describe the
lower production levels. This standard is useful when
a reference to equipment is required in the chemical,
petroleum, power generation, air conditioning, metal
refining, and many other industries. The standard enables
anyone with a reasonable level of plant knowledge to
read flow charts to understand how to measure and
control a process without having to go into the details of
instrumentation or the knowledge of an instrumentation
expert. It is intended to provide sufficient information so
that SA5.1 The purpose of this standard is to establish a
consistent method of naming instruments and instrumen-
tation systems used for measurement and control. For this
purpose, a designation system is presented that includes
symbols and identification codes. The latest release from
the ISA5.1 subcommittee is the updated ISA-5.1-2022,
"Instrumentation Symbols and Identification".

Training is an easy way to reach these standards.
The International Society of Automation (ISA) is a non-
profit professional association and recognized leader in
automation and control education, dedicated to preparing
the workforce for technological change and industry
challenges. However, the price is relatively high, around
$1,000 per person per day. For 2 persons it is $10,000
for a normal course for 5 days. For some countries it is
affordable, for others it is not.

396

Figure 1. Start page

Figure 2. Ontologies for standards (ISA-88, ISA-95 and ISA 5.1)

Various established procedural requirements of different
organizations are taken into account, but this is done
by providing alternative symbology methods unless this
conflicts with the goals of the standard. There are many
options for adding information or simplifying the symbol
if desired.

These and other standards now proliferate in the form of
documents that are inconvenient for automated processing
and, as noted above, are highly dependent on the language
in which each document is written.

III. EXAMPLES OF SYSTEM OPERATION WITH
NATURAL LANGUAGE INFORMATION DISPLAY

For information to be clear and understandable to the
reader, it must be presented in a consistent manner. The
recipe authoring system interface allows the structure of
domains and ontologies to be expressed in natural lan-
guage. This process of converting an internal knowledge
representation to an external knowledge representation
is performed by a graphical interface component. On
the main page general information (in 4 languages) is
displayed, Fig. 1.

Fig. 2 shows resulting ontologies for standards (ISA-88,
ISA-95 and ISA 5.1).

Figure 3. Control module

IV. INTEGRATION OF THIRD-PARTY SOLUTIONS WITH
A KNOWLEDGE BASE

A standard system built on the basis of OSTIS Tech-
nology can be easily integrated with other systems in
the workplace. To integrate ISA-88, ISA-95 and ISA-
5.1 standards system with other systems running on JSC
"Savushkin Product", a web-oriented approach is used –
the ostis-system server is accessed with the use of the
following queries:

h t t p : / / o s t i s . s a v u s h k i n . by ? s y s _ i d =
c o n t r o l _ m o d u l e

where "sys_id=control_module" defines a term (the
name of an entity) whose value we want to find out (in
this example, in fact, the answer to the question" What is
a "control module"?). This approach makes it relatively
easy to add support of the knowledge base for current
control systems projects, for this it is enough to indicate
the names corresponding to the entities in the knowledge
base within the control system. The answer is shown on
Fig. 3.

In addition, it is possible to ask more complex and
intelligent questions with several arguments, for example,
"What is the difference between the concepts of "unit"
and "control module"?

The corresponding query to the ostis-system server
looks like:

h t t p : / / o s t i s . s a v u s h k i n . by ? command_id=
u i _ c o m m a n d _ d i f f e r e n c e
&arg1 = u n i t&arg2 = c o n t r o l _ m o d u l e

Also possible to ask answers questions about questions.
Fig. 4 shows result for question "How do two given
entities linked directly to each other?"

Thus, an interactive intelligent help system for control
systems projects is implemented, allowing employees to
simultaneously work with the control system and ask
questions to the system directly during the work.

Fig. 5 shows an illustration of the display of information
in the form of a HMI page (from the control system
project).

Fig. 6 shows a web page that displays the same
information as a PFC chart (from the knowledge base).

397

Figure 4. System answer on question about question [15].

Figure 5. Example HMI from SCADA [15].

Another example is the integrated help subsystem
within corporate Add-In EasyEPLANner [16] for CAD
EPLAN. It helps to describe technological objects (Tank,
Boiler, etc.), operations, etc. according to the ISA-88
standard. Fig. 7 shows a short preview of the project
functionality.

Fig. 8 shows UML-model of EasyEPLANner objects
to be described in OSTIS.

Fig. 9 shows UML-model of EasyEPLANner control
modules to be described in OSTIS.

Figure 6. Corresponding PFC chart from OSTIS.

Figure 7. Add-In project EasyEPLANner

398

Figure 8. EasyEPLANner objects

Figure 9. EasyEPLANner objects

V. USE IN CONTROL SYSTEM

It is very important to correct and fast react on
different events during process control, especially on
critical accidents. But when we have complex distributed
system it is rather complicated and in normal way require
help of the human operator. It may leads to variety of
problems. So usage OSTIS-based system can helps to
solve as described on Fig. 10. Project #3 has a valve
failure but the project does not know what to do. Then
it makes a request to the OSTIS server, which already
knows which projects also use this line (with this valve).
The OSTIS server polls the rest of the projects (projects
#1 and #2). Each project has information about which
operations are currently active and gives an answer on
what to do - pause the operation, do nothing, etc. After
that OSTIS-server sends back to project #3 answer with

Figure 10. OSTIS in control system

result actions to be used. These are going in automatic
way - no need of human operator.

VI. FUTURE DEVELOPMENT

Current project issues can be found on GitHub ([17],
[18] and [19]). Main problems to be solved are:

• Improving system performance and especially ac-
celerating system response time to user requests.
It is connect with productivity and overall user
satisfaction.

• Continuous updating and refactoring ontological
models (further formalization of missing concepts,
fix typos and etc.);

• Enhancing PFC-visualisation - not only displaying,
but also editing diagrams. Adding rich navigating
between PFC-diagram and according text represen-
tation;

• Further formulation of questions (typical) to the
system from the user and their formalization at the
level of the existing knowledge base;

• Adding more description of parts of real control
projects based on the existing knowledge base.

The implementation of answers to complex questions is
necessary to make easier the work of not only process op-
erators, but also maintenance personnel - instrumentation
engineers, mechanics, electricians, etc. Therefore, it is
planned to implement the system’s answer to the question
of the following type - in what operations of which
objects this actuator is used (for example, valve "T1V1").
This question is very important when a device failure
occurs and it is necessary to determine the criticality of
this situation. For analysis, it is necessary to compare
the time of the accident and the history of operations.
Since, for example, an accident of the mix-proof valve
during the line washing operation and the active product
dosing along the other line, should lead to a stop of these
operations and stop the preparation of the batch in the

399

corresponding unit. The operator must report this to the
appropriate maintenance specialist to fix it. After the fault
has been eliminated, the operator continues to perform
operations. This is the correct events order, which is very
important to avoid mixing of detergent and product. If
the device malfunction occurred within the line, which is
now inactive, then this situation has a low priority, does
not lead to a stop in operations and can be eliminated
later if the service personnel have free time.

VII. CONCLUSION

The paper considers an technique to automating the
process of creating, developing and making use of
standards primarily based on OSTIS Technology. Using
the instance of the ISA-88, ISA-95 and ISA-5.1 standards
used on the Savushkin Product enterprise, the structure
of the knowledge base, the features of the problem solver
and the user interface of the support system for these
processes are considered. It is proven that the developed
system can be easily integrated with other enterprise
systems, being the basis for building an information
service system for employees in the context of Industry
4.0. The approach proposed in the work allows us to
provide not only the ability to automate the processes of
creation, agreeing and development of standards, but also
allows us to significantly increase the efficiency of the
processes of applying the standard, both in manual and
automatic way.

ACKNOWLEDGMENT

Authors would like to thank to the research teams of
the Departments of intelligent information technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University.

REFERENCES

[1] N. Lutska, O. Pupena, A. Shyshak, V. Taberko, D. Ivaniuk, M. O.
Nikita Zotov, and L. Vlasenko, “Ontological model of digital twin
in manufacturing,” in Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], ser. 5, V. Golenkov, Ed. BSUIR, Minsk,
2022, p. 310–335.

[2] V. V. Taberko, D. S. Ivaniuk, D. V. Shunkevich, and O. N. Pupena,
“Principles for enhancing the development and use of standards
within Industry 4.0,” in Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], ser. 4, V. Golenkov, Ed. BSUIR, Minsk,
2020, pp. 167–174.

[3] S. Gil, G. D. Zapata-Madrigal, and G. L. Giraldo-Gómez,
“An ontological model to integrate and assist virtualization of
automation systems for industry 4.0,” Smart and Sustainable
Manufacturing Systems, vol. 5, p. 10, 09 2021.

[4] V. R. Sampath Kumar, A. Khamis, S. Fiorini, J. L. Carbonera,
A. Olivares Alarcos, M. Habib, P. Goncalves, H. Li, and J. I.
Olszewska, “Ontologies for industry 4.0,” The Knowledge Engi-
neering Review, vol. 34, p. e17, 2019.

[5] V. Golenkov, N. Gulyakina, I. Davydenko, and D. Shunke-
vich, “Semanticheskie tekhnologii proektirovaniya intellektual’nyh
sistem i semanticheskie associativnye komp’yutery [Semantic
technologies of intelligent systems design and semantic associative
computers],” Otkrytye semanticheskie tekhnologii proektirovaniya
intellektual’nykh system [Open semantic technologies for
intelligent systems], pp. 42–50, 2019.

[6] “Digital Twins for Industrial Applications, an
Industrial Internet Consortium White Paper,”
https://www.iiconsortium.org/pdf/IIC_Digital_Twins_Industrial_Ap
ps_White_Paper_2020-02-18.pdf, 2018.

[7] M. Sverko, T. G. Grbac, and M. Mikuc, “Scada systems with
focus on continuous manufacturing and steel industry: A survey
on architectures, standards, challenges and industry 5.0,” IEEE
Access, vol. 10, pp. 109 395–109 430, 2022.

[8] P. Serenkov, V. Solomaho, V. Nifagin, and A. Minova, “Koncepcija
infrastruktury standartizacii kak bazy znanij na osnove ontologij
[the concept of a standardization infrastructure as an ontology-
based knowledge base],” Novosti. Standartizacija i sertifikacija.
[News. Standardization and certification.], vol. 1, no. 5, pp. 25–29,
2004.

[9] V. Uglev, “Aktualizacija soderzhanija standartov proektirovanija
slozhnyh tehnicheskih ob’ektov: ontologicheskij podhod [updating
the content of design standards for complex technical objects:
ontologic approach],” Ontologija proektirovanija. [Ontology of
designing], vol. 1, no. 1, pp. 80–86, 2012.

[10] C. Dombayci, J. Farreres, H. Rodríguez, A. Espuña, and M. Graells,
“Improving automation standards via semantic modelling: Appli-
cation to ISA88,” ISA Transactions, vol. 67, 01 2017.

[11] M. Vegetti and G. Henning, “Isa-88 formalization. a step towards
its integration with the isa-95 standard,” in 6th Workshop on
Formal Ontologies meet Industry, vol. 1333, 02 2015.

[12] “ISA-88 standard,” https://www.isa.org/standards-and-
publications/isa-standards/isa-standards-committees/isa88/,
(accessed 2022, October).

[13] “ISA-95 standard,” https://www.isa.org/standards-and-
publications/isa-standards/isa-standards-committees/isa95/,
(accessed 2022, October).

[14] “ISA5.1 Standard,” https://www.isa.org/standards-and-
publications/isa-standards/isa-standards-committees/isa5-1/,
(accessed 2022, October).

[15] V. V. Taberko, D. S. Ivanjuk, V. V. Golenkov, I. T. Davydenko, K. V.
Ruseckij, D. V. Shunkevich, V. V. Zaharov, V. P. Ivashenko, and
D. N. Koronchik, “Ontological design of prescription production
enterprises based on ontologies,” in Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open se-
mantic technologies for intelligent systems], ser. 1, V. Golenkov,
Ed. BSUIR, Minsk, 2017, pp. 265–280.

[16] “EasyEPLANner project on GitHub,” Available at:
https://github.com/savushkin-r-d/EasyEPLANner/, (accessed 2022,
Jun).

[17] “EasyServer-4.0 project on GitHub,” Available at:
https://github.com/savushkin-r-d/EasyServer-4.0, (accessed
2022, Jun).

[18] “s88-ostis project on GitHub,” Available at:
https://github.com/savushkin-r-d/s88-ostis, (accessed 2022,
Jun).

[19] “isa-5.1-ostis project on GitHub,” Available at:
https://github.com/savushkin-r-d/isa-5.1-ostis, (accessed 2022,
Jun).

Онтологический подход к рецептурному
предприятию в рамках Индустрии 4.0

Таберко В.В., Иванюк Д.С.
Вработе рассмотрен онтологическийподход кпониманию,

интеграции и развитию стандартов на основе Технологии
OSTIS. Уточнена формальные трактовки основных понятий,
используемых в стандартах, что позволяет упростить описа-
ние реальных задач. Также описаны варинтыинтеграции базы
знаний в используемые программные средства разработки
и сценарии её использования непосрественно в системaх
управления.

Received 20.10.2022

400

Software-Technological Complex for Adaptive
Control of a Production Cycle of Robotic

Manufacturing
Viktor Smorodin

Department of Mathematical Problems
of Control and Informatics

Francisk Skorina Gomel State University
Gomel, Belarus

Email: smorodin@gsu.by

Vladislav Prokhorenko
Department of Mathematical Problems

of Control and Informatics
Francisk Skorina Gomel State University

Gomel, Belarus
Email: snysc@mail.ru

Abstract—An approach is being proposed for constructing a
new generation intellectual system based on OSTIS technology for
decision making during realization of adaptive control procedures
for technological cycle of robotic manufacturing based on the
means of software-hardware coupling. At the basis of the decision
making intellectual system lays the idea of using neural network
controllers that solve the task of searching for optimal maintenance
strategy for a technological cycle of robotic manufacturing. A
formalization of such a system is being proposed based on OSTIS
technology implementation.

Keywords—technological production process, parameters of
operation, probabilistic network graph, state indicators, adaptive
control, neural network, LSTM, policy-gradient, reinforcement
learning

I. INTRODUCTION

The modern convergence direction of research in the sphere
of intellectual systems development [1] requires creation of
the corresponding software with elements of cognition based
on semantically compatible artificial intelligence technologies.
Such a direction must also include the creation of computer
systems, that provide intellectualization of making analytical
decisions, which is directly related to adapting control processes
for complex technological systems (technological objects) in
real time, creation of semantically compatible knowledge bases
in the sphere of analysis of dynamic systems operation and
optimization of complex technical systems operation based
on them through the creation of open source software for
intellectual decision making systems.

When constructing a software solution for solving complex
control-related tasks it is important to have a universal interface
that would provide semantic compatibility for its elements,
allowing their interchangeability and independent development
with simple integration. OSTIS technology can serve as a means
of achieving this goal and providing a universal platform for
connecting various separate problem solvers [2].

Technological systems that can be formalized as probabilistic
network graph structures and mathematical models of semi-
Markov processes are the object under study in this paper
[3].

Adaptive control of a technological cycle is meant as the abil-
ity of a control system adequately react on external disturbances
and standard control effects with changing the corresponding
parameters of control during the system operation.

Optimal control in the scope of this paper is meant as a
formalized by a neural network structure of an adaptive control
of a technological cycle that is constructed in the base nodes of
a probabilistic network graph structure or semi-Markov network
model within the chosen quality criteria. The formalization
of the control system and mathematical models of the object
under study is based upon the authors’ scientific research and
development in the sphere of simulation modeling of complex
technological systems [4].

In this paper a task of optimal maintenance strategy search is
being considered for a technological cycle with implementation
of reinforcement learning methods based on the selection of
criteria chosen by user. An approach is proposed for solving
such tasks based on neurocontroller usage that is trained sing
policy gradient methods [5].

II. FORMALIZED DESCRIPTION OF A TECHNOLOGICAL
CYCLE

A technological cycle is understood as a sequence of actions
and operations, based on which the manufacturing of products
is achieved. There are N technological nodes (machines) in
cycle Mi . During the execution of a cycle K operations Oj

are being run sequentially. For each operation are given the
execution time t(Oi), the set of nodes {Mijk}, that operate in
mode rj (Mi) for the current operation. The set and content of
such operations are defined by the corresponding technological
production process.

During the execution of Oj operation an equipment failure of
the i-th type node can occur, which demand pausing the cycle
and performing maintenance and repair actions. The costs for
repairing the i-th type node CMi and costs for liquidating the
consequences of it’s failure during the cycle operation CMOi

are given.

401

When the i-th type node fails during the execution of the
corresponding operation it is possible that an emergency may
occur. The costs for repairing the i-th type node in case of
emergency CEi and the costs for liquidating the consequences
of emergency CEOi are given.

Before the cycle execution has started maintenance actions
may be performed - one or more of the nodes may be checked
and repaired.

The maintenance of all kinds is performed by the manufac-
turing facility personnel, that has a corresponding qualification.
The available trained personnel is a limited resource and no
more than L nodes can be repaired at the same time. In case
a repair is necessary and the required personnel in unavailable,
it is necessary to wait until one of the current repair operations
ends. The repair times are not static and of probabilistic nature.
The costs for cycle not operating (as a result of nodes failure,
repair operations, maintenance, liquidation of emergencies) are
also given - CI(T) for the non operating period T .

It is assumed that the technological production cycle has
integration of means of software-hardware coupling that allow
transferring node observation data into the control system
when cycle operates, as well as a system of processing
recommendations for cycle maintenance that are produced
by the control system.

III. DESCRIPTION OF THE SIMULATION MODEL THAT IS
USED IN THIS PAPER

For implementation of a simulation model in the given
formalization the data is used:

• distributions for the duration of non-failure operation for
the nodes of i-th type Fir(twf) in mode r(Mi);

• distributions for the restoration (repairs) for the nodes of
i-th type after a failure Fif (tr) ;

• distributions for the liquidation of emergency for the nodes
of i-th type Fife(tre);

• probabilities of emergency during a failure for the nodes
of i-th type Pie.

The simulation model operates during the given time period,
it restarts the production cycle and, possibly, performs the
maintenance actions before each start. The technological cycle
control system is being used to make decisions regarding the
necessity and contents of the maintenance procedure.

The data describing the current condition of the technological
cycle nodes - duration of non-failure operation for all node
Mi is passed inside the control system. Based on the control
system recommendations the maintenance for the nodes is
performed.

IV. POSSIBLE APPROACHES TO SOLVING THE TASK

When considering a task of such type the method for
constructing an optimal strategy is not obvious which makes the
usage of traditional supervised learning algorithms problematic.
The complex structure and the nature of the possible solutions
space in this task make it sensible to consider the reinforcement
learning group of algorithms.

Analysis of the modern state of developments in the artificial
intelligence field demonstrates that two most effective groups
of reinforcement learning algorithms exist for solving complex
control tasks:

• value-based - when controller is trained to estimate the
future rewards for the actions it selects;

• policy-based - when controller is trained to predict
distribution of actions that would lead to the choice of
optimal action-selection policy.

In this paper a policy gradient neural network controller will
be used for the task under consideration.

Implementation of the reinforcement learning methods
implies construction of an environment in which the agent
performs actions. The agent selects actions based on the
current observations of the environment, and based on the
actions performed and the possible changes in the state of the
environment a reward is being calculated and may be observed
by the agent.

In this paper the environment in which the agent operates is
the control system of the technological production cycle that
makes available of agent’s observation of all nodes Mi non-
failure operation duration. Based on the agent’s action selection
the decision making system forms requests for the maintenance
of the technological cycle nodes. When the agent is being
trained jointly with the simulation model reward calculation is
also done.

V. SHAPING THE REWARD FUNCTION

The reward shaping plays in important role, as it defines
the agent’s behavior that it learned during training. The choice
of the reward function allows to select for optimization the
criteria that user prioritizes.

The approach used in this paper includes into reward shaping
such components as cycle non-failure operation time (Rnop),
total sum of maintenance and emergency liquidation costs
(Rcost), total number of nodes failures (Rf), including the ones
that resulted in emergency (Rfe), total number of maintenance
performed per cycle (Rrep). Each of the reward components
is present in the equation with a weight coefficient αi, which
characterizes the importance of the component.

During the agent training the value of the reward function
is calculated as following:
R = α1Rnop + α2Rcost + α3Rf + α4Rfe + α5Rrep

VI. POLICY GRADIENT

In the policy-based methods instead of the approximation of
a numeric function that estimates rewards that agent receives
from the environment as a result of his actions, the policy
function for action selection is being constructed directly, that
connects environment states with agent’s actions. The action
selection policy is parameterized by the trained parameters of
the model that is used to control agent.

Numeric function (reward function) in this case can be used
to optimize policy regarding the trained parameters but is not
used for action selection. Stochastic action selection policy
gives the probability distribution for the possible actions. Such

402

policies are often used in the partially-observable environments
when uncertainty exists.

It was shown that for some classes of tasks the policy based
methods converge faster than value-based (Q-learning), and
also are preferable when the action selection space is of large
dimension [5]. The convergence towards at least the local
quality maximum is guaranteed.

Policy π is parameterized by the trainable parameters θ.
πθ(a|s) = P [a|s]
This policy returns distribution of actions a when the

observable state of the environment is s.
In order to find the values for trainable parameters an

optimization problem must be solved for the quality estimation
function J(θ).
J(θ) = Eπθ(

∑
γr)

Rules to update trainable parameters on the t step:
θ(t+1) := θt + α▽ J(θt)
According to the Policy Gradient Theorem[6]
▽Eπθ(r(τ)) = Eπθ(r(τ)▽ logπθ(τ)),
which can be transformed as
▽Eπθ(r(τ)) = Eπθ(r(τ)(

∑T
t=1 ▽logπθ(at|st))).

The REINFORCE algorithm that in meant to train the agent
to perform actions according to the policy that results in
maximization of the future rewards could be written like this
[5]:

1. Initialize parameters θ
2. Generate an episode in which agent interacts with the

environment with {Si}, {Ai}, {Ri} – sequences of length T
of the observed environment

3. For each step t calculate discounted reward
Gt :=

∑T
k=t+1 γ

k−t−1Rk

4. Update the parameters by a rule (perform a gradient
ascent)
θ := θ + αγtG▽θ lnπ(At|St, θ)
5. Repeat steps 2-4

VII. NEURAL NETWORK STRUCTURE CHOICE

For the agent control recurrent neural network based on
multi=layer perceptron with LSTM block is being used. As
we are working with policy gradient the network output must
return the distribution of action probability, thus softmax is
used. Network structure:

1) Dense x64 ReLU;
2) Dense x64 ReLU;
3) LSTM x32 ReLU;
4) Dense x6 Softmax.

VIII. RESULTS OF THE TRAINING

One cycle execution in the normal condition takes 48 units
of model time. One simulation lasts for 64*48 = 3072 units
of model time.

On figure 1-5 the graphs show how various metrics change
during the training that lasts 500 episodes.

Distribution of the most frequently produced by the system
recommendations for maintenance (7) corresponds with the
ones expected based on the chosen simulation parameters for

Figure 1. Total reward that agent receives during one simulation run. Total
costs for executing the cycle during one simulation during training. A tendency
to the increase of the reward and decrease of the costs can be observed during
training.

Figure 2. Number of maintenance operations performed according to the
system’s recommendations.

Figure 3. Number of failures during the simulations

Figure 4. The average time of normal operation of the cycle during simulation.

Figure 5. Distribution of recommendations for maintenance, that are most
frequently generated by the system.

Figure 6. Histogram of distribution of costs and normal operation of the cycle
during 5000 of test runs of the simulation

403

the distribution of the normal operations duration Fir(twf)
and probabilities of emergencies Pie for nodes M0, M2, the
ones for which the emergencies probabilities happens most
frequently.

Figure 7. Distribution of the actions most frequently selected by the system

IX. FORMALIZING THE CONTROLLER AS A PROBLEM
SOLVER OF A DECISION MAKING OSTIS SYSTEM

In order to provide a possibility for the integration of the
developed system concept with other intellectual systems a
formalization of the proposed decision-making system based
on OSTIS technology is proposed.

In the context of the OSTIS technology problem solvers are
based on the multi-agent approach. According to this approach
the problem-solver is implemented as a set of agents which
are called sc-agents. These agents have shared memory and
can exchange data through sc-texts. It is important to note that
agents can be non-atomic, meaning that two or more sc-agents
are operating to provide functionality for such an agent.

The problem solver for the task under consideration can be
viewed as a decomposition of abstract non-atomic sc-agent.

abstract non-atomic sc-agent of cycle maintenance
recommendation system
⇒ decomposition of abstract sc-agent*:

{{{• abstract sc-agent of interaction with the
observation system

• abstract sc-agent of forming recommendations
• abstract sc-agent of forming maintenance

requests
}}}

1) abstract sc-agent of interaction with the observation
system – performs extraction of observations from the
means of hardware-software coupling in the technological
production cycle, it initializes the operation of agent
responsible for proposing recommendations.

2) abstract sc-agent of forming recommendations – based on
the received observations initializes the operation of neu-
rocontroller for receiving maintenance recommendations.

3) abstract sc-agent of forming maintenance requests –
based on the data received from the agent of forming
recommendation forms requests for maintenance for the
corresponding means of hardware-software coupling.

X. CONCLUSION

In this paper an approach is proposed to constructing an
intellectual system based on OSTIS technology for decision
making when realizing the adaptive control procedures for the
technological cycle.

The maintenance decision making system for the techno-
logical cycle is based on the neural network controller that is
constructed using the methods of reinforcement learning for
solving the task of optimal strategy search for the maintenance
of the technological cycle.

A formalization of the decision making system based on
the OSTIS technology is proposed, that allows integration into
other intellectual systems when solving the task of technological
production cycle control.

REFERENCES

[1] V. Golenkov, N. Gulyakina, N. Grakova, I. Davydenko, V. Nikulenka,
A. Eremeev, V. Tarasov. From Training Intelligent Systems to Training
Their Development Tools. Open Semantic Technologies for Intelligent
Systems (OSTIS), Minsk, Belarussian State University of Informatics an
Radioelectronics Publ., 2018, iss. 2, pp. 81–98.

[2] V. Golovko, A. Kroshchanka, V. Ivashenko, M. Kovalev, V. Taberko,
D. Ivaniuk. Principles of decision-making systems building based on
the integration of neural networks and semantic models, Otkrytye
semanticheskie tekhnologii proektirovaniya intellektual’nykh system [Open
semantic technologies for intelligent systems], 2019, pp. 91-102.

[3] Smorodin, V.S., Maximey, I.V. textitMethods and means of simulation
modeling of technological production processes, Gomel, F. Skorina State
University, 2007.

[4] Maximey, I.V., Smorodin, V.S., Demidenko, O.M. Development of
simulation models of complex technical systems, Gomel, F. Skorina State
University, 2014. 298 p.

[5] Sutton, R. S., Barto, A. G. Reinforcement Learning: An Introduction,
Cambridge, The MIT Press, 1998./

[6] Sutton, R. S., McAllester, D., Singh S., Mansour Y. Policy Gradient
Methods for Reinforcement Learning with Function Approximation,
Advances in Neural Information Processing Systems 1, NIPS 1999./

Программно-технологический
инструментарий адаптивного управления

технологическим циклом роботизированного
производства

Смородин В.С., Прохоренко В.А.
Предлагается подход к построению интеллектуальной

системы нового поколения в рамках технологии OSTIS для
принятия управляющих решений при реализации процедур
адаптивного управления технологическим циклом роботи-
зированного производства на базе средств программного-
аппаратного сопряжения.
В основе интеллектуальной системы принятия решений

лежит идея применения нейросетевых контроллеров, реша-
ющих задачи поиска оптимальной стратегии обслуживания
технологического цикла роботизированного производства.
Предлагается формализация подобной системы в рамках
применения технологии OSTIS.

Received 16.11.2022

404

Towards semantic representation of the IoT
ecosystem and smart home applications

Alexey Andrushevich, Iosif Vojteshenko
Belarusian State University

Minsk, Belarus
Email: andrushevich@bsu.by

Abstract—This paper describes an original approach to
building a cross-industry ecosystem of the Internet of Things
and smart home applications through its semantic represen-
tation based on OSTIS technology. The results will improve
the efficiency of the component approach to application
development in the Internet of Things in the future, as well
as enable automatic synchronization of different versions of
components, increasing their compatibility and consistency.

Keywords—Internet of things, smart home, semantic
representation, multi-component model

I. INTRODUCTION

Multi-agent and situational (contextual) processing has
found wide application in Internet of Things applications,
such as the smart home [1]. However, despite the
significant progress in recent years in the development of
sectoral communication systems and automated control
systems, the following problems are still relevant:

• heterogeneity of standards and technologies for
receiving, storing, processing, and transmitting data
in IoT applications;

• limited to the industry domain functionality;
• low adaptability, interoperability and scalability of

applications.
Thus, it is necessary to state that there is no unified

comprehensive approach to the design of an ecosystem
of inter-industry universal Internet of Things (IoT).

II. ANALYSIS OF EXISTING SOLUTION APPROACHES

It has to be noted that the concept of a ubiquitous,
cross-industry, context-aware, secure Internet of Things is
rapidly gaining popularity due to the rapidly developing
convergence of technology packages, system functions,
platforms and services. Vivid examples of such conver-
gence mechanisms are the emergence and development of
common system functions in the Internet of Things, such
as basic context awareness services / services, geolocation
and information security. Different branches of IoT appli-
cations also often implement and use similar functional
blocks, including user authentication and authorization,
geo-temporal localization, event processing, contextual
awareness and many others. For example, the scientific
community has already published [2]–[4] the development
results of underlying technologies and algorithms to
acquire and provide information about geo-temporal

location and context. In fact, the vision of a ubiquitous,
pervasive Internet of Things includes not only a multitude
of technologies, but also a dynamic changing environment
and a virtual information environment (space) of users.
The collection and use of contextual information goes
beyond conventional closed-loop applications that use
only simple location information. For example, universal
geo-temporal information is successfully modernizing IoT
applications in industries such as home, office, industry,
commerce, transportation, healthcare, and cities.

III. PROPOSED APPROACH

This paper proposes to take as a basis the well-known
components and libraries of OSTIS [5] technology to
formalize the description of the subject domain of the
Internet of Things ecosystem. The systems developed on
the basis of OSTIS Technology are called ostis-systems.
At the heart of OSTIS Technology is a universal way of
semantic representation (coding) of information in the
memory of intelligent computer systems, called as SC-
code. In this way, a better convergence of heterogeneous
standards and IoT technologies can be achieved, which
will contribute to the cross-industry integration of industry-
specific communication systems and automated control
systems into a single ecosystem.

So, let’s give the following definitions of the considered
subject area of the Internet of Things in SC-code:

Internet of Things
:= [A set of physical objects connected to the

Internet and exchanging data. The term "Internet
of Things" was first introduced in 1999 by
Kevin Ashton, an entrepreneur and co-founder
of Auto-ID Labs (a distributed research group
in radio-frequency identification and new sensor
technologies) at the Massachusetts Institute of
Technology (MIT).]

:= [The concept of a data network between physical
objects ("things") equipped with built-in means
and technologies for interacting with each other
or with the external environment]

Web of Things

405

:= [A global network of automatically generated web
pages that are automatically read by computing
devices embedded in physical objects (parking
lots, paving tiles, windows, doors, children’s toys,
dishes, clothes, soil, etc.). The Web of Things
is characterized by convergence and integration
with artificial intelligence technologies]

:= [W3C’s approach to using web technologies in
the Internet of Things to eliminate fragmentation
in Internet of Things development standards]

Context-dependent information system
:= [An information system that uses the concept

of context to provide relationally personalized
dynamic information and / or services to the user,
where the degree of relationship depends on the
user’s current environment, interests, objectives,
intentions, and actions]

API with representative state transfer
:= [The concept of building a distributed application

based on the client-server type, where each
request (REST-request) of the client to the server
contains comprehensive information about the
desired response (representative state) of the
server without the need to store information about
the client state (client session)]

Based on the authors’ many years of professional
experience, it can be argued that the organization of a uni-
versal generic cross-industry (or "horizontal") method of
technological implementation of system architecture and
applications in the Internet of Things can be represented
as three development streams, each dedicated to the imple-
mentation of one system platform of the Internet of Things.
These 3 fundamental application-independent platforms
together form a generic IoT architectural platform that
integrates into an interconnected heterogeneous system
of IoT subsystems, offering common functionality to
application developers and leaving developers more time
to focus on the business logic of their applications. The
Cloud Server Platform has high computing resources and
large amounts of memory, manages the entire IoT system
to the greatest extent. Mobile Platform is responsible
for presenting the resulting and useful information to
users. The Connected Object Platform, integrates sensory
information about the environment and is capable of
performing simple actions through connected objects.

Let us describe the above platforms in more details:
• Smart Server platform: a set of different servers to

provide API building blocks in the cloud for inte-
gration of applications and services. This platform
has high computational power, memory resources
and can interface with any standards. One can
consider the computational resources and capabilities

as unlimited. Its role is to collect, aggregate and
/ or interpret context-sensitive information from
connected IoT application nodes to make it efficient
and meaningful (customer value) for mobile device
users. It also provides application developers with
APIs of local or remote universal core components
that implement server-side functionality for all appli-
cations, such as: big data processing and analytics,
complex event processing, a localization engine,
a context management framework, a user profile
and user behavior model, security policies, access
control (including user registration, authentication
and trust schema). The most common examples of
Smart Server platform are Yandex.Cloud, Amazon
Web Services (AWS), Microsoft Azure, Google
Cloud, Cisco IoT Cloud Connect, SAP, Oracle IoT,
ThingsBoard, SiteWhere, Predix IoT, Thinger.io;

• Smart Mobile platform: a reference platform for
mobile applications that provides functionality on
mobile devices for all IoT applications. Mobile
devices are still most often owned by human end
users. Common functions of mobile clients are:
common user interface components, user profiling,
authentication and authorization, information security
(privacy), search and discovery of smart servers,
communication with server components, receiving
notifications from servers, "local" data mining al-
gorithms (thick client). This platform provides IoT
applications with the ability to use the contextual
information they need without having to worry
about how that contextual information is fetched.
The mobile platform can communicate both with
the Smart Server platform and directly with some
connected IoT nodes. Finally, the mobile UI platform
is responsible for the last stage of consumer value
creation through the multimedia presentation / output
of consistent and interesting information to users.
The most common examples of the Smart Mobile
platform are Zetta, HP Enterprise Universal, Carriots,
ThingsBoard, ThingWorx, and Xively. To reduce
the development time of mobile applications, so-
called hybrid applications are often used, the code
of which is adapted using frameworks for several
mobile hardware platforms at once. The most popular
frameworks are: PhoneGap, Rhodes, Appcelerator,
Xamarin, Ionic, Appy Pie, Native Script.

• Smart Object platform: integration of various gate-
ways, network hubs and related connected object
technologies. Connected objects can perceive physi-
cal environmental data (temperature, pressure, light,
humidity, vibration, etc.) through sensors or be
actuators (switch, actuator, solenoid, etc.). Data
transmission is usually organised through low-power
communication standards. Such devices may also
be equipped with a "lightweight" operating system.

406

They are very heterogeneous and can operate in very
different ways. However, all implementation features
of connected objects (things) must be hidden from
other devices in order to provide a homogeneous way
of communicating with other system components,
regardless of what data they perceive or how they
are arranged. Consequently, a single object software
interface is a key to being able to easily integrate
different gateways that provide access to different
connected objects via the same standards, without
requiring the designers of the UI application to
know the complexity of the relationship between
objects and the gateway and what functionality (data
collection or actuation) is performed on those objects.
This platform has common functions, such as: object
detection, security, and management. The most
common examples of the Smart Object platform are
open source IoT Kaa, Arduino, Flutter, Qualcomm’s
IoT Development Kit, Particle.io, ESP8266, Intel
Edison, Raspberry Pi, Beagle Bone.

IV. MULTI-COMPONENT MODEL

This section is devoted to the theoretical definition
of a universal multi-component model of a typical IoT
application for the platforms from the previous subsection.
A description for a "canonical" or "classic" Internet of
Things application architecture consisting of cloud or
server capacity, various data delivery protocols, user
devices (PCs, laptops, tablets, phones, embedded user
interfaces in any devices), any kind of data collection
sensors and any "device-executor-hands". Taking into
account the features and properties of the three parts of
the horizontal platform (Smart Server, Smart Mobile and
Smart Object), as well as the characteristics of Internet
of Things applications, the following universal tree-like
representation of a multi-component model of application
architecture in the Internet of Things is proposed.

All the components and parameters of this hierarchical
tree model are given as an example and are subject to
change in specific IoT applications.

(0) Internet of Things application S = A * B * C
(1) Smart Server Platform A = D * E
(1.1) Access Control D = G * H * I
(1.1.1) Registration G: G1 (Users), G2 (Machines)
(1.1.2) Authentication H: H1 (Periodic), H2 (On Demand)
(1.1.3) Trust Scheme I: I1 (Application Managed), I2 (Policy

Managed), I3 (Profile Managed), I4 (Risk Managed)
(1.2) Data Processing E = J * K * L
(1.2.1) Context management J: J1 (Event-driven), J2 (Polling)
(1.2.2) Flow processing K: K1 (Offline), K2 (Semi-Online),

K3 (Online)
(1.2.3) Data storage L: L1 (Simple), L2 (Hierarchical), L3

(Structured), L4 (Dynamic)
(2) Smart Mobile Platform B = M * Phi
(2.1) General Mobility Characteristics M = O * P
(2.1.1) Basic data traffic type O: O1 (Multimedia), O2

(Perception / reading), O3 (Control), O4 (Well-balanced)
(2.1.2) Location information P: P1 (On / Off mode), P2

(Based on accuracy)

(2.2) User Interface Phi = R * F
(2.2.1) User Interface R: R1 (Single Media), R2 (Multimedia),

R3 (Adaptive)
(2.2.2) Content delivery F: F1 (Service-based), F2 (Device-

based)
(3) Smart Object Platform C = Q * T
(3.1) Common Node Characteristics Q = W * V * U
(3.1.1) Power Source W: W1 (Passive), W2 (Active)
(3.1.2) Physical Interaction V: V1 (Read), V2 (Action), V3

(Combined)
(3.1.3) Encryption U: U1 (Yes), U2 (No)
(3.2) Connectivity T = X * Y * Z
(3.2.1) Media X: X1 (Wireless), X2 (Wired)
(3.2.2) Network type Y: Y1 (Grid), Y2 (Point-to-Point)
(3.2.3) Configuration Z: Z1 (Adaptive), Z2 (Static)
Based on the proposed multi-component model of the

Internet of Things ecosystem, such Internet of Things ap-
plications as smart home, office, industry, trade, transport,
healthcare, and smart cities can be implemented.

Let us focus on the popular smart home application
and describe its functions in more detail.

V. EXAMPLES OF FUNCTIONAL SMART HOME TASKS

Typical functional tasks implemented in the form of
components / applications in the design and development
of smart home software and hardware are [6]:

• task of access to the living quarters;
• task of monitoring lonely elderly people [7];
• task of controlling the lighting;
• task of energy management and energy efficiency [8].

Thus, the functional classification of smart home
applications can be defined using the SC code as follows:

Smart home application
:= [separate hardware and software combination that

operates according to functional requirements]
⇒ partitioning*:

Partitioning a class of smart home applications by
functionality
= {{{• physical access control application

⊃ monitor / control the status of
all entrances and exits

• supervisory application for elderly
⊃ domestic safety for elderly

• housing light control application
⊃ monitor and control the

natural and artificial light
• energy management and energy

efficiency application
⊃ monitor and control all

resources and energy
}}}

Let us describe in more details the functionality of the
aforementioned smart home applications.

A. Housing access system

The key task of such a system is the identification of
people who come near to the house entrance door and the
correct processing of identification results: if the person
who came to the door should have access to the house,
the door opens automatically, in the opposite case the

407

system offers to talk to the occupants of the house or
apartment. In this case, it is desirable that the system is
able to determine whether there is someone in the house.
If no one is at home, the system must inform the visitor
that he can not come in now.

In terms of devices, the system is equipped with a
camera as well as lamps for lighting. The camera is
triggered by the motion sensor, and the lights are also
triggered if the environment is too dark for the camera
to work. The system tries to recognize the visitor from
the camera images.

In addition to the camera data, the system also has the
residents’ location data at its disposal. If no one is home
according to the geo-location data, the system rejects
visitors. There is also an option for the user to enable
this mode manually. This can be useful, for example, if
residents are not to be disturbed for a period of time.

The system should also contain a graphical user
interface, through which one can both monitor selected
indicators and the status of devices, and control the
behavior of the system. In addition, through the user
interface, residents can be notified when someone tries
to enter the premises.

Thus, the following functional requirements for the
system can be identified:

1) The system allows to set multiple resident profiles so that
they can be identified on entrance.

2) If the identification is positive, the system opens the door
automatically.

3) In the default state, the camera and lights are turned off,
but they must be turned on as needed.

4) The system can determine whether or not anyone is in the
house. If no one is home, the system should inform the
visitor. If not, the system should offer to talk to people
inside the house.

5) The system must also support the "Do Not Disturb" mode.
The behavior of the system in this case corresponds to the
case when no one is in the room.

6) The system must notify residents about visitors.

In addition to the functional requirements, the following
non-functional requirements were also developed for the
system:

1) The system can recognize up to 10 different resident
profiles.

2) The system must respond correctly to device signals, even
if there is a break in the connection.

3) Manual operation is also allowed, in particular the use of
a key to open the door.

4) System extension with more devices is supported.

B. Surveillance System for Elderly People Living Alone

With the declining birth rate, the proportion of the
elderly in society is increasing, while the proportion of
people of working age is decreasing. Elderly people often
need help with health care, free movement and in case of
unwanted accidents. Through the use of Internet of Things
technology, such people could live in greater safety and
comfort. The field of the Internet of Things related to

elderly supervision is also called AAL (ambient or active
assisted living).

In [7] the following areas of application of IoT
technologies were identified:

1. information assistance (easy accessibility of all
necessary information),

2. intelligent situational behavior (the environment
should recognize typical patterns of behavior and offer
appropriate assistance),

3. prediction of undesirable events (recognition of such
situations on the basis of behavioral and physiological
indicators, and application of preventive measures),

4. recognizing and reacting to undesirable situations,
5. security (protection against intrusions using autho-

rization and authentication mechanisms),
6. confidentiality (minimization of privacy interfer-

ence).
To meet these needs, the system can rely on both

historical and real-time data. Two groups of sensors are
distinguished. Environmental data comes from environ-
mental sensors, e.g., temperature, motion. Data on human
behavior and condition comes from wearable sensors.
The system may also include feedback devices for visual
and voice notification of various events. State-of-the-art
wireless technology allows for a reliable, easy-to-install,
and inexpensive data communications infrastructure.

Central to AAL systems is the collection and storage
of data on user behavior, highlighting patterns and
identifying undesirable situations based on deviations
from them. The user’s state can be determined based on
data from several sensors located in the dwelling [7].

Among the undesirable situations, let’s especially
emphasize falls. One way to detect falls is to use a
wearable acceleration and atmospheric pressure sensor
together. In the case of unexpected acceleration, the
system reads the pressure data twice, on the basis of
which it draws a conclusion about the position of the
human body [7].

In terms of modeling such systems, three categories
of indicators can be distinguished. The physical aspects
include both environmental conditions and human health
parameters. Due to the continuous nature of this category,
the method of system dynamics combined with stochastic
modeling to account for the role of randomness seems
most natural. On the other hand, discrete-event modeling
allows one to account for emerging events, such as falls.
Finally, spontaneous user behavior is best modeled using
the agent-based method.

C. System for dwelling light control

Approximate functional requirements for the appli-
cation: When entering a room, the light comes on in
response to movement and 10 seconds after leaving the
room, the light turns off. The brightness of the light
must be adjusted to the level of street light entering the

408

dwelling. In addition, lighting from 11 p.m. to 6 a.m.
shall operate in nightlight mode, with reduced brightness.

D. Energy consumption and efficiency management
Due to the growing energy crisis and the inadequacy of

traditional centralized energy systems to new challenges,
a new model has emerged: hybrid distributed energy
production with a significant contribution of renewable
energy sources. This model is also characterized by a
bidirectional flow of information and electricity. There are
solutions for all stages of energy production, but on the
consumer side, the mainstream is the Internet of Things,
in particular home automation. Such systems are called
HEMS (home energy management system) [6]

Energy management systems have the following re-
quirements [8]:

1) The system collects real-time data on energy consumption
and production, as well as the status of devices.

2) The system stores and analyzes historical data.
3) The system manages the devices to ensure optimal energy

consumption.
4) The user can control the devices directly and remotely.
5) The system warns the user in case of undesirable situations.
Let’s consider the choice of metrics to evaluate the

performance of energy management systems.
The environment in which energy management systems

operate - residential premises, households, even office or
industrial buildings - leads to the multipurpose nature of
such systems [8], that is, the need to find a compromise
between several objectives. While the global goal is
always to increase energy efficiency, there are constraints
on its achievement, in particular on user comfort. In
addition, the formulation of a specific goal can vary
depending on the context: emissions reduction, monetary
savings, balancing the load on the energy system are
some possible directions.

Energy management objectives can be expressed
through cost. While the most obvious and predominant
factor is the price of energy consumed, factors such as
the initial installation costs of the system, the penalty for
contributing to the total load, the projected depreciation
of equipment, and the [9] greenhouse gas emissions tax
can also be included in the overall calculation formula.
In this way, the system can follow the single goal of
reducing the monetary costs derived from this formula.
Choosing the correct ratio can be difficult if there are no
established monetary values for some goals.

The main objective of those that are difficult to
represent in monetary terms is the comfort of users, that is,
their inconvenience associated with the quality of service
provided in the delivery of energy. The system should
not lead to a significant change in their lifestyle. Various
penalty functions can be used to assess the impact of
the system on users’ comfort: value limits, deviation,
no-service penalty [9]. In other words, if cost represents
some ratio to be minimized, then comfort requirements
impose constraints on possible strategies.

The described above considerations can be useful to
testing general approaches in optimizing energy consump-
tion. For example, the tasks to estimate the benefits
of adding a particular device and compare them with
the purchase and installation costs, or to select the best
algorithm among several algorithms under development.

From the end user’s point of view, the system may have
requirements such as access to historical data and trends,
the ability to remotely manage devices, and warnings
about undesirable situations [8]. Data privacy, reliability,
and system efficiency also play a role in evaluating the
quality of the system. Such requirements are more typical
for practical products intended for direct intended use
rather than research prototypes.

VI. TECHNICAL IMPLEMENTATION DETAILS

Design and software implementation of the above
components / applications was performed using the Node-
RED visual programming tool combined with the use
of cloud technologies, in particular Yandex IoT Core
and AWS IoT Core. Node-RED is a flow programming
tool for connecting hardware devices, APIs and online
services. Their combined use allows prototyping Internet
of Things systems without using real devices, allowing
to focus through the architecture of the system before its
physical implementation. One of the important advantages
of Node-RED is that the tool can be used to create a
simple prototype system in the same environment in which
the main development is or will be carried out. Such
an approach makes development much easier. Moreover,
Node-RED also provides the means for easy visualization
of the resulting system, which allows to prototype a
graphical interface within the same environment.

The use of cloud services by applications, which
include Yandex IoT Core and AWS IoT Core, significantly
reduces system infrastructure costs while providing better
scalability and fault tolerance. Cloud technologies offer
computing, storage and communication resources.

For message transfer within the system we have
used MQTT - a network protocol that uses a publisher-
subscriber architecture and runs on top of TCP/IP using
queuing (Message Queuing Telemetry Transport). It is
convenient when used with low network bandwidth.

The implementation of a prototype system to control
the lighting was carried out as described [10].

A. Running Node-RED on cloud-based virtual machine

To run the Node-RED environment, a virtual machine
is created in the Yandex Compute Cloud service. This
service is part of the Yandex Cloud and provides scalable
computing power for creating and managing virtual
machines. This service offers a wide range of virtual
machine settings, from different operating systems to
fine-tuning the resources used.

We have used a virtual machine based on the CentOS
8 operating system. As Node-RED didn’t require much

409

computing power to work with and execute the application
prototype, the resources allocated to the virtual machine
were minimal.

SSH was used to access the virtual machine. For
this purpose, a public IP address was allocated in the
settings of Yandex cloud services. SSH access to the
virtual machine is necessary to install Node-RED, but
the development can be carried out in a normal web
browser. After generating a key pair for SSH and setting
the corresponding public key in the virtual machine access
settings, the virtual machine can be accessed using the
command line interface. The official resource "Linux
Installers for Node-RED" was used to install Node-RED.
Node-RED was also enabled to start automatically when
the virtual machine was started. Access to Node-RED
was set to port 1880.

B. Integration of cloud service objects with Node-RED

The main elements of the Yandex IoT Core service are
the device and the registry. These objects can exchange
data and commands via MQTT protocol. The device in
this service is an abstraction of a physical device, and the
registry is a group of devices that are logically connected
to each other. Data can be transferred between the device
and the registry.

To add devices, one must first create a registry. To
access devices and registries, IoT Core suggests setting
a password, but one can also add a certificate. For our
system, let’s create one registry and three devices: a light,
a camera, and a geolocation module. The latter is only
needed for prototyping purposes and is an abstraction for
real devices. It is not necessary to create sensors in the
prototype, as this part is implemented through Node-RED.

To exchange MQTT messages between devices and
registries, the IoT Core provides a MQTT broker, which
is responsible for receiving, processing and delivering
messages. Node-RED maintains a connection to the
MQTT broker through dedicated MQTT Input and MQTT
Output nodes. Usually, registries correspond to MQTT
Input nodes, since this node allows to subscribe to
messages of any topic and thus its data can be sent
for processing. Devices more often correspond to MQTT
Output nodes. To connect these nodes to IoT Core objects,
one needs to specify identifiers, as well as to provide
passwords. Finally, MQTT nodes need to be signed to
the right topics in order to pass messages correctly.

VII. CONCLUSION

This paper describes an approach to describing the
domain in IoT applications based on the example of a
smart home based on OSTIS Technology.

The obtained results will improve in the future the
efficiency of the component approach to the development
of applications in the Internet of Things, as well as
enable automatic synchronization of different versions of
components, increasing compatibility and consistency.

ACKNOWLEDGMENT

The authors thank the teams of the Department of Soft-
ware Engineering of the Belarusian State University and
the Department of Intellectual Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for their help and valuable comments.

REFERENCES

[1] A. Andrushevich, M. Staub, R. Kistler, and A. Klapproth, “Towards
semantic buildings: Goal-driven approach for building automation
service allocation and control,” in 2010 IEEE 15th Conference
on Emerging Technologies & Factory Automation (ETFA 2010).
IEEE, pp. 1–6.

[2] A. De Paola, P. Ferraro, S. Gaglio, and G. Lo Re, “Context-
awareness for multi-sensor data fusion in smart environments,”
vol. 10037, pp. 377–391.

[3] A. Kamilaris and F. O. Ostermann, “Geospatial analysis and the
internet of things,” vol. 7, no. 7, p. 269, publisher: Multidisciplinary
Digital Publishing Institute.

[4] R. Dobrescu, D. Merezeanu, and S. Mocanu, “Context-aware
control and monitoring system with IoT and cloud support,” vol.
160, pp. 91–99, publisher: Elsevier.

[5] V. Golenkov, N. Guliakina, and D. Shunkevich, “Open technology
of ontological design, production and operation of semantically
compatible hybrid intelligent computer systems,” p. 690, 2021.

[6] B. R. Stojkoska and K. Trivodaliev, “A review of internet of things
for smart home: Challenges and solutions,” Journal of Cleaner
Production, vol. 140, pp. 1454–1464, 2017.

[7] M. Biallas, E. Birrer, D. Bolliger, A. Rumsch, R. Kistler,
A. Klapproth, and A. Andrushevich, “Living safely and actively
in and around the home: Four applied examples from avatars and
ambient cubes to active walkers,” in Safe at Home with Assistive
Technology. Springer, pp. 5–30.

[8] B. Zhou, W. Li, K. W. Chan, Y. Cao, Y. Kuang, X. Liu, and
X. Wang, “Smart home energy management systems: Concept,
configurations, and scheduling strategies,” Renewable and Sustain-
able Energy Reviews, vol. 61, no. C, pp. 30–40, 2016. [Online].
Available: https://ideas.repec.org/a/eee/rensus/v61y2016icp30-
40.html

[9] M. Beaudin and H. Zareipour, “Home energy management systems:
A review of modelling and complexity,” Renewable and Sustain-
able Energy Reviews, vol. 45, no. C, pp. 318–335, 2015. [Online].
Available: https://ideas.repec.org/a/eee/rensus/v45y2015icp318-
335.html

[10] (2022, Oct) Programmiruem upravlenie osveshcheniem po
datchikam dvizheniya i osveshcheniya na node-red [we program
lighting control by motion and lighting sensors on node-red].
[Online]. Available: https://habr.com/ru/post/396985/

О семантическом представлении
экосистемы интернета вещей и

приложений умного дома
Андрушевич А. А., Войтешенко И. С.

В работе рассмотрены семантическое представление эко-
системы интернета вещей и приложений умного дома на базе
технологии OSTIS. Уточнена формальная трактовка таких
понятий как интернет вещей, Веб Вещей.

Полученные результаты позволят повысить эффектив-
ность компонентного подхода к разработке приложений в
интернете вещей, а также обеспечить возможность авто-
матической синхронизации различных версий компонентов,
повышая совместимость и согласованность.

Received 31.10.2022

410

Next-generation intelligent geoinformation
systems

Sergei Samodumkin
Belarusian State University of

Informatics and Radioelectronics
Minsk, Belarus

Email: Samodumkin@bsuir.by

Abstract—In the article, an approach to the building
of intelligent geoinformation systems based on the OSTIS
Technology is considered. The formal ontology of the syntax
of the map language is explicitly set, which, in turn, allows
establishing the types of map objects and setting spatial
semantic relations; the formal ontology of the denotation
semantics of the map language is set, which, in turn, allows
establishing the semantics of displaying geo-entities on
maps depending on the types of terrain objects; the formal
ontology of terrain objects is set as a necessary condition
for integration with subject domains in interests of GIS.

Keywords—OSTIS, intelligent geoinformation system,
private design technology, ontology

I. INTRODUCTION

In geoinformatics, fundamental knowledge about space,
time, and the Earth is systematically organized on the
basis of information encoding.

The problems solved by geoinformation systems are di-
rectly related to inventory, analysis, modeling, prediction,
and management of the environment and territorial orga-
nization of society and are inherently intelligent, i.e. the
solution of which is included in the subject of the research
of intelligent systems. At the same time, the nomenclature
of problems involves quite independent subject domains,
for example, the organization of transport [1], dispatching
and ensuring the safety of spatial processes [2], geology
[3], [4], energetics [5], [6].

At the dawn of the origination of geoinformation
systems, development groups independently developed
formats for storing spatial data, display tools, as well as
sets of cartographic materials for the corresponding area.
The situation has changed radically after the creation
of web applications built on the basis of cartographic
services and technologies provided by Google (Google
Maps product) and Yandex (Yandex.Maps), as well as the
development of the OpenMapStreet [7] project, directed
on obtaining and providing open source geographic
information. Thus, it became possible for third-party
applications to repeatedly access distributed sets of carto-
graphic data and, accordingly, obtain metric and semantic
characteristics of terrain objects, i.e. to organize the
representation, storage, and usage of geospatial entities.

At the same time, the lack of a single unified method
of encoding information for solving GIS problems has led
to the fact that for various directions of GIS application,
their own models are being developed, adapted to the
applied subject domain and the feature of spatial data
organization.

In particular, a team of developers led by L. Massel
et al. [5], [6] proposed a methodological approach to
the integration of Earth’s remote sensing (ERS) data
based on data and knowledge integration methods in
systematic energy research. For this purpose, the authors
have developed a theoretical model of hybrid data based
on a fractal stratified model (FS-model) of the information
space. The hybrid data model is based on developing
a system of ontologies of the ERS information space,
including a meta-ontology describing the layers of the FS-
model and ontologies of certain layers (subject domains).

As a result of ontological modeling, an ontological
space is created, including a set of ontologies, which
should allow working not only with data but also with
knowledge, including descriptions of scenarios of various
situations, models, and software complexes, and integrat-
ing them into the IT infrastructure of interdisciplinary
research.

In the work [4], it is proposed to allocate geoconcepts
for the classification of geospatial entities and the devel-
opment of geo-ontologies of subject domains, that are in
the sphere of interests of GIS users, to solve problems
in geology.

In order to expand the problems solved by geoinfor-
mation systems, to unify various types of information
representation in GIS about space, time, and the Earth,
it is necessary to integrate existing web geoservices and
intelligent systems design technologies in order to design
next-generation geoinformation systems as a class of
intelligent computer systems based on a unified way of
encoding information and interoperability (compatibility)
which is a necessary requirement.

Within the OSTIS Technology, powerful tools have
been developed that allow describing any kind of knowl-
edge in a unified form, structuring the knowledge base
according to various criteria, as well as verifying its

411

quality and editing the knowledge base directly during its
operation [8], [9]. The basis of the knowledge base built
on the OSTIS Technology is a hierarchical system of
subject domains and their corresponding ontologies. The
ontology is interpreted as a specification for the system
of concepts of the corresponding subject domain, while
various types of ontologies are distinguished, each of
which reflects a certain set of properties for the concepts of
the subject domain, for example, terminological ontology,
logical ontology, set-theoretic ontology, etc.

II. PROPOSED APPROACH

Within this article, it is proposed to take as a basis
the approaches developed within the OSTIS Technology
for the development of ontologies of subject domains
and propose a hybrid knowledge model that ensures the
integration of data and knowledge of the subject domains
in geoinformatics, that is, propose a private technology
for designing intelligent geoinformation systems, for-
mally clarify the description of geo-entities, denotational
semantics of geo-entities, propose basic mechanisms
for processing geo-entities, and integrate a cartographic
interface to provide a dialog with the user based on the
language of questions.

The systems developed on the basis of the OSTIS Tech-
nology are called ostis-systems. The OSTIS Technology is
based on a universal method of semantic representation
(encoding) of information in the memory of intelligent
computer systems, called an SC-code. Texts of the SC-
code (sc-texts, sc-constructions) are unified semantic
networks with a basic set-theoretic interpretation. The
elements of such semantic networks are called sc-elements
(sc-nodes and sc-connectors, which, in turn, depending on
orientation, can be sc-arcs or sc-edges). The Alphabet of
the SC-code consists of five main elements, on the basis
of which SC-code constructions of any complexity are
built, including more specific types of sc-elements (for
example, new concepts). Memory that stores the SC-code
constructions is called semantic memory, or sc-memory.

As it was mentioned earlier, the basis of the knowledge
base within the OSTIS Technology is a hierarchical
system of subject domains and ontologies. From there, to
solve the problems set within this article, it is proposed
to develop a complex Subject domain of geoinformatics
and the corresponding ontology of terrain objects.

The development of the specified family of sc-models
of the subject domains in geoinformatics, as well as geo-
ontologies, will allow:

• describing geo-entities explicitly, which, in turn,
allows determining the types of map objects and
describing the geosemantic elements characteristic
to them: location, topology, proximity, orientation,
dynamics;

• establishing a formal ontology of the denotational
semantics of the map language, which, in turn, will

allow establishing the semantics of displaying geo-
entities on maps depending on the types of terrain
objects;

• establishing a formal ontology of terrain objects as
a necessary condition for integration with subject
domains in interests of GIS;

• creating tools for analyzing (understanding maps)
and translating them into the internal language of
knowledge bases, which will provide an under-
standing of the cartographic information stored in
geoservices in relation to a specific subject domain;

• forming in the future a kernel of intelligent geoin-
formation systems and a library of components
of intelligent geoinformation systems, which will
allow the usage of the designed components for the
development of applied geoinformation systems.

Next, we will consider in more detail the fragments
of sc-models and ontologies for the development of
intelligent geoinformation systems.

III. STRATIFIED MODEL OF THE INFORMATION SPACE
OF TERRAIN OBJECTS

In order to integrate subject domains with spatial com-
ponents of geoinformation systems and, respectively, to
increase the interoperability of components of intelligent
systems, a hybrid knowledge model is proposed. By
this model we will understand a stratified model of the
information space of terrain objects, which is formally
defined in semantic memory as follows:

Sµ, µ ∈ I = {SPOµ, SOM , EOM}, (1)

where I is a set of subject domains;
SPOµ is an ontology of the µ -th subject domain;
SOM is an ontology of terrain objects;
EOM is instances of terrain objects.
In Figure 1, a geometric interpretation of the

proposed hybrid model is demonstrated, where it is
shown that the layer of instances of terrain objects is
an integrating layer with subject knowledge of various
subject domains in which specific terrain objects are
already directly used. With such an organization of
knowledge, it is possible to repeatedly use the developed
ontology of terrain objects in different subject domain
and, accordingly, to solve different applied problems.

IV. FORMAL DESCRIPTION OF GEO-ENTITIES

In order to formally describe map objects, it is
necessary to allocate the semantic properties of geo-
entities. By the type of localization of map objects, areal,
linear, multilinear, and point objects can be distinguished.

terrain object
=cartographic object
=map object
<= subdividing*:

412

Figure 1. The stratified model of the information space of terrain objects

=Subdividing by localization
{

• areal object
• linear object
• multilinear object
• point object

}

Point objects are objects that cannot be expressed at the
map scale. Linear and multilinear objects are objects
whose length is expressed in a map scale, areal objects
are objects whose area is expressed in a map scale.
Accordingly, basic spatial semantic relations (SSR) are
introduced over map objects, which, in turn, can be
classified into three categories:

• cartographic (topological) relations invariant under
topological transformations of relation objects;

• metric relations in terms of distance and direction;
• relations of spatial regularity described by preposi-

tions before, behind, above, and below.

Accordingly, the following cartographic (topological)
relations are introduced to establish spatial-logical con-
nections.

cartographic relation
=topological relation
∋ inclusion*
∋ border*
∋ intersection*
∋ adjunction*

Thus, cartographic relations can be established
between the above localities of terrain objects: inclusion,
border, intersection, and adjunction.

V. FORMAL ONTOLOGY OF DENOTATIONAL
SEMANTICS OF THE MAP LANGUAGE

In order to interpret the syntactic representation
of objects on the map and establish the relation of
connectivity and adjacency between objects on the map,
it is necessary to clarify the denotational semantics of the

413

map language, i.e. to indicate their semantics of display
to the corresponding syntactic constructions of the map.
So, for example, the topological relation of adjunction
set over linear objects, depending on the type of the
map object, can be interpreted as the adjunction of roads
or the outlet of a river. In turn, for road map objects,
topological relations, both adjunction and intersection,
can be set with the corresponding denotation semantics,
intersection or adjunction of roads, whereas for river map
objects, only a topological relation of adjunction with
denotation semantics, the outlet of one river into another,
is possible.

VI. FORMAL ONTOLOGY OF TERRAIN OBJECTS

The basis for building an ontological model of
terrain objects is the classifier of topographic information
displayed on topographic maps and city plans, developed
and currently operating in the Republic of Belarus, NCRB
012-2007 [10]. In accordance with this condition, the ob-
jects of classification are terrain objects to which the map
objects correspond, as well as the signs (characteristics)
of these objects.

Let us set the subdivision of terrain objects on
orthogonal bases, which corresponds to the location of
objects in accordance with thematic layers in GIS.

terrain object
<= subdividing*:

=Subdividing by object type
{

• water objects and hydraulic facilities
• human settlements
• industrial, agricultural, and socio-cultural

objects
• road network and road buildings
• vegetation cover and soils

}

The ontology of terrain objects is a classification
tree according to the hierarchy shown in Figure 2. Genus-
species relations are set for each class of terrain objects.

For each terrain object, the main semantic charac-
teristics inherent only to it are highlighted. It should be
particularly noted that metric characteristics do not have
such a property. According to this classifier, each class
of terrain obejcts has a unique unambiguous denotation.
The classifier hierarchy has eight classification levels
and consists of a class code, subclass code, group code,
subgroup code, team code, subteam code, species code,
subspecies code. Thus, thanks to the coding method,
genus-species relations have already been set, reflecting
the relations of various classes of terrain objects, as well as
the characteristics of a specific class of terrain objects have
been established. Due to the fact that the basic properties
and relations not of specific physical objects but their
classes are set, such information is meta-information in

relation to specific terrain objects, and the totality of this
meta-information is an ontology of terrain objects, which,
in turn, is part of the knowledge base of an intelligent
geoinformation system.

As an example, we will demonstrate a fragment of
the formal description of the "River Naroch" object in
the knowledge base.

relation of spatial-logical connections between terrain
objects*
:= [class of connections that characterize the spatial-

logical relative position between terrain objects]
⇒ first domain*:

terrain object
⇒ second domain*:

terrain object
⊃ inclusion of terrain object*

∈ oriented relation
∈ binary relation
⇒ code*:

[91]
⇒ requirement*:

[The internal and external contours of
the same object should be connected
logically.]

⊃ belonging of terrain object*
⊂ belonging*
⇒ code*:

[205]
⇒ requirement*:

[It is set for objects or their parts that
are not connected metrically but have an
explicit logical connection.]

⊃ neighborhood of terrain objects*
∈ non-oriented relation
∈ binary relation
⇒ code*:

[218]
⇒ requirement*:

[It is set for the object and its caption
(proper name, explanatory caption, char-
acteristics caption).]

⊃ intersection of terrain objects*
⊃ intersection of sets*
⇒ code*:

[298]
⇒ requirement*:

[Intersecting terrain objects must have
the same coordinates of the intersection
point.]

⊃ adjunction of terrain objects*
∈ oriented relation
∈ binary relation
⇒ code*:

[298]

414

Figure 2. Hierarchy levels of classes of terrain objects

⇒ requirement*:
[Adjacent terrain objects must have the
same coordinates of the point at the
junction.]

⊃ extension of the terrain object*
∈ oriented relation
∈ binary relation
⇒ code*:

[271]
⇒ requirement*:

[The narrowed terrain objects must have
common points on the frame of the
nomenclature sheet (NS).]

terrain object parameter*
⊂ parameter
⊃ relative height

⇒ code*:
[1]

⊃ length
⇒ code*:

[2]
⊃ absolute height

⇒ code*:
[4]

⊃ depth
⇒ code*:

[7]
⊃ distance

⇒ code*:
[24]

relation characterizing the property of the terrain

object*
:= [class of relations that characterize a property or

properties of a terrain object]
⇒ first domain*:

terrain object
⊃ vegetation type*

∈ oriented relation
∈ binary relation
⇒ code*:

[62]
⊃ border type*

∈ oriented relation
∈ binary relation
⇒ code*:

[67]
⊃ distributional pattern*

∈ oriented relation
∈ binary relation
⇒ code*:

[78]

River Naroch
∈ river

⊂ terrain object
⇒ feature codes*:

[4 5 9 31 33]
∈ 165

∈ absolute height
⊂ parameter

⇒ measurement on a meter scale*:
165 m

∈ natural watercourse
∈ watercourse type

⊂ parameter

415

∈ natural watercourse
∈ watercourse type

⊂ parameter
⇒ proper name*:

[Naroch]
⇒ proximity period*:

[May–September]
⇒ water qualitative characteristics*:

[High water quality is also characterized by
indicators of the hydrochemical regime. The
mineral content in the water does not exceed
250 mg/l with a low amount of chlorides and
sulfates. High transparency is combined with low
coloration (5–7 °). The indicator of organic matter
– permanganate oxidizability – does not exceed
5-7 mgO/l. Biogenic elements – nitrogen and
phosphorus – are also characterized by minimal
values.]

VII. CONCLUSION

In the article, an approach to the building of
intelligent geoinformation systems based on the OSTIS
Technology is considered. The peculiarity of this approach
is the description of geo-entities and the definition of
spatial semantic relations, the description of the formal
ontology of the denotation semantics in the map language,
which, in turn, allows establishing the semantics of
displaying geo-entities on maps depending on the types
of terrain objects. Special attention is paid to the formal
ontology of terrain objects as a necessary condition for
ensuring integration with subject domains in interests of
GIS.

At the next stage of technology development, the
results obtained will make it possible to make tools
for analyzing (understanding maps) and translating them
into the internal language of knowledge bases, which, in
general, will provide an understanding of the cartographic
information stored in geoservices in relation to a specific
subject domain, as well as further form a kernel of
intelligent geoinformation systems and a library of
components of intelligent geoinformation systems.

ACKNOWLEDGMENT

The author would like to thank the research group of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics for its help in the work and valuable
comments.

The work was carried out with the partial financial
support of the BRFFR (BRFFR-RFFR No. F20R-414).

REFERENCES

[1] Belyakova, M. L., Intellektual’nye geoinformacionnye sistemy dlya
upravleniya infrastrukturoj transportnyh kompleksov [Intelligent
geoinformation systems for managing the infrastructure of
transport complexes]. Taganrog : Southern Federal University
Press, 2016, 190 p.

[2] Ivakin, Ya.A., “Metody intellektualizacii promyshlennyh
geoinformacionnyh sistem na osnove ontologij [Methods of
intellectualization of industrial geoinformation systems based on
ontologies],” dis. ... doct. of techn. sc. : 05.13.06, Saint-Petersburg,
2009, 371 p.

[3] B. A.A., Konceptual’noe proektirovanie GIS i upravlenie
geoinformaciej. Tekhnologii integracii, kartograficheskogo
predstavleniya, veb-poiska i rasprostraneniya geoinformacii
[Conceptual GIS design and geoinformation management.
Technologies of integration, cartographic representation, web
search and distribution of geoinformation]. LAP LAMBERT
Academic Publishing, 2012, 484 p.

[4] B. A.A, “Semantika geoprostranstvennyh ob’ektov,
funkcional’naya grammatika i intellektual’nye gis [Semantics
of geospatial objects, functional grammar and intelligent GIS],”
in Proceedings of higher educational institutions. Geology and
exploration, no. 2, 2014, pp. 62–69.

[5] Massel, L. V., and Vorozhtsova, T. N., and Pyatkova, N. I., “Onto-
logicheskij inzhiniring dlya podderzhki prinyatiya strategicheskih
reshenij v energetike [Ontological engineering to support strategic
decision-making in the energy sector],” Design Ontology, vol. 7,
no. 1(23), pp. 66–76, 2017.

[6] Mussel, L. V. and Kopaygorodsky, A. N., “Metodicheskij podhod
k integracii dannyh distancionnogo zondirovaniya zemli na osnove
metodov integracii dannyh i znanij v sistemnyh issledovaniyah
energetiki [Methodological approach to the integration of earth
remote sensing data based on data and knowledge integration
methods in energy system research],” in Spatial data processing
and remote monitoring of the natural environment and large-
scale anthropogenic processes (DRPS’2013) : Proceedings of
the Conference, Barnaul, September 30 – October 04, 2013.,
Russian Academy of Sciences, Sib. department, In-t of Water and
Environmental problems; editor: N.N. Dobretsov [et al.]. Barnaul,
2013, pp. 4–13.

[7] OpenStreetMap [OpenStreetMap]. [Online]. Available:
http://www.prolog-plc.ru/

[8] Davydenko, I., “Semantic models, method and tools of knowledge
bases coordinated development based on reusable components,” in
Otkrytye semanticheskie tehnologii proektirovanija intellektual’nyh
sistem [Open semantic technologies for intelligent systems],
V. Golenkov, Ed., BSUIR. Minsk , BSUIR, 2018, pp. 99–118.

[9] V. Golenkov, N. Guliakina, and D. Shunkevich, Open technology
of ontological design, production and operation of semantically
compatible hybrid intelligent computer systems, V. Golenkov, Ed.
Minsk: Bestprint [Bestprint], 2021.

[10] “Cifrovye karty mestnosti; informaciya, otobrazhaemaya na
topograficheskih kartah i planah naselennyh punktov : OKRB 012-
2007 [digital terrain maps; information displayed on topographic
maps and plans of human settlements: Ncrb 012-2007],” 2007.

Интеллектуальные геоинформационные
системы нового поколения

Самодумкин С.А.
В работе рассмотрен подход к построению интеллек-

туальных геоинформационных систем на основе Технологии
OSTIS. Явно задана формальная онтология синтаксиса язы-
ка карт, что, в свою очередь, позволило установить типы
объектов карт и задать пространственные семантические
отношения; задана формальная онтология денотационной
семантики языка карт, что, в свою очередь, позволяет задать
семантику отображения геосущностей на картах в зависи-
мости от типов объектов местности; задана формальная
онтология объектов местности как необходимое условие для
интеграции с предметными областями в интересах ГИС.

Received 01.11.2022

416

Information security
in intelligent semantic systems

Valery Chertkov
Euphrosyne Polotskaya State University of Polotsk

Polotsk, Belarus
Email: v.chertkov@psu.by

Abstract—The development of artificial intelligence
causes the transition to semantic information processing
technologies, which require the formation of new ap-
proaches to ensuring the information security systems. The
article is devoted to the review of approaches and principles
of ensuring security in intelligent systems of the new gener-
ation. The current state of ensuring information security in
intelligent systems is given and the formed main goals and
directions for the development of information security are
presented. The methods of ensuring information security
considered in the article are extremely important when
analyzing the level of security of new generation intelligent
systems.

Keywords—information security, intelligent systems, se-
mantic systems

I. INTRODUCTION

One of the modern directions in the development of
information technologies is the transition to working
with the semantics of information and the creation of
intelligent systems of a new generation [1]. The main
advantage of which is the organized work with the
semantic knowledge base. A feature of such a knowledge
base is that the intelligent system is able to obtain new
knowledge that is not directly contained in the database.

Since the design, construction and use of intelligent
systems based on semantic knowledge bases began rel-
atively recently, the issue of ensuring their security has
not yet been fully resolved. In this regard, it is relevant to
develop methods and algorithms that allow maintaining
the safety of the functioning of such intelligent systems.

Currently, many methods have been developed to
ensure information security in intelligent systems based
on storing information in relational databases. But these
methods cannot be used to ensure the security of se-
mantic intelligent systems. Because such systems use
semantic databases. Semantic databases are characterized
by a strong hierarchical relationship between elements.
Also, in semantic databases, it is possible to obtain
new knowledge by using certain logical rules. Separate
methods and algorithms have already been developed to
solve the problems of ensuring the security of semantic
databases: user access control based on named RDF
graphs, user access control at the triplet level in the RDF
storage. But the developed methods and algorithms have

a number of shortcomings that do not allow to effectively
ensure the comprehensive security of semantic databases.

II. ARTIFICIAL INTELLIGENCE AND INFORMATION
SECURITY

Based on the analysis of literary sources, the in-
formation security of intelligent systems is considered
from two aspects: 1) the use of artificial intelligence
in information security; 2) organization of information
security in intelligent systems.

A. Applications of artificial intelligence in information
security

It should be noted that artificial intelligence (machine
learning) is actively used to monitor and analyze secu-
rity vulnerabilities in information transmission networks
[2]. An artificial intelligence system allows machines to
perform tasks more efficiently, such as visual percep-
tion, speech recognition, decision making, and translation
from one language to another.

– intrusion detection: artificial intelligence can detect
network attacks, malware infections and other cyber
threats;

– cyber analytics: artificial intelligence is also used
to analyze big data in order to identify patterns and
anomalies in the organization’s cyber security system;

– secure software development: native intelligence can
help create more secure software by providing developers
with real-time feedback.

In [3], a method for constructing a neuroimmune
system for analyzing information security incidents is
proposed, which combines modules for collecting and
storing (compressing) data, a module for analyzing and
correlating information security events, and a subsystem
for detecting network attacks based on convolutional
neural networks. The use of machine learning tech-
nologies in information security creates bottlenecks and
system vulnerabilities that can be exploited and have the
following disadvantages [4]:

- data sets that must be formed from a significant
number of input samples, which requires a lot of time
and resources;

– requires a huge amount of resources, including
memory, data and computing power;

417

– frequent false positives that disrupt the operation and
generally reduce the effectiveness of such systems;

– organized attacks based on artificial intelligence
(semantic viruses).

B. Organization of information security in intelligent
systems

Let’s define the goals of ensuring the information
security of new generation systems.

From the monograph by A.V. Ostroukh [5], the goals
of ensuring the information security of traditional intelli-
gent systems are to ensure the safety and confidentiality
of information, protection and guarantee of the avail-
ability, reliability and integrity of information, avoiding
information leakage, minimizing damage from events
that threaten information security.

It should be noted that since the new generation of
intelligent systems will interact with similar systems
while understanding what the request is about, the goals
of the provision will look different. The goals of ensuring
the information security of new generation intelligent
systems are: to ensure the safety of the semantic com-
patibility of information, to protect the reliability and
integrity of information, to ensure the availability of
information at different levels of the intelligent system, to
minimize damage from events that threaten information
security.

Currently, classical approaches and principles have
been developed to ensure the security of knowledge bases
(data), communication interfaces (information exchange)
between the components of intelligent systems, such as
encryption of transmitted data, filtering of unnecessary
(redundant) content, and data access control policy.

The information security system should be created on
the following principles:

- the principle of equal strength - means ensuring the
protection of equipment, software and control systems
from all types of threats;

- the principle of continuity - provides for continuous
security of information resources, IP for the continuous
provision of public services;

- the principle of reasonable sufficiency - means the
application of such measures and means of protection
that are reasonable, rational and the costs of which do
not exceed the cost of violating information security;

- the principle of complexity - to ensure security in the
whole variety of structural elements, threats and channels
of unauthorized access, all types and forms of protection
should be applied in full;

- the principle of comprehensive verification - is to
conduct special studies and inspections, special engi-
neering analysis of equipment, verification studies of
software. Alarm messages and error parameters should
be continuously monitored, hardware and software equip-
ment should be constantly tested, as well as software

integrity control, both during software loading and during
operation;

- the principle of reliability - methods, means and
forms of protection should reliably block all penetration
routes and possible channels of information leakage;

- the principle of universality - security measures
should block the paths of threats, regardless of the place
of their possible impact;

- the principle of planning - planning should be carried
out by developing detailed action plans to ensure the
information security of all components of the system for
the provision of public services;

- the principle of centralized management - within a
certain structure, the organized and functional indepen-
dence of the process of ensuring security in the provision
of public services should be ensured;

- the principle of purposefulness - it is necessary to
protect what must be protected in the interests of a
specific goal;

- the principle of activity - protective measures to
ensure security in the work of the process of providing
services should be implemented with a sufficient degree
of perseverance;

- the principle of qualification of service personnel -
maintenance of equipment should be carried out by em-
ployees trained not only in the operation of equipment,
but also in technical issues of ensuring the security of
information;

– the principle of responsibility - the responsibility
for ensuring information security must be clearly es-
tablished, transferred to the appropriate personnel and
approved by all participants as part of the information
security process.

III. THE MAIN DIRECTIONS OF ENSURING
INFORMATION SECURITY OF SEMANTIC INTELLIGENT

SYSTEMS

Consider the architecture of the Ecosystem OSTIS
(Open Semantic Technology for Intelligent Systems),
which is shown in Figure 1.

Figure 1. The architecture of the Ecosystem OSTIS.

The core of OSTIS technology includes: – OSTIS
semantic knowledge base: it can describe any kind of

418

knowledge, while it is easy to supplement it with new
types of knowledge.

– OSTIS problem solver: Based on a multi-agent
approach. This approach makes it easy to integrate and
combine any problem solving models.

– interface of the OSTIS system: it is a subsystem with
its own knowledge base and problem solver.

The presented architecture of the OSTIS Ecosystem
implements:

– all knowledge bases are united into the Global
Knowledge Base, the quality of which (logicality, cor-
rectness, integrity) is constantly checked by many agents.
All problems are described in a single knowledge base,
and specialists are involved to eliminate them, if neces-
sary;

– each application associated with the OSTIS ecosys-
tem has access to the latest version of all major OSTIS
components, the components are updated automatically;

– each owner of the OSTIS Ecosystem application can
share part of their knowledge for a fee or for free.

In the considered Ecosystem OSTIS, it is required
to organize information security at each level: data
exchange, data access rights, authentication of Ecosys-
tem clients, data encryption, obtaining data from open
sources, ensuring the reliability and integrity of stored
and transmitted data, monitoring violation of links in the
database knowledge. It should be noted that for some
areas of ensuring the information security of semantic
systems, methods and algorithms developed within the
framework of traditional intelligent systems will be ap-
plied. For intelligent systems of the new generation, a
number of aspects can be distinguished, within which
the development of new algorithms and methods for
ensuring information security is required. Let us present
the main directions of ensuring the information security
of semantic intelligent systems.

A. Restriction of information traffic analyzed by the
intelligent system

The exponential growth of the amount of information
circulating in information flows and resources under the
conditions of quite definite quantitative restrictions on
the capabilities of the means of its perception, storage,
transmission and transformation forms a new class of
information security threats characterized by the re-
dundancy of the total incoming information traffic of
intelligent systems.

As a result, the overflow of information resources of
an intelligent system with redundant information can
provoke the spread of distorted (destructive semantic)
information. The general methodology for protecting
intelligent systems from useless information is carried
out through the use of axiological filters that implement
the functions of numerical evaluation of the value of
incoming information, selection of the most valuable and

screening (filtering) of less valuable (useless or harmful)
using well-defined criteria.

Active means of destroying the semantics of knowl-
edge bases (semantic viruses) should also be singled out
as a separate category of information security threats [6].

B. Knowledge base access control policy

Mandatory security policy (MAC - mandatory access
control) is based on mandatory (forced) access control,
which is determined by four conditions:

- all subjects and objects of the system are identified;
- a lattice of information security levels is specified;
- each object of the system is assigned a security

level that determines the importance of the information
contained in it;

- each subject of the system is assigned an access level
that determines the level of trust in him in the intellectual
system.

In addition, the mandate policy has a higher degree
of reliability. The implementation of this policy is based
on the developed algorithm for determining the agreed
security levels for all elements of the ontology.

Since semantic knowledge bases, unlike a relational
database, allow executing rules for obtaining logical
conclusions, it is relevant to ensure data security by
developing algorithms and methods that can only receive
data that have security levels less than the access levels
of the subjects who requested them [7].

1) Connectivity: All information stored in the seman-
tic memory of the intelligent system is systematized in
the form of a single knowledge base. Such informa-
tion includes directly processed knowledge, interpreted
programs, formulations of tasks to be solved, plans and
protocols for solving problems, information about users,
a description of the syntax and semantics of external
languages, a description of the user interface, and much
more [8]. In the information knowledge base between
fragments of information (units of information), the
possibility of establishing links of various types should
be provided. First of all, these links can characterize
the relationship between information units. Violation of
connections leads to an incorrect logical conclusion, or
to obtaining false knowledge, or to incompatibility of
knowledge in the base.

2) Application of semantic metric: On a set of infor-
mation units, in some cases it is useful to set a relation
that characterizes the situational proximity of information
units, i.e. the strength of the association between infor-
mation units. It could be called the relevance relation for
information units [9]. This attitude makes it possible to
single out some typical situations in the knowledge base.
The relevance relation when working with information
units allows you to find knowledge that is close to what
has already been found.

419

3) Semantic Compatibility: Internal semantic compat-
ibility between the components of an intelligent com-
puter system (i.e., the maximum possible introduction of
common, coinciding concepts for various fragments of a
stored knowledge base), which is a form of convergence
and deep integration within an intelligent computer sys-
tem for various types of knowledge and various problem
solving models, which ensures effective implementation
of the multimodality of an intelligent computer system.
External semantic compatibility between different intel-
ligent computer systems, which is expressed not only
in the commonality of the concepts used, but also in
the commonality of basic knowledge and is a necessary
condition for ensuring a high level of socialization of
intelligent computer systems [10].

4) Activity: In an intellectual system, the knowledge
available in this system contributes to the actualization
of certain actions. Thus, the execution of activities in an
intelligent system should be initiated by the current state
of the knowledge base. The appearance in the database of
facts or descriptions of events, the establishment of links
can become a source of system activity [11]. Including
deliberate distortion of information and communications
can become a source of deliberate distortion of informa-
tion.

IV. CONCLUSION

Currently, there are no semantic knowledge bases
in which internal interpretability, structuring, coherence
would be fully implemented, a semantic measure would
be introduced, and knowledge activity would be ensured.
The methods of ensuring information security considered
in the article are extremely important when analyzing the
level of security of new generation intelligent systems.
Systems that comply with the semantic security model
will be resistant to attacks based on plain texts.

REFERENCES

[1] V. V. Golenkov, N. A. Gulyakina, I. T. Davydenko, and D. V.
Shunkevich, “Semantic technologies of intelligent systems design
and semantic associative computers,” Doklady BGUIR, vol. 3, pp.
42–50, 2019.

[2] S. Isoboev, D. Vezarko, and A. Chechel’nitskii, “Intellektual’naya
sistema monitoringa bezopasnosti seti besprovodnoi svyazi na
osnove mashinnogo obucheniya,” Ekonomika i kachestvo sistem
svyazi, vol. 1(23), pp. 44–48, 2022.

[3] V. A. Chastikova and A. I. Mityugov, “Metodika postroeniya
sistemy analiza intsidentov informatsionnoi bezopasnosti
na osnove neiroimmunnogo podkhoda,” Elektronnyi Setevoi
Politematicheskii Zhurnal «Nauchnye Trudy Kubgtu», vol. 1, pp.
98–105, 2022.

[4] D. D. Abdurakhman, “Iskusstvennyi intellekt i mashinnoe
obuchenie v kiberbezopasnosti,” Sovremennye problemy
lingvistiki i metodiki prepodavaniya russkogo yazyka v vuze i
shkole, vol. 34, pp. 916–921, 2022.

[5] A. V. Ostroukh, Intellektual’nye sistemy: monografiya. Krasno-
yarsk: Nauchno-innovatsionnyi tsentr, 2020.

[6] A. Palagin, “Semanticheskie aspekty informatsionnoi
bezopasnosti: kontsentratsiya znanii,” Istoriya i arkhivy,
vol. 13(75), pp. 38–58, 2011.

[7] K. Khoang and A. Tuzovskii, “Resheniya osnovnykh zadach
v razrabotke programmy podderzhki bezopasnosti raboty s
semanticheskimi bazami dannykh,” Doklady TUSURa, vol. 2(28),
pp. 121–125, 2013.

[8] V. V. Golenkov, N. A. Gulyakina, I. T. Davydenko, and D. V.
Shunkevich, “Semanticheskaya model’ predstavleniya i obrabotki
baz znanii,” in Data analytics and management in data-intensive
fields: a collection of scientific papers of the XIX International
Conference (DAMDID/RCDL’2017). Moscow: Federal’nyi issle-
dovatel’skii tsentr "Informatika i upravlenie" Rossiiskoi akademii
nauk, 2017, pp. 412–419.

[9] A. V. Dement’ev, “Metriki semanticheskikh dannykh,” Molodoi
uchenyi, vol. 24(419), pp. 48–51, 2022.

[10] V. V. Golenkov, N. A. Gulyakina, and D. V. Shunkevich,
“Tekushchee sostoyanie i napravleniya razvitiya tekhnologii
iskusstvennogo intellekta,” in Informatsionnye tekhnologii i
sistemy 2018 (ITS 2018): materialy mezhdunarodnoi nauchnoi
konferentsii [Information Technologies and Systems 2018 (ITS
2018)]. Minsk : BSUIR, 2018, pp. 11–16.

[11] V. N.Druzhinina and D. V. Ushakova, Kognitivnaya psikhologiya.
Uchebnik dlya vuzov. Moscow: PER SE, 1974.

Информационная безопасность
интеллектуальных семантических систем

Чертков В. М.

Развитие искусственного интеллекта обуславлива-
ет переход на семантические технологии обработки
информации, которые требует формирование новых
подходов к обеспечению информационной безопасно-
сти таких систем. Статья посвящена обзору подходов
и принципов обеспечения безопасности в интеллек-
туальных системах нового поколения. Приводиться
современное состояние обеспечения информационной
безопасности в интеллектуальных системах и пред-
ставлены сформированные основные цели и направ-
ления по развитию обеспечения информационной без-
опасности. Рассмотренные в статье методы обеспече-
ния безопасности информации являются чрезвычайно
важными при анализе уровня защищённости интеллек-
туальных систем нового поколения.

Received 01.11.2022

420

AUTHOR INDEX

A

Alexey Andrushevich 405

Elias Azarov 239

B

Kseniya Bantsevich 87, 357

Stanislau Butrin 81, 273

C

Valery Chertkov 417

G

Vladimir Golenkov 27, 327

Vladimir Golovko 173

Artem Goylo 99, 209

Natalya Gulyakina 27, 375

H

Aliaksandr Halavaty 251

Katsiaryna Halavataya 251

I

Dzmitry Ivaniuk 395

Valerian Ivashenko 41

K

Anna Karkanitsa 195

Alena Kazlova 375

Mikhail Kovalev 173, 327

Viktor Krasnoproshin 195

Aliaksandr Kroshchanka 173, 187

L

Wenzu Li 381

Denis Likhachov 239

N

Sergei Nikiforov 99, 209

O

Maksim Orlov 161, 261

P

Nick Petrovsky 239

Vladislav Prokhorenko 401

Q

Longwei Qian 217

R

Vadim Rodchenko 195

S

Mikhail Sadouski 199, 279

Sergei Samodumkin 411

Daniil Shunkevich 119, 285

Viktor Smorodin 401

T

Valery Taberko 395

Valery Taranchuk 327, 369

V

Maxim Vashkevich 239

Anastasia Vasilevskaya 161

Iosif Vojteshenko 405

Z

Alexandr Zagorskiy 13, 347

Vadim Zahariev 239

Kuanysh Zhaksylyk 239

Alexandra Zhmyrko 65, 279

Nikita Zotov 145, 297

421

АВТОРСКИЙ УКАЗАТЕЛЬ

А

Азаров И.С. 239

Андрушевич А.А. 405

Б

Банцевич К. А. 87, 357

Бутрин С.В. 81, 273

В

Василевская А. П. 161

Вашкевич М.И. 239

Войтешенко И.С. 405

Г

Гойло А. А. 99, 209

Голенков В.В. 27, 327

Головатый А.И. 251

Головатая Е.А. 251

Головко В.А. 173

Гулякина Н.А. 27, 375

Ж

Жаксылык К.Ж. 239

Жмырко А. В. 65, 279

З

Загорский А. Г. 13, 347

Захарьев В.А. 239

Зотов Н. В. 145, 297

И

Иванюк Д.С. 395

Ивашенко В. П. 41

К

Карканица А.В. 195

Ковалёв М.В. 173, 327

Козлова Е. И. 375

Краснопрошин В.В. 195

Крощенко А.А. 173, 187

Л

Ли В. 381

Лихачев Д.С. 239

Н

Никифоров С. А. 99, 209

О

Орлов М. К. 161, 261

П

Петровский Н.А. 239

Прохоренко В. А. 401

Р

Родченко В.Г. 195

С

Садовский М. Е. 199, 279

Самодумкин С. А. 411

Смородин В. С. 401

Т

Таберко В.В. 395

Таранчук В.Б. 327, 369

Ц

Цянь Л. 217

Ч

Чертков В. М. 417

Ш

Шункевич Д. В. 119, 285

422

Научное издание

Открытые семантические технологии

проектирования интеллектуальных систем

Open Semantic Technologies

for Intelligent Systems

Сборник научных трудов

Основан в 2017 году

Выпуск 6

В авторской редакции

Ответственный за выпуск В. В. Голенков

Компьютерная вёрстка Н. В. Гракова

Подписано в печать 21.11.2022. Формат 60*84 1/8.

Бумага офсетная. Гарнитура «Таймс». Ризография.

Усл. печ. л. 50,22. Уч.-изд. л. 44,62.

Тираж 105 экз. Заказ 113.

Полиграфическое исполнение

УП «Бестпринт». Свидетельство о государственной регистрации издателя,

изготовителя, распространителя печатных изданий №1/160 от 27.01.2014.

Ул. Филатова, д. 9, к. 1, 220026, г. Минск

12th international scientific and technical conference

«Open Semantic Technologies

for Intelligent Systems»

Open Semantic Technologies for Intelligent Systems
OSTIS-2023 April 20-22, 2023 Minsk. Republic of Belarus

C A L L F O R P A P E R S

We invite you to take part in XIII International Scientific and Technical Conference “Open Semantic

Technologies for Intelligent Systems” (OSTIS-2023), which will focus on areas of use of the semantic

technologies.

Conference will take place from April, 20th to April, 22th, 2022 at the Belarusian State University of

Informatics and Radioelectronics, Minsk, Republic of Belarus.

Research Papers Collection language: English

Working languages of the conference: Russian, Belarusian, English

MAIN ORGANIZERS OF THE CONFERENCE
 Ministry of Education

 Ministry of Communications and Informatization

 State Institution “Administration of High Technologies Park” (Republic of Belarus)

 Educational-scientific association in the direction of "Artificial Intelligence" (ESA-AI)

 Belarusian State University of Informatics and Radioelectronics (BSUIR)

 Brest State Technical University (BrSTU)

 The State Scientific Institution «The United Institute of Informatics Problems of the National Academy of

Sciences of Belarus» (UIIP NASB)

 Russian Association of Artificial Intelligence (RAAI)

 Belarusian Public Association of Artificial Intelligence Specialists (BPA of Artificial Intelligence Specialists)

CONFERENCE TOPICS:

 Underlying principles of semantics-based knowledge representation, and their unification.

Types of knowledge and peculiarities of the semantics-based representation of various knowledge and metaknowledge types.

Links between knowledge; relations, that are defined on the knowledge.

Semantic structure of a global knowledge base, that integrates various accumulated knowledge.

 Parallel-oriented programming languages for processing of the semantics-based representation of knowledge bases.

 Models for problem solving, that are based on knowledge processing, which occurs directly at the semantics-based

representation level of knowledge being processed. Semantic models of information retrieval, knowledge integration,

correctness and quality analysis of knowledge bases, garbage collection, knowledge base optimization, deductive and

inductive inference in knowledge bases, plausible reasoning, pattern recognition, intelligent control. Integration of various

models for problem solving

 Semantic models of environment information perception and its translation into the knowledge base.

 Semantic models of multimodal user interfaces of intelligent systems, based on the semantic representation of knowledge

used by them, and unification of such models.

 Semantic models of natural language user interfaces of intelligent systems. The structure of semantic representation of

linguistic knowledge bases, which describe natural languages and facilitate solution of natural language text and speech

interpretation problems, and of natural language texts and speech messages synthesis, that are semantically equal to certain

knowledge base fragments.

 Integrated logic-semantic models of intelligent systems, based on semantic knowledge representation, and their unification

 Various technical platforms and implementation variants of unified logic-semantic models of intelligent systems, based on

semantic knowledge representation

 Models and means, that are based on the semantic representation of knowledge and that are oriented to the design of

various typical components of intelligent systems (knowledge bases, programs, problem solvers, user interfaces).

 Models and means, that are based on semantic representation of knowledge and that are oriented to the complex design of

various classes of intelligent systems (intelligent reference systems, intelligent learning systems, intelligent control systems,

intelligent robotics systems, intelligent systems for design support etc.)

 Applied intelligent systems, that are based on the semantic representation of knowledge used by them

CONFERENCE GOALS AND FORMAT

The goal of the conference is to discuss problems of creation of the Open Complex Semantic

Technology for Hybrid Intelligent Systems Design. This determines the Conference format, which

involves wide discussion of various questions of creating of such technology and poster sessions.

During the poster sessions every participant of the conference will have an opportunity to

demonstrate his results. Conference format assumes exact start time of each report, and exact time of its

exhibition presentation.

One of the major objectives of the conference is to attract not only scientists and postgraduate

students, but also students who are interested in artificial intelligence, as well as commercial organizations

willing to collaborate with research groups working on the development of modern technologies for

intelligent systems design.

PARTICIPATION TERMS AND CONDITIONS

All those interested in artificial intelligence problems, as well as commercial organizations willing to

collaborate with research groups working on the development of modern technologies for intelligent

systems design are invited to take part in the Conference.

To participate in the OSTIS-2023 conference, it is necessary to register in the CMT system before

March 13, 2023, find conference page, and from there:

 submit a participation form for the OSTIS conference. Each participation form field is required,

including indication of the reporter. By filling in the registration form, you agree that your personal data will

be processed by the Organizing Committee of the Conference, and that the paper and information about the

authors will be published in printed and electronic format. Participation form should contain information on

all of the authors. If author(s) are participating with a report, participation form should have their color

photo(s) attached (they are needed for the Conference Program);

 upload an article for publication in the OSTIS Research Papers Collection. Papers should be

formatted according to the provided template (see https://proc.ostis.net/for-authors/). Four full pages

is a minimum size of a paper.

 send the signed scan of the letter of consent

If a report is submitted to participate in one of the contests, this intention should be clearly indicated

in the participation form.

The selection of papers for publication in the Research Papers Collection and participation in the

Conference is performed by a number of reviewers from among the members of the Conference Program

Committee.

Incompliant applications and papers will be rejected.

Conference participation does not require any fees.

PAPERS SUBMISSION PROCEDURE

Papers (only on topics mentioned above) should be submitted ready for publication

(http://proc.ostis.net -> For authors). The text should be logically complete and contain new scientific and

practical results. Each author is allowed to submit two reports maximum.

After receiving the article, it is sent for review. The authors can get acquainted with the results of the

review in CMT, if necessary, correct the comments of the reviewers and send them for re-review.

The Organizing Committee reserves the right to reject any paper, if it does not meet the formatting

requirements and the Conference topics, as well as if there was no participation form submitted for the

paper.

YOUNG SCIENTIST REPORTS CONTEST

Authors of the report submitted to the contest may include scientists with scientific degrees, but the

report should be made by those without a degree and under 35 years old.

To take part in the young scientists report contest, it is necessary to:

1) fill in the participation form, where your participation in the contest is clearly indicated;

2) write an article and upload it to the CMT website;

3) fill in, sign, scan and send letter of consent via the email.

4) make a report at the conference (in person);

YOUNG SCIENTIST PROJECTS CONTEST

Projects of applied intelligent systems and systems aimed at supporting the design of intelligent

systems are allowed to take part in the contest; they have to be presented by a scientist without a degree and

https://cmt3.research.microsoft.com/OSTIS2020
https://proc.ostis.net/for-authors/
https://cmt3.research.microsoft.com/
https://cmt3.research.microsoft.com/OSTIS2020

under 35 years old.

To take part in the young scientist projects contest, it is necessary to:

1) fill in the participation form, where your participation in the contest is clearly indicated;

2) write an article and upload it to the CMT website;

3) make a report at the conference (in person);

4) make an exhibition presentation of the software

STUDENT INTELLIGENT SYSTEM PROJECTS CONTEST

To participate in the contest, a project must meet the following criteria: (a) it was developed by

students and/or undergraduates of the higher education institutions, and (b) project consultants and advisors

must hold a scientific degree and title. To participate in this contest, it is necessary to:

1) familiarize yourself with contest's terms and conditions (http://conf.ostis.net);

2) fill in the participation form for the contest (http://conf.ostis.net);

3) prepare a summary of the project (http://conf.ostis.net).

4) submit the participation form and project summary to the student projects' email address:

ostis.stud@gmail.com.

CONFERENCE PROCEEDINGS PUBLICATION

The Conference Organizing Committee plans to publish the papers selected by the Program

Committee based on the results of their review, in the Conference Proceedings, on the official Conference

website http://conf.ostis.net and on the Conference Proceedings website http://proc.ostis.net.

Upon successful review author sends a letter of consent to the Organizational Committee. Author

therefore agrees that his paper can be made freely available in electronic form at other resources at the

Editorial Board's discretion.

Since 2020, the OSTIS Research Papers Collection has been included in the List of Scientific

Publications of the Republic of Belarus for publishing the results of dissertation research (List of the Higher

Attestation Commission of the Republic of Belarus) in the technical field of science (informatics, computer

technology and management).

In addition, following the results of the conference, it is planned to publish the Selected Papers

Collection of the OSTIS conference in the series "Communications in Computer and Information Science"

(CCIS) published by Springer. Detailed information about this can be found on the conference website

(http://conf.ostis.net).

KEY DATES OF THE CONFERENCE

March 1, 20 32 paper submission opens

March 13, 2023 paper submission deadline

March 27, 2023 paper review deadline

April 10, 2023 final decision on paper publication; sending out invitations and notifications on

inclusion of a paper in the OSTIS Research Papers Collection

April 13, 2023 Draft Conference Program publication on the conference website

http://conf.ostis.net

April 17, 2023 Research Papers Collection publication on the conference website

http://proc.ostis.net

April 20, 2023 Participant registration and OSTIS-2023 conference opening

April 20-22, 2023 OSTIS-2023 Conference

May 2, 2023 Photoreport and conference report publication on the conference website:

http://conf.ostis.net

May 20, 2023 Research Papers Collection will be uploaded to the Russian Science Citation

Index database

CONFERENCE PROGRAM FORMATION

https://cmt3.research.microsoft.com/
http://conf.ostis.net/
http://conf.ostis.net/
http://conf.ostis.net/
http://conf.ostis.net/
http://proc.ostis.net/
http://proc.ostis.net/
http://conf.ostis.net/

Conference program is formed by the Program Commitee according to the paper review results;

author(s)' confirmation of participation is required as well.

CONTACTS

All the necessary information about the forthcoming and previous OSTIS Conferences can be found

on the conference website http://conf.ostis.net and http://proc.ostis.net.

For questions regarding conference participation and dispute resolution please contact:

ostisconf@gmail.com.

Methodological and advisory support to the conference participants shall be provided through the

conference e-mail only.

The conference venue is the 5
th
 academic building of the Belarusian State University of Informatics

and Radioelectronics (39, Platonov str., Minsk, Republic of Belarus).

http://conf.ostis.net/
mailto:ostisconf@gmail.com

XIII международная научно-техническая конференция

«Открытые семантические технологии

проектирования интеллектуальных систем»

Open Semantic Technologies for Intelligent Systems
OSTIS-2023 20 – 22 апреля 2023 г. Минск. Республика Беларусь

И Н Ф О Р М А Ц И О Н Н О Е П И С Ь М О

Приглашаем принять участие в XIII Международной научно-технической конференции

«Открытые семантические технологии проектирования интеллектуальных систем» (OSTIS-2023),

которая будет посвящена вопросам области применения семантических технологий.

Конференция пройдет в период с 20 по 22 апреля 2023 года в Белорусском государственном

университете информатики и радиоэлектроники, г. Минск, Республика Беларусь.

Язык статей сборника научных трудов: английский

Рабочие языки конференции: русский, белорусский, английский.

ОСНОВНЫЕ ОРГАНИЗАТОРЫ КОНФЕРЕНЦИИ
 Министерство образования Республики Беларусь

 Министерство связи и информатизации Республики Беларусь

 Государственное учреждение «Администрация Парка высоких технологий» (Республика Беларусь)
 Белорусский государственный университет информатики и радиоэлектроники (БГУИР)
 Брестский государственный технический университет (БрГТУ)

 Государственное научное учреждение «Объединенный институт проблем информатики Национальной

академии наук Беларуси» (ОИПИ НАН Беларуси)

 Белорусское общественное объединение специалистов в области искусственного интеллекта (БОИИ)

 Российская ассоциация искусственного интеллекта (РАИИ)

 Учебно-научное объединение по направлению «Искусственный интеллект» (УНО-ИИ)

НАПРАВЛЕНИЯ РАБОТЫ КОНФЕРЕНЦИИ:

 Принципы, лежащие в основе семантического представления знаний, и их унификация.

Типология знаний и особенности семантического представления различного вида знаний и метазнаний.

Связи между знаниями и отношения, заданные на множестве знаний.

Семантическая структура глобальной базы знаний, интегрирующей различные накапливаемые знания

 Языки программирования, ориентированные на параллельную обработку семантического представления баз

знаний

 Модели решения задач, в основе которых лежит обработка знаний, осуществляемая непосредственно на уровне

семантического представления обрабатываемых знаний. Семантические модели информационного поиска,

интеграции знаний, анализа корректности и качества баз знаний, сборки информационного мусора, оптимизации

баз знаний, дедуктивного и индуктивного вывода в базах знаний, правдоподобных рассуждений, распознавания

образов, интеллектуального управления. Интеграция различных моделей решения задач

 Семантические модели восприятия информации о внешней среде и отображения этой информации в базу знаний

 Семантические модели мультимодальных пользовательских интерфейсов интеллектуальных систем, в основе

которых лежит семантическое представление используемых ими знаний, и унификация этих моделей

 Семантические модели естественно-языковых пользовательских интерфейсов интеллектуальных систем.

Структура семантического представления лингвистических баз знаний, описывающих естественные языки и

обеспечивающих решение задач понимания естественно-языковых текстов и речевых сообщений, а также задач

синтеза естественно-языковых текстов и речевых сообщений, семантически эквивалентных заданным

фрагментам баз знаний

 Интегрированные комплексные логико-семантические модели интеллектуальных систем, основанные на

семантическом представлении знаний, и их унификация

 Различные технические платформы и варианты реализации интерпретаторов унифицированных логико-

семантических моделей интеллектуальных систем, основанных на семантическом представлении знаний

 Средства и методы, основанные на семантическом представлении знаний и ориентированные на проектирование

различных типовых компонентов интеллектуальных систем (баз знаний, программ, решателей задач,

интерфейсов)

 Средства и методы, основанные на семантическом представлении знаний и ориентированные на комплексное

проектирование различных классов интеллектуальных систем (интеллектуальных справочных систем,

интеллектуальных обучающих систем, интеллектуальных систем управления, интеллектуальных

робототехнических систем, интеллектуальных систем поддержки проектирования и др.)

 Прикладные интеллектуальные системы, основанные на семантическом представлении используемых ими знаний

ЦЕЛЬ И ФОРМАТ ПРОВЕДЕНИЯ КОНФЕРЕНЦИИ

Целью конференции является обсуждение проблем создания открытой комплексной

семантической технологии компонентного проектирования семантически совместимых

гибридных интеллектуальных систем. Этим определяется и формат её проведения,

предполагающий широкое обсуждение различных вопросов создания указанной технологии и

выставочные презентации докладов.

Выставочная презентация докладов даёт возможность каждому докладчику

продемонстрировать результаты своей разработки на выставке. Формат проведения конференции

предполагает точное время начала каждого доклада и точное время его выставочной презентации.

Важнейшей задачей конференции является привлечение к её работе не только учёных и

аспирантов, но и студенческой молодежи, интересующейся проблемами искусственного интеллекта,

а также коммерческих организаций, готовых сотрудничать с научными коллективами, работающими

над интеллектуальными системами и созданием современных технологий и их проектированием.

УСЛОВИЯ УЧАСТИЯ В КОНФЕРЕНЦИИ

В конференции имеют право участвовать все те, кто интересуется проблемами искусственного

интеллекта, а также коммерческие организации, готовые сотрудничать с научными коллективами,

работающими над созданием современных технологий проектирования интеллектуальных систем.

Для участия в конференции OSTIS-2023 необходимо до 13 марта 2023 года

зарегистрироваться в системе CMT, найти страницу конференции и на ней:

 подать заявку на конференцию OSTIS. Каждое поле заявки обязательно для заполнения, в том

числе указание того автора, кто будет представлять доклад. Заполняя регистрационную форму,

Вы подтверждаете согласие на обработку Оргкомитетом конференции персональных данных,

публикацию статей и информации об авторах в печатном и электронном виде. В заявке должна

содержаться информация по каждому автору;

 загрузить статью для публикации в Сборнике научных трудов конференции OSTIS. Статья

должна быть оформлена в соответствии с правилами оформления публикуемых материалов и

занимать не менее 4 полностью заполненных страниц;

 загрузить сканированный вариант письма о согласии на публикацию и размещения

передаваемых материалов в сети Интернет;

 загрузить цветные фотографии всех авторов статьи (это необходимо для оформления

Программы конференции)

Если доклад представляется на конкурс докладов молодых учёных или на конкурс

программных продуктов молодых учёных, это должно быть явно указано в заявке статьи (в CMT).

Отбор статей для публикации в Сборнике и участия в работе конференции осуществляется

рецензентами и редакционной коллегией сборника.

Заявки и статьи, оформленные без соблюдения предъявляемых требований, не

рассматриваются.

Участие в конференции не предполагает организационного взноса.

ПОРЯДОК ПРЕДСТАВЛЕНИЯ НАУЧНЫХ СТАТЕЙ

Статьи (только по перечисленным выше направлениям) представляются в готовом для

публикации виде (http://proc.ostis.net -> Авторам). Текст статьи должен быть логически

законченным и содержать новые научные и практические результаты. От одного автора допускается

не более двух статей.

После получения статьи, она отправляется на рецензирование. С результатами рецензирования

авторы могут ознакомиться в CMT, при необходимости устранить замечания рецензентов и

отправить для повторного рецензирования.

Оргкомитет оставляет за собой право отказать в приеме статьи в случае, если статья не будет

соответствовать требованиям оформления и тематике конференции, а также, если будет

отсутствовать заявка доклада, соответствующая этой статье.

https://cmt3.research.microsoft.com/
https://cmt3.research.microsoft.com/
http://proc.ostis.net/
https://cmt3.research.microsoft.com/

КОНКУРС ДОКЛАДОВ МОЛОДЫХ УЧЁНЫХ

Соавторами доклада, представляемого на конкурс докладов молодых учёных, могут быть

учёные со степенями и званиями, но непосредственно представлять доклад должны авторы в

возрасте до 35 лет, не имеющие степеней и званий.

Для того, чтобы принять участие в конкурсе научных докладов молодых учёных, необходимо:

1) заполнить заявку на участие в конференции, в которой чётко указать своё желание принять

участие в данном конкурсе;

2) написать статью для публикации в Сборнике научных трудов и загрузить на сайте CMT;

3) заполнить, подписать, отсканировать и отправить по почте письмо о согласии;

4) лично представить доклад на конференции.

КОНКУРС ПРОЕКТОВ МОЛОДЫХ УЧЁНЫХ

Принимать участие в конкурсе проектов молодых учёных могут проекты прикладных

интеллектуальных систем и систем, ориентированных на поддержку проектирования

интеллектуальных систем, при этом представлять проект на конкурсе должен молодой учёный в

возрасте до 35 лет, не имеющий учёной степени.

Для того, чтобы принять участие в конкурсе программных продуктов молодых учёных ,

необходимо:

1) заполнить заявку на участие в конференции), в которой чётко указать своё желание принять

участие в данном конкурсе;

2) написать статью для публикации в Сборнике научных трудов и загрузить на сайте CMT;

3) лично представить доклад на конференции;

4) провести выставочную презентацию, разработанного программного продукта.

КОНКУРС СТУДЕНЧЕСКИХ ПРОЕКТОВ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ

В конкурсе студенческих проектов могут принимать участие проекты, разработчиками

которых являются студенты и магистранты высших учебных заведений, консультантами и

руководителями проекта могут быть лица, имеющие научную степень и звание. Для того, чтобы

принять участие в данном конкурсе, необходимо:

1) ознакомиться с положением о конкурсе студенческих проектов (http://conf.ostis.net);

2) заполнить заявку на участие в конкурсе студенческих проектов (http://conf.ostis.net);

3) подготовить описание проекта (http://conf.ostis.net).

4) выслать заявку на участие в конкурсе и описание проекта по электронному адресу конкурса

студенческих проектов: ostis.stud@gmail.com.

ПУБЛИКАЦИЯ МАТЕРИАЛОВ КОНФЕРЕНЦИИ

Оргкомитет конференции предполагает публикацию статей, отобранных Программным

комитетом по результатам их рецензирования, в Сборнике научных трудов OSTIS в печатном виде и

на официальном сайте сборника http://proc.ostis.net в электронном виде.

По результатам рецензирования автор отправляет оргкомитету письмо о согласии, которое

предусматривает дальнейшую возможность размещения статей, вошедших в сборник научных

трудов, в открытом электронном доступе на иных ресурсах по усмотрению редакции сборника.

С 2020 года Сборник научных трудов OSTIS включен в Перечень научных изданий

Республики Беларусь для опубликования результатов диссертационных исследований (Перечень

ВАК РБ) по технической отрасли наук (информатика, вычислительная техника и управление) .

Кроме того, по итогам конференции планируется издание Сборника научных трудов OSTIS в

серии «Communications in Computer and Information Science» (CCIS) издательства Springer.

Подробная информация об этом приведена на сайте конференции (http://conf.ostis.net).

https://cmt3.research.microsoft.com/
https://cmt3.research.microsoft.com/
http://conf.ostis.net/
http://conf.ostis.net/
http://conf.ostis.net/
http://proc.ostis.net/
http://conf.ostis.net/

КЛЮЧЕВЫЕ ДАТЫ КОНФЕРЕНЦИИ

1 марта 2023 г. начало подачи материалов для участия в конференции

13 марта 2023 г. срок получения материалов для участия в конференции Оргкомитетом

27 марта 2023 г. срок предоставления рецензий на статьи

10 апреля 2023 г. срок принятия решения о публикации присланных материалов и рассылки

приглашений для участия в конференции и сообщение о включении статьи

в Сборник научных трудов OSTIS

13 апреля 2023 г. размещение на сайте конференции http://conf.ostis.net проекта Программы

конференции OSTIS-2023

17 апреля 2023 г. размещение на сайте конференции http://proc.ostis.net Сборника научных

трудов OSTIS

20 апреля 2023 г. регистрация участников и открытие конференции OSTIS-2023

20-22апреля 2023 г. работа конференции OSTIS-2023

2 мая 2023 г. публикация фоторепортажа и отчёта о проведённой конференции на сайте

конференции: http://conf.ostis.net

20 мая 2023 г. загрузка материалов сборника конференции в РИНЦ

ФОРМИРОВАНИЕ ПРОГРАММЫ КОНФЕРЕНЦИИ

Программа конференции формируется Программным комитетом по результатам

рецензирования, представленных статей, а также на основании подтверждения автора(-ов) статьи о

прибытии на конференцию.

КОНТАКТНЫЕ ДАННЫЕ ОРГАНИЗАТОРОВ КОНФЕРЕНЦИИ OSTIS

Вся необходимая информация по предстоящей и предыдущих конференциях OSTIS находится

на сайте конференции http://conf.ostis.net, а также на сайте материалов конференции

http://proc.ostis.net.

По вопросам участия в конференции и решения спорных вопросов обращайтесь:

ostisconf@gmail.com.

Методическая и консультативная помощь участникам конференции осуществляется только

через электронную почту конференции.

Конференция проходит в Республике Беларусь, г. Минск.

Оргкомитет конференции находится на кафедре интеллектуальных информационных

технологий Учреждения образования «Белорусский государственный университет информатики и

радиоэлектроники (БГУИР) – г. Минск, ул. Платонова, 39, 5-ый учебный корпус БГУИР.

http://proc.ostis.net/
http://conf.ostis.net/
http://conf.ostis.net/
http://proc.ostis.net/
mailto:ostisconf@gmail.com

	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\001-002. Титульная страница (eng).pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\003-004. Титульная страница.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\005-010. Содержание - Table of Contents.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\011-012. Предисловие - Foreword.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\013-420. Basic.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\01_OSTIS22_ID06_Zagorskiy_FTDLoIoCS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\02_OSTIS22_ID36_Golenkov_Next_GICSaToCSotLC.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\03_OSTIS22_ID19_Ivashenko_Gener_PSRLaSS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\04_OSTIS22_ID08_Zhmyrko_FamiloELoN_GCSCtLoISRoK.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\05_OSTIS22_ID33_Butrin_RepreoFOoBECiICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\06_OSTIS22_ID13_Bantsevich_StrucoKBoN_GICSHSoSDaTCO.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\07_OSTIS22_ID10_Goylo_MeansoFDoSaDSoVLiN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\09_OSTIS22_ID28_Shunkevich_HybriPSoICSoNG.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\10_OSTIS22_ID15_Zotov_SemanToPiN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\11_OSTIS22_ID22_Orlov_Non_PP_SMiN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\12_OSTIS22_ID27_Kovalev_ConveaIoANNwKBiN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\13_OSTIS22_ID03_Kroshchanka_DeepNNAiN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\14_OSTIS22_ID05_Krasnoproshin_AutomCoCbKEA.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\15_OSTIS22_ID12_Sadouski_StrucoN_GICSI.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\16_OSTIS22_ID30_Goylo_NaturLIoN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\17_OSTIS22_ID04_Qian_OntolAtDoNLIfICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\18_OSTIS22_ID31_Zahariev_AudioIoN_GICS.pdf
	Introduction
	Problem statement
	Suggested approach
	Subject domain and ontology of audio interface problems
	Subject domain and ontology of signal parametric representation models
	Conclusion
	References

	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\19_OSTIS22_ID20_Halavataya_3DRoOiNGICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\20_OSTIS22_ID07_Orlov_ComprLoRSCCoN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\21_OSTIS22_ID34_Butrin_MethoaTfDaAQoKBoN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\22_OSTIS22_ID09_Sadouski_MethoaTfCIDoN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\23_OSTIS22_ID24_Shunkevich_UniveMoIL_SMoICSoNG.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\24_OSTIS22_ID11_Zotov_SoftwPfN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\25_OSTIS22_ID32_Golenkov_ProblaPoAVTaFoHAwHoN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\26_OSTIS22_ID35_Zagorskiy_PrincfIEoN_GICS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\27_OSTIS22_ID14_Bantsevich_MetasoOSTISTaSoOSTIST.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\28_OSTIS22_ID25_Taranchuk_IntegoCATiOSTISA.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\29_OSTIS22_ID23_Gulyakina_SemanCOSTISEAS.pdf
	Introduction
	1. Semantic electronic textbook as a new type of computer learning tools
	Hypertext Semantic Networks as a Model of the SEU Subject Domain
	Systematization of educational material in the SET
	Knowledge Representation Languages in Semantic Electronic Textbooks and Intelligent Learning Systems
	The Artificial Intelligence specialty education in the context of creating intelligent training systems in the specialty
	References

	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\30_OSTIS22_ID2_Li_Seman_BAtAGoTQaAVoUAiITS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\31_OSTIS22_ID16_Taberko_OntolAtBEWI4_0.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\32_OSTIS22_ID18_Smorodin_Softw_TCfACoPCoRM.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\33_OSTIS22_ID17_Andrushevich_TowerSRoIoTEaSHA.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\34_OSTIS22_ID29_Samodumkin_Next_GIGS.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\papers\35_OSTIS22_ID26_Chertkov_InforSiISS.pdf

	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\421-422. Авторский указатель - Author Index.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\423-424. Выходные данные сборника.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\425-428. Information letter OSTIS-2023.pdf
	D:\cloud storage\Dropbox\Конференция OSTIS\OSTIS-2022\Оригинал-макет\Сборник\pdf\429-432. Информационное письмо OSTIS-2023.pdf

