УДК 681.586'34

МЕТОД СРАВНИТЕЛЬНОЙ ОЦЕНКИ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ДАТЧИКОВ КАВИТАЦИИ

МИНЧУК В. С., ЖАРКО Н. А., ПЕРХУНОВА А. Ю., ШЕБЕКО В. П., ДЕЖКУНОВ Н. В.

Белорусский государственный университет информатики и радиоэлектроники (г. Минск, Республика Беларусь)

E-mail: <u>n.zharko@bsuir.by</u>

Аннотация: Установлено, что максимального прироста разрешающей способности датчиков кавитации можно добиться при использовании экранирующей поверхности с воздушным зазором между волноводом и экраном. При этом наблюдается относительно невысокий спад чувствительности датчика – примерно до 30%. Использование плотно прилегающих к волноводу экранов снижает чувствительно в некоторых случаях более, чем в 10 раз, поэтому такой способ экранирования является неэффективным.

Abstract. It has been established that the maximum increase in resolution of cavitation sensors can be achieved by using a shielding surface with an air gap between the waveguide and the shield. In this case, a relatively low decrease in the sensitivity of the sensor is observed - up to about 30%. The use of screens closely adjacent to the waveguide reduces the sensitivity in some cases by more than 10 times, so this screening method is inefficient.

Введение

Ультразвуковые колебания широко используются для интенсификации физико-химических процессов в жидкостях. Общепризнано, что ключевым фактором при этом является кавитация – явление образования, пульсаций и захлопывания микропузырьков газа под действием переменного давления ультразвуковой частоты [1-2].

Под пространственной разрешающей способностью датчика в данном случае будем понимать степень расхождения истинного кавитационного поля реактора и поля, которое снято датчиком. На данный момент нет возможности точно измерить истинное кавитационное поле реактора. Это связано с отсутствием как таковых датчиков активности кавитации с равномерной характеристикой в широком диапазоне частот, которые при этом не искажают исходное звуковое поле реактора и обладают высокой степенью локализации.

Методика и оборудование

Схема установки представлена на рис. 1. Емкость представляет собой цилиндрический сосуд из нержавеющей стали с внутренним диаметром 80 мм и высотой 100 мм, в дно которого вмонтирован пьезоэлектрический излучатель ($f_0 = 36$ кГц). Сосуд наполняется жидкостью до уровня 80 мм от излучателя. Датчик (2) фиксируется на уровне границы раздела жидкость-газ и каждую секунду опускается на 2 мм, пока не достигнет дна. Сигнал с датчика поступает на кавитометр (3). Обработанный сигнал поступает на компьютер, где происходит регистрация, расчет и визуализация параметров в режиме реального времени, с помощью программы обработки данных.

Секция 4 «Радиотехнологии и их элементная база» 282

1 – жидкость, 2 – датчик, 3 – кавитометр, 4 – компьютер, 5 – генератор

Рис. 1. Схема установки для испытаний датчиков кавитации

Алгоритм определения разрешающей способности следующий. Датчик устанавливается на оси излучателя УЗ ванны у поверхности жидкости, уровень жидкости равен *h*. Датчик равномерно приближается к излучателю и снимает показания при помощи кавитометра. Получаем зависимость активности кавитации *A* от расстояния до излучателя *L*. Рассчитывается среднее показание датчика по объему *Acp*. Строится синусоида со средним значением и амплитудой равными *Acp* по формуле:

$$F(A) = Acp + Acp * \sin(\frac{4*\pi*(h-L)}{\lambda} + \frac{3\pi}{2})$$
(1)

Аср – среднее показание датчика

h – уровень жидкости в ванне;

L – текущее расстояние от торца датчика до излучателя;

λ – длина волны излучателя в мм.

Таким образом получаемая синусоида представляет собой показания идеализированного датчика, обладающего той же чувствительностью, что и тестовый образец в идеализированной УЗ ванне. На рис. 2 приведены распределения кавитационного поля, снятые двумя различными датчиками и соответствующие им теоретические показания. Из графика видно, что первый датчик гораздо лучше улавливает неравномерности кавитационного поля.

Рис. 2. Теоретические (1) и экспериментальные (2) распределения кавитационного поля: а – датчик с высокой разрешающей способностью, б – датчик с низкой разрешающей способностью

Коэффициент разрешающей способности *R* определяется следующим образом. Рассчитывается сумма квадратов отклонений между показаниями испытуемого датчика и рассчитанной синусоиды. Эта величина нормируется на *Acp* и количество точек наблюдения *N*.

$$R = \frac{\sum_{i=0}^{h} (Ai - Fi)^2}{N * A cp}$$
(2)

Чем ниже коэффициент R – тем более высокой разрешающей способностью обладает датчик. В идеальном случае R=0, однако на практике такой случай не достижим. Для приведенных примеров в первом случае (рис. 2a) R=32, во втором (рис. 2б) R=117.

Результаты и обсуждение

На рисунке 3 представлены распределения активности кавитации в ванне в диапазоне частот от 600 кГц до 10 МГц, снятые с помощью датчика Р1 с различным видом экранирования волновода. Согласно рисунку, датчик без экрана (кривая 1) позволяет выделить максимумы активности кавитации на расстоянии 9, 27 и 67 мм от дна ванны. Расположение данных максимумов соответствует их

Секция 4 «Радиотехнологии и их элементная база»

«ИФОРМАЦИОННЫЕ РАДИОСИСТЕМЫ И РАДИОТЕХНОЛОГИИ 2022»

Республиканская научно-практическая конференция, 28-29 октября 2022 г., Минск, Республика Беларусь

теоретическому положению. Однако плохо различим максимум на расстоянии 45 мм от дна. Использование любого из двух экранов позволяет существенно увеличить разрешающую способность датчика (кривые 2 и 3). Отметим, однако, что при этом падает чувствительность датчика. Уменьшение чувствительности объясняется уменьшением суммарного акустического сигнала, за счет уменьшения сигнала, поступающего на датчик через боковую поверхность волновода.

Использование экрана, припаянного к волноводу (кривая 3) приводит к существенно большему падению чувствительности по сравнению с экраном с воздушным зазором (кривая 2), хотя максимумы на расстояниях 45 и 67 мм остаются различимыми. Использование экрана с воздушным зазором позволяет практически полностью исключить попадание ультразвуковых волн на боковую поверхность волновода, что позволяет существенно увеличить разрешающую способность.

Рис. 3. Распределение активности кавитации, снятое датчиком Р1: 1 – без экрана, 2 – припаянный экран; 3 – с воздушным зазором

Из полученных результатов можно сделать вывод о том, что плотно прилегающая термотрубка гасит энергию высокочастотных колебаний волновода. Это, вероятно, происходит в основном за счет подавления поверхностных волн в используемом волноводе. Для установления точной причины сильного уменьшения чувствительности при использовании экрана, плотно прилегающего к волноводу, планируется проведение дополнительных исследований.

Заключение

Установлено, что максимального прироста разрешающей способности датчиков кавитации можно добиться при использовании экранирующей поверхности с воздушным зазором между волноводом и экраном. При этом наблюдается относительно невысокий спад чувствительности датчика – примерно до 30%. Использование плотно прилегающих к волноводу экранов снижает чувствительно в некоторых случаях более, чем в 10 раз, поэтому такой способ экранирования является неэффективным.

Список использованных источников

1. Сиротюк М. Г. Акустическая кавитация. М.: Наука, 2008. 271С.

2.Leighton T.G. The Acoustic Bubble // Academic Press, London, 1994. – 640 p.

3. Kotukhov A. N., Zharko N. A., Minchuck V. S., Dezhkunov N. V. Evolution of cavitation activity in carbonate dioxide aqueous solution in the process of ultrasonic treatment // East European Scientific Journal. $- N_{25}$ (45). - part 2. - Warsaw, Poland: 2019. - p. 32-38.