УДК 535.341 + 539.26

Влияние жертвенных слоев Mg₂Si и кинетических параметров на рост, структуру и оптические свойства тонких пленок Ca₂Si на кремневых подложках

Н. Г. Галкин¹, К. Н. Галкин¹, И. М. Чернев¹, О. В. Кропачев¹, Д. Л. Горошко¹, С. А. Доценко¹, Е. Ю. Субботин¹ и Д. Б. Мигас²

¹Институт автоматики и процессов управления ДВО РАН, Россия, 690041, г. Владивосток, ул. Радио, 5

² Белорусский государственный университет информатики и радиоэлектроники, Беларусь, 220013, г. Минск, ул. П. Бровки, 6

Аннотация. Промоделировано сопряжение кристаллических решеток двумерных слоев Mg₂Si с атомарно-чистыми поверхностями Si(001)2×1 и Si(110)"16×2". Толстые пленки выращены методом молекулярно-лучевой эпитаксии (МЛЭ) через формирование затравочных слоев Ca₂Si. Показано, что для подложки Si(001) при температуре T=300 °C при соотношении скоростей Ca к Si равном 4.7 в пленке толщиной 140 нм сформированы три различных силицида: Ca₂Si, CaSi и hR3-CaSi₂ со сравнимыми вкладами. При уменьшении температуры МЛЭ роста до 250 °C и соотношении скоростей осаждения Ca и Si равном 8.4 на Si(110) формируется поликристаллическая пленка Ca₂Si с минимальным вкладом от CaSi. Методом жертвенно-затравочного слоя и при МЛЭ росте при температуре 250 °C и разном соотношении скоростей осаждения Ca и Si (4.0 – 20.0) на подложках Si(111) выращены поликристаллические и эпитаксиальная пленки Ca₂Si с толщинами от 22 нм до 114 нм. Минимальное соотношение скоростей осаждения обеспечивает однофазный рост с эпитаксиальным соотношением Ca₂Si(100)/Si(111), при увеличении оного от 7.3 растут поликристаллические пленки с тремя ориентациями: Ca₂Si(100), Ca₂Si(110) и Ca₂Si(111) на Si(111). Установлено, что в пленках Ca₂Si независимо от их структуры фундаментальный переход маскируется краем Урбаха в диапазоне энергий фотонов 0.78 – 1.0 эВ и далее идентифицируется второй прямой межзонный переход (E_{2d} =1.095±0.1 эВ).

Ключевые слова: 2D Mg₂Si, кремний, соотношение скоростей осаждения, пленки Ca₂Si, кристаллическая структура, оптические функции, прямой межзонный переход, край Урбаха.

⊠ Николай Галкин, e-mail: <u>ngalk@iacp.dvo.ru</u>

Influence of Sacrificial Mg₂Si Layers and Kinetic Parameters on the Growth, Structure and Optical Properties of Thin Ca₂Si Films on Silicon Substrates

Nikolay G. Galkin¹, Konstantin N. Galkin¹, Igor M. Chernev¹, Oleg V. Kropachev¹, Dmitriy L. Goroshko¹, Sergei A. Dotsenko¹, Evgeniy Yu. Subbotin¹ and Dmitriy B. Migas²

¹Institute of Automation and Control Processes of FEB RAS (5, Radio St., Vladivostok, 690041, Russian Federation)

² Belarusian State University of Informatics and Radioelectronics (6, P. Browka St., Minsk, 220013, Belarus)

Summary. The conjugation of crystal lattices of two-dimensional Mg₂Si layers with atomically clean Si(001)2×1 and Si(110)"16×2" surfaces was simulated. Thick films were grown by the MBE method by the formation of Ca₂Si templates. It is shown that for a Si(001) substrate at a temperature of T=300 °C and at the ratio of Ca and Si deposition rate of 4.7, three different silicides with comparable contributions are formed in a 140 nm thick film: Ca₂Si, CaSi, and hR3-CaSi₂. At the temperature up to 250 °C, with a decrease in the MBE growth and at the ratio of Ca and Si deposition rates equal to 8.4, a polycrystalline Ca₂Si film is formed on Si(110) with a minimal contribution from CaSi. Polycrystalline and epitaxial Ca₂Si films with thicknesses from 22 nm to 114 nm were grown on Si(111) substrates by the sacrificial-template method and at the MBE growth at a temperature of 250 °C and different ratios of Ca and Si deposition rates (4.0 – 20.0) on Si(111) substrates. The minimum deposition rate ratio ensures single-phase growth with the Ca₂Si(100)/Si(111) epitaxial ratio; as it increases from 7.3, on Si(111) polycrystalline films grow with the following three orientations: Ca₂Si(100), Ca₂Si(110) and Ca₂Si(111). It has been found that in Ca₂Si films, regardless of their structure, the fundamental transition is masked by the Urbach edge in the photon energy range of 0.78 – 1.0 eV, and then the second direct interband transition is identified (E_{2d} = 1.095±0.1 eV).

Keywords: 2D Mg₂Si, silicon, deposition rate ratio, Ca₂Si films, crystal structure, optical functions, direct interband transition, Urbach edge.

⊠ Nikolay Galkin, e-mail: <u>ngalk@iacp.dvo.ru</u>

введение

Полупроводниковые силициды металлов достаточно давно привлекают внимание исследователей, поскольку обладают широким спектром физических свойств, интересных с точки зрения оптоэлектронных и термоэлектрических применений [1]. Среди них максимальный интерес вызывают силициды щелочноземельных металлов (Ca, Mg, Ba) [2-4], а также их тройные соединения кальция с магнием [5], магния с оловом [6, 7] и соелинения магния с германием [8, 9], лемонстрирующие максимальную термоэлектрическую эффективность. Несмотря на то, что кальций (Са) является одним из самых распространенных [10] и потому дешевых материалов, исследования его силицидов не относятся к наиболее популярным [11-16]. Силициды Са с кремнием образуют 6 химических соединений Ca₂Si, Ca₅Si₃, Ca₅Si₄, Ca₁₄Si₁₉ и CaSi₂ [11]), формирующихся в основном по перитектическим реакциям и обладающих близкими энергиями формирования, что затрудняет их рост в виде пленок на различных подложках. Они обладают различной кристаллической структурой и имеют свойства от полупроводниковых [12, 13] до полуметаллических [14]. Среди полупроводниковых силицидов кальция (Ca₂Si [12, 13] и Ca₃Si₄ [15]) наиболее исследован полусилицид кальция (Ca₂Si), как в виде монокристаллов и объемных поликристаллов, так и в виде тонких пленок [16-19]. Поскольку Ca₂Si относится к прямозонным полупроводникам по данным первопринципных расчетов с шириной запрещенной зоны от 0.30 – 0.36 эВ [20 – 22] до 1.02 эВ [23], то в последние годы начал проявляться интерес к исследованию его легирования примесями n- и p-типа для создания диодных структур и исследования возможности излучательной рекомбинации. Рост плотных пленок Ca₂Si на кремнии метолом замешения магния кальшием в силициде магния [18, 19] не мог быть реализован из-за частичной десорбции магния и формирования пористой структуры Ca₂Si. Для роста пленок Ca₂Si на кремнии данный метод был трансформирован путем создания упорядоченного жертвенного двумерного слоя Mg₂Si, который затем трансформировался в затравочный слой Ca₂Si малой толщины с частично упорядоченной структурой [19]. Особенностью методики была низкая температура (250 °C) увеличения толщины затравочного слоя до толстой пленки Ca₂Si методом молекулярно-лучевой эпитаксии. Это позволило сформировать эпитаксиальные и поликристаллические пленки [19], но без подтверждения типа и величины фундаментального межзонного перехода. Прямозонная структура с фундаментальным переходом при 0.88 эВ в пленках Ca₂Si на сапфире была подтверждена в нашей предыдущей работе [24] путем использования развития методики жертвенно-затравочного слоя [19] для работы на сапфире, не имеющего слоя кремния для обеспечения диффузионного перемешивания. Но пленки эти получились нанокристаллические и аморфные, что обеспечивает высокое поглощение на дефектах около края фундаментального поглощения. В настоящее время остался не исследованным вопрос о соотношении скоростей осаждения кальция и кремния при температурах 250 - 300 °C оптимальных для формирования однофазной и эпитаксиально ориентированной пленки Ca₂Si на кремнии, а также вопрос о влиянии ориентации кремниевой подложки на ориентированный рост Ca₂Si.

Целью представленной работы явилось апробация методики жертвенно-затравочного слоя Mg₂Si/Ca₂Si для роста ориентированных пленок Ca₂Si на кремнии с ориентациями (001) и (110), оптимизация кинетических параметров (скоростей осаждения Ca и Si и их отношения) для определения условий эпитаксиального роста на поверхности Si(111), определение фононной и кристаллической структуры пленок Ca₂Si и особенностей их оптического поглощения в области энергий до фундаментального межзонного перехода.

ЭКСПЕРИМЕНТ

Эксперименты по росту пленок полусилицида кальция (Ca₂Si) проводили в сверхвысоковакуумной (CBB) камере установки ОМІСRON Compact, аппаратное и техническое оснащение которой описано в нашей предыдущей статье [24]. Однако в качестве подложек для роста пленок Ca₂Si использовали кремний с ориентациями (111), (100) и (110). Рост эпитаксиальных и поликристаллических пленок Ca₂Si на кремнии (образцы *A*, *B*, *C*, *D*, *E*, *F* и *G*; таблица) разной толщины проводили методом молекулярнолучевой эпитаксии (МЛЭ) из двух источников Si и Ca при температуре 250 °C или 300 °C, но с различным соотношением скоростей Ca и Si (от 4.0 образец *G* до 20.0 – образец *E*), на предварительно сформированном затравочном слое Ca₂Si, полученном через жертвенный слой Mg₂Si [18, 19]. Ориентацию жертвенных слоев Mg₂Si контролировали методом дифракции медленных электронов (ДМЭ). Два образца с пленками Ca₂Si на кремниевой подложке (образцы *C и D*, табл.) были защищены от окисления тонким слоем аморфного кремния, осажденного при комнатной температуре. В качестве образцов использовали монокристаллический кремний р-типа проводимости: Si(111) (FZ, 1000 Ом·см), Si(100) (FZ, 1000 Ом·см) и Si(110) (КДБ 1 – 10 Ом·см).

Таблица – Ростовые параметры и структура образцов с пленками силицидов Са

Образец	Подложка	Осажденные материалы	Скорость осаждения: v _{Mg} , v _{Ca} , v _{Si} (нм/мин)/ v _{Ca} /v _{Si}	Температура подложки, (°С)	Время осаждения, (мин)	Толщина силицида, (нм)	Данные рентгеновской дифракции
Sample	Substrate	Deposited materials	Deposition rate: v_{Mg}, v_{Ca}, v_{Si} (nm/min)/ v_{Ca}/v_{Si}	Substrate temperature, (°C)	Deposition time, (min)	Silicide thickness, (nm)	X-ray diffraction data
А	Si(001)	Mg Ca Ca+Si	0.75 0.1 (3.3+0.7)/ 4.7	150 300 300	5 20 60	140	$\begin{array}{c} Ca_2Si(400)/Si(001) \\ tr3-CaSi_2(003)/Si001) \\ CaSi(004)/Si(001) \end{array}$
В	Si(110)	Mg Ca Ca+Si	0.75 0.1 (5. 9+0.7)/ 8.4	150 300 250	2 20 30	190	Ca ₂ Si(301)/Si(110)
С	Si(111)	Mg Ca Ca+Si	0.75 0.1 (7.6+0.9)/ 8.4	150 250 250	1 20 10	114	$\begin{array}{c} Ca_2Si(100)/Si(111)\\ Ca_2Si(110)/Si(111)\\ Ca_2Si(111)/Si(111)\\ CaSi(001)/Si(111) \end{array}$
D	Si(111)	Mg Ca Ca+Si	0.75 0.1 (5.8+0.8)/ 7.3	150 250 250	1 20 10	22	$\begin{array}{c} Ca_2Si(100)/Si(111)\\ Ca_2Si(110)/Si(111)\\ Ca_2Si(111)/\\ Si(111)/CaSi(001)/\\ Si(111)\\ \end{array}$
Е	Si(111)	Mg Ca Ca+Si Si	0.75 0.1 (8.4+0.40)/ 20.0 0.40	150 300 300 30	1 20 60 15	108 6(Si)	$\begin{array}{c} Ca_2Si(100)/Si(111)\\ Ca_2Si(110)/Si(111)\\ Ca_2Si(111)/Si(111)\\ CaSi(001)/Si(111) \end{array}$
F	Si(111)	Mg Ca Ca+Si Si	0.75 0.1 (3.3+0.6)/ 9.5 0.6	150 300 300 30	1 20 30 20	47 12(Si)	$\begin{array}{c} Ca_2Si(100)/Si(111)\\ Ca_2Si(110)/Si(111)\\ Ca_2Si(111)/Si(111)\\ CaSi(001)/Si(111) \end{array}$
G	Si(111)	Mg Ca Ca+Si	0.45 0.1 (2.0+0.5)/ 4.0	150 250 250	1 10 40	111	Ca ₂ Si (100)/Si(111)

Table - Growth parameters and structure of samples with Ca silicide films

В качестве сублимационного источника кремния использовались прямоугольные полоски кремния (4×12 мм²) с проводимостью р-типа с удельным сопротивлением 1000 Ом см, а источники магния и кальция и режимы их загрузки описаны ранее в статье [24]. Скорости осаждения обоих металлов и кремния калибровались по кварцевому датчику толщины и в экспериментах изменялись в следующих диапазонах: Mg (0.45 – 0.75) нм/мин, Са (0.1 – 8.4) нм/мин и Si (0.4 – 0.9) нм/мин. Дополнительную калибровку покрытия металла (магния и кальция) проводили путем осаждения при выбранном токе источника толстой пленки металла (около 50 – 70 нм) через контактную маску с последующим определением толщины пленки методом атомной силовой микроскопии (АСМ) и сравнением аналогичной кварцевый датчик толщины. осажденного на Это позволяло порции металла. скорректировать коэффициент пропорциональности для более точного определения скорости осаждения металла.

Аппаратура и методы исследования морфологии (атомная силовая микроскопия (ACM)), оптических спектров в диапазоне энергий фотонов (0.05 – 6.5 эВ), фазового состава и фононной структуры методом спектроскопии комбинационного рассеяния света (КРС), кристаллической структуры методом рентгеновской дифракции (РД) описаны в предыдущей статье [24]. Расчеты оптических функций проводили в области прозрачности кремния из спектров пропускания и отражения [25]. При отработке методики жертвенно-затравочного слоя Mg₂Si/Ca₂Si на подложках Si(100) и Si(110) регистрировались картины ДМЭ от пленок Mg₂Si и Ca₂Si. Обработку последних проводили по стандартной методике [26] путем определения длины базисных векторов a_1 , b_1 и угла между ними. Используя возможности программы Crystal Maker [27] для моделей кристаллических решеток Mg₂Si и Ca₂Si и Ca₂Si, соответствующие базовым векторам a_1 и b_1 для плоскостей Mg₂Si и Ca₂Si, в которых они лежат. По картине ДМЭ от поверхности Si(111)7×7 определялись двумерные векторы решетки Si, параллельные этим векторам решетки Mg₂Si и Ca₂Si. Полученная информация использовалась для построения модели картины ДМЭ в программе LEEDpat [29].

РЕЗУЛЬТАТЫ

Одной из основных задач при формировании жертвенных слоев Mg_2Si было определение условий для их эпитаксиального упорядочения на поверхностях Si(001) и Si(110) и росту затравочного слоя Ca_2Si , поскольку на поверхности Si(111) эта задача была решена ранее при апробации метода жертвенного-затравочного слоя для роста на кремнии ориентированных пленок Ca_2Si [19].

Рассмотрим сначала формирование жертвенного слоя Mg₂Si на поверхности Si(100), которая после CBB очистки имеет картину ДМЭ Si(001) 2×1 (рис. 1, *a*). На изображении ДМЭ от плёнки Mg₂Si, выращенной на поверхности Si(001), видны рефлексы, расположенные в вершинах двух шестиугольников повёрнутых на 90° относительно друг друга (рис. 1, *b*), но они примерно одинаковой интенсивности. Наличие гексагональной симметрии на изображении ДМЭ от плёнки Mg₂Si, выращенной на поверхности, не имеющей такой симметрии (т.е. на поверхности Si(001)2×1, рис. 1, a), указывает, что мы имеем дело с поверхностью Mg₂Si(111), для которой такая симметрия характерна. Поэтому можно предположить, что Mg₂Si(111) ||Si(001). Однако, в отличие от ДМЭ изображения, полученного для Mg₂Si(111) ||Si(111) в статье [19], на ДМЭ изображении ЛЛЯ Mg₂Si(111)||Si(001) все рефлексы имеют примерно одинаковое расстояние от центра (рис. 3, b) и созданы только векторами $Mg_2Si[11\overline{2}]$, $Mg_2Si[1\overline{2}1]$, $Mg_2Si[\overline{2}11]$ и тремя векторами, направленными противоположно им. Вклада от векторов Mg₂Si[1 $\overline{10}$], Mg₂Si[10 $\overline{1}$], $Mg_2Si[0\overline{1}1]$ и трех векторов, направленных противоположно им, не видно на рис. 1, b. Наложив направление вектора $Mg_2Si[11\overline{2}]$ (рис. 1, b, c) на изображение ДМЭ от поверхностной реконструкции Si(001)2×1 (рис. 1, *a*), определили, что Mg₂Si[11 $\overline{2}$]||Si[010]. Тогда для вектора, перпендикулярного ему на поверхности Mg₂Si(111), будет выполняться следующее соотношение: Mg₂Si[110]||Si[100]. Таким образом, можно утверждать, что для плёнки Mg₂Si, выращенной на Si(100), выполняются следующие эпитаксиальные соотношения: Mg₂Si(111)||Si(001), Mg₂Si[112]||Si[010] и Mg₂Si[110]||Si[100]. Наилучшее согласование решёток Mg₂Si и Si на поверхности Si(001) достигается при постоянной решётки Mg₂Si a = 0.665 нм. В этом случае Mg₂Si[11 $\overline{2}$] = 2×Si[010], а длина 4×Mg₂Si[1 $\overline{1}$ 0] меньше длины 7×Si[100] на 1.03 %, при этом решётка Mg₂Si растянута на 4.05 % по сравнению с релаксированной решёткой. Построенное для этого значения модельное изображение ДМЭ для $Mg_2Si(111)1\times 1$ представлено на рис. 1, с. Видно, что модельное изображение довольно хорошо соответствует изображению ДМЭ от плёнки Mg₂Si (сравните рис. 1, *b* и *c*). Используя эпитаксиальные соотношения $Mg_2Si(111)||Si(001)|$ Mg₂Si[11<u>2</u>]||Si[010] и Mg₂Si[1<u>1</u>0]||Si[100] была построена модель 2D ячейки Mg₂Si на Si(001) (рис. 2). Она построена для постоянной решётки $Mg_2Si = 0.665$ нм, растянутой на 4.05 %, что свидетельствует о повышенной деформацией решётки Mg₂Si на поверхности Si(001) по сравнению с Mg₂Si на поверхности Si(111) [19].

Рис. 1. Изображения ДМЭ от поверхностной реконструкции Si(001)2×1 (*a*) и от плёнки Mg₂Si, выращенной на Si(001) (*b*) (E_p = 28 эВ). Модельное изображение ДМЭ для Mg₂Si(111)1×1 (для а_{Mg2Si} = 0.665 нм) (*c*). Большие белые окружности – рефлексы от Si(001)1×1, малые цветные кружки – рефлексы от Mg₂Si(111)1×1

Fig. 1. LEED images from the surface reconstruction of Si(100)2×1 (a) and from the Mg₂Si film grown on Si(001) (b) ($E_p=28$ eV). Model image of LEED for Mg₂Si(111)1×1 (for $a_{Mg2Si}=0.665$ nm) (c). Large white circles are reflections from Si(001)1×1, small colored circles are reflections from Mg₂Si(111)1×1

Рассмотрим формирование жертвенного слоя Mg_2Si на поверхности Si(110). На изображении ДМЭ от плёнки Mg_2Si , выращенной на атомарно-чистой поверхности Si(110)"16×2" (рис. 2, *a*), вместо точечных рефлексов, которые были на поверхности Si(001), видны чёрточки и дуги, расположенные в вершинах двух шестиугольников, повёрнутых на 90° относительно друг друга (рис. 2, *b*) по сравнению с картиной ДМЭ Mg_2Si на Si(001) (рис. 1, *b*). Наличие гексагональной симметрии на изображении ДМЭ от плёнки Mg_2Si означает, что и в этом случае мы имеем дело с векторами $Mg_2Si[11\overline{2}]$, с поверхностью $Mg_2Si(111)$. Поэтому можно предположить, что $Mg_2Si(111)||Si(110)$. При этом на ДMЭ изображении для $Mg_2Si(111)||Si(110)$ расстояния от середин чёрточек и дуг до центра примерно одинаковые (рис. 2, *b*), как и на ДMЭ изображении для $Mg_2Si[\overline{2}11]$ и тремя векторами, направленными противоположно им. Вклад от векторов $Mg_2Si[1\overline{10}]$, $Mg_2Si[1\overline{10}]$, $Mg_2Si[0\overline{11}]$ и трех векторов, направленных противоположно им, также не видно на рис. 2, *b*.

Рис. 2. Изображения ДМЭ от поверхностной реконструкции Si(110)"16×2" (*a*) и от плёнки Mg₂Si, выращенной на Si(110) (*b*) (E_p = 28 эВ). Модельное изображение ДМЭ для Mg₂Si(111)1×1 (для а_{Mg2Si} = 0.665 нм) (*c*). Белые большие окружности – рефлексы от Si(110)1×1, малые цветные кружки – рефлексы от Mg₂Si(111)1×1

Fig. 2. LEED images from the Si(110)" 16×2 " surface reconstruction (a) and from the Mg₂Si film grown on Si(110) (b) (E_p = 28 eV). Model image of LEED for Mg₂Si(111) 1×1 (for $a_{Mg2Si} = 0.665 \text{ HM}$) (c). Large white circles are reflections from Si(110) 1×1 , small colored circles are reflections from Mg₂Si(111) 1×1

Рассмотрим подробнее модель картины ДМЭ, в которой представлены малые цветные кружки двух цветов (синий и красный) (рис. 2, b), которые отвечают зернам двух типов близким по параметрам. Подробнее рассмотрим только шестиугольник на картине ДМЭ с кружками синего цвета (рис. 2, c), которые соответствуют дугам одного шестиугольника (рис. 2, b) и одному типу зерен. Зёрна Mg_2Si , дающие такой вклад в ДМЭ изображение, назовём зёрнами Mg₂Si 1-го типа. Наложив направление вектора Mg₂Si[112] (синий вектор на рис. 2, c) на изображение ДМЭ от поверхностной реконструкции Si(110)" 16×2 " (рис. 2, a), определили, что Mg₂Si[112]||Si[110]. Тогда для вектора Mg₂Si[110] (другой красный вектор на рис. 2, c) будет выполняться следующее соотношение: Mg₂Si[1 $\overline{1}$ 0]||Si[001]. Получается, что для зёрен Mg₂Si 1-го типа на Si(110) выполняются следующие эпитаксиальные соотношения: Mg₂Si(111)||Si(110), Mg₂Si[112]||Si[110] и Mg₂Si[110]||Si[001]. Чёрточки на ДМЭ изображении указывают, что зёрна Mg₂Si 1-го типа довольно длинные в одном направлении и довольно узкие в перпендикулярном направлении. Поскольку чёрточки вытянуты в направлении Mg₂Si $[1\overline{1}0]$, то именно в этом направлении зёрна Mg₂Si 1-го типа узкие. Тогда как в направлении Mg₂Si $[11\overline{2}]$ зёрна Mg₂Si 1-го типа длинные и, по-видимому, хорошо согласуют свою решётку с Si подложкой. Поэтому мы предположили, что наилучшее согласование решёток зёрна Mg₂Si 1-го типа и Si на поверхности Si(110) достигается при постоянной решётки Mg₂Si a = 0.62718 нм. Так как в этом случае Mg₂Si[11 $\overline{2}$] $\approx 2 \times Si[1\overline{10}]$ (т.е. хорошо согласуются решётки Mg₂Si и Si), а длина $3 \times Mg_2Si[1\overline{10}]$ меньше длины 5×Si[001] на 1.99 %. Используя эпитаксиальные соотношения Mg₂Si(111)||Si(110), Mg₂Si[112]||Si[110] и Mg₂Si[110]||Si[001], была построена модель 2D ячейки зерна Mg₂Si 1-го типа на Si(110) с постоянной решётки Mg₂Si a = 0.62718 нм, учитывающей сжатие на 1.9 %. Установлено, что зерна Mg₂Si 1-го типа также хуже подстраивают свою решётку под подложку Si(110), чем под подложку Si(111) [19].

На полученных жертвенных слоях Mg_2Si на кремниевых подложках с ориентациями Si(001) и Si(110) с худшим кристаллическим качеством из-за высоких напряжений при осаждении слабого потока кальция при температуре 300 °C производили разрушение Mg_2Si и его трансформацию в Ca_2Si . Однако для обоих образцов картины ДМЭ не наблюдались, что свидетельствует о сильной разориентации растущего затравочного слоя силицида кальция. После этого методом МЛЭ производили доращивание пленок по толщине. В образце *А* температура подложки составляла 300 °C, а в образце *B* она была равна 250 °C (табл.).

Рис. 3. Морфология пленок Ca₂Si, выращенных на кремниевых подложках: Si(001) (образец A) (a) и Si(110) (образец B) (b)

Fig. 3. Morphology of Ca₂Si films grown on silicon substrates: Si(001) (sample A) (a) and Si(110) (sample B) (b)

После выгрузки методом ACM исследовали морфологию выращенных пленок. Пленка в образце *A* (рис. 3, *a*) состоит из плотно сросшихся круглых и продолговатых зерен размером 150 – 250 нм. Их среднеквадратичная шероховатость составляет 8.3 нм. Зерна не имеют выраженной огранки, но их большие размеры предполагают определенную кристаллизацию от подложки и выраженный островковый рост и коалесценцию. Пленка в образце B состоит из зерен различного размера от 50 нм до 150 нм, сросшихся без огранки и признаков коалесценции, что соответствует некоторому снижению среднеквадратичной шероховатости до 6.9 нм (рис. 3, *b*). Это подтверждает слабое влияние на рост сформированного затравочного слоя Ca₂Si на кремнии с ориентациями (001) и (110).

Для установления фазового состава пленок, выращенных на образцах А и В, была проведена регистрация спектров КРС при комнатной температуре. На рис. 4, а сведены спектры КРС для обоих образцов. Анализ пиков и их положения, и сопоставление с данными статьи [19] показал, что основной фазой в выращенных пленках является полусилицид кальция (Ca₂Si), который характеризуется узкими и интенсивными пиками с положением 109, 117, 132, 142, 191, 203, 241 и 252 см⁻¹. Интенсивность данных пиков является максимальной для пленки в образце **B** (рис. 4, a), а в пленке в образце A пики от Ca₂Si уменьшаются по интенсивности и уширяются, что свидетельствует об уменьшении размеров кристаллитов и коррелирует с данными АСМ (рис. 4, *a*). Дополнительной фазой в образце А является CaSi, а также наблюдается сильный вклад от аморфной фазы кремния (широкий пик с максимумом около 470 см⁻¹), которая может возникать из-за повышенной температуры подложки (300 °C) при малом соотношении скоростей осаждения кальция и кремния. Все это может приводить к интенсивной десорбции кальция с поверхности и росту избытка кремния в виде аморфного и поликристаллического слоя. В образце **В** второй фазой является CaSi (рис. 4, *a*), вклад которой является незначительным исходя из амплитуды и полуширины пика с положением 360 см⁻¹. Структуру выращенных пленок в образцах A и B исследовали методом РД.

Рис. 4. Спектры КРС (*a*) и спектры РД (*b*, *c*) для образцов *A* и *B* с пленками Ca₂Si на подложках Si(001) (*b*) и Si(110) (*c*)

Fig. 4. Raman spectra (a) and XRD spectra (b, c) for samples A and B with Ca₂Si films on Si(001) (b) and Si(110) (c) substrates

На рис. 4, *b* представлен спектр РД для образца *A*, в котором основной вклад по интенсивности вносит пик от грани Ca₂Si(400), что соответствует росту нанокристаллов (HK), ориентированных относительно подложки Si(001). В спектре РД также наблюдаются два относительно слабых и близко расположенных пиков, которые относятся к HK hR3-CaSi₂ с плоскостью (003) и HK CaSi с плоскостью (004) относительно кремниевой подложки Si(001). То есть выращенная пленка является трехфазной с преимущественным вкладом от Ca₂Si, что подтверждает данные KPC спектроскопии (рис. 4, *a*). В образце *B* основной и единственной фазой является Ca₂Si с очень малой интенсивностью пиков от плоскостей (301) и (504), поэтому степень ее кристалличности меньше, чем на подложке Si(001) за счет худшей совместимости жертвенной фазы Mg₂Si и, соответственно, худшим кристаллическим качеством сформированного затравочного слоя Ca₂Si.

Рост пленок Ca₂Si на подложке Si(111) проводили с использованием метода жертвеннозатравочного слоя [19] при температуре подложки 250 °C, но с сильным изменением соотношения скоростей осаждения кальция к кремнию от 4.0 до 20.0 (табл., образцы *C*, *D* и *G*). В серию входили также два образца, выращенные вышеупомянутым методом, но при температуре 300 °C и закрытые при комнатной температуре аморфным слоем кремния различной толщины (табл., образцы *E* и *F*). После выгрузки образцов с пленками Ca₂Si на Si(111) из CBB-камеры были сняты их ACM-изображения, спектры комбинационного рассеяния, спектры рентгеновской дифракции для характеризации морфологии, фазового состава, фононной структуры и кристаллической структуры выращенных пленок. Морфологию выращенных пленок Ca₂Si исследовали методом ACM для образцов *C*, *D* и *G* без верхнего слоя кремния. Пленка в образце *C* толщиной 114 нм состоит из сросшихся зерен размером 50 – 150 нм с некоторой огранкой (рис. 5, *a*). Значение среднеквадратичной шероховатости для данного масштаба рисунка составляет 4.96 нм.

Рис. 5. Морфология пленок Ca₂Si, выращенных на подложке Si(111), для образцов C (a), D (b) и G (c). Спектры РД образцов C, D и G с пленками Ca₂Si на подложках Si(111) (d)

В образце Е пленка толщиной около 108 нм состоит из неориентированных зерен округлой и продолговатой формы (рис. 5, b) размерами 50 – 100 нм. Пленка в образце E имеет более низкую шероховатость 1.73 нм. Пленка толщиной 111 нм (образец G) состоит из плотно сросшихся прямоугольных ограненных нанокристаллов размером 40×100 нм с некоторой разориентацией (рис. 5, с). Среднеквадратичная шероховатость пленки составляет 3.2 нм. Кристаллическая структура выращенных пленок Ca₂Si на подложке Si(111) исследовалась методом рентгеновской дифракции для выращенных образцов C, D, E, F и G, но только три из них (образцы C, D и G) показаны на рис. 5, d из-за полного совпадения как положения пиков, так и их амплитуды. В этих образцах наблюдаются три основные ориентации зерен Ca₂Si, а именно: Ca₂Si(100)/Si(111), Ca₂Si(110)/Si(111) и Ca₂Si(111)/Si(111), наряду с одной второстепенной – CaSi (001)/Si(111) (табл.). Таким образом, образующиеся пленки являются поликристаллическими с преимущественным вкладом фазы Ca₂Si, синтезированной при высоком отношении скоростей осаждения Са к Si 7.3 – 20.0 (табл.). В образце G наблюдается только одна фаза Ca₂Si с ориентацией Ca₂Si(100)/Si(111) (рис. 5, d). Вероятной причиной однофазного роста Ca_2Si при T = 250 °C является более низкое отношение (4.0) скоростей осаждения (табл.) по сравнению с образцами *С*, *D*, *E* и *F*.

С учетом того, что образцы с пленками Ca₂Si разной толщины (от 22 нм до 114 нм) выращивались на подложках Si(111) (табл.) без и с покрывающим слоем кремния, исследования методом КРС повзолили определить изменения в фазовом составе и сопоставить с данными РД (рис. 5, d). На рис. 6, а представлены спектры КРС для образцов C, **D** и **G**, на которых обозначены основные 8 КРС пиков (от 108 см⁻¹ до 253 см⁻¹), совпадающих с группами пиков КРС в Ca₂Si по теоретическим расчетам [30] и по экспериментальным данным [19]. Все пики являются узкими и интенсивными для образцов C и G, что подтверждает их высокую кристалличность и заметные размеры, соответствующие данным морфологии (рис. 5, a, c). Отсутствие для обеих пленок пика от кремния (520 см⁻¹) свидетельствует об их сплошности и большой толщине в соответствии с данными скоростей осаждения и времени МЛЭ роста (табл.). Появление слабого и уширенного рамановского пика около 360 см⁻¹ в образцах C и D (рис. 6, a) свидетельствует о наличии небольшого количества фазы CaSi, имеющей интенсивный пик при 356 см⁻¹ даже в нанокристаллическом состояние [31]. Это также коррелирует с данными РД (табл.). Пик при 356 см⁻¹ отсутствует в пленке образца G (рис. 6, a), что подтверждает ее однофазность по данным РД (табл.).

Рис. 6. Спектры КРС для образцов *C*, *D* и *G* с пленками Ca₂Si на подложках Si(111) (*a*) и для образцов *E* и *F*, покрытых слоем аморфного кремния (*b*)

Fig. 6. Raman spectra for samples C, D, and G with Ca₂Si films on Si(111) substrates (a) and for samples E and F coated with a layer of amorphous silicon (b)

Для пленки Ca₂Si в образце **D** обнаружен интенсивный пик при 520 см⁻¹ от монокристаллического кремния [32], который виден на спектре КРС (рис. 6, *a*) из-за малой толщины пленки (22 нм) в соответствии с данными от скоростей и времени осаждения (табл.). Это также подтверждается малой интенсивностью пиков КРС Ca₂Si (рис. 6, *a*) в образце **D**. Напротив, в пленках Ca₂Si, покрытых в процессе роста тонким слоем кремния при комнатной температуре, спектры КРС (рис. 6, *b*) демонстрируют уширенный пик при 420 – 500 см⁻¹ с максимумом при 470 см⁻¹ для образца **F** с толщина слоя кремния [33, 34]. Тогда как отчетливо виден уширенный малоинтенсивный пик с максимумом около 400 см⁻¹ (рис. 6, *b*), свидетельствующий о том, что аморфный кремний [33] в образце **E** не полностью покрывает пленку Ca₂Si. Образование фазы CaSi по спектрам КР при 360 см⁻¹ (рис. 6, *b*) для обеих пленок не наблюдается, так как она, по-видимому, маскируется тонким слоем аморфного кремния (табл.).

Спектры оптического пропускания и отражения для пленок Ca_2Si на образцах A и B, выращенных на подложках с ориентациями (001) и (110), представлены на рис. 7, а, b, соответственно. Основной особенностью спектра отражения для образца A (рис. 7, a) является так называемый плазменный минимум при энергии фотонов около 0.65 эВ с последующим возрастанием коэффициента отражения до 0.90 при энергии фотонов 0.05 эВ. Это соотвествует основному вкладу от двух полуметаллических фаз CaSi [35, 36] и hR3-CaSi₂ [36], которые наблюдаются в пленке по данным РД (рис. 4, b). Уменьшение пропускания при энергии фотонов менее 0.6 эВ соответствует усилению поглощения на свободных носителях, которые инжектируются в пленку Ca₂Si из зерен с составами CaSi и hR3-CaSi₂. При переходе к энергиям фотонов более 1.2 эВ кремниевая подложка становится непрозрачной [37] так же, как и пленка в образце А толщиной 140 нм (табл.). При увеличении энергии фотонов в спектре отражения наблюдаются два пика при 1.75 эВ и 2.05 эВ (рис. 7, *a*) с близкими положениями для Ca₂Si [19], а также широкий пик с максимумом около 3.7 эВ. В целом из анализа вида спектров отражения и пропускания можно утверждать о заметном вкладе сформировавшихся полуметаллических CaSi и hR3-CaSi₂ в спектры отражения и пропускания образца A и о невозможности проведения расчетов оптических функций для системы с тремя фазами. Для образца В спектры отражения и пропускания представлены на рис. 7, b. Несмотря на большую толщину пленки Ca₂Si (190 нм, табл.) и ее поликристаллическую структуру на подложке Si(110) (рис. 5, d), она сохраняет высокую прозрачность вплоть до минимальных энергий (0.05 эВ), что подтверждает полупроводниковый характер выращенной пленки, несмотря на наличие малого количества второй фазы CaSi с полуметаллическими свойствами [35]. Наблюдаемая форма спектра отражения и положение пиков (1.85, 2.1, 2.85, 3.55 и 4.3 эВ) хорошо соответствуют оным для эпитаксиалной пленки Ca₂Si, выращенной ранее на подложке Si(111) [19].

На рис. 7, с представлены спектры отражения и пропускания для пленок Ca₂Si, выращенных на подложках Si(111) без защитного слоя кремния для образцов C, D и G. В целом форма спектров отражения и положение пиков при энергиях от 1.6 до 4.3 эВ для пленок Ca₂Si сохраняются с учетом эпитаксиальной пленки Ca₂Si на Si(111) [19] и нанокристаллической и аморфной пленок Ca₂Si на canфировой подложке [24]. С увеличением толщины пленок Ca₂Si (табл.) наблюдается снижение пропускания и появление интерференционных особенностей. На рис. 7, *d* показаны спектры отражения и пропускания пленок Ca₂Si на Si(111) с защитным слоем аморфного кремния с двумя толщинами в образцах *E* и *F*. Для образца *F* толщина кремния составляла около 10 нм (табл.), что приводило по данным спектра КРС (рис. 6, *b*) к образованию смеси слоя аморфного и нанокристаллического кремния и увеличению отражения от пленки в ультрафиолетовом диапазоне длин волн, так как коэффициент отражения от кремния в ультрафиолетовом диапазоне стремится к значениям 0.6 – 0.75 [37]. Для образца *E* с аморфным кремнием толщиной около 6 нм наблюдается небольшое увеличение отражения при энергиях фотонов 3.0-6.5 эВ, что связано с прозрачностью кремния при данной толщине. При этом для обоих образцов в спектре отражения (рис. 7, *c*) наблюдаются пики с энергиями 1.6 эВ и 2.1 эВ, которые есть в спектрах отражения образцов, не закрытых слоем аморфного кремния. Таким образом, изменение отношения скоростей осаждения кальция к кремнию в образцах *C*, *D*, *E*, *F* и *G* при температуре МЛЭ роста T = 250 °C или 300 °C (табл.) не повлияло на форму спектра отражения и положение основных пиков (рис. 7, *b*, *c*, *d*). Это также свидетельствует о пренебрежимо малом вкладе нанокристаллов CaSi в образцах *C*, *D*, *E*, *F* и *G* в особенности в спектрах отражения, а также – в спектрах пропускания при энергиях фотонов от 0.3 до 1.0 эВ (рис. 7, *b*, *c*, *d*).

Рис. 7. Спектры пропускания (T) и отражения (R) от систем Ca₂Si/Si для образцов: $A(a), B(b), E, F \in G(c), E \in F(d)$

Fig. 7. Transmission (T) and reflection (R) spectra from Ca₂Si/Si systems for samples: A (a), B (b), E, F and G (c), E and F (d)

Для ряда выращенных образцов (C, D и G) был проведен расчет основных оптических функций в рамках двухслойной модели с резкой границей раздела и учетом поглощения и многократного отражения в пленке и подложке, но без учета интерференционных явлений [25] в пленках Ca₂Si с разной толщиной. Расчеты ограничивались областью пропускания кремниевой подложки (до 1.25 эВ). Это привело к появлению определенных максимумов и минимумов в области прозрачности системы пленка – подложка. Расчеты для образцов E и Fс защитным слоем кремния не проводились, поскольку для них нельзя было использовать двухслойную модель [25]. Рассчитанные спектры коэффициента преломления для образцов C и G (рис. 8, a) показали заметный вклад интерференционных особенностей, связанных с толщиной пленок 114 нм и 111 нм. Для образца **D** (22 нм, табл.) этот вклад практически незаметен. Спектры коэффициента экстинкции пленок Ca₂Si (рис. 8, *a*) свидетельствуют о достаточно высокой прозрачности при энергиях фотонов ниже 1 эВ, что соответствует их полупроводниковому характеру проводимости. Для пленок в образцах С, D и G построены зависимости $1/(n^2-1)$ от λ^{-2} (рис. 8, b), которые позволили определить диапазон изменения бездисперсионного коэффициента преломления пленок (n_a) [38] и при каких энергиях фотонов начинается бездисперсионная область (ниже 0.6 эВ). Указанные величины *n*_o изменяются от значения $n_o = 3.53$ для эпитаксиальной пленки с одним эпитаксиальным соотношением Ca₂Si(100)/Si(111) (образец G) к близким значениям $n_0 = 4.04$ и $n_0 = 4.30$ в образцах *С* и *D*, соответственно, для пленок Ca₂Si с двумя типами зерен с эпитаксиальными соотношениями Ca₂Si(100)/Si(111) и Ca₂Si(110)/Si(111) и небольшим вкладом зерен полуметаллической фазы CaSi (табл.). Увеличение бездисперсионного коэффициента преломления в образце **D** по сравнению с образцом **C** связано с увеличением его коэффициента отражения (рис. 7, с), как в области межзонных переходов, так и в области прозрачности. Последнее коррелирует с уменьшением пропускания при меньшей толщине пленки (22 нм) в образце **D** за счет увеличения вклада фазы CaSi, который может быть связан с изменением стехиометрии в потоке кальция и кремния за счет меньшей примерно на 27 % скорости осаждения кальция по сравнению с образцом С (табл.).

Рис. 8. Спектры показателя преломления (n) и коэффициента экстинкции (k) для пленок Ca₂Si (a), выращенных на кремниевой подложке с ориентацией (111). Зависимость 1/(n²-1) от λ⁻² (b), где λ – длина волны в микронах (μ). На (b) вертикальными пунктирными линиями показаны границы перехода в бездисперсионную область в образцах C, D и G

Fig. 8. Spectra of the refractive index (n) and extinction coefficient (k) for Ca₂Si films (a) grown on a silicon substrate with (111) orientation. Dependence of $1/(n^2-1)$ on the λ^{-2} (b), where λ – is wavelength in micron (µ). In (b), the vertical dotted lines show the boundaries of the transition to the dispersion-free region in samples *C*, *D* and *G*

Из спектров коэффициента экстинкции для пленок Ca₂Si на подложке Si(111) (образцы *C*, **D** и **G**, рис. 8, *a*) были рассчитаны спектры коэффициента поглощения (рис. 9, *a*). Видно, что при энергиях фотонов 0.4 - 0.8 эВ наблюдаются значения коэффициента поглощения $(1.0 - 1.5) \cdot 10^4$ см⁻¹, которые начинают увеличиваться при энергиях фотонов выше 0.8 эВ для всех трех образцов за счет поглощения на межзонных переходах в Ca₂Si по данным теоретических расчетов из первых принципов [20 – 23]. Большие значения коэффициента поглощения в запрещенной зоне Ca₂Si для образцов **C** и **D** можно объяснить высокой плотностью состояний на границах зерен, а также наличием полуметаллической фазы CaSi [14, 35]. В то же время минимум поглощения при низких энергиях (0.2 – 0.4 эВ) наблюдается у образца *G*, представляющего собой однофазную эпитаксиальную пленку Ca₂Si (табл.).

Диапазон энергий фотонов 0.7 – 0.9 эВ с плавным ростом коэффициента поглощения (рис. 9, а) не описывается линейным участком на зависимости квадрата коэффициента поглощения от энергии фотона (рис. 9, с), несмотря на то, что бездисперсионный участок начинается только ниже 0.6 эВ (рис. 8, b). Поэтому при энергиях 0.7 – 0.9 эВ в пленках должен присутствовать фундаментальный переход с малой силой осциллятора фундаментального прямого перехода по данным теоретических расчетов [20], который трудно идентифицировать из-за высокого поглощения на дефектных уровнях (край Урбаха [38]). Действительно, диапазон энергий фотонов от 0.78 эВ до 1.00 эВ достаточно хорошо описывается краем Урбаха (рис. 9, с), который также наблюдался при одинаковых энергиях в нанокристаллических и аморфных пленках Са₂Si на сапфире [24]. Поэтому в поликристаллических и эпитаксиальной пленках Ca₂Si на подложке Si(111) постепенное уменьшение коэффициента поглощения ниже 0.88 эВ также обусловлено наличием хвостов плотности состояний в ее запрещенной зоне. Большое поглощение света для пленок Ca₂Si начинается при энергии фотонов выше 1.0 эВ, что подтверждается спектром зависимости квадрата коэффициента поглощения от энергии фотона (рис. 9, с). Экстраполяция линейных участков этой зависимости [38] для выращенных пленок дает некоторый разброс значений прямого межзонного перехода от 1.08 эВ до 1.10 эВ, что совпадает с полученным нами ранее значением E₂ = 1.095±0.1 эВ для эпитаксиальной пленки Ca₂Si на Si(111) [19]. Более высокоэнергетические межзонные переходы в Ca₂Si на кремниевых подложках нельзя определить из-за непрозрачности кремния при энергиях фотонов выше 1.2 эВ. Однако эти результаты не совпадают с данными для второго прямого межзонного перехода в пленках Са₂Si на сапфире [24], причина чего будет рассмотрена ниже. Из сравнения с оптическими данными, полученными для пленок Ca₂Si на монокристаллическом сапфире [24], установлено, что эта прозрачная в видимом диапазоне длин волн подложка (сапфир) позволяет выявить фундаментальный прямой межзонный переход (Eg = 0.88±0.01 эВ), неразличимый для тонких и толстых пленок Ca₂Si на кремниевой подложке, независимо от ее ориентации.

Рис. 9. Функции оптического поглощения для пленок Ca₂Si на Si(111) на образцах *C*, *D* и *G*. Спектры коэффициента поглощения - (α) (*a*), квадрат коэффициента поглощения в зависимости от энергии фотона (*b*) и зависимость lg α от энергии фотонов для определения хвоста Урбаха [38] (*c*)

Fig. 9. Optical absorption functions for Ca₂Si films on Si(111) on samples C, D and G. Spectra of the absorption coefficient - (α) (a), the square of the absorption coefficient versus the photon energy (b) and the dependence of $\lg \alpha$ from photon energy for determining the Urbach tail [38] (c)

обсуждение

Для апробации технологии жертвенно-затравочного слоя для роста пленок Ca₂Si на кремниевых подложках с ориентацией (001) и (110), которая была ранее развита для кремния с ориентацией (111) [19], в первую очередь было испытано формирование жертвенных слоев Mg₂Si на указанных подложках. Анализ картин ДМЭ показал, что в обоих случаях идет сверхструктурное сопряжение плоскости Mg₂Si(111) с плоскостями Si(001) и Si(110) с образованием точечных и вытянутых рефлексов, соответственно. Лучшее сопряжение решеток наблюдалось для плоскости кремния (001), когда двумерная ячейка Mg₂Si сопрягается с растяжением на 4.05 % с кремниевой решеткой по направлениям [010] и [100], что обеспечивает точечную картину ДМЭ от доменов с большими размерами по двум направлениям. В случае роста двумерного слоя Mg₂Si на поверхности кремния (110) на картине ДМЭ наблюдались дуги и черточки, расположенные по вершинам двух шестиугольников, что позволило промоделировать совмещение плоскости Mg₂Si(111) с гексагональной симметрией с плоскостью Si(110) с прямоугольной симметрией за счет двух ориентаций вытянутых зерен Mg₂Si с различной деформацией и повернутых друг относительно друга на 30° . Сформированные при сопряжении с кремнием зерна Mg₂Si имеют вытянутую форму и сжатую на 1.99 % решетку по сравнению с решеткой объемного Mg₂Si. Худшее кристаллическое качество жертвенных слоев не позволило сформировать затравочный слой Ca₂Si приемлемого качества по сравнению с затравочным слоем Ca₂Si на подложке Si(111) [19], что при увеличении толщины слоев методом МЛЭ при температуре 300 °С (образец A) привело к формированию трех различных силицидов: Ca₂Si, CaSi и hR3-CaSi₂ со сравнимыми вкладами. Наблюдавшаяся коалесценция зерен в пленке по данным АСМ свидетельствует при этом о лучшей кристаллизации, но повышенная температура подложки при росте и относительно невысокое пересыщение по скорости осаждения кальция (4.7, табл.) привело к зарождению в объеме пленки моносилицида и дисилицида кальция. При этом по данным КРС и РД основной вклад вносит все-таки Ca₂Si. Однако сильные полуметаллические свойства CaSi [35] и hR3-CaSi₂ [35, 36] исказили оптические спектры отражения и пропускания, что не позволило корректно оценить вклад Ca₂Si в оптические функции. Уменьшение температуры до 250 °С при МЛЭ росте (образец В) и увеличение соотношения скоростей осаждения кальция к кремнию (8.4, табл.) при худшем кристаллическом качестве затравочного слоя Ca₂Si привело к формированию преимущественно фазы Ca₂Si с несущественным вкладом фазы CaSi по данным КРС (рис. 4, a), но не по данным РД (рис. 4, с). Следовательно, температура МЛЭ роста и величина соотношения скоростей осаждения кальция и кремния сильно влияют на фазовый состав пленок.

На подложке Si(111) возможность эпитаксиального роста пленки Ca₂Si методом МЛЭ на затравочном слое Ca₂Si(111) через жертвенный слой Mg₂Si была показана ранее [19], но при этом внимание не акцентировалось на соотношении скоростей осаждения кальция и кремния при температуре 250 °C. Исследования структуры и фазового состава пленок силицидов кальция на подложке Si(111) показали, что для сохранения однофазности системы должно соблюдаться вполне определенное соотношение потоков атомов кальция и кремния при соосаждении. Для однофазной пленки Ca2Si в образце G оно составило 4.0. Слабое пересыщение при неизвестном коэффициенте прилипания атомов кальция к затравочному обеспечило рост от затравочного слоя при его хорошем кристаллическом качестве и десорбцию излишков кальция. Увеличение соотношения скоростей осаждения выше 7.3 (табл.) показало, что начинают зарождаться зерна с преимущественными ориентациями $Ca_2Si(100)$ и $Ca_2Si(110)$, а также – отдельные зерна CaSi. Это свидетельствует об уменьшении влияния затравочного слоя на ориентацию растущих зерен и зарождения зерен силицидов кальция, как от подложки, так и в объеме. Это связано с тем, что затравочный слой Ca₂Si не является структурно-сплошным, поскольку после разрушения жертвенного слоя Mg₂Si на картине ДМЭ появляется фон и очень слабые рефлексы (1×1) от кремниевой подложки [19]. При оптимальном соотношении атомных потоков кальция и кремния формирующиеся зерна Ca₂Si(111) успевают разрастаться и формировать картины ДМЭ при различных энергиях [19], что свидетельствует об их эпитаксиальном росте.

Рассмотрим, повлияло ли нарушение эпитаксиальной ориентации зерен на оптические функции и параметры электронной структуры пленок Ca₂Si? Для этого сравним спектры отражения пленок Ca₂Si и спектры коэффициента поглощения на подложках кремния с различной ориентацией и без покрытия слоем аморфного кремния. Форма спектров отражения на кремнии с ориентациями (110) и (111) (рис. 7, b, c) является достаточно похожей с максимумом отражения при энергии фотонов 2.1 эВ с последующим уменьшением коэффициента отражения при увеличении энергии фотонов. Несмотря на некоторые отличия на спектральных зависимостях коэффициентов преломления и экстинкции (рис. 8, а), и коэффициента поглощения (рис. 9, а) при энергии фотонов выше 0.9 эВ для пленок Ca₂Si на Si(111), экстраполяция линейных участков зависимости квадрата коэффициента поглощения от энергии фотонов дала малый разброс значений энергии прямого межзонного перехода при 1.095±0.10 эВ (рис. 9, с). Это свидетельствует о достаточно малом влиянии ориентации основных зерен, как в ориентированных (поликристаллических), так и в эпитаксиальной пленках Ca₂Si на кремнии и при достаточно небольшом вкладе дополнительной фазы CaSi, обладающей полуметаллическими свойствами [14, 35, 39]. В том случае, если доля полуметаллических фаз возрастает и становится заметной не только по данным КРС, но и по данным РД спектров, как для образца A, то оптические свойства Ca₂Si в низкоэнергетической части спектров блокируются. Это не позволяет провести корректно расчеты оптических функций. Обнаруженная разница в значении прямого межзонного перехода в пленках Ca₂Si со значениями: $E_2 = 1.095 \pm 0.10$ эВ на кремнии и $E_2 = 1.16 \pm 0.01$ эВ на сапфире [24] связана недостаточной прозрачностью кремниевой подложки выше 1.1 эВ и невозможностью наблюдать весь диапазон энергии второго перехода и корректно экстраполировать линейный участок зависимости квадрата коэффициента поглощения от энергии фотонов, что снижает точность его определения значения величины межзонного перехода на кремниевой подложке. Только рост Ca₂Si на сапфире [24] позволил скорректировать второй прямой межзонный переход и определить прямой фундаментальный переход.

Сравнение экспериментальных спектров отражения проведено с теоретическими спектрами отражения Ca₂Si, полученными из первопринципных расчетов для объемного Ca₂Si [40-42]. Разница заключается в том, что в теоретическом спектре отражения коэффициент отражения растет от малых энергий фотонов вплоть до 5.12 эВ, проходя при 3.2 эВ через точку перегиба, а затем падает до 7 эВ. А рост экспериментального спектра отражения пленки Ca₂Si зафиксирован от энергий фотонов 1.2 эВ (рис. 7, *b*, *c*) и достигает максимального значения R = 0.42 - 0.48 при 2.1 эВ для подложек с ориентациями (111) и (110), а далее он уменьшается вплоть до 6.5 эВ. При этом величина теоретического коэффициента отражения при 5.1 – 5.3 эВ достигает 0.9 [40 – 42], что является очень большой величиной для классических полупроводников при данной энергии [38]. При этом расчеты спектров мнимой и действительной частей диэлектрической проницаемости объемного орторомбического Ca₂Si в работе [20] показали заметно более низкий край снижения действительной части диэлектрической проницаемости от энергии фотонов (около 1.6 эВ) и ее снижение до 0 при 2.0 эВ. Перерасчет спектра коэффициента отражения показывает, что его резкое снижение начинается при энергии фотонов около 2.6 эВ, что удовлетворительно согласуется с экспериментальными данными (рис. 7, b, c). Заниженная граница снижения коэффициента отражения для выращенных пленок Ca₂Si по сравнению с теоретическим спектром отражения от Ca₂Si в работе [40] и примерное согласование с теоретическими данными работы [20] позволяет предположить влияние различия в подходах и аппроксимациях, которые используются в данных первопринципных расчетах. Определенное быстрое снижение коэффициента отражения для выращенных пленок Ca₂Si может быть также связано с повышенной среднеквадратичной шероховатостью пленок (более 5 нм) и повышенным рассеянием света с длиной волны менее 400 нм и,

соответственно, дополнительным снижением коэффициента отражения от пленки. Сравнение ширины запрещенной зоны в прямозонном орторомбическом Ca_2Si из первых принципов 0.26 - 0.36 эВ [10 - 12, 37 - 39] с экспериментальными данными, полученными в статье [24] (0.88 ± 0.01 эВ), доказывает достаточно большую недооценку этой величины в теоретических расчетах, использующих расчет электронной структуры Ca_2Si на базе невозбужденных состояний. Поведение расчетов электронной структуры с учетом переходов с возбужденных состояний методом решения квазичастичных уравнений [23] позволило скорректировать величину прямой запрещенной зоны до 1.02 эВ, что ближе к полученной величине в данной работе для пленок Ca_2Si на кремнии и на сапфире [24].

ЗАКЛЮЧЕНИЕ

Для роста пленок Ca₂Si на кремнии с ориентациями (001) и (110) впервые апробирована оригинальная методика жертвенно-затравочного слоя на основе двумерного силицида магния (2D Mg₂Si) с последующим его переводом в затравочный слой Ca₂Si при 250 °C в потоке Са. Методом ДМЭ исследована структура 2D слоев Mg₂Si, формируемых при осаждении магния на атомарно-чистые поверхности Si(001)2×1 и Si(110)"16×2", определены условия сопряжения плоскостей Mg₂Si и Si по отдельным направлениям, построены модели сопряжения двумерных кристаллических решеток и рассчитаны их параметры и напряжения. Установлено, что лучшее сопряжение наблюдается для плоскостей Mg₂Si(111) и Si(001), а не для Mg₂Si(111) и Si(110), но оно заметно хуже, чем для плоскости Si(111). Сформированные из 2D слоев Mg₂Si затравочные слои Ca₂Si не имели упорядочения по ДМЭ для подложек Si(001) и Si(110). После доращивания пленки Ca₂Si методом МЛЭ при температуре 300 °C установлено, что в пленке толщиной 140 нм сформированы три различных силицида: Ca₂Si, CaSi и hR3-CaSi₂ со сравнимыми вкладами при невысоком соотношении скоростей осаждения кальция к кремнию (4.7), что не позволило определить оптические свойства пленки. Уменьшение температуры МЛЭ роста до 250 °C в образце **В** и увеличение соотношения потоков кальция и кремния до 8.4 позволило при худшем кристаллическом качестве сформировать поликристаллическую пленку Ca₂Si с минимальным вкладом от CaSi, не влияющим на оптические спектры пропускания и отражения. При МЛЭ росте пленок Ca₂Si на подложках Si(111) методом жертвенно-затравочного слоя при температуре 250 °C и соотношении скоростей осаждения кальция и кремния сформированы разном поликристаллические и эпитаксиальная пленки Ca₂Si с толщинами от 22 нм до 114 нм. Методами РД и КРС установлено, что при высоком отношении скоростей осаждения Са к Si (7.3 – 20.0) формируются ориентированные пленки Ca₂Si с тремя типами эпитаксиальных соотношений: Ca₂Si(100)/Si(111), Ca₂Si(110)/Si(111) и Ca₂Si(111)/Si(111), Снижение отношения скоростей осаждения Са к Si до 4.0 позволило вырастить однофазные пленки с эпитаксиальным соотношением Ca₂Si(100)/Si(111). Методами оптической спектроскопии на пропускание и отражение установлено, что кристаллическое качество пленок Ca₂Si (поликристаллические и эпитаксиальная), выращенных на кремнии с различной ориентацией, не оказывают заметного влияния на форму и положение основных пиков в спектрах отражения, а толщина пленок слабо влияет на спектры коэффициента экстинкции и коэффициента поглощения. Анализ рассчитанных спектров коэффициента поглощения показал, что все пленки Ca₂Si на кремнии содержат второй прямой межзонный переход с энергией 1.095±0.1 эВ, фундаментальный переход маскируется краем Урбаха в диапазоне энергий фотонов 0.78 – 1.0 эВ, а поглощение ниже 0.7 эВ возникает за счет рассеяния на межзеренных границах. Последний диапазон (ниже 0.6 эВ) коррелирует с началом области бездисперсионного коэффициента преломления для эпитаксиальной пленки Ca₂Si ($n_0 = 3.53$). Малое количество фазы CaSi в поликристаллических пленках Ca₂Si на Si(110) и S(111) не оказывает влияние на поглощение при энергиях фотонов менее 0.4 эВ. Все обнаруженные факты могут помочь в повышении фотоэлектрической чувствительности диодных структур Ca₂Si/Si в ближней ИК и видимой областях спектра.

Работа выполнена с финансовой поддержкой гранта РФФИ – БРФФИ в 2022 году (№ 20-52-00001-Бел_а) и гранта Белорусского республиканского фонда фундаментальных исследований (грант № Ф20Р-003).

The work was supported by a grant from the Russian Foundation for Basic Research – BRFFR in 2022 (No. 20-52-00001-Bel_a) and by a grant of Belarusian Republican Foundation for Fundamental Research (grant No. F20R-003).

СПИСОК ЛИТЕРАТУРЫ

1. Borisenko V. E. Semiconducting Silicides. Berlin: Springer, 2000. https://doi.org/10.1007/978-3-642-59649-0

2. Burkov A. T., Novikov S. V., Khovaylo V. V., Schumann J. Energy filtering enhancement of thermoelectric performance of nanocrystalline $Cr_{1-x}Si_x$ composites // Journal Alloys & Compounds, 2017, vol. 691, iss. 8, pp. 89-94. https://doi.org/10.1016/j.jallcom.2016.08.117

3. Zouak B., Zirmi R., Belkaid M. S., Pasquinelli M. Study of Mg₂Si thin fi lm and ultra-thin film formation for thermoelectric applications // Journal of Electronic Materials, 2019, vol. 48, pp. 2095-2102. https://doi.org/10.1007/s11664-019-07003-1

4. Hirayama N., Iida T., Nishio K., Kogo Y., Takarabe K., Hamada N. Influence of native defects on structural and electronic properties of magnesium silicide // Japanese Journal of Applied Physics, 2017, vol. 56, no. 5S1, pp. 05DC05. <u>https://doi.org/10.7567/JJAP.56.05DC05</u>

5. Uehara M., Katagiri A., Kurokawa M., Akiyama K., Shimizu T., Matsushima M., Uchida H., Kimura Y., Funakubo H. Preparation of CaMgSi and Ca₇Mg_{7.25}Si₁₄ single phase films and their thermoelectric properties // MRS Advances, 2019, vol. 4, pp. 1503-1508. https://doi.org/10.1557/adv.2019.129

6. Galkin N. G., Galkin K. N., Goroshko D. L., Chernev I. M., Shevlyagin A. V., Dózsa L., Osváth Z., Pécz B. Non-doped and doped Mg stannide films on Si(111) substrate: formation, optical and electrical properties // Japanese Journal of Applied Physics, 2015, vol. 54, pp. 07C06(9).

http://dx.doi.org/10.7567/JJAP.54.07JC06

7. Dózsa L., Galkin N. G., Pécz B., Osváth Z., Zolnai Zs., Nemeth A., Galkin K. N., Chernev I. M., Dotsenko S. A. Mg₂Sn heterostructures on Si(111) substrate // Applied Surface Science, 2017, vol. 405, pp. 111-118. https://doi.org/10.1016/j.apsusc.2017.01.299

8. Arnaud B., Alouani M. Electron-hole excitations in Mg₂Si and Mg₂Ge compounds // Physical Review B, 2001, vol. 64, pp. 033202(4). https://doi.org/10.1103/PhysRevB.64.033202

9. Mizuyoshi Y., Yamada R., Ohishi T., Saito Y., Koyama T., Hayakawa Y., Matsuyama T., Tatsuoka H. Growth of Mg₂Si_{1-x}Ge_x layers on silicon-germanium substrates // Thin Solid Films, 2006, vol. 508, iss. 1-2, pp. 70-73. <u>https://doi.org/10.1016/j.tsf.2005.07.331</u>

REFERENCES

1. Borisenko V. E. *Semiconducting Silicides*. Berlin: Springer, 2000. https://doi.org/10.1007/978-3-642-59649-0

2. Burkov A. T., Novikov S. V., Khovaylo V. V., Schumann J. Energy filtering enhancement of thermoelectric performance of nanocrystalline $Cr_{1-x}Si_x$ composites. *Journal Alloys & Compounds*, 2017, vol. 691, iss. 8, pp. 89-94. https://doi.org/10.1016/j.jallcom.2016.08.117

3. Zouak B., Zirmi R., Belkaid M. S., Pasquinelli M. Study of Mg₂Si thin film and ultra-thin film formation for thermoelectric applications. *Journal of Electronic Materials*, 2019, vol. 48, pp. 2095-2102. https://doi.org/10.1007/s11664-019-07003-1

4. Hirayama N., Iida T., Nishio K., Kogo Y., Takarabe K., Hamada N. Influence of native defects on structural and electronic properties of magnesium silicide. *Japanese Journal of Applied Physics*, 2017, vol. 56, no. 5S1, pp. 05DC05. <u>https://doi.org/10.7567/JJAP.56.05DC05</u>

5. Uehara M., Katagiri A., Kurokawa M., Akiyama K., Shimizu T., Matsushima M., Uchida H., Kimura Y., Funakubo H. Preparation of CaMgSi and Ca₇Mg_{7.25}Si₁₄ single phase films and their thermoelectric properties. *MRS Advances*, 2019, vol. 4, pp. 1503-1508. https://doi.org/10.1557/adv.2019.129

6. Galkin N. G., Galkin K. N., Goroshko D. L., Chernev I. M., Shevlyagin A. V., Dózsa L., Osváth Z., Pécz B. Non-doped and doped Mg stannide films on Si(111) substrate: formation, optical and electrical properties. *Japanese Journal of Applied Physics*, 2015, vol. 54, pp. 07C06(9). http://dx.doi.org/10.7567/JJAP.54.07JC06

7. Dózsa L., Galkin N. G., Pécz B., Osváth Z., Zolnai Zs., Nemeth A., Galkin K. N., Chernev I. M., Dotsenko S. A. Mg₂Sn heterostructures on Si(111) substrate. *Applied Surface Science*, 2017, vol. 405, pp. 111-118. https://doi.org/10.1016/j.apsusc.2017.01.299

8. Arnaud B., Alouani M. Electron-hole excitations in Mg₂Si and Mg₂Ge compounds. *Physical Review B*, 2001, vol. 64, pp. 033202(4). https://doi.org/10.1103/PhysRevB.64.033202

9. Mizuyoshi Y., Yamada R., Ohishi T., Saito Y., Koyama T., Hayakawa Y., Matsuyama T., Tatsuoka H. Growth of Mg₂Si_{1-x}Ge_x layers on silicon-germanium substrates. *Thin Solid Films*, 2006, vol. 508, iss. 1-2, pp. 70-73. <u>https://doi.org/10.1016/j.tsf.2005.07.331</u> **10.** Clarke F. W. The relative abundance of the chemical elements // In book: Bulletin of the Philosophical Society of Washington. Hardcover, 1892, vol. XI, pp. 131-142. https://www.dropbox.com/s/eiwvh6yurwuj6il/Volume%2 011.pdf?dl=0&page=168

11. Manfrietti P., Fornasini M. L., Palenzona A. The phase diagram of the Ca-Si system // Intermetallics, 2000, vol. 8, pp. 223-228. <u>https://doi.org/10.1016/S0966-9795(99)00112-0</u>

12. Imai I, Watanabe A. Energetics of alkaline-earth metal silicides calculated using a first-principle pseudopotential method // Intermetallics, 2002, vol. 10, iss. 4, pp. 333-341. https://doi.org/10.1016/S0966-9795(02)00003-1

13. Moll A., Viennois R., Hermet P., Haidoux A., Bantignies J.-L., Beaudhuin M. Stability and properties of the friendly environmental Zintl phases: Ca_3Si_4 and $Ca_{14}Si_{19}$ // Acta Materialia, 2017, vol. 125, pp. 490-497. <u>https://doi.org/10.1016/j.actamat.2016.12.023</u>

14. Bisi O., Braikovich L., Carbone C., Lindau I., Iandelli A., Olcese G. L., Palenzona A. Chemical bond and electronic states in calcium silicides: Theory and comparison with synchrotron-radiation photoemission // Physical Review B, 1989, vol. 40, no. 15, pp. 10194-10209. https://doi.org/10.1103/PhysRevB.40.10194

15. Migas D. B., Shaposhnikov V. L., Filonov A. B., Dorozhkin N. N., Borisenko V. E. New semiconductor silicide Ca₃Si₄ // Journal of Physics: Condensed Matter, 2007, vol. 19, iss. 34, pp. 346207. https://doi.org/10.1088/0953-8984/19/34/346207

16. Wen C., Nonomura T., Kato A., Kenichi Y., Udono H., Isobe K., Otake M., Kubota Y., Nakamura T., Hayakawa Y., Tatsuoka H. Electrical properties of Ca₂Si sintered compact synthesized by spark plasma sintering // Physics Procedia, 2011, vol. 11, pp. 106-111. http://dx.doi.org/10.1016/j.phpro.2011.01.038

17. Takagi N., Sato Y., Matsuyama T., Tatsuoka H., Tanaka M., Fengmin C., Kuwabara H. Growth and structural properties of Mg₂Si and Ca₂Si bulk crystals // Applied Surface Science, 2005, vol. 244, pp. 330-333. https://doi.org/10.1016/j.apsusc.2004.10.087

18. Dozsa L., Molnar G., Zolnai Z., Dobos L., Pecz B., Galkin N. G., Dotsenko S. A., Bezbabny D. A., Fomin D. V. Formation and characterization of semiconductor Ca₂Si layers prepared on p-type silicon covered by an amorphous silicon cap // Journal of Materials Science, 2013, vol. 48, pp. 2872-2882. https://doi.org/10.1007/s10853-012-6945-6

19. Galkin N. G., Galkin K. N., Dotsenko S. A., Pyachin S. A., Astapov I. A. Ca₂Si(100) epitaxial films on the Si(111) substrate: template growth, structural and optical properties // Materials Science in Semiconductor Processing, 2020, vol. 113, pp. 105036. https://doi.org/10.1016/j.mssp.2020.105036

20. Migas D. B., Miglio L., Shaposhnikov V. L., Borisenko V. E. Comparative study of structural, electronic and optical properties of Ca₂Si, Ca₂Ge, Ca₂Sn and Ca₂Pb // Physical Review B, 2003, vol. 67, pp. 205203. <u>https://doi.org/10.1103/PhysRevB.67.205203</u> **10.** Clarke F. W. The relative abundance of the chemical elements. In book: *Bulletin of the Philosophical Society of Washington*. Hardcover, 1892, vol. XI, pp. 131-142. https://www.dropbox.com/s/eiwvh6yurwuj6il/Volume%2011.pdf?dl=0&page=168

11. Manfrietti P., Fornasini M. L., Palenzona A. The phase diagram of the Ca-Si system. *Intermetallics*, 2000, vol. 8, pp. 223-228. <u>https://doi.org/10.1016/S0966-9795(99)00112-0</u>

12. Imai I, Watanabe A. Energetics of alkaline-earth metal silicides calculated using a first-principle pseudopotential method. *Intermetallics*, 2002, vol. 10, iss. 4, pp. 333-341. https://doi.org/10.1016/S0966-9795(02)00003-1

13. Moll A., Viennois R., Hermet P., Haidoux A., Bantignies J.-L., Beaudhuin M. Stability and properties of the friendly environmental Zintl phases: Ca₃Si₄ and Ca₁₄Si₁₉. *Acta Materialia*, 2017, vol. 125, pp. 490-497. https://doi.org/10.1016/j.actamat.2016.12.023

14. Bisi O., Braikovich L., Carbone C., Lindau I., Iandelli A., Olcese G. L., Palenzona A. Chemical bond and electronic states in calcium silicides: Theory and comparison with synchrotron-radiation photoemission. *Physical Review B*, 1989, vol. 40, no. 15, pp. 10194-10209. <u>https://doi.org/10.1103/PhysRevB.40.10194</u>

15. Migas D. B., Shaposhnikov V. L., Filonov A. B., Dorozhkin N. N., Borisenko V. E. New semiconductor silicide Ca₃Si₄. *Journal of Physics: Condensed Matter*, 2007, vol. 19, iss. 34, pp. 346207. https://doi.org/10.1088/0953-8984/19/34/346207

16. Wen C., Nonomura T., Kato A., Kenichi Y., Udono H., Isobe K., Otake M., Kubota Y., Nakamura T., Hayakawa Y., Tatsuoka H. Electrical properties of Ca₂Si sintered compact synthesized by spark plasma sintering. *Physics Procedia*, 2011, vol. 11, pp. 106-111. http://dx.doi.org/10.1016/j.phpro.2011.01.038

17. Takagi N., Sato Y., Matsuyama T., Tatsuoka H., Tanaka M., Fengmin C., Kuwabara H. Growth and structural properties of Mg₂Si and Ca₂Si bulk crystals. *Applied Surface Science*, 2005, vol. 244, pp. 330-333. <u>https://doi.org/10.1016/j.apsusc.2004.10.087</u>

18. Dozsa L., Molnar G., Zolnai Z., Dobos L., Pecz B., Galkin N. G., Dotsenko S. A., Bezbabny D. A., Fomin D. V. Formation and characterization of semiconductor Ca₂Si layers prepared on p-type silicon covered by an amorphous silicon cap. *Journal of Materials Science*, 2013, vol. 48, pp. 2872-2882. https://doi.org/10.1007/s10853-012-6945-6

19. Galkin N. G., Galkin K. N., Dotsenko S. A., Pyachin S. A., Astapov I. A. Ca₂Si(100) epitaxial films on the Si(111) substrate: template growth, structural and optical properties. *Materials Science in Semiconductor Processing*, 2020, vol. 113, pp. 105036. https://doi.org/10.1016/j.mssp.2020.105036

20. Migas D. B., Miglio L., Shaposhnikov V. L., Borisenko V. E. Comparative study of structural, electronic and optical properties of Ca₂Si, Ca₂Ge, Ca₂Sn and Ca₂Pb. *Physical Review B*, 2003, vol. 67, pp. 205203. https://doi.org/10.1103/PhysRevB.67.205203 21. Hu J., Kato A., Sadoh T., Maeda Y., Galkin K. N., Turchin T. V., Galkin N. G., Tatsuoka H. Optical and electronic properties of M_2Si (M = Mg, Ca and Sr) grown by reactive deposition technique // International Journal of Modern Physics B, 2010, vol. 24, no. 23, pp. 3693-3699.

http://dx.doi.org/10.1142/S0217979210056657

22. Migas D. B., Bogorodz V. O., Filonov A. B., Shaposhnikov V. L., Borisenko V. E., Galkin N. G. Electronic properties of semiconducting Ca₂Si silicide: From bulk to nanostructures by means of first principles calculations // Japanese Journal of Applied Physics, 2015, vol. 54(7S2). pp. 07JA03(1-7). http://dx.doi.org/10.7567/JJAP.54.07JA03

23. Lebegue S., Arnaud B., Alouani M. Calculated quasiparticle and optical properties of orthorombic and cubic Ca2Si // Physical Review B, 2005, vol. 72, iss. 8, pp. 085103(1-8).

https://doi.org/10.1103/PhysRevB.72.085103

24. Галкин Н. Г., Галкин К. Н., Чернев И. М., Кропачев О. В., Горошко Д. Л., Субботин Е. Ю. и Мигас Д. Б. Кристаллическая структура, оптические свойства и характер запрещенной зоны полупроводниковых пленок Ca₂Si на подложке Al₂O₃ // Химическая физика и мезоскопия. 2022. Т. 24, № 1. C. 33-44. https://doi.org/10.15350/17270529.2022.1.3

25. Galkin N. G., Maslov A. M., Konchenko A. V. Optical and photospectral properties of CrSi₂ A-type epitaxial layers on Si(111) // Thin Solid Films, 1997, vol. 311, pp. 230-238.

https://doi.org/10.1016/S0040-6090(97)00678-0

26. Woodruff D. P. Modern Techniques of Surface Science, 3rd Edition. Cambridge University Press, London, UK, 2016. 508 p.

27. CrystalMaker Software. URL: http://www.crystalmaker.com/ (дата обращения:

07.12.2021)

28. Crystallography Open Database. URL: http://www.crystallography.net/cod/search.html (дата обращения: 07.12.2021).

29. LEEDpat, Version 4.2, Utility by K.E. Hermann (FHI) and M.A. Van Hove (HKBU), 2014, Berlin, Hong Kong. URL: http://www.fhiberlin.mpg.de/KHsoftware/LEEDpat/index.html (дата обращения: 07.12.2021).

30. Tani J.-I., Kido H. Investigation of structural, elastic, and lattice-dynamical properties of Ca2Si, Ca2Ge, and Ca₂Sn based on first-principles density functional theory // Computation Materials Science, 2015, vol. 97, pp. 36-41.

https://doi.org/10.1016/j.commatsci.2014.10.002

31. Galkin N. G., Galkin K. N., Tupkalo A. V., Fogarassy Z., Pécz B. A low temperature growth of Ca silicides on Si(100) and Si(111) substrates: formation, structure, optical properties and energy band structure

21. Hu J., Kato A., Sadoh T., Maeda Y., Galkin K. N., Turchin T. V., Galkin N. G., Tatsuoka H. Optical and electronic properties of M_2Si (M = Mg, Ca and Sr) grown by reactive deposition technique. International Journal of Modern Physics B, 2010, vol. 24, no. 23, pp. 3693-3699.

http://dx.doi.org/10.1142/S0217979210056657

22. Migas D. B., Bogorodz V. O., Filonov A. B., Shaposhnikov V. L., Borisenko V. E., Galkin N. G. Electronic properties of semiconducting Ca₂Si silicide: From bulk to nanostructures by means of first principles calculations. Japanese Journal of Applied Physics, 2015, vol. 54(7S2). pp. 07JA03(1-7). http://dx.doi.org/10.7567/JJAP.54.07JA03

23. Lebegue S., Arnaud B., Alouani M. Calculated quasiparticle and optical properties of orthorombic and cubic Ca2Si. Physical Review B, 2005, vol. 72, iss. 8, pp. 085103(1-8).

https://doi.org/10.1103/PhysRevB.72.085103

24. Galkin N. G., Galkin K. N., Chernev I. M., Kropachev O. V., Goroshko D. L., Subbotin E. Yu. i Migas D. B. Kristallicheskaya struktura, opticheskie svoystva i kharakter zapreshchennoy zony poluprovodnikovykh plenok Ca2Si na podlozhke Al2O3 [Crystalline structure, optical properties and band gap nature of semiconductor Ca₂Si films on Al₂O₃ substrate. Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopy], 2022, vol. 24, no. 1, pp. 33-44. (In Russian). https://doi.org/10.15350/17270529.2022.1.3

25. Galkin N. G., Maslov A. M., Konchenko A. V. Optical and photospectral properties of CrSi₂ A-type epitaxial layers on Si(111). Thin Solid Films, 1997, vol. 311, pp. 230-238. https://doi.org/10.1016/S0040-6090(97)00678-0

26. Woodruff D. P. Modern Techniques of Surface Science, 3rd Edition. Cambridge University Press, London, UK, 2016. 508 p.

27. CrystalMaker Software. URL: http://www.crystalmaker.com/ (accessed December 07, 2021).

28. Crystallography Open Database. URL: http://www.crystallography.net/cod/search.html (accessed December 07, 2021).

29. *LEEDpat, Version 4.2*, Utility by K.E. Hermann (FHI) and M.A. Van Hove (HKBU), 2014, Berlin, Hong Kong. URL: http://www.fhiberlin.mpg.de/KHsoftware/LEEDpat/index.html (accessed December 07, 2021).

30. Tani J.-I., Kido H. Investigation of structural, elastic, and lattice-dynamical properties of Ca2Si, Ca2Ge, and Ca₂Sn based on first-principles density functional theory. Computation Materials Science, 2015, vol. 97, pp. 36-41.

https://doi.org/10.1016/j.commatsci.2014.10.002

31. Galkin N. G., Galkin K. N., Tupkalo A. V., Fogarassy Z., Pécz B. A low temperature growth of Ca silicides on Si(100) and Si(111) substrates: formation, structure, optical properties and energy band structure

parameters // Journal of Alloys and Compounds, 2020, vol. 813, pp. 152101. https://doi.org/10.1016/j.jallcom.2019.152101

32. Temple P. A., Hathaway C. E. Multiphonon Raman spectrum of silicon // Physical Review B, 1973, vol. 7, pp. 3685-3697. https://doi.org/10.1103/PhysRevB.7.3685

33. Iqbal Z., Vepřek S., Webb A. P., Capezzuto P. Raman scattering from small particle size polycrystalline silicon // Solid State Communications, 1981, vol. 37, pp. 993-996.

https://doi.org/10.1016/0038-1098(81)91202-3

34. Ossadnik Ch., Vepřek S., Gregora I. Applicability of Raman scattering for the characterization of nanocrystalline silicon // Thin Solid Films, 1999, vol. 337, pp. 148-151.

https://doi.org/10.1016/S0040-6090(98)01175-4

35. Affronte M., Laborde O., Olsece G. L., Palenzona A. Low temperature properties of calcium mono- and disilicides // Journal of Alloys and Compounds, 1998, vol. 274, pp. 68-73.

https://doi.org/10.1016/S0925-8388(98)00570-2

36. Galkin N. G., Dotsenko S. A., Galkin K. N., Migas D. B., Bogorodz V. O., Filonov A. B., Borisenko V. E., Cora I., Pécz B., Goroshko D. L., Tupkalo A. V., Chusovitin E. A., Subbotin E. Y. Conductive CaSi₂ transparent in the near infra-red range // Journal of Alloys and Compounds, 2019, vol. 770, pp. 710-720.

https://doi.org/10.1016/j.jallcom.2018.08.179

37. Гавриленко В. И., Грехов А. М., Корбутяк Д. В. Литовченко В. Г. Оптические свойства полупроводников. Справочник. Киев: Наукова Думка, 1987. 608 c.

38. Pankov J. I. Optical Processes in Semiconductors, 2nd Revised ed. edition, Dover Books on Physics, New York, 2010. 448 p.

39. Galkin N. G., Galkin K. N., Chernev I. M., Goroshko D. L., Chusovitin E. A., Shevlyagin A. V., Usenko A. A., Khovaylo V. V. Comparison of the structural, optical and thermoelectrical properties of Ca silicide films with variable composition on Si substrates // Defect and Diffusion Forum, 2018, vol. 386, pp. 3-8. https://doi.org/10.4028/www.scientific.net/DDF.386.3

40. Deng Y., Yan W., Zhang C., Qin X., Zhou S.

Electronic structure and optical properties of C-doped Ca2Si // IOP Conference Series: Materials Science and Engineering, 2018, vol. 381, pp. 012015. http://dx.doi.org/10.1088/1757-899X/381/1/012015

41. Feng Y., Xie Q., Gao R., Shen X., Wang Y., Chen Q. First-principles calculation of electronic structure and optical properties of K-doped orthorhombic Ca2Si // Transactions of Materials and Heat Treatment, 2012, vol. 33, pp. 155-160. (In Chinese).

parameters. Journal of Alloys and Compounds, 2020, vol. 813, pp. 152101. https://doi.org/10.1016/j.jallcom.2019.152101

32. Temple P. A., Hathaway C. E. Multiphonon Raman spectrum of silicon. Physical Review B, 1973, vol. 7, pp. 3685-3697. https://doi.org/10.1103/PhysRevB.7.3685

33. Iqbal Z., Vepřek S., Webb A. P., Capezzuto P. Raman scattering from small particle size polycrystalline silicon. Solid State Communications, 1981, vol. 37, pp. 993-996.

https://doi.org/10.1016/0038-1098(81)91202-3

34. Ossadnik Ch., Vepřek S., Gregora I. Applicability of Raman scattering for the characterization of nanocrystalline silicon. Thin Solid Films, 1999, vol. 337, pp. 148-151.

https://doi.org/10.1016/S0040-6090(98)01175-4

35. Affronte M., Laborde O., Olsece G. L., Palenzona A. Low temperature properties of calcium mono- and disilicides. Journal of Alloys and Compounds, 1998, vol. 274, pp. 68-73. https://doi.org/10.1016/S0925-8388(98)00570-2

36. Galkin N. G., Dotsenko S. A., Galkin K. N., Migas D. B., Bogorodz V. O., Filonov A. B., Borisenko V. E., Cora I., Pécz B., Goroshko D. L., Tupkalo A. V., Chusovitin E. A., Subbotin E. Y. Conductive CaSi₂ transparent in the near infra-red range. Journal of Alloys and Compounds, 2019, vol. 770, pp. 710-720.

https://doi.org/10.1016/j.jallcom.2018.08.179

37. Gavrilenko V. I., Grekhov A. M., Korbutyak D. V. Litovchenko V. G. Opticheskie svoystva poluprovodnikov. Spravochnik [Optical Properties of Semiconductors Handbook]. Kiev: Naukova Dumka Publ., 1987. 608 p. (In Russian).

38. Pankov J. I. Optical Processes in Semiconductors, 2nd Revised ed. edition, Dover Books on Physics, New York, 2010. 448 p.

39. Galkin N. G., Galkin K. N., Chernev I. M., Goroshko D. L., Chusovitin E. A., Shevlyagin A. V., Usenko A. A., Khovaylo V. V. Comparison of the structural, optical and thermoelectrical properties of Ca silicide films with variable composition on Si substrates. Defect and Diffusion Forum, 2018, vol. 386, pp. 3-8.

https://doi.org/10.4028/www.scientific.net/DDF.386.3

40. Deng Y., Yan W., Zhang C., Qin X., Zhou S. Electronic structure and optical properties of C-doped Ca₂Si. IOP Conference Series: Materials Science and Engineering, 2018, vol. 381, pp. 012015. http://dx.doi.org/10.1088/1757-899X/381/1/012015

41. Feng Y., Xie Q., Gao R., Shen X., Wang Y., Chen Q. First-principles calculation of electronic structure and optical properties of K-doped orthorhombic Ca2Si. Transactions of Materials and Heat Treatment, 2012, vol. 33, pp. 155-160. (In Chinese).

42. Cen W. F., Yang Y. Y., Fan M. H., et.al. Electronic structure and optical properties of orthorhombic P-doped Ca₂Si calculated by the firstprinciples // Acta Photonica Silica, 2014, vol. 43, pp. 0816003. (In Chinese).

<u>doi: 10.3788/gzxb20144308.0816003;</u> file:///C:/Users/elle/Downloads/0816003-2.pdf **42.** Cen W. F., Yang Y. Y., Fan M. H., et.al. Electronic structure and optical properties of orthorhombic P-doped Ca₂Si calculated by the first-principles. *Acta Photonica Silica*, 2014, vol. 43, pp. 0816003. (In Chinese). doi: 10.3788/gzxb20144308.0816003; file:///C:/Users/elle/Downloads/0816003-2.pdf

Поступила 10.03.2022; принята к опубликованию 04.04.2022 Received 10 March 2022; accepted 04 April 2022

Информация об авторах

Галкин Николай Геннадьевич, доктор физикоматематических наук, профессор, главный научный сотрудник, ИАПУ ДВО РАН, Владивосток, Российская Федерация, e-mail: <u>ngalk@iacp.dvo.ru</u>

Галкин Константин Николаевич, кандидат физикоматематических наук, старший научный сотрудник, ИАПУ ДВО РАН, Владивосток, Российская Федерация

Игорь Михайлович Чернев, научный сотрудник, ИАПУ ДВО РАН, Владивосток, Российская Федерация

Олег Владиславович Кропачев, младший научный сотрудник, ИАПУ ДВО РАН, Владивосток, Российская Федерация

Дмитрий Львович Горошко, доктор физикоматематических наук, ведущий научный сотрудник, ИАПУ ДВО РАН, Владивосток, Российская Федерация

Сергей Андреевич Доценко, кандидат физикоматематических наук, научный сотрудник, ИАПУ ДВО РАН, Владивосток, Российская Федерация

Евгений Юрьевич Субботин, младший научный сотрудник, ИАПУ ДВО РАН, Владивосток, Российская Федерация

Дмитрий Борисович Мигас, доктор физикоматематических наук, зав. кафедрой Белорусского государственного университета информатики и радиоэлектроники, Минск, Республика Беларусь

Information about the authors

Nikolay G. Galkin, Dr. Sci. (Phys.-Math.), Professor, Chief Researcher, Institute of Automation and Control Processes FEB RAS, Vladivostok, Russian Federation, e-mail: <u>ngalk@iacp.dvo.ru</u>

Konstantin N. Galkin, Cand. Sci. (Phys.-Math.), Senior Researcher, Institute of Automation and Control Processes FEB RAS, Vladivostok, Russian Federation

Igor M. Chernev, Researcher, Institute of Automation and Control Processes FEB RAS, Vladivostok, Russian Federation

Oleg V. Kropachev, Young Researcher, Institute of Automation and Control Processes FEB RAS, Vladivostok, Russian Federation

Dmitriy L. Goroshko, Dr. Sci. (Phys.-Math.), Leading Researcher, Institute of Automation and Control Processes FEB RAS, Vladivostok, Russian Federation

Sergei A. Dotsenko, Cand. Sci. (Phys.-Math.), Researcher, Institute of Automation and Control Processes FEB RAS, Vladivostok, Russian Federation

Evgeniy Yu. Subbotin, Young Researcher, Institute of Automation and Control Processes FEB RAS, Vladivostok, Russian Federation

Dmitriy B. Migas, Dr. Sci. (Phys.-Math.), Head of Department of the Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus