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Abstract: Thin-film strontium ferromolybdate is a promising material for applications in room-
temperature magnetic tunnel junction devices. These are spin-based, low-power-consuming alterna-
tives to CMOS in non-volatile memories, comparators, analog-to-digital converters, and magnetic
sensors. In this work, we consider the main tasks to be solved when creating such devices based on
strontium ferromolybdate: (i) selecting an appropriate tunnel barrier material, (ii) determining the
role of the interface roughness and its quantification, (iii) determining the influence of the interface
dead layer, (iv) establishing appropriate models of the tunnel magnetoresistance, and (v) promoting
the low-field magnetoresistance in (111)-oriented thin films. We demonstrate that (i) barrier materials
with a lower effective electronegativity than strontium ferromolybdate are beneficial, (ii) diminution
of the magnetic offset field (the latter caused by magnetic coupling) requires a wavy surface rather
than solely a surface with small roughness, (iii) the interface dead-layer thickness is of the order
of 10 nm, (iv) the tunnel magnetoresistance deteriorates due to spin-independent tunneling and
magnetically disordered interface layers, and (v) antiphase boundaries along the growth direction
promote the negative low-field magnetoresistance by reducing charge carrier scattering in the absence
of the field.

Keywords: magnetic tunnel junction; strontium ferromolybdate; tunnel barrier material; surface
roughness; interface layers; tunnel magnetoresistance

1. Introduction

Strontium ferromolybdate (Sr2FeMoO6-δ—SFMO) double perovskites are promising
candidates for magnetic electrode materials for room temperature (RT) spintronics applica-
tions because they present a half-metallic character (with theoretically 100% polarization),
a high Curie temperature (TC) of about 415 K (ferromagnets should be operated in their
ordered magnetic state below TC), and low-field magnetoresistance (LFMR) [1].

A magnetic tunnel junction (MTJ) consists of two ferromagnetic (FM) or ferrimagnetic
layers separated by a thin insulator serving as a tunneling barrier. One of the magnetic
layers (the pinned layer) has its magnetization direction fixed, e.g., by exchange bias, while
the magnetization direction in the other layer (the free layer) can be changed by applying a
magnetic field or injecting a spin-polarized current. If the two magnetizations have parallel
orientations, electrons will tunnel through the insulating layer, and the device is in the
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low-resistance state. If they have antiparallel orientations, practically no tunneling occurs
(the high-resistance state) when one of the spin states, spin-up or spin-down, is dominating
at the Fermi level. Consequently, such a junction can be switched between two states of
electrical resistance.

A first attempt to fabricate SFMO-based MTJs was reported in [2]. A thin insulating
layer covering the SFMO/SrTiO3 surface was subjected to resistance-controlled nanoinden-
tation. The indentation was stopped exactly when the tip reached the SrTiO3 (STO) surface
by controlling the resistance between the tip and the electrode underlying SFMO in real
time and comparing it to the reference resistance measured before the lithography process.
The indented holes were then filled up with Co, and thus a tunnel nanojunction was formed.
Transport measurements revealed a positive tunnel magnetoresistance (TMR) of about 50%
at 4 K. In a next attempt, a 50 × 50 µm2 SFMO/STO/CoFe2O4 junction was fabricated [3].
The structure showed the behavior of a usual metal/insulator/semiconductor diode; TMR
was absent. The same group has manufactured 50 × 50 µm2 SFMO/STO/CoFe2 tunnel
junctions that did not show any magnetoresistance (MR) at 5 K [4]. In both cases, the
absence of MR was assigned to an iron deficiency at the SFMO surface established by X-ray
photoemission spectroscopy. MTJs with an area of 30× 30 µm2 were fabricated by means of
SFMO thin films deposited on Ba0.4Sr0.6TiO3-buffered STO substrates [5]. Native SrMoO4
oxide formed by surface oxidation was used as a tunneling barrier, and a 50 nm thick Co
film shunted by Au served as a counter-electrode. Junction delineation was carried out
using standard UV lithography and ion milling. The structure possessed a TMR of 10% at
4.2 K. MTJs consisting of two SFMO electrodes separated by an STO barrier were described
in [6,7]. Trilayer SFMO/STO/SFMO MTJ devices of 40 × 40 µm2 area were created on an
STO buffered Si (100) wafer. The large TMR of ∼7% of the devices obtained at RT was
ascribed to spin-dependent tunneling through the sufficiently thin (~2 nm) STO barrier. A
comprehensive review of manganite-based magnetic tunnel structures [8] addressed the
application of combined external factors (transport current, magnetic and electric fields,
microwave and optical radiation) as well as comparing current-perpendicular-to-plane and
current-in-plane geometries. However, La0.7Sr0.3MnO3 thin films undergo a transition to
the ferromagnetic state already at about 300 K. The discovery of the coherent tunneling
effect at the Fe(100)/MgO(100) boundary, enabling theoretically MR values up to 1000% [9],
shifted the research activities in recent years to MTJs employing magnetic electrodes of
Fe-containing alloys.

In this work, we consider (i) selection of an appropriate tunnel barrier material, (ii) role
of the interface roughness and its quantification, (iii) influence of the magnetic dead layer
(DL) at the surface/interface, (iv) appropriate models of the TMR, and (v) microstructural
promotion of the LFMR. We demonstrate that (i) barrier materials with effective electroneg-
ativity lower than that of SFMO are beneficial, (ii) diminution of the magnetic offset field
(the latter caused by magnetic coupling due to interfacial roughness) requires a wavy rather
than solely a smooth surface, (iii) the DL has a thickness in the order of 10 nm, (iv) the
TMR deteriorates due to spin-independent tunneling and magnetically disordered interface
layers, and (v) antiphase boundaries along the growth direction promote negative LFMR
by reducing charge carrier scattering in the absence of the field.

2. Theoretical Considerations
2.1. Effective Electronegativity of Complex Oxide Compounds

Considering an ideal conductor-dielectric interface without surface- or adsorbate-
induced states, a charge transfer occurs between the constituents, thus creating an interface
dipole that shifts the relative position of the metal Fermi level with respect to the conduction
and valence bands of the dielectric. The magnitude of the interface dipole is defined
by the ability of both interface constituents to attract electrons, i.e., by their effective
electronegativities. The Pauling electronegativity scale X is based on the difference between
the actual and the expected bond formation enthalpy in various A-B molecules. The
difference is attributed to the partially ionic character of the A-B bond. To set up relative
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values for all elements, a value of X = 4.0 was assigned to the most electronegative element
fluorine [10]. Similarly, the electron displacement at the interface occurs toward the more
electronegative compound, i.e., it depends on the effective electronegativities 〈X〉 of the
interface constituents. An appropriate way to calculate the effective electronegativity of
materials consisting of N components is to use the geometric mean of the electronegativities
of the constituent elements [11,12].

〈X〉 =
(

N

∏
i=1

Xi

)1/N

(1)

The effective electronegativity, Equation (1), is correlated with the work function of
metal, carbide, oxycarbide, nitride, oxynitride, and LaB6 electrodes on HfO2 [13], proving
its suitability to characterize the charge exchange at electrode-dielectric interfaces.

2.2. Néel Coupling at the Interface

The tunnelling probability exponentially varies with the barrier thickness. Conse-
quently, conformal coating of the bottom SFMO layer by a thin barrier layer is required. In
this case, the Néel coupling—also called the “orange-peel” effect—appears due to nonzero
surface roughness. Let us consider a laminar structure consisting of two FM layers, a fixed
(pinned) layer and a free one, separated by a nonmagnetic barrier (NB) of thickness db,
with conformal waviness described by a two-dimensional (2D) sinusoidal wave with a
wavelength λ and amplitude h. Then, a magnetic offset field occurs in the free layer due to
the magnetostatic coupling between the two in-plane polarized FM layers. In this case, a
bulk, pinned hard-magnetic (HM) layer couples via the barrier to another bulk, free soft-
magnetic (SM) layer. Accounting only for the first-order terms of h/dg, with dg being the
grain size, the coupling field is given in the limit of rigid isotropic in-plane magnetization
by [14,15]:

Ho f f =
π2
√

2
h2

λds
Mh exp

(
−2π

√
2db

λ

)
(2)

where ds is the thickness of the SM layer and Mh is the magnetization of the HM layer. In
thin-film structures, magnetic poles created at the outer surfaces of the magnetic layers
result in additional FM and anti-FM interactions which must be taken into account. This
yields an SM/NB/HM trilayer structure [16]:

Ho f f =
π2h2 Mh√

2λds
exp

(
− 2π

√
2db

λ

)
×

×
[
1− exp

(
− 2π

√
2ds

λ

)]
·
[
1− exp

(
− 2π

√
2dh

λ

)]
.

(3)

Experimentally, the inverse variation of Hoff with the SM layer thickness and its expo-
nential variation with the NB thickness were observed in [17,18]. A coercivity enhancement
in the free layer resulting from the orange-peel coupling was reported in [19]. Note that
small offset fields require h << λ. In this case, both pulsed laser deposition (PLD) and
magnetron sputtering (MSP) ensure conformal surface coating. PLD generates short time
(µs) fluxes of condensable species with large kinetic energies (a few eV up to several
tens eV) [20]. This favors layer-by-layer growth and, therefore, film crystallinity and con-
formal edge coverage. Moreover, film growth is not disturbed by new incident species
between the laser pulses. As a result, additional surface diffusion occurs. MSP is a deposi-
tion method possessing a more directed flux of film-forming species. Here, DC pulsing in
the kHz range is convenient for suppressing arc formation. Ions with energies up to several
hundred eV are impinging on the growing film surface [21], providing a layer-by-layer
growth with h << λ and a widely conformal substrate coverage at low incident fluxes. A
review of SFMO film deposition and post-processing is provided in [22].

The case of uniform out-of-plane magnetization of the two FM layers was consid-
ered in [23]. Here, the magnetostatic anisotropy constant with an absolute value up to
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|K| = 1.32 × 106 J/m3 will be negative, corresponding to a parallel alignment of the mag-
netizations in the two FM layers. The out-of-plane magnetization induces an anti-FM
interaction between the layers due to a stray field resulting from the uniformly charged
curved surface [24]. For arbitrary orientations of magnetization, the offset field is given
by [24]:

Ho f f =
π2h2
√

2λds
Mh exp

(
− 2π

√
2db

λ

)
×

×
[
1− exp

(
− 2π

√
2ds

λ

)]
·
[
1− exp

(
− 2π

√
2dh

λ

)]
×

×(2 sin α sin β− cos α cos β),

(4)

where α and β are the angles between the magnetization and the average interface. Appro-
priate values of h and λ can be derived by means of atomic force microscopy (AFM).

A surface topography scan provides a root-mean-square (RMS) surface roughness
Rrms as the average of the measured height deviations taken over N points and measured
from the mean line 〈h〉:

Rrms =

√√√√ 1
N

N

∑
n=1

(hn − 〈h〉)2 (5)

A more comprehensive characterization uses the power spectral density (PSD) func-
tion. It represents the square of the Fourier spectrum of the surface profile. Thus, it contains
all information about both the vertical and the lateral structures. Current software for SPM
data visualization and analysis, e.g., Gwyddion [25], includes the calculation of 1D (line
scans) or 2D (area scans) PSDs [26]:

PSD2−D( f ) =
PSD1−D( f )

2π f
, (6)

with f being the frequency of spatial waves. For the 1D case, the RMS amounts to

RRMS =

√∫ f2

f1

PSD( f )d f . (7)

A mathematical PSD model allows the removal of algorithmic procedure artifacts
related to finite bandwidth, discrete spatial frequencies, and fluctuations. The k-correlation
model (also called the ABC model) [27,28],

PSDABC =
A

(1 + B2 f 2)C/2 , (8)

characterizes a 1D PSD of a self-affine and perfectly isotropic surface not affected by the
substrate. The parameter A describes the low-frequency limit of the spectrum. The physical
meaning of the flat part of this curve at low frequencies is that across these dimensions
in real space, there is no significant deviation in the height value. Therefore, parameter B
defines a correlation length lc = B/2π, beyond which the surface height fluctuations are not
correlated. Hence, B represents a mean grain size. The parameter C depends on the growth
mechanism [29]. Correspondingly, Rrms is given by [28]:

RRMS =

√
π · Γ(C + 1/2)

Γ(C/2)
AB

(C− 1)B2 . (9)

In the following equation, we equate RRMS to the waviness amplitude h. The average
spatial wavelength will be defined using the half-maximum amplitude criterion. Then, 〈λ〉
corresponds to the spatial wavelength at A/6dB ≈ A/4. The average spatial wavelengths
determined in this way are in good agreement with the average of multiple line scans
calculated as in [30]
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〈λ〉 = 1/ ln

[
1
N

N

∑
n=1

exp(−1/λn)

]
. (10)

2.3. Interface Dead Layer

The magnetic properties of ultrafine granular systems are size-dependent. FM proper-
ties appear when the layer thickness exceeds a critical value denoted as a dead layer (DL).
For instance, a drastic drop in the magnetization, when the particle size of La0.8Sr0.2MnO3-δ
nanoparticles decreases to 8 nm, indicates the formation of a DL at the surface [31]. The
thickness of this DL was found to have a logarithmic dependence on the particle size. In
La0.7Sr0.3MnO3/depleted manganite/MnSi/SiO2 structures, DL formation at the upper
interface is avoided by using the depleted manganite layer as a tunneling barrier [8]. A sim-
ilar DL was obtained in metallic Fe [32] and Ni films [33], both deposited by electroplating
onto Cu, Ag or Au substrates. The existence of such DLs at T = 0 was attributed to a transfer
of electrons from the s-band to the d-band in the neighborhood of a surface, thus affecting
the magnetic moment. A special form of a dead layer is a magnetically disordered layer.

The magnetization averaged over the film thickness in the presence of a DL amounts
to [33]

M = Mbulk

(
1− δ

d

)
, (11)

where δ is the DL thickness and d is the film thickness. In [34], the DL at the surface of Fe
nanoparticles was assigned to a 1 to 2 nm thick coating with Fe oxides. DLs related to a
distorted structure near the surface were also found in thin films of yttrium-iron garnet [35]
and DyTiO3 [36], both deposited by PLD. In the latter case, the DL with a thickness of
4–5 nm was located at the film surface where magnetic Ti3+ ions are replaced by nonmag-
netic Ti4+ ions, leading to a paramagnetic response. In the case of FM La0.7Sr0.3MnO3
(LSMO) thin films grown by PLD, interfacial DLs were formed due to phase separation [37].
They had a thickness of 3–5 nm, 3–5 nm, and 5–8 nm for films grown on STO (001), NdGaO3
(110) and LaAlO3 (001) substrates, respectively. On the other hand, LSMO films deposited
by PLD onto STO (001) with thicknesses ranging from 3 to 70 unit cells exhibited a re-
duction of the saturation magnetization below a thickness of 4.8 nm, a thickness of a
nonmetallic interface layer of 3.2 nm, and vanishing of ferromagnetism below 1.2 nm [38].
The difference in the critical thicknesses to produce ferromagnetism and metallicity was
explained by phase separation into FM/metallic and non-FM/nonmetallic regions with a
loss of percolation at a critical thickness. A recent study of PLD deposited LSMO thin films
revealed a dependence of the δ parameter on the oxygen pressure pO2 during film growth,
with δ ranging from 2.4 nm for 0.05 Pa to 1.1 nm for 26.6 Pa [39].

2.4. Tunnel Magnetoresistance

The TMR of FM/insulator/FM tunnel junctions can be qualitatively described by
means of the Jullière model [40]. The model considers tunneling between magnetically
aligned and anti-aligned electrodes. Thereby, the spin is supposed to be conserved. Assum-
ing the same matrix element for the tunneling of the majority and minority spin electrons,
the TMR between these configurations arises from the degree of spin polarization P of the
carriers [8]:

P =
n↑(EF)− n↓(EF)

n↑(EF) + n↓(EF)
(12)

where n↑(↓)(EF) is the density of states of spin-up (spin-down) electrons at the Fermi level
EF. Defining the TMR as

TMR =
RAP − RP

RP
, (13)
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where RAP is the electrical resistance in the anti-parallel and RP is that in the parallel state,
the TMR is given in terms of the degrees of the conduction electron spin polarization P1
and P2 in the two magnetic layers as:

TMR =
2P1P2

1− P1P2
. (14)

The spin polarization resembles the spontaneous magnetization behavior at low
temperatures known as Bloch’s T3/2 law [41]:

P(T) = P0(1− αT3/2). (15)

Here, α is a fitting parameter that is generally larger for the surface than for the bulk
magnetization [42], being very sensitive to surface contaminants [43]. The TMR is then
determined by [44]:

TMR =
2P2

0 (1− αT3/2)
2

1− P2
0 (1− αT3/2)

2 . (16)

Assuming tunneling via a magnetically disordered layer at the interface possessing
angles between the spin orientation at the interface and the magnetization in the range of
0 to π, Equation (16) becomes:

TMR =
2P2

0 (1− αT3/2)
2

3− P2
0 (1− αT3/2)

2 . (17)

In this case, the TMR estimated for SFMO lowers to about 6%, slightly smaller than
the experimental value [6].

The combined action of inelastic spin-independent tunneling and tunneling via a
magnetically disordered layer at the interface may be expected in the presence of iron-
deficient interface layers [3,4].

If one takes into account the transmission probability by tunneling, one has to replace
the FM polarization with the effective spin polarization of the FM–barrier couple [45]:

Pf b =
(k↑ − k↓)
(k↑ + k↓)

·
(κ2 − k↑k↓)
(κ2 + k↑k↓)

, (18)

where κ is the reciprocal localization length of the wave function inside the barrier:

κ =

√
2m∗e V0

}2 . (19)

Here me* is the effective electron mass, V0 is the barrier height, h̄ is the Planck constant
expressed in J·s/radian, and k↑(↓) is the wave vector of the wave function of the tunneling
spin-up (spin-down) electrons. Thus, theory [45] predicts a decrease in spin polarization
with barrier height. With regard to Equation (16), the Jullière model [40] then represents
the limit of a very small wavefunction overlap, i.e., it is valid for sufficiently thick barriers.

SFMO is half-metallic where only spin-down states should be active at the Fermi sur-
face (100% spin polarization) [1]. In this case, k↑ becomes imaginary, and the MTJ represents
a perfect magnetic valve with zero conductivity for antiparallel spin orientation in the two
ferromagnetic layers. On the other hand, the calculation of k↓ for SFMO is cumbersome.
For FM Fe, the Fermi surface of the itinerant di-electrons can be approximated by a sphere
of radius kF = (3πne)1/3, where ne is the total electron density [46]. The Fermi surfaces
of lanthanum manganite A-site substituted by one-third of divalent ions [47], as well as
SFMO [48], are more complicated, thus hindering precise analytical calculations of k↓.
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2.5. Low-Field Magnetoresistance

In LSMO ceramics, extrinsic LFMR was found in 1996 [49]. It was shown that the
MR in polycrystalline LSMO exhibits two distinct regions: large MR at low fields (~0.1 T)
dominated by spin-dependent tunneling between grains, and high-field MR also obtained
in single crystals. However, the initial expectation of using LSMO in RT spintronic appli-
cations was not fulfilled. Two years later, the discovery by Kobayashi et al. in 1998 [1] of
LFMR and the half-metallicity of SFMO possessing a Curie temperature of about 420 K
renewed the interest in double perovskites in the context of their potential applications in
the field of spin electronics.

At present, it is well established that the main contribution to LFMR in SFMO ce-
ramics arises from spin-dependent electron tunneling across insulating grain boundaries
(GBs) [50–52] and not from the existence of Fe/Mo antisite defects (ASD) in the bulk [53].
The LFMR is almost absent in single crystals [54]. A study of an epitaxial SFMO thin
film grown on an STO (100) bicrystal boundary has proven that LFMR is caused by spin-
dependent electron transfer across GBs and not by an intragranular effect [55]. Depending
on deposition conditions, LFMR might be missing in SFMO thin films deposited by PLD
onto STO (001) substrates [56,57]. However, the tunneling barriers necessary for LFMR
could be additionally created, e.g., by a post-deposition heat treatment at 475–500 ◦C in an
ultrapure Ar (99.9995 %) atmosphere for 5 h [56] or by annealing in a reducing 5%H2/N2
atmosphere for 10 h at 950 ◦C [58]. In comparison, neither magnetic nor magnetotransport
nor structural properties were improved by post-deposition annealing of SFMO thin films
at temperatures between 500 and 1100 ◦C in a vacuum, Ar, 5%H2/Ar, or air atmospheres
for 5 or 10 h [59]. Obviously, grain boundary modification should be performed under
carefully selected conditions.

SFMO thin films grown by PLD on STO (111) substrates exhibit a larger LFMR effect
in (111)-oriented films compared to those with the (001) orientation [60]. The origin of this
phenomenon is suggested to be the presence of antiphase domain boundaries (APBs). In
fact, APBs are nucleated at steps on the substrate surfaces if nucleation on the two terraces
separated by a step edge starts at different atomic planes [61]. Atomically flat STO (111)
surfaces show a clear step-and-terrace structure with a step height of about 0.24 nm [62].
This approximately corresponds to the plane separation d111 = 0.228 nm of SFMO in the
(111) direction [63]. Note that the larger separation of (111) planes at the substrate surface
favors the formation of FeO6–FeO6 octahedra in comparison to FeO6–MoO6 octohedra.
Experimentally, a step height of about 0.45 nm was derived from AFM images on the
surface of epitaxial (111)-oriented SFMO films obtained by growth mediated by screw
dislocations on STO (111) substrates [60]. This value corresponds to 2d111 and provides
evidence that film growth takes place with a unit cell as a growth species.

The LFMR is favored in thin films subjected to large biaxial compressive strain at the
film-substrate interface [57]. This was related to the formation of low-angle GBs.

3. Results and Discussion
3.1. Selection of Tunneling Barrier Material Based on Electronegativity Differences

The first challenge is the appropriate selection of barrier material. Tunneling is affected
by the properties of the electrode/barrier interface. For instance, the interfacial spin
polarization of La2/3Sr1/3MnO3 deposited onto various barrier materials (SrTiO3, TiO2,
LaAlO3) significantly depends on the barrier material and is strongly different from the
spin polarization of a free surface [64]. On the other hand, suppression of both the Curie
temperature TC and magnetization was observed in a La0.7Ca0.3MnO3/STO superlattice as
the thickness of the La0.7Ca0.3MnO3 layer decreased, which was attributed to interfacial
magnetic disorder [65].

In half-metallic SFMO, only the spin-down (minority) band is present at the Fermi
level providing 100% spin polarization [1]. This leads to a negative spin polarization that
is characterized by a higher tunneling probability for minority spin electrons [2]. Around
the Fermi level, the spin-down band is occupied by both the Mo 4d t2g and the Fe 3d t2g
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electrons, which are strongly hybridized with the oxygen 2p states [1]. Here, the attraction
of a larger part of the electron density to the SFMO side of the interface increases the
occupation of the spin-down states by electrons near the interface (Figure 1).
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Figure 1. Tunneling FM/barrier/FM for XSFMO > Xbarrier (a), XSFMO = Xbarrier (b), and XSFMO < Xbarrier (c).
Energy is plotted along the vertical axis, and the density of states of the FM layers is plotted along the
horizontal axis. Filled states are shown in blue. A negative bias voltage, V, has been applied to the
sample, which effectively raises its Fermi level by e·V with respect to the Fermi level of the grounded
FM electrode.

The effective electronegativities of FM electrode materials, as well as of potential
barrier materials, calculated using Equation (1), are compiled in Table 1.

Table 1. Effective electronegativities of ferro and FM electrode materials, as well as of potential
barrier materials.

Compound Function <X>

Fe Electrode 1.83
NiFe Electrode 1.87
Co Electrode 1.88

MgO Barrier 2.12
La2O3 Barrier 2.18
BaTiO3 Barrier 2.24
SrTiO3 Barrier 2.26

Ce0.69La0.31O1.845 Barrier 2.31
La2/3Sr1/3MnO3 Electrode 2.31
La0.7Sr0.3MnO3 Electrode 2.31

LaAlO3 Barrier 2.35
ZnO Barrier 2.38

Sr2FeMoO6 Electrode 2.38
Mg3B2O6 Barrier 2.40
SrMoO3 Barrier 2.42

HfO2 Barrier 2.49
Mn2O3 Barrier 2.50
Al2O3 Barrier 2.54

SrMoO4 Barrier 2.57
Fe3O4 Electrode 2.62
TiO2 Barrier 2.63

MnO2 Barrier 2.64
Ta2O5 Barrier 2.71

The attraction of more electrons to the SFMO side of the interface stems from the
higher X value of SFMO compared to that of the barrier. This can compensate in part for
the weakening of magnetism due to interfacial magnetic disorder obtained in [65]. The
opposite occurs for a barrier with a higher X value than that of SFMO. Consequently,
barrier materials with a smaller electronegativity are beneficial for a high TMR. This is in
agreement with the values of the TMR of La2/3Sr1/3MnO3 on SrTiO3, LaAlO3, and TiO2
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barriers and a Co counter-electrode amounting to 540, 301, and 140%, respectively [64]. As
a result, SrTiO3, La2O3, and MgO are barrier materials suitable for SFMO.

It has to be noted that this simplified approach is valid for an ideal interface grown
in a layer-by-layer mode, since the concept of effective electronegativity models the in-
terface dipole between a dielectric and metal surface and does not take into account
interface charges and defects. It is not consistent with a change of the layer-by-layer to
the island growth [66], multiple phase separation into FM-metallic, FM-insulating, and
non-FM-insulating regions at the interface of La2/3Ca1/3MnO3 with SrTiO3, LaAlO3, and
NdGaO3 [67], as well as interlayer electron hopping through SrTiO3 layers when the layer
thickness is reduced to less than three unit cells [68]. In Section 2.2, it was shown that
a layer-by-layer growth mode is potentially achievable by PLD and MSP. On the other
hand, the approach in this section does not take into account additional oxygen or oxide
layers influencing, e.g., the barrier transmission in Fe/MgO/Fe MTJs [69,70]. However,
SFMO is an oxygen-deficient compound. Its further oxidation increases the saturation
magnetization, i.e., it improves the interface quality [71].

The thickness of the barrier layer defines the resistance-area product RA = dV/dJ,
with V being the applied voltage and J the current density [72]. It exponentially increases
with barrier thickness where the slope yields the barrier height. Based on operational
requirements on noise and access time, the RA product should be less than 10 kΩ·µm2 [73].
Moreover, it should match the MTJ resistance to the resistance of path transistors, which
is typically 10 kΩ. The RA product for parallel alignment of spins is almost indepen-
dent of temperature, whereas for the antiparallel alignment it gradually decreases with
temperature [74,75].

3.2. Evaluation of the Néel-Coupling Surface Characteristics

A second challenge is the surface waviness of thin films. We have characterized
the surface morphology of the SFMO films by means of atomic force microscopy (AFM)
(cf. Supplemental Materials, Figures S2 and S3). Figure 2 shows the 1D PSD of three
different regions of an approximately 800 nm thick SFMO thin film (AFM images are
depicted in Figure S2, Supplemental Materials) grown by multi-target reactive sputtering at
600 ◦C onto a 150 mm platinized silicon wafer in comparison with a fit to the k-correlation
model, Equation (8). The initial RMS roughness of the Pt layer was 1.4 nm (cf. Supplemental
Materials, Figure S1). The final RMS roughness of the SFMO thin film estimated using
Equation (9) amounts to 13.6 nm, whereas the average spatial wavelength derived from the
half-maximum amplitude criterion amounts to 217 nm. For dh = 800 nm, db = 2 nm, and
ds = 4 nm, the relative offset field yields Hoff/Ms = 0.15, which is not suitable for applications.
This value can be reduced to Hoff/Ms = 0.02 by reducing the surface roughness to 5 nm. On
the other hand, samples deposited at RT onto STO substrates by ceramic target MSP and
crystallized at about 900 ◦C at BGUIR (Minsk, Belarus) possess an RMS roughness of 35 nm
and an average spatial wavelength of 1700 nm, yielding a ratio Hoff/Ms = 0.016 (Figure 3,
AFM images are depicted in Figure S3, Supplemental Materials).
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Figure 3. One-dimensional power spectral density of an SFMO thin film deposited by ceramic tar-
get magnetron sputtering and crystallized at 900 ◦C (dots) in comparison with the ABC model,
Equation (8) (dotted line). AFM scans were carried out at one point using scanning areas of
5 × 5 µm2 (light blue), 10 × 10 µm2 (blue), 30 × 30 µm2 (red) and 70 × 70 µm2 (green).

3.3. Estimation of the Dead Layer Thickness of SFMO Thin Films

Unfortunately, most of the reports on SFMO thin film deposition are devoted to films
with a thickness of about 100 nm [22]. To the best of our knowledge, there is only one
report considering the thickness dependence of the saturation magnetization Ms of SFMO
thin films deposited by PLD onto STO (001) and (LaAlO3)0.3(Sr2AlTaO6)0.7 (001) (LSAT)
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substrates [76]. Applying Equation (11) to this data, we find a total DL thickness (we
are not able to distinguish between interface and surface layer) of 11 to 14 nm (Figure 4).
This is in reasonable agreement with the values of nonmagnetic interface layers, obtained
in La2/3Ca1/3MnO3 thin films deposited by RF sputtering [77] and in PLD deposited
La0.67Sr0.33MnO3 thin films [78], amounting to 5.3 ± 0.9 nm and 4.6 ± 0.9 nm, respectively.
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Figure 4. Thickness dependence of the saturation magnetization Ms of SFMO thin films measured in a
magnetic field of 400 mT at 10 K [76] in comparison with the DL model (Equation (11)). Additionally,
an outlook is given for high-quality SFMO thin films possessing a saturation magnetization of
3.75 µB/f.u.

On the other hand, there is evidence that the STO/CoFe2 interface considered below is
less problematic with respect to DLs. The DL is practically absent at Co/Cu interfaces [79].
High-quality epitaxial CoFe2O4 (CFO) with a magnetization near the bulk value can be
prepared on STO despite the large lattice mismatch. Diffusion of the involved ions is not
expected due to different ion sizes, crystallographic structures, and electron configura-
tions [80]. In addition, the FM order in the DL at a CFO/Al2O3 interface is partially restored
by increasing the CFO thickness d from 1.4 to 2.3 nm [81]. This restoration likely originates
from an interlayer coupling of the DL at d = 1.4 nm with an additional 0.9-nm-thick CFO
layer having a stronger FM ordering. This leads to a large slope of the magnetization-vs.-
thickness curve at least up to d = 4 nm. Note that CFO is an insulating material that exhibits
a half-metal-like behavior only in combination with a nonmagnetic electrode in a double
spin-filter junction [82].

3.4. Attainable Tunnel Magnetoresistance

A spin-polarization value of P = 0.85 was deduced by means of the Jullière model
for an SFMO/STO/Co junction at 4 K, where the SFMO possesses an antisite disorder
parameter ASD = 0.15 [2]. The P values obtained for SFMO single crystals were 0.67 ± 0.03,
0.66 ± 0.02, and 0.59 ± 0.05 at T = 1.2 K for ASD amounting to 0.11, 0.15, and 0.16, respec-
tively [83]. The spin-polarization values were found to be independent of temperature,
which was anticipated in the considered temperature range from 1.2–3.76 K, well below
the Curie temperature of SFMO. Taking into account data in [83], Equation (15) was ap-
proximated choosing P0 = 0.9. Here, Equation (16) yields a zero-temperature TMR of about
430%. The parameter α determined using the data for (Ba0.8Sr0.2)2FeMoO6 given in [84]
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amounts to 1.31 × 10−4 K−3/2, which is one order of magnitude larger than the values
for Co, permalloy [41], NiFe [85], and FeNiB0.5 [42,43], and about three times the value
for La2/3Sr1/3MnO3, but on the order of the values obtained for La2/3Sr1/3MnO3 grown
on various barrier materials (SrTiO3, TiO2, LaAlO3). It amounts to about one-third of the
value for the La2/3Sr1/3MnO3 free surface [64]. Inserting the obtained α value of SFMO
into Equation (15), we find P(298 K) = 0.293 and, correspondingly, using Equation (16),
TMR(298 K) = 19%. For an SFMO(150 nm)/STO(2 nm)/SFMO(50 nm) MTJ device, an
experimental value of TMR(298 K) ≈ 7% was reported in [6], corresponding to spin po-
larization of 18%. As for conventional tunnel junctions, the presence of defect states in
the barrier reduces the MR [86]. Unpaired electrons will increase the spin-flip rate so that
MR could vanish with increasing defect concentration. On the other hand, the discrepancy
between experimental observation and direct spin-dependent tunneling theory can be
overcome by additionally taking into account the spin-independent tunneling. One such
tunneling mechanism is hopping through chains of N localized states resulting in additional
conductivity that is temperature-independent for N = 1 and exhibits power laws T4/3 and
T5/2 for N = 2 and N = 3, respectively [87]. This adds a correction to RAP, yielding for N = 2
a TMR of [44]

TMR =
2P2

0 (1− αT3/2)
2 − βSI(T)

1− P2
0 (1− αT3/2)

2
+ βSI(T)

, (20)

where βSI(T) is a coefficient, both temperature- and barrier-dependent, attributed to
second-order inelastic tunneling that displays a conductivity contribution of σ ∝ T4/3.
The room-temperature TMR of SFMO matches the experimental data described above [6]
for βSI(298 K) ≈ 0.1.

3.5. Promotion of the Low-Field Magnetoresistance in (111)-Oriented Thin Films

Let us consider the LFMO in (111)-oriented SFMO films comprising APBs. The
electrical conductivity across APBs comes into play only in the presence of a magnetic field
when the spins of all grains are oriented in the field direction [88]. On the other hand, the
resistivity of (111)-oriented SFMO films is smaller than that of (100)-oriented ones by a
factor of 2 to 3 lower [60]. Additionally, in the first case, the resistivity behavior is more
similar to that of single crystals [54,89], which can be modelled by [89]

ρ(T) = ρ0 + R · T2. (21)

Here, ρ0 is the residual metallic resistivity and R is a coefficient depending on the
charge carrier scattering mechanism. The resistivity behavior of (111)-oriented SFMO thin
films can be explained by the fact that APBs in (111)-oriented SFMO films are directed along
the growth direction. Here, the APBs lead to the confinement of charge carriers within a
domain. This increases the charge carrier scattering length. As a result, the ρ0 value of
SFMO decreases due to a larger scattering length. When a magnetic field is applied, the
APBs become more penetrable for charge carriers, and their scattering length decreases.
This gives an additional contribution to the LFMR.

4. Conclusions

The practical implementation of SFMO-based MTJs requires attention to a number of
specific aspects:

- In the case of a lower effective electronegativity of the barrier material compared to
SFMO, e.g., for MgO, La2O3, BaTiO3, SrTiO3, LaAlO3, and ZnO, the attraction of more
electrons to the SFMO side of the interface increases the occupation of the spin-down
states by electrons near the interface. This increases the density of states at the Fermi
level and, thus, the tunnel current.

- The magnetic offset field caused by magnetic coupling due to interfacial waviness is
determined not only by the surface roughness (amplitude of spatial waves) but also
by the width or spacing of surface features (wavelength of spatial waves). A slowly
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changing surface profile corresponding to a wavy surface rather than a rough one
is beneficial.

- The thickness of the SFMO layer should be much larger than that of the magnetic
dead layer at the surface/interface amounting to about 10 nm.

- The presence of a magnetically disordered interface layer, as well as spin-independent
tunneling through the barrier layer, deteriorates the TMR.

- The TMR in SFMO-based MTJs may be enhanced by means of (111)-oriented SFMO
thin films. This is attributed to the influence of antiphase boundaries on charge carrier
scattering in SFMO.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app12052717/s1, Figure S1: AFM image and determination of the surface roughness of
a Pt(111) electrode using the software package Gwyddion, Figure S2: AFM images of SFMO thin
films deposited by multi-target reactive sputtering at 600 ◦C taken at three different points with a
scan area of 1.05 × 1.05 µm2, Figure S3: Set of AFM images with different scan size of a SFMO thin
film deposited by ceramic target magnetron sputtering and crystallized at 900 ◦C, Figure S4: Film
thickness distribution of a SrMoO4 thin film deposited onto a 150 mm platinized silicon wafer.
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